- von Neumann's Algorithm for feasibility: To determine if $C \in CH(a,..., a_m)$ and to find y s.t. $Ay \approx C$
- Is easy if M = dt | and $tank \begin{pmatrix} a_1 & a_{dt} \\ 1, \dots, l \end{pmatrix} = dt |$: just solve $\begin{pmatrix} A \\ 1^T \end{pmatrix} Y = \begin{pmatrix} C \\ 1 \end{pmatrix}$ and Check if Y is ≥ 0 .

Difficulty comes from having m>d+1 vectors.

Unlike simplex, this is iterative, with more iterations giving better approximations.

Simplification 1: Is equivalent to determine
if
$$O \in CH(\vec{a}_1, ..., \vec{a}_m)$$
, where $\vec{a}_i = \sigma_i - c$.
proof $1^T \gamma = 1 => Z \gamma(i) \vec{a}_i = \overline{O} \iff Z \gamma(i) \sigma_i = c$

To start, let $\gamma = \frac{1}{m} 1$, $\chi = A_{\gamma_0}$, a convex combination. At step K, construct $\chi_{F} = A_{\gamma_{F_1}}$ and measure $\|\chi_{K}\|_2$

At step Etl, choose i to maximize $x_k^T(X_k - q_i)$ if we view - x_k as the error to be convected, then think of moximizing $(-x_k)^T(q_i - X_k)$ this minimizes the angle.

If
$$X_{k}^{T}(X_{k}-a_{i}) < 0$$
, H_{i} , then we have found a
Separating hyperplane : $O \le X_{k}^{T}X_{k} < X_{k}^{T}a_{i}$, H_{i}
(same if $X_{k}^{T}a_{i} > 0$, H_{i})

If $X_{k}^{T}(X_{k}-q_{i}) \ge 0$ we will set X_{k+1} to be the point of least norm on the segment $\overline{x_{k}} q_{i}$. These points are in the convex hull because they have the form

 $(I-\lambda) X_{k} + \lambda a_{\bar{\nu}} = A((I-\lambda) Y_{k} + \lambda e_{i}), \quad O \leq \lambda \leq 1$

Writing $(1-\lambda)X_{k} + \lambda \alpha_{\bar{i}} = X_{k} + \lambda(\alpha_{\bar{i}} - X_{k})$, we compute the squared norm to be

$$\begin{split} \||X_{\mathsf{F}}\|_{2}^{2} + \lambda^{2} \||a_{i} - x_{\mathsf{F}}\|_{2}^{2} + 2\lambda x_{\mathsf{F}}^{\mathsf{T}}(a_{i} - x_{\mathsf{F}}). \\ \text{The optimal value of } \lambda \text{ is } \frac{x_{\mathsf{F}}^{\mathsf{T}}(x_{\mathsf{F}} - a_{i})}{\|x_{\mathsf{F}} - a_{i}\|_{2}^{2}} \\ \text{and using this to choose } X_{\mathsf{F}}(q) \\ \||X_{\mathsf{F}}|\|^{2} = \||X_{\mathsf{F}}\||^{2} - \frac{(x_{\mathsf{F}}^{\mathsf{T}}(x_{\mathsf{F}} - a_{i}))^{2}}{\|x_{\mathsf{F}} - a_{i}\|_{2}^{2}} \qquad (\mathcal{X}$$

$$\frac{\text{Thm I (Dartzig)}}{\text{If O} \in CH(a_{1,...}a_{m})}, \quad \text{then } ||X_{k}|| \leq \frac{2}{5k}.$$

proof
As
$$a_i \in B(0, s)$$
 and $x_k \in CH(a_{i_1}, a_m)$, $x_k \in B(0, i)$
 $\leq > ||X_k||_2 \leq 1$.
So, the statement is trivially true for $k \leq 4$.
We prove it by induction.
As $0 \in CH(a_{i_1}, a_m)$, $\exists j$ sit. $x_k = a_j \leq 0$
for this j , $x_k = (x_k - a_j) \geq x_k + x_k = \|x_k\|_2^2$
So, for the chosen \hat{v} ,
 $x_k = (x_k - a_i) \geq \|x_k\|_2^2$
As $\|x_k\|_2 \leq 1$ and $\|a_i\|_2 \leq 1$, $\|x_k - a_i\|_2^2 \leq 9$

Combining gives
$$\frac{\left(\chi_{k}^{-1}(\chi_{k}-a_{i})\right)^{2}}{||\chi_{k}-a_{0}||_{x}^{2}} = \frac{||\chi_{k}||_{y}^{4}}{4}$$
and
$$\left[|\chi_{k}||_{z}^{2} \in ||\chi_{k}||_{z}^{2} - ||\chi_{k}||_{z}^{2} - \frac{||\chi_{k}||_{z}^{2}}{4}\right]$$

$$= \left[|\chi_{k}||_{z}^{2}\left(1 - \frac{||\chi_{k}||_{z}^{2}}{4}\right)\right]$$

$$\left[et \quad f(z) = z\left(1 - \frac{z}{4}\right)\right]$$

$$f'(z) = 1 - \frac{z}{2} \leq 0 \quad \text{for } 2zz, \quad so$$

$$f(i) \text{ is is monobolically decreasing } fz \geq zz$$

$$Thus, \quad it suffices to show \quad f(\frac{y}{k}) \leq \frac{y}{k+1} \quad \text{for } kzz$$

