Max Cut: We will use convex progromining
(linear programming over semidefinite matrices) to get a 0.878..- approximation of maxcat. This is a famous result of Gremars \& Willrauson

Input: graph $G=(U, E)$.
For $S \subset V$, $\operatorname{define} \operatorname{cut}(S)=\#\left\{(a, b)\right.$ st. $\left.\left|\left\{a_{a} b\right\} \cap S\right|=1\right\}$ $\max \left(a t(G)=\max _{s} \operatorname{cut}(s)\right.$.

$$
\cot (s)=4
$$

In our previous notation, $\operatorname{cut}(\mathrm{s})=|\partial(\mathrm{s})|$
Easy results first. Define $m=\mid E l$.
Lem maxcut $(G) \geq m / 2$
proof Consider choosing S unit. at Random tael $\operatorname{Pr}[a \in S\}=\frac{1}{2}$, independently.

For $\forall C(A) \in E$

$$
\begin{aligned}
& \operatorname{Pr}[(a, b) \in \partial(S)]=\operatorname{Pr}[(a \in S \text { and bis }) \text { or (ass and } b \in S)] \\
& =P_{i}-[a \in S \text { and } D \in S]+\operatorname{Pr}[a \notin S a d b \in S\} \\
& =1 / 4+1 / 4=1 / 2 \\
& \frac{\mathbb{E}}{s} \operatorname{cut}(s)=\sum_{(a, S) \in E} \operatorname{Pr}[(a,()) \in \partial(s)]=\frac{n}{2}
\end{aligned}
$$

max \geq averaje, so 75 sit. caffs $\geq m / 2$

Can turn this into an algorithm. But there's a simpler algorithm.

Let's describe it in terms of $\{ \pm i\}$ vectors, where $n=l u l$.

$$
x \in\{ \pm i\}^{n}, \quad S x=\{a: x(a)=1\}
$$

local Search
Start with any $x \in\{ \pm 1\}^{n}$ (like $\mathbb{1}^{\text {, or radom) }}$ or
while $\exists a$ st. $\underset{b=(a, b) \in E}{x(a)}>\sum_{b=0} \quad \begin{aligned} & \text { most neighbors of } \\ & \text { a are ar same }\end{aligned}$ side

$$
x(a)=-x(a) .
$$

Return x (or $S_{x}=\{a: x(a)=1\}$)

Idea: if moving a into or out of S increases the cat, do it.
$\underline{\text { Claim } 1} \operatorname{cut}\left(s_{x}\right)=\frac{1}{2} \sum_{(a, t) \in E} 1-x(a) \times(t)$
proof

Claim 2 If \hat{x} is vector after moving a,

$$
\operatorname{cut}\left(s_{\tilde{x}}\right)=\operatorname{cut}\left(s_{x}\right)+x(a) \sum_{b=(a, b) \in E} x(b)
$$

Can turn this into an algorithm. But there's a simpler algorithm.

Let's describe it in terms of $\{ \pm i\}^{n}$ vectors, where $a=l u l$.
local Search
Start with any $x \in\{ \pm 1\}^{n}$ (like $\mathbb{1}_{1}$ or random)
while $\exists a$ st. $x(a) \sum_{b=(a, b) \in E} x(b)>0$

$$
x(a)=-x(a) .
$$

Return x (or $S_{x}=\{a: x(a)=1\}$)

Idea: if moving a into or out of S increases the cat, do it.

$$
\text { maxcat }(G)=7
$$

Can turn this into an algorithm. But there's a simpler algorithm.

Let's describe it in terms of $\{ \pm 1\}^{n}$ vectors, where $n=|U|$.
local Search
Start with any $x \in\{ \pm 1\}^{n}$ (like $\mathbb{1}_{1}$ or random)
while $\exists a$ st. $x(a) \sum_{b=(a, 0) \in E} x(b)>0$

$$
\begin{aligned}
& x(a)=-x(a) \\
& \text { Return } \left.x \quad \text { Cor } S_{x}=\{a: x(a)=1\}\right)
\end{aligned}
$$

Idea: if moving a into or out of S increases the cat, do it.
$\underline{C(a i m 1} \operatorname{Cut}\left(S_{x}\right)=\frac{1}{2} \sum_{(a, t) \in E} 1-x(a) \times(t)$
proof

$$
\begin{array}{rlrl}
x(9)+(t) & =-1 & \text { if }(a, t) \in \partial\left(s_{x}\right) \\
& =1 & 0 . w . & \frac{1}{2}(1-1)=0
\end{array}
$$

