Convex Functions (in one var is $f^{\prime \prime}(x) \geq 0$) A function $f=\mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for all x and y and all $0 \leq t \leq 1$,

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y) \tag{*}
\end{equation*}
$$

These look like

Or

- linear is convex.
f is strictly convex if

$$
f(t x+(1-t) y)<t f(x)+(1-t) f(y)
$$

$\|x\|_{2}$ is strictly convex, bat $\|x\|_{\infty}$ and $\|x\|_{1}$ are merely convex.
f is concave if $-f$ is convex I think of a cave.
$\operatorname{dom}(f)$, the domain of f_{1} is the set of x for which f is defined.
If $\operatorname{dom}(f) \neq \mathbb{R}^{n}$, then f is convex if
a. $\operatorname{dom}(f)$ is a convex set, and
b. ($*$) holds for all $x, y \in \operatorname{dom}(f)$

Example: $\quad f(x)=1 / x^{2}$ is convex if $\operatorname{dom}(f)=(0, \infty)$, bat not on \mathbb{R}

Sane for

If f is convex $\operatorname{bat} \operatorname{dom}(f) \neq \mathbb{R}^{n}$, the extension of f, \tilde{f}, is convex on \mathbb{R}^{n}, where

$$
F(x)= \begin{cases}f(x) & \text { for } x \in \operatorname{don}(f) \\ \infty & \text { for } x \notin \operatorname{don}(f)\end{cases}
$$

Why? We care about convex optimization problems: $\min f(x)$ st. $x \in C$ where C is a convex set and f is a convex function.

This is one of the broadest classes of problems that we car solve efficiently.

If f is strictly convex, the minimum is unique: if $x_{1}, x_{2} \in \operatorname{argmin} f(x)$, but $x_{1} \neq x_{2}$, then $f\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)<\frac{1}{2} f\left(x_{1}\right)+f\left(x_{2}\right)$, contradicting minimality of x_{1}, x_{2}.
local minima of convex functions are global minima. x is a local minimum of f if $子 \varepsilon>0$ sit.

$$
\|x-y\| \leq \varepsilon \quad \Rightarrow \quad f(x) \leq f(y) .
$$

x is a global minimum if $\forall y \quad f(x) \leqslant f(y)$.

If x were a local minimum bat Not global, then \exists y st. $f(y)<f(x)$.
For every $\varepsilon>0$ there is a $t \in[0,1]$ s.t.

$$
\| x-((1-t) x+t+\mid \| \leq \varepsilon
$$

For this $t, \quad f\left((1-t) x+t_{y}\right) \leq(1-t) f(x)+t f(y)<f(x)$.
This contradicts the assertion that x is a local minimum.

Examples of convex functions.
One variable:
$e^{a x}$ for $a \in \mathbb{R}$

$$
\begin{array}{ll}
x^{\alpha} & \alpha=1 \text { or } \alpha \leq 0, \quad x \in[0, \infty] \\
-x^{\alpha} & 0 \leq \alpha \leq 1, \quad x \in[0, \infty]
\end{array}
$$

$-\log (x), x \in[0, \infty]$, because $\log (x)$ is concave
Vectors
norms: $\|x\|$
Indicator functions: $I(x)= \begin{cases}0 & x \in C \\ \infty & x \notin C,\end{cases}$ C is convex. (could replace ∞ with 1)

Affine functions: $f(x)=a^{\top} x+b$

Rules:
Non-negative sums:
$f_{1 .,} f_{n}$ convex, $\omega_{1 . \ldots} \omega_{n} \geq 0 \Rightarrow \sum \omega_{i} f_{i}$ is convex

Maximum: the maximum of convex is convex

$$
f(x)=\max \left(f_{1}(x), f_{2}(x)\right)
$$

Ex. maximum of linear is convex

Ex. $\quad \max (x(1), x(2), \ldots, x(u))$

Ex. Sum of largest k components

$$
=\max _{|s|=k} \sum_{i \in S} x(i)
$$

Affine composition:
if g is convex, then so is $f(x)=g(A x+b)$

Examples: $\left\|\|_{2}\right.$ is convex $\left.\Rightarrow\right\| A x \|_{2}$ convex $\Rightarrow x^{\top}\left(A^{\top} A\right) x$ is convex.
Every Positive Semidefinite $Q=A^{\top} A$, for some A. So, $x^{\top} Q x$ is convex.
least squares: $\|A x-b\|_{2}^{2}$ is convex $l_{1}-$ regularized : $\|A x-b\|_{2}+\lambda\|x\|_{1}$ is convex Logistic loss: $\sum_{i} \log \left(1+e^{y_{i}\left(a_{i}^{T} x+b\right)}\right)=f(x)$ $g(z)=\log \left(1+e^{y z}\right)$ is convex in g, because

$$
g^{\prime \prime}(z)=\frac{y^{2} e^{y z}}{\left(1+e^{y z}\right)^{2}}
$$

$a_{i}^{T} x+b$ is affine.

