
Graphs and Networks Lecture 6

Percolation I

Daniel A. Spielman September 17, 2013

6.1 Disclaimer

These notes are not necessarily an accurate representation of what happened in class. They are
a combination of what I intended to say with what I think I said. They have not been carefully
edited.

You should be able to find a diary of my Matlab session from today’s class. It may reveal compu-
tations that do not appear in these notes.

6.2 Overview

We begin by introducing percolation and its connection to the SIR model of epidemics in networks.
We then conduct a detailed study of percolation in infinite trees. Much of this study will be in
terms of the Galton-Watson process.

In the next lecture, we study percolation in the grid and in the graphs from problem set 1.

6.3 Introduction

Percolation is essentially the study of what happens to a graph when one chooses to remove vertices
or edges at random. In particular, one usually chooses some probability, q, and then chooses to
remove each edge (or vertex) independently with probability q. We typically study the size and
shape of the largest connected component in the remaining graph. We will only study the case in
which edges are removed. This is what Physicists call bond percolation.

The study of percolation began with the study of a random medium in Physics. For example, they
considered what happens when one puts a porous rock in a bucket of water. Will the water reach
the center of the rock? The answer essentially depends on just how porous the rock is. Physicists
model the rock as a graph in which water can flow along the edges. As the structure of the rock
is somewhat random, they begin with a base graph, such as a 3-dimensional grid, and then close
off edges with probability q. The water can reach the center of the rock if there is a path from the
boundary of the graph to the inside.

Percolation also arises in the study of epidemics. While the book discusses many models of the
spread of disease, I will just discuss the SIR (succeptable-infected-recovered) model. We would like
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to understand the chance that a disease spreads throughout a population after an initial person
has been infected. We presume that each person has a chance to transmit the disease to the others
in their social network1. A person can be in one of three states:

Susceptible: they have not yet been exposed to the disease.

Infected: they have the disease, and can pass it to others.

Recovered: they had the disease, and are now immune (or removed).

Time clearly plays a role in understanding how the disease spreads, which is why you see so many
differential equations in the percolation section of the book. But, we can analyze how far the disease
spreads without reference to time.

Once a person becomes infected, we assume that there is some probability p that they will transmit
the disease to each other person in their social network. For simplicity, we will assume that these
probabilities are independent, and the same for every pair of people in the network. After a person
is finished being infected, they enter the recovered state. So, at the end of time, everyone is either
susceptible or recovered.

A simple way to simulate this process is to begin with one infected node, which we call a seed.
Every other node begins in state S. For every edge leaving the seed, with probability p we set to
infected the state of the vertex at the other end of that edge. We then set the state of the seed to
recovered. While there remains an infected node, we repeat this process. Except, we do not allow
nodes whose state is recovered to become infected again. The process stops when the state of every
node is susceptible or recovered.

Alternatively, we can simulate this process without a notion of time by removing every edge from
the network with probability q = 1 − p. If we then choose one “seed” person to infect, the set of
people who eventually become recovered will be exactly those who are in the component of the
graph containing the seed: the choices of the edges attached to the other people don’t matter.

The fundamental finding in studies of percolation in most artificial graphs is that it satisfies a
threshold phenomenon. There is some probability pc so that if p > pc, then the sampled network
probably has a very large connected component. It is called the “giant component”, and usually
contains a constant fraction of the vertices, with the exact number depending on how much p
exceeds pc. On the other hand, if p < pc, then all of the components in the graph are usually small.

The implication for vaccination is obvious: when you vaccinate someone, you remove them from
the graph. So, if you are going to choose who to vaccinate, then you should vaccinate people so as
to increase pc as much as possible.

Unfortunately, it is very difficult to understand percolation in an arbitrary graph: the best way to
understand the process is often just by simulating it. However, we can understand how it behaves
in some particular abstract graphs. We will prove the existence of thresholds in some of these, and
supplement our understanding with experiments from problem set 1.

1We ignore for now the fact that some people are more likely to transmit a disease to you than others. I am much
more likely to catch a cold from my kids than from my colleagues. So, we should really consider a weighted social
network.
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6.4 The Infinite Binary Tree and the Galton-Watson Process

We begin our analysis of percolation by considering percolation on the infinite binary tree. One
way to define this is to identify the vertex set with strings over {0, 1}. The root is the empty string.
Edges connect vertices with their immediate prefixes. So, 0 and 1 are the children of the root, 00
and 01 are the children of 0, etc.

We will keep each edge with probability p. We will prove that if p > 1/2, then there is a positive
probability that the root is in an infinite component. Conversely, if p < 1/2, then the probability
that the root is in an infinite component is zero.

