
Graphs and Networks Lecture 1

Introduction

Daniel A. Spielman August 29, 2013

1.1 Disclaimer

These notes are not necessarily an accurate representation of what happened in class. They are
a combination of what I intended to say with what I think I said. They have not been carefully
edited.

On the course web page, I listed readings for today’s lecture about clustering coefficients and
assortativity. We didn’t manage to discuss them today. We will get to them later.

You should be able to find a diary of my Matlab session from today’s class. It may reveal compu-
tations that do not appear in these notes.

1.2 Introduction

First, let me admit that the title of the course is redundant. “Graphs” and “Networks” are the
same things.

Everyone should look at the syllabus. A few important points are:

• The course will be more difficult than when it was last taught.

• There are now more prerequisites. The problem sets will require both writing proofs and
doing simple computational experiments. To follow lectures, and to do the problem sets,
you should be familiar with graphs, linear algebra, and probability. I will distribute the first
problem set after the second lecture.

• In this lecture, and in many others, I will do examples in Matlab. However, you are free code
in any language or system that you like.

• There is no exam in this course.

• This course covers a very quickly developing field. As a result, I am actively re-organizing
the class. I will probably mess up some lecture. The best lectures will involve experiments,
proofs, and presentations of empirical studies.

1-1



Lecture 1: August 29, 2013 1-2

1.3 How to look at a graph

A graph can be a very difficult thing to understand. We often begin to understand a graph by
taking some measurements of it. The first things to measure are the numbers of vertices and the
numbers of edges. This is assuming that the graph is connected. If it is not, one should first break
it into connected components.

In this lecture, we will also examine the distributions of the degrees of the vertices. We will examine
this much more carefully a few lectures from now.

Another way to understand a graph is to draw it. For example, we can understand a lot about this
graph from a picture of it.

This picture tells us everything we need to know about the grid graph.

[a,jnk,xy] = grid2(10,11);

clf; hold on;

gplot(a,xy);

axis off

px = plot(xy(:,1),xy(:,2),’o’,’MarkerFaceColor’,’b’);

Unfortunately, it is a theorem (that we will see later this semester) that it is impossible to make
nice drawings of most graphs.

I will discuss more ways to understand graphs as we examine them.



Lecture 1: August 29, 2013 1-3

1.4 Where Our Graphs Come From

We will often think about social network graphs. The small ones are gathered by real people
asking other real people questions. It will be easier for us to gather electronic social networks, like
Facebook graphs.

1.4.1 Web graphs

Another natural graph to consider is the web. Web pages are vertices, and links can be viewed as
directed edges. As this is a directed graph, its structure is more complicated. We can partition its
vertices into strongly connected components, and these link to each other acyclicly. For some stats
on an early web graph computed by a crawl done by Altavista, look at [BKM+00]. Two things
that stand out are that there is a very large strongly connected component and that most nodes
are not too far from each other.

Thinking about big graphs reveals a methodological problem: it is very difficult to get the whole
graph. Instead, a “crawl” produces just a fragment of the graph. The behavior at the boundary
can be very different from that at the nodes where the crawl starts, and there is no easy way to
discover vertices linking to those we’ve explored. The situation is worse with graphs gathered by
humans (surveys or social scientists): some studies only collect a few of the contacts of each person.
So, the fact that a graph does not have a particular edge does not mean that the edges does not
exist: it just means that it was not gathered. Issues like these can systematically bias the results
of studies. We will examine some cases of this later in the semester.

1.4.2 Technological

The Web should not be confused with the Internet. The Internet is the hardware that hosts the
web. It can be viewed as a graph on computers and routers, with edges representing physical
connections between them.

1.4.3 Collaboration

We will sometimes look at collaboration networks. The most popular is the graph on actors. The
actors are the vertices, and an edge appears between two of them if they have performed in a movie
together. This graph is actually derived from a bipartite graph in which the vertices on one side
are the actors and the vertices on the other are movies. An edge appears between an actor and
a movie if the actor appeared in that movie. We may look at some of this data if I can get it
permission to use it.

For now, we will consider a scientific collaboration network. We start with a bipartite graph with
authors on one side and papers on the other. Edges link papers to their authors. We can then turn
this into a network on just the authors by connecting each pair of authors who have co-authored a
paper. This naturally leads to a graph with weights on its edges: we can weight the edge between



Lecture 1: August 29, 2013 1-4

two authors by the number of papers that they have written together.

