Last lecture we considered the program
$\max \alpha$

$$
\text { st. } \alpha c \in C H\left(a_{1, \ldots}, a_{m}\right)
$$

and we assumed $O \in C H\left(a_{1} \ldots a_{m}\right)$
We considered the dual program

$$
\begin{align*}
\max & c^{\top} y \tag{D1}\\
\text { sit. } & a_{i}^{\top} y \leqslant 1, \forall i
\end{align*}
$$

And proved that for optimal α_{*} and y_{*},

$$
\alpha_{*}=1 / c^{\top} y_{*}
$$

We will now generalize these.
First, $\alpha c \in C H\left(a_{1} \ldots a_{n}\right)$ ff $\exists t \geq 0,1^{\top} t=1$ s.to.

$$
\alpha c=A t,
$$

where $A=\left(\begin{array}{cc}a_{1}^{\prime} & \\ a_{1}, \ldots & a_{m}\end{array}\right)$

If we set $x(i)=t(i) / \alpha, \quad 1^{\top} x=1 / \alpha$ so larger α corresponds to smaller $1^{\top} x$, and it is equivalent to solve
$\min 1^{\top} x$
(PL)

$$
\text { st. } A x=c, x \geq 0
$$

For the optimal x_{*}, we now hove

$$
C^{\top} Y_{*}=1^{\top} x_{*}
$$

So, solutions to P2 upper boxend solutions to D1.
But, what if $O \& C H\left(a_{1} \ldots, a_{m}\right)$?
Or, what if there is no x st. $A x=c, x \geq 0$.
Farkces' lemma
says that $子 y$ sit. $a_{i}^{\top} y \leq 0 \quad \forall_{i}$
and $c^{\top} y>0$
That is, value of $D 1=\infty$, by considering $\mu y, \mu \rightarrow \infty$.

Worm up: consider the problem $A x=C$, no assumptions on A. either there is a solution, or
there exists y sit. $y^{\top} A=0, y^{\top} C=1$

This is strengthened by
Farkas' lemma Exactly one of the following holds
i. $\exists x \geqslant 0$ sit. $A x=c$
ii. $\exists y$ s.t. $A^{\top} y \geq 0, c^{\top} y<0$

Proof If $\exists y$ sit. $A^{\top} y \geq 0, C^{\top} y<0$ then is no solution to i because

$$
A x=c \Rightarrow x^{\top} A^{\top} y=c^{\top} y<0
$$

But, $x \geq 0$ and $A^{\top} y \geq 0 \Rightarrow x^{\top} A^{\top} y \geqslant 0$, ce contradiction.

To go the other way, note that $\{A x: x \geq 0\}$ is a convex set.

So, if $C \notin\{A x=x \geq 0\}$, there is a separating hyperplane : y sit. $y^{\top} C<y^{\top} A x$ for all $x \geq 0$.
As $x=0$ is possible, $y^{\top} C<0$
To see $y^{\top} A x \geqslant 0 \quad \forall x$, note that if $y^{\top} A x<0$, then $y^{\top} A(\lambda y) \rightarrow-\infty$ as $\lambda \rightarrow \infty$
So, $y^{\top} A x \geq 0 \quad \forall x$
Conclusion: P2 is feasible iff D1 is bocended. $D 1$ is always feasible: $y=\overline{0}$.

There are other variants like Exactly are of these holds:
i. ヨys.t. $A y \leq b$
ii $\exists x$ sit. $A^{\top} x=0, x^{\top} b=-1, x \geq 0$

The general standard CPs replace 1 with an cesbitrary b, and are

P3:

$$
\begin{array}{lr}
\min b^{\top} x & \text { DB: } \max c^{\top} y \\
\text { st. } A x=c, x \geq 0 & \text { st. } \cdot A^{\top} y \leqslant b
\end{array}
$$

We will see that these ore dual to each other.

Weak duality is $c^{\top} y \leq b^{\top} x$
Proof: $\quad c^{\top} y=y^{\top} c=y^{\top} A x \leq b^{\top} x$, because $x \geq 0$.

The complications are that there might not be x or y satisfying the conditions of P3 or D3, and the values of P3 and D3 can be $-\infty$ or ∞.

To see why, consider the geametry

Geometric view of $D 3$: $A^{\top} y \leq b$ is \cap halfspaces mat $c^{T y}$ says to go as for as possible in ore direction.
Example $y_{2} \geq 1, y_{1} \leq 1,-y_{1} \leq 1$
if $\quad c^{\top} y=y_{1}-y_{2} \quad c=(1,-1)$

$$
y^{*}=(1,1)
$$

if $c^{\top} y=y_{2}-y_{1}$

is unbounded: consider $\left(0, y_{2}\right) \quad y_{2} \rightarrow \infty$
$A x=C \quad x \geq 0$ also looks like this.

P3 is feasible if $\exists x$ st. $A x=C, x \geq 0$
D3 is feasible if $\exists y s t . A^{\top} y \leqslant b$.

They we infeasible when x or y do not exist.

Weak duality tells us that
value $\left(P_{3}\right)=-\infty \Rightarrow D 3$ is infeasible, and value (03) $=+\infty \Rightarrow P 3$ is infeasible.

