vol Neumann's Algorithm for feasibility:
To determine if $c \in C H\left(a \ldots a_{m}\right)$ and to find y st. $A_{y} \approx C$

Is easy if $m=d t$ and tank $\left(\begin{array}{ll}a_{1} & a_{d t} \\ 1 & \ldots\end{array}\right)=d t 1$: just solve $\binom{A}{1^{T}} y=\binom{c}{1}$ and check if y is ≥ 0.

Difficulty comes from having $m>d t l$ vectors.

Unlike simplex, this is iterative, with more iterations giving better approximations.

Simplification 1: Is equivalent to determine if $0 \in C H\left(\hat{a}_{1}, \ldots, \hat{a}_{n}\right)$, where $\hat{a}_{i}=a_{i}-c$. proof $1^{\top} y=1 \Rightarrow \Sigma y(i) \hat{a}_{i}=\overline{0} \Leftrightarrow \sum_{y(i) a_{i}}=c$

Simplification 2: Is equivalent to determine if' $O \in C H\left(a_{1} /\left\|a_{1}, \ldots, a_{n} /\right\| a_{n} \|\right)$, but this is special for 0 .
proof $O \& C H\left(a_{1} . . a_{n}\right)$ iffy \exists sep hyperplane iff $子 \times$ st. $x^{\top} a_{i}>0, \forall i$.
And, this does not depend on norm of a_{i}.

Real goal: find $A_{y} \approx c$ or find a separating hyperplane

To start, let $y_{0}=\frac{1}{m} \mathbb{1}, x_{0}=A y_{0}$, a convex combination. At step k, construct $x_{k}=A y_{k}$, and meorwe $\left\|x_{k}\right\|_{2}$

Motivating picture:

At step $k_{t} l$, choose i to maximize $x_{k}^{\top}\left(x_{k}-a_{i}\right)$ If we view $-x_{k}$ as the error to be corrected, then think of maximizing $\left(-x_{k}\right)^{\top}\left(a_{i}-x_{k}\right)$ This minimizes the angle.

If $x_{k}^{\top}\left(x_{k}-a_{i}\right)<0, \forall i$, then we have found a separating hyperplane: $0 \leqslant x_{k}^{\top} x_{k}<x_{k}^{\top} a_{i}$, $\forall i$ (same if $x_{k}^{\top} a_{i}>0, \forall_{i}$)

If $x_{k}^{\top}\left(x_{k}-a_{i}\right) \geq 0$ we will set x_{k+1} to be the point of least norm on the segment $\overline{x_{k} a_{i}}$.
These points are in the convex hull because they have the form

$$
(1-\lambda) x_{k}+\lambda a_{i}=A\left((1-\lambda) y_{k}+\lambda e_{i}\right), 0 \leq \lambda \leq 1
$$

Writing (1- 1) $x_{k}+\lambda a_{i}=x_{k}+\lambda\left(a_{i}-x_{k}\right)$, we compote the squared norm to be

$$
\left\|x_{k}\right\|_{2}^{2}+\lambda^{2}\left\|a_{i}-x_{k}\right\|_{2}^{2}+2 \lambda x_{k}^{\top}\left(a_{i}-x_{k}\right) .
$$

The optimal value of λ is $\frac{x_{k}^{\top}\left(x_{k}-a_{i}\right)}{\left\|x_{k}-a_{i}\right\|_{2}^{2}}$, and using this to choose x_{k+1} gives

$$
\left\|x_{k+1}\right\|^{2}=\left\|x_{k}\right\|^{2}-\frac{\left(x _ { k } ^ { \top } \left(x_{k}-a_{i} \|^{2}\right.\right.}{\left\|x_{k}-a_{i}\right\|_{2}^{2}}
$$

Thu 1 (Dantzig)
If $0 \in C H\left(a_{1}, \ldots, a_{m}\right)$, then $\left\|x_{k}\right\| \leq 2 / \sqrt{k}$.
proof

$$
\text { As } \begin{array}{r}
a_{i} \in B(0,3) \text { and } x_{k} \in C H\left(a_{11}, \ldots, a_{m}\right), x_{k} \in B(0,1) \\
\Longleftrightarrow\left\|x_{k}\right\|_{2} \leq 1 .
\end{array}
$$

So, the statement is trivially true for $k \leqslant 4$.
We prove it by induction.
As $0 \in C H\left(a_{1 . .} a_{n}\right), \exists j$ sit. $x_{k}^{\top} a_{j} \leq 0$
for this $j, x_{k}^{\top}\left(x_{k}-a_{j}\right) \geq x_{k}^{\top} x_{k}=\left\|x_{k}\right\|_{2}^{2}$

So, for the chosen i,

$$
x_{k}^{\top}\left(x_{k}-a_{i}\right) \geq\left\|x_{k}\right\|_{2}^{2}
$$

As $\left\|x_{k}\right\|_{2} \leq 1$ and $\left\|a_{i}\right\|_{2} \leq 1,\left\|x_{k}-a_{i}\right\|_{2}^{2} \leq 4$

Combining gives $\frac{\left(x_{k}^{7}\left(x_{k}-a_{i}\right)\right)^{2}}{\left\|x_{k}-a_{i}\right\|_{2}^{2}} \geq \frac{\left\|x_{k}\right\|_{2}^{4}}{4}$
and $\left\|x_{k+*}\right\|_{2}^{2} \leq\left\|x_{k}\right\|_{2}^{2}-\left\|x_{k}\right\|_{2}^{2} \frac{\left\|x_{k}\right\|_{2}^{2}}{4}$

$$
=\left\|X_{k}\right\|_{2}^{2}\left(1-\frac{\left\|X_{k}\right\| \|_{2}^{2}}{4}\right)
$$

Let $f(z)=z\left(1-\frac{z}{4}\right)$

$$
f^{\prime}(z)=1-z / 2 \quad \leq 0 \text { for } z=2 \text {, so }
$$

this is monotonically decreasing fo $z \geq 2$
Thus, it suffices to show $f(4 / k) \leq 4 /(k+1)$ for $k \geq 2$
This follows from

$$
\frac{4}{k}\left(1-\frac{4}{4 k}\right)=\frac{4}{k}\left(1-\frac{1}{k}\right)=4 \frac{k-1}{k^{2}} \leq 4 \frac{k-1}{k^{2}-1}=4 \frac{1}{k+1}
$$

Thu 2 (Freund \& Epelman) If $B(0, T) \in C H\left(a_{1} \ldots a_{m}\right) \quad(1)$

$$
\left\|x_{k}\right\|_{2} \leq \exp \left(\frac{-k r^{2}}{8}\right)
$$

proof we will show $\left\|x_{k+1}\right\|^{2} \leq\left\|x_{k}\right\|^{2}\left(1-\frac{r^{2}}{4}\right)$
Use $\left\|x_{k_{t+1}}\right\|^{2}=\left\|x_{k}\right\|^{2}-\frac{\left(x_{k}^{\top}\left(x_{k}-a_{i} \|^{2}\right.\right.}{\left\|x_{k}-a_{i}\right\|_{2}{ }^{2}}$

$$
(1) \Rightarrow \exists_{i} \text { st. }-\frac{x_{k}}{\left\|x_{k}\right\|} a_{i} \geq r
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{x_{k}^{\top}}{\left\|x_{k}\right\|}\left(x_{k}-a_{i}\right) \geq r \\
& \Rightarrow \quad x_{k}^{\top}\left(x_{k}-a_{i}\right) \geq r \cdot\left\|x_{k}\right\| \\
& \Rightarrow \quad \frac{\left(x_{k}^{\top}\left(x_{k}-a_{i}\right)\right)^{2}}{\left\|x_{k}-a_{i}\right\|_{2}^{2}} \geq\left\|x_{k}\right\|^{2} \frac{r^{2}}{4}
\end{aligned}
$$

So, $\left\|x_{k}\right\|_{2}^{2} \leq\left(1-\frac{r^{2}}{4}\right)^{k}$,

$$
\left\|x_{k}\right\|_{2} \leq\left(1-\frac{r^{2}}{4}\right)^{k / 2} \leq \exp \left(-\frac{r^{2}}{4}\right)^{k / 2}=\exp \left(-\frac{k r^{2}}{8}\right)
$$

So, get $\left\|x_{k}\right\| \leq \varepsilon$ by $\quad \exp \left(-\frac{k c^{2}}{8}\right) \leq \varepsilon$

$$
\begin{aligned}
\Leftrightarrow \quad \frac{k r^{2}}{8} & =\ln (1 / \varepsilon) \\
k & =8 \ln (1 / \varepsilon) / r^{2}
\end{aligned}
$$

If we use this algorithm to max α st. $\alpha \subset \in C H$, it slows down as αC approaches the boundary.