Composition rules (one of many)
If $f(x)=h(g(x))$ where $h: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, g convex \& h convex, non-decreasing $\Rightarrow f$ convex
idea: in one var, $f^{\prime}(x)=g^{\prime}(x) h^{\prime}(g(x))$

$$
\begin{gathered}
f^{\prime \prime}(x)=g^{\prime \prime}(x) h^{\prime}(g(x))+g^{\prime}(x)^{2} h^{\prime \prime}(g(x)) \\
\geq 0 \geq 0 \quad \geq 0 \geq 0
\end{gathered}
$$

Functions \& Sets:
The α-sublevel set of f is $\{x: f(x) \leqslant \alpha\}$.
If f is convex then so are its α-sablecel sets.
The graph of a function f is $\{(x, f(x))=x \in \operatorname{dom}(f)\}$.
The epigraph of f is the region above:

$$
\{(x, t): x \in \operatorname{don}(f), f(x) \leq t\}
$$

like the ice cream cone, of:

convex

not convex
f is a convex function ff its epigraph is a convex set.

In one variable, a twice-differentrable function $f(x)$ is convex iff $f^{\prime \prime}(x) \geq 0, \forall x \in \operatorname{dom}(f)$. This says that the function always lies above tangent lines, like

Thu 1
In \mathbb{R}^{n}, if f is differentiable then f is convex iff

$$
\begin{equation*}
\forall x, y \in \operatorname{dom}(f), \quad f(y) \geq f(x)+\nabla f(x)^{\top}(y-x) \tag{*}
\end{equation*}
$$

Note that $h(y) \geqslant f(x)+\nabla f(x)^{\top}(y-x)$ is the linear function in y such that $h(x)=f(x)$, and is a supporting hyperplane of epigraph at $(x, f(x))$
proof of Fhml
We first prove $(*) \Rightarrow$ convex
Let $x, y \in \operatorname{dom}(f), 0<\lambda<1, z=\lambda x+(1-\lambda) y$.
let $g=\nabla f(z)$.

$$
\begin{aligned}
&(*) \quad \Rightarrow \quad \lambda f(x) \geq \lambda f(z)+\lambda g^{\top}(x-z) \\
&(1-\lambda) f(y) \geq(1-\lambda) f(z)+(1-\lambda) g^{\top}(y-z) \\
& \Rightarrow \lambda f(y)+\left(1-\lambda f(y) \geq f(z)+\frac{g^{\top}(\lambda x-\lambda z+(1-\lambda) y-(1-\lambda) z)}{0}\right.
\end{aligned}
$$

Convex $\Rightarrow(*)$
For $x, y \in \operatorname{dom}(f), 0<\lambda<1$,

$$
\begin{aligned}
& (1-\lambda) f(x)+\lambda f(y) \geq f((1-\lambda) x+\lambda y)=f(x+\lambda(y-\lambda)) \\
\Rightarrow & f(y) \geq f(x)+\frac{f(x+\lambda(y-x))-f(x)}{\lambda}
\end{aligned}
$$

taking \lim as $\lambda \rightarrow 0$ gives

$$
f(x)+\nabla f\left(H^{\top}(y-x)\right.
$$

Thu 2 If f is twice differentiable, f is convex iff $\nabla^{2} f(x)$ is $p s d$ where $\nabla^{2} f(x)$ is matrix with entries $\frac{\partial^{2}}{\partial x(i) \partial+\left(j_{j}\right)} f$

Computing $\|A\|_{2}^{2}=\max _{\|x\|=1}\|A x\|_{2}^{2}=\max _{\|x\|=1} x^{\top}\left(A^{\top} A x\right.$
Does not seem a convex program, because
i. are maximizing
ii. $\|H\|=1$ is not a convex set. Restricting to $\|x\| \leq 1$ solves ii but not i.

Solution: write as

$$
\min t \text { s.t. } t I-A \succcurlyeq 0
$$

($M \geqslant 0$ iff M is positive semidetinite). Is a convex cone.

Can check if $M \geqslant 0$ by trying to compute a cholesty factorization: L sit. $L L^{\top}=M$.
$S_{n}{ }^{+}=$set of symmetric $n \times n$ positive senidefinite.

If A is symmetric, but $A \notin S_{+1}^{4}$ $\exists v$ st. $v^{\top} A v<0$
A hyperplane separating A from S_{t}^{n} is given by $\left\{\right.$ symmetric $\left.X: v^{\top} X v=0\right\}$

$$
v^{\top} X_{v} \geq 0 \text { for } X \in S_{t}^{n} . \quad v^{\top} A v<0 \text {. }
$$

And is a hyperplane because

$$
v^{\top} X_{v}=\sum_{1 \leq i, j \leq n} X(i, j) v(i) v(j) \text { is linear in } X .
$$