Before entering the analysis, which we will do 3 different ways, I point out that this is equivalent to
the Galton-Watson process. In the Galton-Watson process, one considers the progeny of a single-
celled organism that reproduces by division. The probability p is the chance that any one of the
organisms survive. The first organism corresponds to the root of the tree. It splits into two children,
which correspond to the vertices 0 and 1. Each survives to reproduce only if the edge connecting
it to its parent appears in the tree. We will examine the probability that the descendants of the
first cell continue to exist forever, or whether they die out. As you would expect, the threshold for
this is exactly when the expected number of surviving progeny of each cell is 1.

So, the expected number of organisms in the first generation that survive to reproduce is 2p.
Similarly, the expected number of organisms in the second generation that survive to reproduce is
4p2. One way of seeing this is to identify 4 potential organisms in the second generation: the first
and second child of each of the first and second children of the original. Each of these 4 potential
organisms exists and survives only if their parent organism survives and they survive themselves.
The probability of each of these events is p2. We may similarly compute that the expected number
of organisms in the kth generation is

2kpk = (2p)k.

This is also the expected number of edges at the kth level of the tree that are connected to the
root. For p < 1/2 this number goes to zero, whereas for p > 1/2 it goes to infinity. This is clearly
some type of threshold phenomenon.

We can use this expectation calculation to prove it is unlikely that the descendants of the organism
will survive for a long time when p < 1/2. Let Xk be the random variable counting the number
of descendants of the organism in the kth generation. The descendants are still around in the kth
generation if and only if Xk ≥ 1. However, Markov’s inequality tells us that

Pr
[
Xk ≥ 1

]
≤ E

[
Xk
]
≤ (2p)k −−−→

k→∞
0

But, what about when p > 1/2? The expected number of descendants goes to infinity. But, what
does that tell us about the chance that the number of descendants is in fact infinite? This is less
obvious.
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6.5 p > 1/2

Let θp be the probability that the root of the tree is in an infinite component. We will prove that
for p > 1/2, θp > 0.

For each node a, let Ea be the event that a is the root of an infinite component (that is, that a
path from a going forward extends forever). By definition

θp = Pr [E∅] .

As the infinite binary tree is self-similar,

Pr [Ea] = θp

for all nodes a. We also know that E∅ happens only if the edge between ∅ and a appears in the
graph for a ∈ {0, 1}, and if node a is the root of an infinite component. Let Fa be the event that
the edge between ∅ and a appears in the graph and Ea holds. Then,

E∅ = F0 or F1.

So,
Pr [E∅] = Pr [F0] + Pr [F1]−Pr [F0 and F1] .

As F0 and F1 are independent even,

Pr [E∅] = Pr [F0] + Pr [F1]−Pr [F0]Pr [F1] .

Observing that
Pr [Fa] = pPr [Ea] = pθp,

we obtain
θp = Pr [E∅] = 2pθp − p2θ2p.

This gives us an equation for θp. One solution is θp = 0. When θp 6= 0, we can divide by θp to get

2p− 1 = p2θp, =⇒ θp =
2p− 1

p2
.

For p > 1/2, this is a probability greater than 0. As p approaches 1, θp does too. For p < 1/2, θp
is negative. As we cannot have a negative probability, the solution must be 0 in this case.

6.6 Finite Binary Trees

In case the analysis of infinite trees makes you uncomfortable, we will perform an analysis of finite
binary trees of increasing depth. As before, let p be the probability that each edge is chosen to
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appear in the graph. We define θp,k to be the probability that the root is connected to a leaf in a
tree of depth k, where the tree consisting of only the root has depth 0. In particular, θp,0 = 1.

This is the same as the probability that the root has an edge to a child that connects to a leaf in
a tree of depth k − 1. As before, let Ea be the event that node a is connected by a forwards path
to a leaf. We can again compute

θp,k
def
= Pr [E∅] = pPr [E0] + pPr [E1]− p2Pr [E0]Pr [E1] = 2pθp,k−1 − p2θ2p,k−1.

This gives us a recurrence for θp,k. Since θp,0 = 1, we derive

θp,1 = 2p− p2.

As k grows large, we expect θp,k to approach a limit. If it does, it should be a number q that
satisfies the equation

q = 2pq − (pq)2.

Our analysis from the previous section showed that q = 0 is a solution, and that for p > 1/2 there
is another solution:

q
def
=

2p− 1

p2
.

We will now show by induction that
θp,k ≥ q

for all k ≥ 0. To see this, we examine the function

f(x) = 2px− (px)2,

as
θp,k = f(θp,k−1).

We will base our induction in the case k = 0, for which we have

1 = θp,0 ≥ q

To perform the induction, we will show that f(x) ≥ q for x ∈ [q, 1]. We first compute the derivative
of f with respect to x and find

f ′(x) = 2p− 2p2x = 2p(1− px) > 0

for x ∈ (0, 1]. This means that f is an increasing function on (0, 1]. As f(q) = q, we may conclude
that f(x) ≥ q for x ≥ q. Thus,

θp,k ≥ q
for all k ≥ 0.