Condition numbers.
Let T be maximum st. $B\left(c_{1} T\right) \in C H\left(a_{1}, \ldots, a_{m}\right)$ T measures distance to infeasibility
(obvious direction is $r \leq$ dist to infeasible - move c) Reneger proved $1 / r$ is a condition number.

We say the problem is ill-posed chen $c \in$ boundary (CH $\left.\left(a_{1} \ldots a_{m}\right)\right)$
(so can deal with feasible \& infeasible)
let $K=$ dist $-t-i l l-$ posed .
That is $k=\min \left\|\delta_{1}\right\|+\cdots+\left\|\delta_{m}\right\|+\|\gamma\|$ sit.

$$
C+\gamma \in \operatorname{dor}_{y}\left(C H\left(a_{1}+\delta_{1}, \ldots, a_{m}+\delta_{m}\right)\right)
$$

lem $K=r$.
proof $K \leqslant T$, because C is dist r from body $\left(C H\left(a_{1 . .} a_{n}\right)\right)$
To show $k=r$, let $c+\gamma \in \operatorname{bar}_{\text {ry }}\left(c+\left(a_{i}+\delta_{i}\right) i\right)$ \exists a supporting hyperplane given by $\|x\|=1$, so

$$
\begin{aligned}
& x^{\top}(c+\gamma) \geqslant x^{\top}\left(a_{i}+\delta_{i}\right) \quad \forall i . \\
\Rightarrow & x^{\top} c \geqslant x^{\top} \sigma_{i}+x^{\top} \delta_{i}-x^{\top} \gamma \geqslant x^{\top} a_{i}-\left\|\delta_{i}\right\|-\|\gamma\|
\end{aligned}
$$

On the other hand, $B\left(c_{1} r\right) \in \operatorname{CH}\left(a_{1} . . a_{m}\right)$

$$
\Rightarrow \exists i \text { st. } \quad x^{\top} a_{i} \geq x^{\top} c+r
$$

So,

$$
\begin{aligned}
& x^{\top} c \geq x^{\top} c+r-\left\|\delta_{i}\right\|-\|x\| \\
& \Rightarrow\left\|\delta_{i}\right\|+\|x\| \geq r .
\end{aligned}
$$

Running Times:
Each step of this algorithm requires computing $a_{i}^{\top} x$ for all $i \rightarrow$ time and per iteration.

What about simplex? Practical experience is that it needs $\leq O(m)$ steps. Bat, in ead mast solve ce system of equations in d variables, which can take time $\sim d^{3}$ (or d^{ω}).
But, can make faster because only change one column of the matrix in which solve the system.

Sherman - Morrison

$$
\left(M+u v^{\top}\right)^{-1}=M^{-1}-\frac{M^{-1} u v^{\top}-M^{-1}}{1+v^{\top} M^{-1} u}
$$

So, if change one column can update an iuuose in $\leq O\left(d^{2}\right)$ time. Is key to many fast algorithms Can do for hll-factorization, too.

Interior Point Methods: time $\leq O\left(\mathrm{~m}^{3} \lg (k / \varepsilon)\right)$, ε-accurate, condition \# k
Is logarithmic in condition \#!

Most recent Feb 6,'20:
Solving Tall Dense Linear Programs

$$
\widetilde{O}\left(m+d^{3}\right)
$$

Jan van den Brand ${ }^{*} \quad$ Yin Tat Lee ${ }^{\dagger} \quad$ Aaron Sidford ${ }^{\ddagger} \quad$ Zhao Song ${ }^{\S}$