Strong Duality Theorem:
P3 feasible \& bounded $\Leftrightarrow D 3$ feasible \& bounded, in which case hove some value

We prove most of this.

First, it holds if $b>0$.
proof. Recall $A=\left(\begin{array}{ll}a_{1}^{\prime} \ldots & a_{n}^{\prime} \\ 1\end{array}\right)$. Set $\hat{x}(i)=x(i) b(i)$, so $b^{\top} x=1^{\top} \hat{x}$ and set $\hat{a}_{i}=\frac{1}{b(i)} a_{i}$, so $\hat{A} \hat{x}=A x$
So, P3 now has form P2.
And, $\hat{A}^{\top} y=\left(\hat{a}_{i}^{\top} y\right)_{i}=\left(\frac{a_{i}^{\top}}{b(i)} y\right)_{i} \leq 1$ iff $\hat{A}^{\top} y \leq b$, because $b>0$
So, D3 now has form D1, and we know that P2 and D1 satisfy strong duality.

Consider general b, and 03 strictly feasible.
That is $\exists y_{0}$ st. $A^{\top} y_{0}<b$.
Set $\hat{y}=y-y_{0} . \quad \hat{b}=b-\mathcal{A}^{\top} y_{0}$. So $\hat{b}>0$
And, $A^{\top} \hat{y} \leq \hat{b} \Leftrightarrow A^{\top}\left(y-y_{0}\right) \leq b-A^{\top} \%_{0} \Leftrightarrow A^{\top} y \leq b$.

$$
c^{T} \hat{y}=c^{T}\left(y-y_{0}\right)=c^{T} y-c^{\top} y_{0} .
$$

And, $\hat{b}^{\top} x=b^{\top} x-y_{0}^{\top} A x=b^{\top} x-y_{0}^{\top} c=b^{\top} x-c^{\top} y_{0}$

So, $c^{\top} y=b^{\top} x \Leftrightarrow c^{\top} \hat{y}=\hat{b}^{\top} x$ and the solutions are the same.

What if $\exists y_{0}: A^{2} y_{0} \leq b$ but does not exist $A^{\top} y_{0}<6$?
Then $\exists i$ sit. $A^{\top} \%_{0} \leqslant b \Rightarrow a_{i}^{\top} Y_{0}=b(i)$,
so y_{0} is restricted to a subspace.
Will handle this in homework.

How to tell if LP is feasible \& find y :

To find y sit. $A^{\top} y \leq 0$, solve the program mint sit. $A^{\top} y \leq b+t \mathbb{1}$

$$
\Leftrightarrow \min t \text { st. } A^{\top} y+t \mathbb{1} \leq b
$$

We know is feasible for big and $y=1$.

If can achieve $t \leq 0$, is feasible
Can rewrite by choosing to sit. $b+t_{0} \mathbb{1} \geq 0$,
And solving min t sit. $A^{\top} y+t \mathbb{1} \leq b+t_{0} \mathbb{1}$
The chs, $b+t_{0} \mathbb{1}$ is now positive.

Is called a phicese I problem.
Then solve the original LP in Phase \mathbb{I}.

Note: solving problems like max $c^{\top} y s H \cdot A^{\top} y \leq b$ is essentially equivalent to testing feasibility

First, caste if $\exists y$ sit. $A^{\top} y \leq b$.
If so, caste if $3 y s t . A^{\top} y \leq b$ and $c^{\top} y \geq 0 \quad\left((-c)^{\top} y=0\right)$ now, play 20 question...
if yes try $c^{\top} y \geq 1, \quad c^{\top} y \geq 2, \quad c^{\top} y=4$, cloubling lentil get a "no".
Then do binary search.

Both infeasible? $\quad A x=c, \quad x=0 \quad A^{\top} y \leq b$ consider $A=\bar{O} \quad c=\binom{1}{1} \quad b=\binom{-1}{-1}$

Complementary Slackness.
$P: \min b^{\top} x$
st. $A x=c, x \geq 0$

$$
\begin{aligned}
D= & \max \\
& c^{\top} y \\
\text { st } & A^{\top} y \leq b
\end{aligned}
$$

Put slack variables s into D :

$$
\max c^{\top} y \quad s t . \quad A^{\top} y+s=t, \quad s \geq 0
$$

The duality gap is $b^{\top} x-c^{\top} y=b^{\top} x-x^{\top} A^{\top} y$

$$
=x^{\top}\left(b-A^{\top} y\right)^{\prime}=x^{\top} S
$$

So, $P=D \Rightarrow x^{\top} S=0$.

Complementary Slackness Theorem
These ore equivalent:
i. x_{*}, y_{*} and s_{*} are optimal
ii. $\quad x_{*}^{\top} S_{*}=0$
iii. $x^{\prime}(j) s(j)=0$ for all
iv. $S_{*}(j)>0 \Rightarrow x_{*}(j)=0$
$i \Leftrightarrow$ ii by duality gas arg.
ii \Leftrightarrow iii by $x_{*} \geq 0, s_{x} \geq 0$
$i u i \Leftrightarrow$ iv by $\log i c, x, s \geq 0$