In fact, I suspect that almost every analysis of a graph can be improved by choosing the right
weights for its edges. Or, to put it differently, choosing to treat every edge equally is just as
arbitrary a choice as assigning weights intelligently. For almost every graph we will study, there is
an intelligent choice of weights for edges. However, sometimes we will not know that that choice is.

Today, I give you a co-authorship graph called dblp, which comes from the SNAP [Les] library.

Let’s examine the degrees of the vertices a little. I have stored the graph in a sparse adjacency
matrix called a.

>> size(a)

ans =

425957 425957

>> degs = sum(a);

>> max(degs)

ans =

(1,1) 343

>> plot(sort(degs),’.’)

We see that a has 425957 vertices, and the largest degree of a vertex is 343. To get a feel for the
distribution of the degrees, I will sort them and then plot them.

>> plot(sort(degs),’.’)



Lecture 1: August 29, 2013 1-5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0

50

100

150

200

250

300

350

As I will often use plots like this to examine lists of numbers, let me explain it some more. Consider
the point with horizontal coordinate 4×105 and vertical coordinate 16. It means that the 4×105-th
smallest degree is 16.

Here is a zoom of a part of the plot that better reveals the lower degrees.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

5

10

15

20

25

30

35

40

45

1.4.4 Artificial Graphs

We often use graphs as an abstraction of data that do not naturally occur as a graph. For example,
the vertices of the graph amazon are products sold by Amazon, and edges appear between products
that are often purchased together (this graph also come from the SNAP library). For this graph,



Lecture 1: August 29, 2013 1-6

we also have annotations on the vertices. In this case, products are organized into a hierarchy, and
we know the sets in the hierarchy. The edges in the graph mostly go between vertices in the same
part of the hierarchy.

To see this, let’s take one of the larger sets of the hierarchy.

% the graph is in the matrix a

% the rows of matrix index products. the columns index sets in the hierarchy

>> degs = sum(a);

>> [val,ord] = sort(sum(matrix>0));

>> val(end)

ans =

(1,1) 328

% the largest set in the hierarchy has 328 products

>> ind = ord(end)

ind =

4876

>> s = logical(matrix(:,ind));

>> sum(degs(s))

ans =

(1,1) 1403

% there are 1403 edges attached to products in this set

>> nnz(a(s,s))

ans =

1358

% and, 1358 of them connect to other products in the set

So, most of the edges attached to the vertices in s go to other vertices in s.

I will be most interested in studying graphs whose vertices or edges have annotations.
It will provide a ground truth for our studies of graphs.



Lecture 1: August 29, 2013 1-7

1.4.5 Protein-Protein Interaction Networks

Using BioGrid [SBR+06], I have constructed a graph of the interactions of the proteins in S.
Cerevisiae. I did this following the methodology of Song and Singh [SS09]. There are multiple
types of interactions: physical, chemical, and detected by various methods. For this graph, I have
included all. This graph has 2 connected components. One has only 3 vertices. You can discover
this using the routine components from the Matlab BGL library.

>> [ci, sizes] = components(a);

>> max(ci)

ans =

2

>> sizes

sizes =

6545

3

While the graph is nice enough, it is much more interesting to see if the structure of the graph is
related to the functions of the proteins. To examine this, we will grab annotations of the proteins
from the Gene Ontology Project [Con00]. These tell us something like

Mitochondrial inner membrane ADP/ATP translocator.

Most annotation only appear once or twice. We will consider those that appear more often, say
between 3 and 50 times. We will ask if those with the same annotation are nearby in the graph.

For now, I just give you a picture of larger connected component of the graph. It was generated
by calling sfdp [Hu05] from the GraphViz package. I created the input and output for it using the
my Matlab code dotFile and readPlain. Type help dotFile in Matlab to see how to do this.