Claim 2 If \hat{x} is vector after moving a,

$$
\operatorname{cut}\left(S_{\hat{x}}\right)=\operatorname{cut}\left(s_{x}\right)+x(a) \sum_{b=(a, b) \in E} x(b)
$$

$$
\begin{aligned}
& x: \oplus \\
& \cot (S x)=0 \\
& x(a)+(B)=1
\end{aligned}
$$

$$
\hat{x} \Theta \underset{\operatorname{cut}\left(S_{\hat{x}}\right)=1}{\oplus}
$$

lem 2 local Search terminates, and returns

$$
x \text { with cat }\left(S_{x}\right) \geqslant \frac{m}{2}
$$

proof
When stops ta $\sum_{b=(a, b) \in E} x(0) x(b) \leq 0$

$$
\begin{aligned}
& \operatorname{cat}\left(S_{x}\right)=\frac{1}{2} \sum_{(a, t) \in E} 1-x(a) x(b)=\frac{m}{2}-\frac{1}{2} \sum_{(a, b) \in E} x(a) x(b) \text { ats } \geq \frac{m}{2} \\
& \text { need: } \sum_{(a(b) \in E} x(a)+(t) \leq 0 \\
& \sum_{(a, b) \in E} x(a) x(t)=\frac{1}{2} \sum_{a} \sum_{b:(a, b) \in E} x(a) x(b) \leq 0
\end{aligned}
$$

How to do better?
Goemars \& Williamson '95: relax $x(a) \in\{ \pm 1\}$
replace with $v_{a} \in \mathbb{R}^{n},\left\|v_{a}\right\|_{2}=1$

$$
\begin{aligned}
& x(a) x(b) \rightarrow v_{a}^{\top} v_{b} \\
& \sum_{(a, b) \in E}\left(-x(a) x(b) \rightarrow \sum_{(a, b) \in E} 1-v_{a}^{\top} v_{b}\right.
\end{aligned}
$$

Solve the vector problem

$$
\begin{aligned}
& V_{Q}=0 \\
& \frac{1}{2} m
\end{aligned}
$$

$$
V P(G)=\max \frac{1}{2} \sum_{(a(b) \in E} 1-v_{a}^{\top} v_{b}
$$

$$
\text { st. } \| v_{\text {all }}^{2}=1
$$

Ex.

$(a, A) \in E$

$$
v_{a}^{\top} v_{b}=\cos \left(\frac{4 \pi}{5}\right) \approx-0.81
$$

for all $(a, B) \in E$

$$
\frac{1}{2} \sum_{(a, B) \in E} 1-v_{a}^{\top} v_{b} \approx 4.52>\operatorname{maxcat}(G)=4
$$

1. We can turn the solution into an approximate solution to maxcut.
2. We can approximately solve UP in polynomial time.

Claim $3 U P(G) \geqslant \operatorname{maxcat}(G) \quad x(c) \in \pm 1, V_{q}$
proof consider $V_{a}=\underline{u} \cdot x(a)$ for cony unit vector u.
Now, $\quad v_{a}^{T} N_{t}=x(a) \times(t)$.
Bat we can choose va differently, and get a larger value.

To rocend vectors v_{1}, \ldots, v_{n} into $\pm 1 x(1), \ldots x(n)$: Choose a radom unit vector u_{1} set $x(a)= \begin{cases}1 & \text { if } u^{\top} N_{a} \geq 0 \\ -1 & 0 . \omega \text {. }\end{cases}$ (is equivalent to use Gaussian random u)

$$
T \sim N(0, \operatorname{In}) \quad u=\tau / l(T)
$$

Claim 4 $\operatorname{Pr}\left[(a, \theta) \in \partial\left(S_{x}\right)\right]=\frac{1}{\pi}$ and $\left(v_{a}, N_{b}\right)=\frac{\theta}{\pi}=\frac{2 \theta}{2 \pi}$ proof First, look at the 2D case

In general, project u to $\operatorname{span}\left(v_{a}, v_{b}\right)$, and apply this analysis.