$$This follows \quad from$$

$$\frac{y}{k}\left(1 - \frac{y}{1k}\right) = \frac{y}{k}\left(1 - \frac{1}{k}\right) = \frac{y}{k^{2}} \leq \frac{y}{k^{2}-1} = \frac{y}{k+1}$$

$$\frac{This 2}{k}\left(\frac{1 - \frac{y}{1k}}{k}\right) = \frac{y}{k}\left(1 - \frac{1}{k}\right) = \frac{y}{k^{2}-1} \leq \frac{y}{k^{2}-1} = \frac{y}{k} - \frac{1}{k+1}$$

$$\frac{This 2}{k}\left(\frac{1 - \frac{y}{1k}}{k}\right) = \frac{y}{k}\left(1 - \frac{y}{k}\right)$$

$$\frac{y}{k} = exp\left(-\frac{kr^{2}}{s}\right)$$

$$\frac{pool}{k} \quad \text{we will show } \left[|\chi_{k+1}||^{2} \leq ||\chi_{k}||^{2}\left(1 - \frac{r^{2}}{4}\right)\right]$$

$$\text{Use } \left[|\chi_{k+1}||^{2} = \left||\chi_{k}||^{2} - \frac{\left(\frac{x}{k}(\chi_{k} - a_{i})\right)^{2}}{\left||\chi_{k} - a_{i}||^{2}}\right]$$

$$\frac{y}{k} = \frac{y}{k} + \frac{-\frac{x}{k}}{k} - \frac{x}{k} + \frac{r}{k} + \frac{y}{k} = \frac{y}{k}$$

$$= \sum \frac{X_{k}^{T}}{\Pi \times e \Pi} (X_{k} - q_{i}) \ge \Gamma$$

$$= \sum X_{k}^{T} (X_{k} - q_{i}) \ge \tau \cdot ||X_{k}||$$

$$= \sum \frac{(X_{k}^{T} (X_{k} - q_{i}))^{2}}{\|X_{k}|^{2}} \ge \Pi \times e \Pi^{2} \frac{r^{2}}{Y}$$

$$= \sum \frac{(X_{k}^{T} (X_{k} - q_{i}))^{2}}{\|X_{k}|^{2}} \le ||X_{k}||^{2} \frac{r^{2}}{Y}$$

$$= \sum \frac{(1 - r_{i})^{K}}{\|X_{k}\|_{2}} \le (1 - \frac{r^{2}}{Y})^{K/2} \le e \times p(-\frac{r^{2}}{Y})^{K/2} = e \times p(-\frac{Kr^{2}}{g})$$

$$= \sum \frac{Kr^{2}}{g} \ge \ln(1/k)$$

$$= \sum \frac{Kr^{2}}{g} \ge \frac{Kr^{2}}{g} \ge \frac{Kr^{2}}{g} \ge \frac{Kr^{2}}{g}$$

$$= \sum \frac{Kr^{2}}{g} \ge \frac{Kr^{2}}{g}$$

Renegar proved 1/1 is a condition number.

We say the problem is ill-posed when

$$C \in \text{boundary}(CH(a_1...a_m))$$

(so can deal with feasible & infeasible)
let $K = \text{dist} \cdot \text{b} - \text{ill-posed}$.
That is $K = \min \|S_i\| + \dots + \|S_m\| + \|S\|$ s.t.
 $C + S \in \text{bdry}(CH(a_i \cdot \delta_{i_1} \dots a_m + \delta_m))$.
lem $K = r$.
proof $K \in r_i$ because C is dist r from $\text{bdry}(CH(a_1...a_m))$
To show $K = r_i$, let $C + S \in \text{bdry}(CH(a_i \cdot a_m))$
To show $K = r_i$, let $C + S \in \text{bdry}(CH(a_i \cdot a_m))$
 $\exists a \text{ supporting hyperplane given by $\||x|| = 1$, so
 $x^T(C + S) = x^T(a_i + \delta_i) \quad \forall S$.
 $\Rightarrow x^T C \ge x^T \sigma_i + x^T \sigma_i - x^T S \ge x^T a_i - \|S_i\| - \|S\|$$

On the other hand,
$$B(c,r) \in CH(a,...an)$$

=> $\exists i$ s.t. $x Ta_i \ge x^{-}C + r$

$$S_{0}, X^{T}C \ge X^{T}C + T - ||S_{i}|| - ||S_{i}|| = ||S_{i}|| + ||S_{i}|| \ge T$$

Running Times: Each step of this algorithm requires computing $a_i^T \times$ for all $i \rightarrow$ time = Md per iteration.

Sherman - Morrtson

$$(M + uv^T)^T = M^{-1} - \frac{M^{-1}uv^T - M^{-1}}{(1 + v^T M^{-1}u)^T}$$

So, if change one column can update an inverse in EO(d²) time. Is key to many fast algorithms Can do for LU-factorization, too.

Interior Point Methods: time
$$\leq O(m^3 \lg (k/\epsilon)),$$

 $\epsilon \cdot a_{courate}, condition \# k$
Is logarithmic in condition $\#$.

Most recent Feb 6, '20:

Solving Tall Dense Linear Programs in Nearly Linear Time $\widetilde{O}(m+J^3)$

Jan van den Brand^{*} Yin Tat Lee[†] Aaron Sidford[‡] Zhao Song[§]