- Dans Favorite LP: Given Quinan ERd St. OE CH(Quinam) and CE Rd max & st. & CE CH(Quinam)
 - Here is a picture of the convex hall of random unit vectors in IR³ If I choose Gaussian random vectors, some a probably inside the convex hull of the others

Random hyperplanes give polytopes like this:

- To avoid strange behavior, assume C, q.,.. an are in <u>general position</u> which we define to mean: i. every subset of d is linearly independent, and ii. every subset of dtl is affinely independent. (so no vector is in the affine span of d others)
 - This is true if add a slight random perturbation. a...., ad are linearly dependent iff of (a.... ad) = O, and this hoppens with probability O under Graussian noise.
 - And, the probability one lies on the hyperplane defined by the affine span of d others = 0.
 - The definition of "General Position" depends on the context- so don't get too attached to one definition.
 - The consequence we want is that whenever the ray in direction c intersects a simplex CH (a: ies) it intersects the relative interior of that simplex

Carathéodorys Thim If re (Haman) then 3 (SI = dtl sit. YECH(a: iES) proof. Recall y f (H(a,...,am) <=>] t f R, 1^Tt=1, t=0 st. $\gamma = \Sigma \pm (i) q_i$. Assume, wolog, t(i) > 0 for all i and M> d+1 Will show can modify t to make an entry O. As m>d+1, the vectors (1),..., (9m) are linearly dependent. So, 7 TE RM, T=0, st. $\Sigma \tau(i) \mathcal{A}_{i} = \overline{O}$ and $\Sigma \tau(i) = O$. So, for every μ , $\mathbb{Z}t(i)+\mu r(i) = 1$ and $Z(t(i)+\mu r(i)) Q_i = Y$. Will show can pick µ st. topr 20 (\cdot) and $(t + \mu r)(i) = 0$ for some i. (2) => y is in (H of m-1 of the vectors. (1) holds when p=0. As T+O, is some very positive or very negative M for which (1) does not hold. Choose in to be largest (or smallert) i for ulitch (1) holds. For this µ, ttpur has a zero entry => (z) Note: this proof is algorithmic.

Given the can efficiently find that m.

The set S need not be unique:

and are many more

The Deal LP:
freemetric view: if
$$\mathcal{H} = \{b: y^T b = 1\}$$
 is a hyperplane
s.t. all of $a_{i...} a_{n}$ is on one side, and $ac \in \mathcal{H}$,
then value of $LP \leq u$.
 $ac \in \mathcal{H} \leq y^T(ac) = 1 \Rightarrow a = \frac{1}{y^T c}$
So, LP is max $y^T c$ s.t. $y^T a_i \leq 1$, Hi
We grest established

Weak Duality: value of dual upper bounds value of primal. Algebraically: if $xc = \Sigma t(i) ai$, $\Sigma t(i) = 1$,

 $y^{T}(\alpha c) = \sum t(i) y^{T}q_{i} \leq \sum t(i) = 1$

Strong Duality: Optima of both are the same.
That is, if
$$x_* = max \propto s.t. \qquad dCe(H(a_1...a_m))$$

and y_* maximizes $yTc st. yTais1$
Then $y_*^T(\alpha c) = 1$.
proof Let the supporting hyperplane of
 $CH(a_1...a_m)$ at $x_* c$ be $H = \{b: yTb = 1\}$.
So, $yTai = 1$ for all i and $yT(x_*c) = 1$

- The Simplex Method, or how to find max or sit. dCE CH(a,...am). Will involve solving many systems of equations. Will not have useful ran-time guarantees.
- Start: Assume that $O \in interior(CH(a,..am))_{i}$ AND that we know t s.t. $\overline{O} = \overline{\Sigma} \pm (i) q_{i}$

(We will later discuss how we find this t) Find such a t that has del nonzero coordinates. So, ŌE a simplex.

wolog, let a ..., adt be the corners

First step: find the point on the boundary hit by
the ray in direction C. That is,
max & sit. & C & CH(Q,...,Qd+1).
There are only dtl faces to check
(each obtained by dropping a verket).
If that face is CH(Q,...,Qd),
then there is an & sit. & C & CH(Q,...,Qd).
To find it, solve the equation

$$C = \sum_{i=1}^{2} x(i) Q_i$$

It is the right face if all
$$x(i) \ge 0$$

Let $\alpha = (\sum x(i)), \quad \text{and} \quad t(i) = \alpha x(i)$
So, $\alpha C = \sum_{I=1}^{d} t(i) a_{i}$.

Find an aj s.t. QCECH(aj u(ai)ies), for 2>x that is a simplex that contains the ray on the other side of the (d-1)-din simplex. We then proceed as before to find the point where they ray leaves this new simplex, and again express it as a positive sum of d of the points az.

We use the fact that a ray that goer through the interior of a simplex intersects its boundary at two points: where it enters and where it leaves.

The Dual simplex method:
Find y maximizing
$$y^{T}C$$
 s.t. $y^{T}a_{\tilde{i}} \in I$ Hi.
This is the dual LP: max $y^{T}C$
 $T^{T}a_{\tilde{i}} \in I$, Hi

Want to notate it around the polytope to find a supporting hyperplane that increases yTC.

In 2D, looks like this

To see is alway possible, if y is not optimal, look at intersection of dc in that plane, and the simplex:

