Last lecture we considered the program max x (P1) s.t. xC & CH (a.... am) and we assumed O & CH (a... am)

We considered the dual program
max
$$c^T\gamma$$
 (D1)
sit. $Q_i^T\gamma \leq 1$, $\forall i$

And proved that for optimal
$$d_*$$
 and Y_* ,
 $X_* = \frac{1}{C^T}Y_*$

We will now generalize these.
First,
$$dC \in CH(a, an)$$
 iff $\exists t = 0, 1^{T}t = 1$ sata.
 $dC = At,$
where $A = (a_{1,...}, a_{n})$

If we set
$$X(i) = t(i)/\lambda$$
, $1X = 1/\lambda$ so
larger λ corresponds to smaller $1X$, and it is
equivalent to solve

min
$$1^{T} \times$$
 (P2)
st. $A \times = C$, $\times \ge O$

Worm up: consider the problem Ax=C, no assumptions on A. either there is a solution, or there exists γ sit. $\gamma^T A=O$, $\gamma^T C=1$

This is strengthened by

Proof If
$$\exists \gamma$$
 s.t. $A^{T}\gamma^{2}O$, $C^{T}\gamma^{2}O$
then is no solution to i because
 $Ax = C \Rightarrow x^{T}A^{T}\gamma = C^{T}\gamma^{2}O$
But, xzO and $A^{T}\gamma^{2}O \Rightarrow x^{T}A^{T}\gamma \ge O$,
 ce contradiction.

Conclusion: P2 is feasible iff D1 is bounded. D1 is always feasible : $\gamma = \overline{0}$.

- The general stendard LPs replace 1 with an arbitrary b, and are
 - P3: min bTx D3: max $c^{T}y$ st. Ax=C, $x\geq0$ st. $\overline{A^{T}y} \leq b$

We will see that these are dual to each other.

Weak duality is
$$C^T Y = b^T X$$

proof: $C^T Y = Y^T C = Y^T A X = b^T X$, because $X \ge 0$.

The complications are that there might not be x or y satisfying the conditions of P3 or D3, and the values of P3 and D3 ran be -00 or 00.

To see why, consider the geometry

Greenetric view of D3: ATYSE is
$$\cap$$
 halfspaces
mat cTY says to go as far as possible in one direction.
Example $Y_2 \ge 1$, $Y_1 \le 1$, $-Y_1 \le 1$
if $c^TY = Y_1 - Y_2$ $C = (1, -1)$
 $y^* = (1, 1)$
if $c^TY = Y_2 - Y_1$
is unbounded: consider $(0, Y_2)$ $Y_2 \rightarrow \infty$

Ax= C x= O also looks like this.

P3 is feasible if $\exists x \text{ s.t. } Ax=C, x\geq 0$ D3 is feasible if $\exists y \text{ s.t. } A^{T}y \in b$.

They are infeasible when x or y do not exist.

Weak duality tells us that value (P3) = - 00 => D3 is infeasible, and value (D3) = +00 => P3 is infeasible.

We prove most of this.

First, it holds if
$$b > 0$$
.
proof. Recall $A = (d_1 \dots d_n)$.
Set $\hat{x}(i) = x(i)b(i)$, so $bTx = \mathbf{1}^T \hat{x}$
and set $\hat{a}_i = \frac{i}{b(i)}a_i$, so $\hat{A}\hat{x} = Ax$
So, P3 NOW has form P2.
And, $\hat{A}^Ty = (\hat{a}_i^TY)_i = (\frac{ai^T}{b(i)}Y)_i = 1$ iff $\hat{A}^TY = b$,
because $b > 0$
So, D3 now has form $D1_1$
and we know that P2 and D1 satisfy strong duality.

Consider general b, and D3 storetly feasible.
That is
$$\exists y_0 \quad s_{\exists} \quad A^{T}y_0 \neq b$$
.
Set $\hat{\gamma} = \gamma - \gamma_0$. $\hat{b} = b - A^{T}\gamma_0$. So $\hat{b} \geq 0$
And, $A^{T}\hat{\gamma} \in \hat{b} \iff A^{T}(\gamma - \gamma_0) \leq b - A^{T}\gamma_0 \iff A^{T}\gamma \leq b$.
 $C^{T}\hat{\gamma} = C^{T}(\gamma - \gamma_0) = C^{T}\gamma - C^{T}\gamma_0$.
And, $\hat{b}^{T}x = b^{T}x - \gamma_0^{T}Ax = b^{T}x - \gamma_0^{T}c = b^{T}x - c^{T}\gamma_0$
So, $\hat{c}^{T}\gamma = b^{T}x \iff C^{T}\hat{\gamma} = \hat{b}^{T}x$
and the solutions are the same.

What if
$$\exists \gamma_0 : A^{T}\gamma_0 \leq b$$
 but does not exist $A^{T}\gamma_0 \leq b$?
Then $\exists i s.t. A^{T}\gamma_0 \leq b = > Q_i^{T}\gamma_0 = b(i)$,
so γ_0 is restricted to a subspace.

Will handle this in homework.

How to tell if LP is feasible & find y:

- To find y sit. ATY = 0, solve the program mint sit. ATY = 0+11 <=> mint sit. ATY + 11 = b We know is feasible for bigt and y=1.
- If can achieve t≤0, is feasible
- Can rewrite by choosing to sit. b+to120, And solving min t sit. Aig+t11 ≤ b+to11 The rhs, b+to11 is now positive.
- Is called a phase I problem. Then solve the original LP in Phase I.

Note: solving problems like max cty st. Aty cb

is essentially equivalent to testing feasibility

Both infeasible?
$$Ax = c_1 \times zo$$
 $A^T \gamma \in b$
consider $A = \overline{O} \quad c = (\frac{1}{2}) \quad b = (-\frac{1}{2})$

Complementary Slackness.

P: min $b^T x$ st. A x=C, $x \ge 0$ D: max $C^T \gamma$ st. $A^T \gamma \le b$

The duality gap is
$$b^T x - c^T y = b^T x - x^T A^T y$$

= $x^T (b - A^T y) = x^T S$
So, $P = D = s x^T S = 0$.

Complementary Slackeness Theorem
These are equivalent:
i.
$$X_*$$
, Y_* and S_* are optimal
ii. $X_*^*S_* = 0$
iii. $X'(j) S(j) = 0$ for all j
iv. $S_*(j) > 0 => X_*(j) = 0$

$$i \notin i$$
 ty duality gap ang.
 $ii \notin ih$ ty $x \ge 0$, $S_{*} \ge 0$
 $ii \notin iv$ ty logic, $x_{i} \le 0$