Convex Functions (in one var is $f''(x) \geq 0$)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for all x and y and all $0 \leq t \leq 1$,
\[f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) \quad (\star) \]

These look like

Or

- linear is convex.

f is strictly convex if
\[f(tx + (1-t)y) < tf(x) + (1-t)f(y) \]

$\|x\|_2$ is strictly convex, but $\|x\|_0$ and $\|x\|_1$ are merely convex.

f is concave if $-f$ is convex.

I think of a cave.

$\text{dom}(f)$, the domain of f, is the set of x for which f is defined.

If $\text{dom}(f) \neq \mathbb{R}^n$, then f is convex if
1. $\text{dom}(f)$ is a convex set, and
2. (\star) holds for all $x, y \in \text{dom}(f)$
Example: \(f(x) = \frac{1}{x^2} \)

is convex if \(\text{dom}(f) = (0, \infty) \),
but not on \(IR \)

Same for \(x^3 \)

If \(f \) is convex but \(\text{dom}(f) \neq IR^n \),
the extension of \(f \), \(\tilde{f} \), is convex on \(IR^n \), where

\[
\tilde{f}(x) = \begin{cases}
 f(x) & \text{for } x \in \text{dom}(f) \\
 \infty & \text{for } x \notin \text{dom}(f)
\end{cases}
\]

Why? We care about convex optimization problems:

\[
\min f(x) \quad \text{s.t. } x \in C
\]

where \(C \) is a convex set and \(f \) is a convex function.

This is one of the broadest classes of problems
that we can solve efficiently.

If \(f \) is strictly convex, the minimum is unique:

if \(x_1, x_2 \in \text{arg min } f(x) \), but \(x_1 \neq x_2 \),
then \(f(\frac{1}{2}x_1 + \frac{1}{2}x_2) < \frac{1}{2} f(x_1) + f(x_2) \),
contradicting minimality of \(x_1, x_2 \).
Local minima of convex functions are global minima.
\(x \) is a \textbf{local minimum} of \(f \) if \(\exists \varepsilon > 0 \) s.t.
\[\| x - y \| < \varepsilon \implies f(x) \leq f(y) \]
\(x \) is a \textbf{global minimum} if \(\forall y \) \(f(x) \leq f(y) \).

If \(x \) were a local minimum but \textbf{NOT} global,
then \(\exists y \) s.t. \(f(y) < f(x) \).
For every \(\varepsilon > 0 \) there is a \(t \in [0,1] \) s.t.
\[\| x - ([1-t]x + ty) \| < \varepsilon. \]
For this \(t \),
\[f([1-t]x + ty) < (1-t)f(x) + tf(y) < f(x). \]
This \textbf{contradicts} the assertion that \(x \) is a local minimum.

Examples of convex functions.

One variable:
\[e^{ax} \text{ for } a \in \mathbb{R} \]
\[x^2 \text{ for } x \geq 1 \text{ or } x \leq 0, \quad x \in [0,\infty] \]
\[-x^2 \text{ for } 0 \leq x \leq 1, \quad x \in [0,\infty] \]
\[-\log(x), \quad x \in [0,\infty], \quad \text{because } \log(x) \text{ is concave} \]

Vectors

\[\| x \| \]

Indicator functions:
\[I(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases} \]

\(C \) is convex. (could replace \(\infty \) with 1)
Affine functions: \(f(x) = \alpha^T x + b \)

Rules:

Non-negative sums:
\(f_i, f_n \) convex, \(\omega_1 \ldots \omega_n \geq 0 \Rightarrow \sum \omega_i f_i \) is convex

Maximum: the maximum of convex is convex
\(f(x) = \max (f_1(x), f_2(x)) \)

Ex. maximum of linear is convex

Ex. \(\max (x(1), x(2), \ldots, x(n)) \)

Ex. Sum of largest \(k \) components
\[
= \max \sum_{|S|=k} x(i)
\]

Affine composition:
if \(g \) is convex, then so is \(f(x) = g(Ax + b) \)
Examples: \(\| A x \|_2 \) is convex \(\Rightarrow \) \(\| A x \|_2 \) is convex

\(\Rightarrow x^T (A^T A) x \) is convex.

Every positive semidefinite \(Q = A^T A \), for some \(A \). So, \(x^T Q x \) is convex.

Least squares: \(\| A x - b \|_2^2 \) is convex

\(l_1 \)-regularized: \(\| A x - b \|_2^2 + \lambda \| x \|_1 \) is convex

Logistic loss: \(\sum_i \log (1 + e^{y_i (a_i^T x + b)}) = f(x) \)

\(g(z) = \log (1 + e^{y z}) \) is convex in \(g \), because

\[g''(z) = \frac{y^2 e^{y z}}{(1 + e^{y z})^2} \]

\(a_i^T x + b \) is affine.

Composition rules (one of many)
If \(f(x) = h(g(x)) \) where \(h : \mathbb{R} \rightarrow \mathbb{R} \), \(g : \mathbb{R}^n \rightarrow \mathbb{R} \),

\(g \) convex & \(h \) convex, non-decreasing \(\Rightarrow f \) convex

idea: in one var, \(f'(x) = g'(x) h'(g(x)) \)

\[f''(x) = g''(x) h'(g(x)) + g'(x) h''(g(x)) \]

\[> 0 \quad > 0 \quad > 0 \]
Functions & Sets:

The \(\alpha \)-sublevel set of \(f \) is \(\{ x : f(x) \leq \alpha \} \).

If \(f \) is convex then so are its \(\alpha \)-sublevel sets.

The graph of a function \(f \) is \(\{(x, f(x)) : x \in \text{dom}(f)\} \).

The epigraph of \(f \) is the region above:

\[\{(x, t) : x \in \text{dom}(f), \; f(x) \leq t\} \]

like the ice cream cone, or:

\[\text{convex} \quad \text{not convex} \]

\(f \) is a convex function iff its epigraph is a convex set.

In one variable, a twice-differentiable function \(f(x) \) is convex iff \(f''(x) \geq 0, \; \forall x \in \text{dom}(f) \).

This says that the function always lies above tangent lines, like
Theorem 1

In \(\mathbb{R}^n \), if \(f \) is differentiable then \(f \) is convex iff

\[f(y) \geq f(x) + \nabla f(x)^T (y-x) \quad (*) \]

Note that \(h(y) = f(x) + \nabla f(x)^T (y-x) \) is the linear function in \(y \) such that \(h(x) = f(x) \), and is a supporting hyperplane of epigraph at \((x, f(x)) \).

Proof of Theorem 1

We first prove \((*) \Rightarrow \text{convex} \)

Let \(x, y \in \text{dom}(f), \ 0 < \lambda < 1, \ z = \lambda x + (1-\lambda) y \).

Let \(g = \nabla f(z) \).

\[(*) \Rightarrow \lambda f(x) \geq \lambda f(z) + \lambda g^T (x-z) \]

\[(1-\lambda) f(y) \geq (1-\lambda) f(z) + (1-\lambda) g^T (y-z) \]

\[\Rightarrow \lambda f(y) + (1-\lambda) f(y) = f(z) + g^T (\lambda x - \lambda z + (1-\lambda) y - (1-\lambda) z) \]

Convex \(\Rightarrow (* \)

For \(x, y \in \text{dom}(f), \ 0 < \lambda < 1 \),

\[(1-\lambda) f(x) + \lambda f(y) \leq f((1-\lambda) x + \lambda y) = f(x + \lambda (y-x)) \]

\[\Rightarrow f(y) \geq f(x) + \frac{f(x + \lambda (y-x)) - f(x)}{\lambda} \]

Taking \(\lim \) as \(\lambda \to 0 \) gives

\[f(y) + \nabla f(x)^T (y-x) \]
Thus, if \(f \) is twice differentiable,

\[
f \text{ is convex iff } \nabla^2 f(x) \text{ is psd where } \nabla^2 f(x) \text{ is matrix with entries } \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \nabla^2 f(x) \text{ is matrix with entries } \frac{\partial^2 f}{\partial x_i \partial x_j}(x)
\]

Computing \(\|A\|_2^2 = \max_{\|x\|_2=1} \|Ax\|_2^2 = \max_{\|x\|_2=1} x^T (ATA)x \)

Does not seem a convex program, because

1. \(\|x\|_2=1 \) is not a convex set.
2. \(\|x\|_2=1 \) is not a convex set.
 Restricting to \(\|x\|_2 \leq 1 \) solves ii but not i.

Solution: write as

\[
\min t \text{ s.t. } tI - A \succeq 0
\]

\((M \succeq 0 \text{ iff } M \text{ is positive semidefinite}) \).

Is a convex cone.

Can check if \(M \succeq 0 \) by trying to compute

a Cholesky factorization: \(L \) s.t. \(LL^\top = M \).

\(S_n^+ \) = set of symmetric \(n \times n \) positive semidefinite.
If A is symmetric, but $A \notin S^+_n$, then $\nu^T A \nu < 0$.

A hyperplane separating A from S^+_n is given by

$$\{ \text{symmetric } X : \nu^T X \nu = 0 \}$$

$\nu^T X \nu \geq 0$ for $X \in S^+_n$, $\nu^T A \nu < 0$.

And is a hyperplane because

$$\nu^T X \nu = \sum_{1 \leq i \leq n} X(i,i) \nu(i) \nu(i)$$

is linear in X. In space of symmetric matrices.