$$\frac{Convex Functions}{A \text{ function } f^{-}[R^{n} \rightarrow [R \text{ is } convex \text{ if for all}]}$$

$$A \text{ function } f^{-}[R^{n} \rightarrow [R \text{ is } convex \text{ if for all}]$$

$$x \text{ and } y \text{ and all } O \leq t \leq 1,$$

$$f(tx + (l-t)y) \leq tf(x) + (l-t)f(y)$$

$$(X)$$

- f is $\frac{\text{strictl}_{1}}{f(t+x+(1-t))} < tf(x) + (1-t)f(x)$
- |1×112 is strictly convex, but 11×1100 and 11×11, are merely convex.

Example:
$$f(x) = \frac{1}{x^2}$$

is convex if don $[f] = (0, 00]$,
bat not on \mathbb{R}
Same for x^3
If f is convex but don $[f] \neq \mathbb{R}^n$,
the extension of f, f, is convex on \mathbb{R}^n , where
 $F(x) = \int f(x) + f(x) + f(x) + f(x)$

This is one of the broadest classes of problems that we can solve efficiently.

If f is strictly convex, the minimum is unique: if X1, X2 & arg min f(X), but X1 + X2, then f(± X1 + ± X2) < ± f(X1) + f(X2), contradicting minimality of X1, X2.

Local minima of convex functions are global minima.

$$x$$
 is a local minimum of f if $\exists z > 0$ sit.
 $\||x-y\|| \in z \implies f(x) \in f(y)$.
 x is a global minimum if $\forall y = f(x) = f(x)$.

If x were a local minimum but NOT global,
then I y st. f(x) < f(x).
For every E>O there is a te[o,1] s.t.
$$\|x - ((1-t)x+t+1)\| \in E$$
.
For this t, f((1-t)x+t+1) < (1-t) f(x) + tf(x) < f(x).
This contradicts the assortion that x is a
local minimum.

Examples of convex functions.
One variable:

$$e^{ax}$$
 for a e IR
 x^{d} dzl or $x \in 0$, $x \in [0, \infty]$
 $-x^{d}$ O $\in x \in [1, x \in [0, \infty]]$
 $-\log(x)$, $x \in [0, \infty]$, because $\log(x)$ is concave

Vectors

Affine functions :
$$f(x) = a^T x + b$$

Maximum: Hie maximum of convex is convex $f(x) = max(f_1(x), f_2(x))$

Ex. maximum of linear is convex

$$E_{\times}$$
, max (x(i), x(2),..., x(u))

Affine composition:
if g is convex, then so is
$$f(x) = g(Ax+b)$$

Examples:
$$\|\|_{2}$$
 is convex $\Rightarrow \|Ax\|_{2}$ convex
 $\Rightarrow x^{T}(A^{T}A) \times is$ convex.
Every Positive Semidefinite $Q = A^{T}A$, for some A.
So, $x^{T}Q \times is$ convex.

Least squares: $||Ax-b||_2^2$ is convex $l_1 - regularized : ||Ax-b||_2 + \lambda ||x||_1$ is convex $logistic loss : \sum_i log(1 + e^{Y_i(aIx+b)}) = f(x)$

$$g(z) = log(l + e^{\gamma z})$$
 is convexing, because
 $g''(z) = \frac{\gamma^2 e^{\gamma z}}{(l + e^{\gamma z})^2}$
 $Q_{z}^{T}x + b$ is affine.

Composition rules (one of many)
If
$$f(x) = h(g(x))$$
 where $h: |\mathbb{R} \to \mathbb{R}, g: |\mathbb{R}^n \to \mathbb{R},$
g convex & h convex, non-decreasing => f convex

f is a convex function iff its epigoph is a convex set.

In one variable, a twice-differentiable function f(x) is convex iff f"(x) = 0, Hx & dom(f). This says that the function always lies above tonsent lines, like

Thm I
In
$$\Pi^n$$
, if f is differentiable then f is convex iff
 $\forall x, y \in dom(f)$, $f(y) \ge f(x) + \nabla f(x)^T(y-x)$ (*)

Note that
$$h(1) \triangleq f(1) + Vf(x)^{(\gamma-x)}$$
 is the
linear function in γ such that $h(x) = f(x)$,
and is a supporting hyperplane of epigraph
at $(x, f(x))$

$$\frac{\text{proof of Hum}|}{\text{We first prove } (*)} \Rightarrow \text{convex}$$

$$\text{Let } x, y \in \text{dom}(f), \quad 0 < \lambda < l, \quad z = \lambda x + (l \cdot \lambda) y.$$

$$\text{Let } g = \mathcal{D}f(z).$$

$$(*) \Rightarrow \lambda f(x) \geq \lambda f(z) + \lambda g^{T}(x - z)$$

$$(l \cdot \lambda) f(z) \geq (l \cdot \lambda) f(z) + (l \cdot \lambda) g^{T}(y - z)$$

$$= \lambda f(x) + (l \cdot \lambda) f(z) = f(z) + g^{T}(\lambda x - \lambda z + (l \cdot \lambda) y - (1 - \lambda) z).$$

$$\bigcirc$$

$$\begin{array}{l} (Onve \times => (\mathbf{x}) \\ \mbox{For } x, y \in dom(f), \quad O < \times < (, \\ ((-\lambda) + [\mathbf{x}] + \lambda + (y) \geq f((-\lambda) \times + \lambda y) = f(\mathbf{x} + \lambda (y - \mathbf{x})) \\ => f(x) \geq f(x) + \frac{f(\mathbf{x} + \lambda (y - \mathbf{x})) - f(\mathbf{x})}{\lambda} \end{array}$$

taking lim as
$$\lambda \rightarrow 0$$
 gives
 $f(x) + Df(H^T(\gamma - x))$

Thin2 If f is twice differentiable,
f is convex iff
$$\nabla^2 f(X)$$
 is psd
where $\nabla^2 f(X)$ is matrix with entries $\overline{D(X)} \overline{D(X)}$ f
Compating $\|A\|_2^2 = \max_{\|X\|=1} \|AX\|_2^2 = \max_{\|X\|=1} x^T (A^T A) X$
 $\|X\|=1$ $\|X\|=1$ $\|X\|=1$
Does not seem a convex program, because
i. are maximizing
ii. $\|A\|=1$ is not a convex set.
Restricting to $\|\|X\| \le 1$ solves \overline{ii} but not \overline{i} .
Solution: write as
min t s.t. $tI - A \ge 0$
 $(M \ge 0$ iff M is positive semidefinite).
Is a convex cone.
(an check if $M \ge 0$ by trying to compute
a cholesky factorization : L st. $LL^T=M$.

Sn = set of symmetric non positive semidefinite.

If A is symmetric, but
$$A \notin S_{t,1}^{h}$$
 in space of symmetric
 $\exists v st. v^{T}Av < O$
A hyperplane separating A from S_{t}^{n} is given by
 $\{ \text{symmetric } X : v^{T}Xv = O \}$
 $v^{T}Xv = O$ for $X \in S_{t}^{n}$. $v^{T}Av < O$.
And is a hyperplane because

$$v^T X v = \sum_{\substack{(z,j) \in N}} X(z,j) v(z) v(z) is linear in X.$$