Lecture 1: August 29, 2013 1-8

1.5 Geometric Graphs

The geometric graphs we will examine come from two sources. The first is from sensor networks.
Consider a large number of mobile computational devices (called sensors) whose radios have a
limited range. We will draw each as a dot. I choose their locations at random.

x = 2*rand(100,2)-1;

rad = .25;

clf;

px = plot(x(:,1),x(:,2),’o’,’MarkerFaceColor’,’b’);

axis(axis*(1+rad))



Lecture 1: August 29, 2013 1-9

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

We now draw a circle around each to indicate the reach of its radio.

hold on

hc = drawCircles(x,rad);

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Whenever one sensor is inside the circle of another, they can communicate. We now draw the graph
of their allowable communications.

a = radGraph(x,rad);

gplot(a,x);



Lecture 1: August 29, 2013 1-10

It is a little easier to see it without the circles.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

for i = 1:length(hc); delete(hc(i)); end

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Our other source of geometric graphs will be artificial. We will often be interested in representing
data by a graph. For example, imagine that each vertex corresponds to some information about
a person, like height and weight. We could then connect those that are nearby, and try to see if
health outcomes are related to the graph. For this purpose, I prefer using a k-nearest neighbor
graph. Such a graph is drawn by connecting each vertex to its k nearest neighbors. In this case,
we will choose k = 3.

clf



Lecture 1: August 29, 2013 1-11

px = plot(x(:,1),x(:,2),’o’,’MarkerFaceColor’,’b’);

hold on

a = knnGraph(x,3);

gplot(a,x);

axis(axis*(1+rad));

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Even with k = 3, these graphs are usually connected. And, they typically have many fewer edges
than similar connected graphs in which connectivity is determined by circles.

Connecting pairs of vertices below a given distance does not work as well when the typical dis-
tances between vertices differ in different parts of the data set. For an example, let’s square every
coordinate, which will push the vertices towards the axes.

xs = sign(x).*(x.^2);

px = plot(xs(:,1),xs(:,2),’o’,’MarkerFaceColor’,’b’);

axis(axis*(1+rad))



Lecture 1: August 29, 2013 1-12

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

If we choose the same radius as before, we get high density near the axes, but almost no edges near
the periphery.

hold on;

hc = drawCircles(xs,rad);

a = radGraph(xs,rad);

gplot(a,xs);

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

for i = 1:length(hc); delete(hc(i)); end



Lecture 1: August 29, 2013 1-13

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

But, a 3-nearest neighbor graph still looks good.

a = knnGraph(xs,3);

clf; hold on;

px = plot(xs(:,1),xs(:,2),’o’,’MarkerFaceColor’,’b’);

gplot(a,xs);

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1



Lecture 1: August 29, 2013 1-14

1.5.1 Graphs from data

We will derive a more interesting example from the MNIST [LCB] dataset of hand drawn digits.
Here are some of them.

>> load mnist

>> imshow(bigimg)

Each image is a 28-by-28 matrix of numbers between 0 and 1. We can turn each into a 784-
dimensional vector by concatenating the rows of each. The graph called a3 in mnist was formed
from the 3-nearest neighbor graph of these vectors. You can use my code knnGraph to compute
these on your own. The graph is connected. The images have been labeled with numbers between 0
and 9. Let’s look at how many edges stay inside the set of vertices corresponding to images labeled
1, and compare it to how many edges leave.

>> s = (labels == 1);

% the number of non-zeros in the submatrix of a3 indexed by rows and columns in s

>> nnz(a3(s,s))

ans =

30898

% the number of non-zeros in the submatrix of a3 indexed by rows in s and columns not in s.

>> nnz(a3(s,~s))



Lecture 1: August 29, 2013 1-15

ans =

861

1.6 Topics we will cover

Algorithmic problems:

• Clustering

• Learning and Inference

• Ranking, measuring importance

Processes on graphs:

• Percolation, Infection, Cascades

• Random Walks and Diffusion

• Dynamically Changing Graphs

References

[BKM+00] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-
jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in
the web. Computer networks, 33(1):309–320, 2000.

[Con00] The Gene Ontology Consortium. Gene ontology: tool for the unification of biology.
Nature genetics, 25(1):25–29, 2000.

[Hu05] Yifan Hu. Efficient, high-quality force-directed graph drawing. Mathematica Journal,
10(1):37–71, 2005.

[LCB] Yann LeCun, Corinna Cortes, and Christopher Burges. The MNIST database of hand-
written digits. http://yann.lecun.com/exdb/mnist/.

[Les] Jure Leskovec. Stanford large network dataset collection (SNAP).

[SBR+06] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Bre-
itkreutz, and Mike Tyers. BioGRID: a general repository for interaction datasets.
Nucleic acids research, 34(suppl 1):D535–D539, 2006.

[SS09] Jimin Song and Mona Singh. How and when should interactome-derived clusters be used
to predict functional modules and protein function? Bioinformatics, 25(23):3143–3150,
2009.



Lecture 1: August 29, 2013 1-16

A drawing of the graph dblp

A drawing of the graph mnist