$$
\text { is. Sur or } S_{x_{a}} \quad V_{a}^{T} N_{b}=\cos (\theta)
$$

Claim $\underset{u}{\mathbb{E}} \operatorname{cut}\left(S_{x}\right)=\frac{1}{\pi} \sum_{(a, b) \in E} a \operatorname{acos}\left(v_{a}^{\top} v_{b}\right)$
proof $v_{a}^{\top} N_{t}=\cos \theta, \theta=\operatorname{acos}\left(v_{a}^{\top} N_{k}\right)$
C(aim6 $\min _{-1 \leq t \leq 1} \frac{\frac{1}{\pi} \operatorname{acos}(t)}{\frac{1}{2}(1-t)} \geq 0.878$
Theorem $\frac{\mathbb{E}}{u} \operatorname{cut}\left(S_{x}\right) \geqslant 0.878 \cdot \max \operatorname{cat}(G)$
proof

$$
\begin{aligned}
\frac{\mathbb{F}}{u} \operatorname{cut}\left(S_{x}\right) & =\frac{1}{\pi} \sum_{(a,()) \in E} a \cos \left(v_{a}^{T} v_{b}\right) \\
& \geq 0.878 \sum_{(G(\theta) \rho E} \frac{1}{2}\left(1-v_{a}^{\top} v_{b}\right) \\
& =0.878 \cup P(G) \\
& \geq 0.878 \operatorname{maxcut}(G)
\end{aligned}
$$

proof of claim 6
change to $\theta=\cos (t)$, compare deriv, set to 0 crit pout $\cos (\theta)+\theta \sin (\theta)=1$
or, 2 . plot it.

3. Use the plot to derive the to nd. (see GUI)

here, ratio is convex. So case a supporting plane to get a lower bound
 here, ratio ≥ 1

How to solve UP:

$$
\max _{v_{1}, \ldots, v_{n}} \frac{1}{2} \sum_{(a, b)} 1-v_{a}^{\top} v_{b} \text { sit. } v_{a}^{\top} v_{a}=1 \text {, for all } a \text {. }
$$

This problem is linear in the Gram matrix:

$$
M(a, b)=V_{a}^{\top} V_{b} \quad M=V^{\top} V \text { where } V=\left(\begin{array}{cc}
u_{1} & U_{n} \\
u_{n} & u_{l}
\end{array}\right)
$$

problem becomes $\max \frac{1}{2} \sum_{(a, b) \in E} 1-\mu(a, b)$ s.t. $\mu(a, a)=1, \forall a$ and M is a Gram matrix.

Claim:
M is a Grow matrix iff M is positive semidefinite.
proof $M=U^{\top} U=\Rightarrow A_{x}^{\top} M_{x}\left(U_{x}\right)^{\top}\left(U_{x}\right) \geq 0, \forall x$ If M is pad, can find a "Cholesty" - factorization

$$
M=L L T \quad L=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
\cdots & 1
\end{array} 0\right)
$$

$$
V=L^{\top} M \text { is Gran matrix of } L^{\top}
$$

eisen: $M=U \Lambda U^{\top} \Lambda=$ diag, non-neg $\quad V=\Lambda^{1 / 2} U^{\top} \quad U^{\top} U=M$
So, solve

$$
\max ^{\frac{1}{2}} \sum_{(a, b) \in E} 1-M(a, b) \text { st. } M \geqslant 0, U(a, a)=1, \forall_{a}
$$

Cholesty factor $M=L L T$ eger deroud $x=\operatorname{sign}\left(u^{\top} U\right)$ for a random vector U

Con fincl srophs for whirh aly does not beat 0.879
$U G C \Rightarrow$ can't beat GW.

variables are $\hat{M}^{a} \quad n^{2}$ varater...
for many problens solation has low tark are many spectal puppose algs.

Sentdetmite Prossemming

$$
\max \operatorname{Tr}\left(C^{\top} M\right)=\left\langle C_{1} M\right\rangle
$$

sit. $M \leqslant 0$ pos det

$$
\operatorname{Tr}\left(B_{i}^{\top} M\right) \leq b_{i}
$$

$$
\begin{aligned}
& N(0,1) \quad P(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \\
& \begin{aligned}
P & =x_{1, \ldots, x_{n}} \\
P(x) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-x_{i}^{2} / 2} \\
& =(2 \pi)^{-n / 2} \prod_{i} e^{-x_{i}^{2} / 2} \\
& =(2 \pi)^{-n / 2} e^{-\Sigma x_{i}^{2} / 2} \\
& =" \quad e^{-\frac{1}{2}\|x\|^{2}}
\end{aligned}
\end{aligned}
$$