With a little more work one can show that

lim inf
k→∞

θp,k = q.

One consequence of this is that with probability at least q the descendants of the organism never
die out. That is, they exist for an infinite number of generations.
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6.7 The Number of Descendants and k-ary trees

We will now do a more detailed analysis in which we examine the number of descendants of an
organism. We will perform this analysis in a more general setting: Each organism will divide into
k others. That is, we will do percolation on the infinite k-ary tree. This is what the Physicists call
the Bethe Lattice.

We set the probability that an organism survives to reproduce to p = c/k. In the sub-critical
regime (c < 1) we will see that it is very unlikely that the organism has too many descendants. In
the super-critical regime (c > 1) we will see that once the number of descendants of an organism
becomes sufficiently large it is likely to be infinite. Just as in the case with k = 2, we can prove that
for c > 1 there is a constant probability of an organism spawning an infinite number of generations.

We will find it useful to assign a number of every cell that survives to reproduce. We number the
first cell 1. We must use consecutive numbers in a consistent manner, and must assign every cell a
lower number than each of its descendants. For example, if there are j cells in the first generation
that survive to reproduce, we could assign them numbers 2 through j + 1. We could then assign
numbers to the cells in the second generation, and so on.

For each j such that cell j survives to reproduce, we introduce Bernoulli random variablesXj,1, . . . , Xj,k

where Xj,i = 1 if the ith child of cell j survives to reproduce. So, the number of descendants of
cells 1 through u is

1 +
u∑

j=1

k∑
i=1

Xj,i − u.

Cell u is the last surviving member of the population precisely when

1 +

u∑
j=1

k∑
i=1

Xj,i = u

and for all v < u

1 +

v∑
j=1

k∑
i=1

Xj,i > v.

We will now use the Chernoff bounds to bound how unlikely this is in the sub-critical case. Define

X(u) =

u∑
j=1

k∑
i=1

Xj,i.

The expectation of X(u) is

µ = ukp = uk
c

k
= uc.

For c < 1 this becomes significantly less than u and the Chernoff bounds will imply that X(u) is
very unlikely to be more than u. Before we carry out the details of that argument, let me put one
issue to rest. You might worry that X(u) is only defined if cell u actually survives to reproduce.
You may then worry about what it means to take this sum if X(u−1) < u−1. To make these notions
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precise, consider sampling all the variables Xj,i for 1 ≤ j ≤ u and 1 ≤ j ≤ k without thinking
about the Galton-Watson process. If it turns out that organism j does survive to reproduce, then
and only then look at the variables Xj,i to figure out which of its children survive to reproduce. If
organism j never exists, then just throw away the unused variables2.

Let Z be the number of descendants of the first organism, plus 1 for the first organism (or view 1
as a descendant of itself). We can now say that

Pr [Z > u] ≤ Pr
[
X(u) ≥ u

]
≤ exp

(
−1

3
δ2µ

)
,

where we set δ so that

(1 + δ)µ = u

(1 + δ)uc = u

(1 + δ) =
1

c

δ =
1

c
− 1,

which is greater than 0 in the sub-critical case. We conclude that

Pr [Z > u] ≤ exp

(
−1

3

(1− c)2

c
u

)
.

So, the probability that there are more than u descendants decreases exponentially with u.

In the super-critical case we will perform a similar analysis. We will show that it is very unlikely
that Z = u for any sufficiently larger u. By summing over all large u we will conclude that if Z is
not small then it is probably infinite. Here the expectation of X(u) is also cu, but c > 1. We have

Pr [Z = u] ≤ Pr
[
X(u) ≤ u

]
≤ exp

(
−1

2
δ2µ

)
,

where we set δ so that

(1− δ)cu = u

(1− δ) =
1

c

δ = 1− 1

c
,

which is greater than zero in the super-critical case. We thereby conclude that

Pr [Z = u] ≤ exp

(
−1

2

(c− 1)2

c
u

)
= exp

(
−1

2

(c− 1)2

c

)u

.

Define

γ = exp

(
1

2

(c− 1)2

c

)
.

2This may worry you, but I assure you that you can make it formal.
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By summing an infinite series we can now bound the probability that Z is a large but finite number.
We have

Pr [u ≤ Z <∞] =
∞∑

w=u

Pr [Z = w] ≤
∞∑

w=u

γ−w =
γ−u

1− γ−1
.

So, this probability also decreases exponentially with u. This tells us that once we know a cell has
a moderate number of descendants, it becomes very unlikely that its progeny die out. Another way
of saying this is that its descendants are probably few or infinite.


