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Abstract

Locally parallel dense patterns - sometimes called texture flows -
define a perceptually coherent structure which is important to im-
age segmentation, edge classification, shading analysis, and shape
interpretation. This paper develops the notion of texture flow from
a geometrical point of view to argue that local measurements of
such structures must incorporate two curvatures. We show how
basic theoretical considerations lead to a unique model for the
local behavior of the flow and allow for the specification of con-
sistency constraints between nearby measurements. The computa-
tion of globally coherent structure via neighborhood relationships
is demonstrated on synthetic and natural images, and is compared
to orientation diffusion.

1. What is texture flow
A bear’s fur, a zebra’s stripes, and the wheat on a field all de-
fine a visual structure, sometimes called texture flow, whose
organization to coherent parts is fundamental to many as-
pects of computer vision (Fig. 1). Informally, texture flows
are defined by their orientation content - a dense visual per-
cept characterized by local parallelism and slowly varying
dominant local orientation (a.e.). The tendency of the hu-
man visual system to organize parallel structure has been
observed psychologically [8, 2, 22], and its importance to
computer vision has been discussed through the non acci-
dentalness argument [26, 12]. For centuries this class of
patterns has been used by artists as a tool to convey both the
shape and shading of smoothly varying (continuous) sur-
faces and their discontinuities. Indeed, since the shading of
smooth objects is a texture flow (e.g., when represented by
its isoluminance contours), its analysis and segmentation in
terms of coherent parts may prove vital for shape from shad-
ing (Fig. 2) and for edge classification [5].

Unfortunately, existing computational approaches to the
analysis of texture flow, such as fitting [19] or diffu-

�Supported by AFOSR. We deeply thank A. Tannenbaum for stimulat-
ing and inspiring discussions.

sion [17, 21], ignore certain aspects of its structure. As a re-
sult, the processed flow may be distorted, especially around
discontinuities (Fig. 2). Furthermore, the fact that coherent
flow may contain a wide range of orientations within a small
area takes its toll on segmentation methods (e.g., [11, 18]),
leading to results that may disagree with perception (Fig. 3).
We submit that the analysis of texture flow should be ge-
ometrical and should provide answers to two fundamental
questions: (i) what should be measured locally, and (ii) how
spurious measurements should be refined into globally co-
herent structures while preserving discontinuities and sin-
gularities. Since texture flows are perceptually dense even
when the raw measurements are sparse, an adequate analy-

(a) (c) (e)

(b) (d) (f)

Figure 1: Instances of texture flows can be found in a variety of visual
stimuli, both natural (a) and artificial (b). Furthermore, through what is
known as the social conformity of a line [8], texture flows participate in
perceptual organization to drastically affect our perception. Hence, while
(c) is naturally perceived as two polygons, the superposition of (c) with a
collection of parallel lines (d) is normally perceived as a diamond occlud-
ing a cross. Local parallelism is also important to the perception of shape.
Although both (e) and (f) depict the same surface, its shape is apparent only
when the set of surface contours possesses some degree of parallelism (re-
produced from [22]).
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Figure 2: Since texture flows are commonly used to depict both shape and shading in drawings (as in Fig. 1(b)), we seek the common denominator
between them. Indeed, virtually all piecewise smooth objects enjoy a shading flow which is a texture flow. (a) shows a worm-like object and a region of
interest. (b) depicts the shading flow field (the tangent field to the isoluminance contours) of that ROI and (c) illustrates typical noisy measurements of that
field. It is clearly essential that processing of this shading pattern preserves this structure, but current methods do not. For example, (d) shows the result of
anisotropic orientation diffusion (Tang et al. [21], P = 1, step size = 0:1, 50 iterations) on that pattern. The structure is clearly distorted. On the other hand,
the correct structure is preserved in (e), which shows the result of few iterations of our relaxation labeling process on the same input.

sis must fill in missing measurements. Since texture flows
may overlap [24, 10], an appropriate approach should allow
the representation of multiple orientations at a point. To our
knowledge, no work to date possesses all these features.

While early attempts to address image parallelism com-
putationally have focused on discrete representations [20],
the dense characteristic of texture flow has shifted the focus
to continuous representations. The importance of recov-
ering the flow’s global structure was argued by Kass and
Witkin [9], who described a filtering method for extracting
the flow’s local orientation, but provided no robust method
for the integration of the inherently noisy measurements.
Shu and Jain [19] suggested estimating global texture flow
structure through least squares fitting of the local orientation
measurements to a first-order model (the phase portrait).
While this averaging process can smooth noisy initial data,
it can’t handle discontinuities or overlapping flows. Orien-
tation diffusion [17, 21] is an increasingly studied approach
for the analysis of oriented patterns. Most recently, Tang
et al. [21] proposed minimizing the harmonic energy of the
pattern by flowing towards its critical points via gradient
descent. Using different norms one can change the sensitiv-
ity of the diffusion to large scale discontinuities and hence
the rate at which such structures in the orientation field are
smoothed out. However, such anisotropic diffusion may fail
to preserve essential structure (Fig. 2) and it is not designed
to deal with missing measurements or overlapping flows.

2. A geometrical framework

The task of modeling texture flow coherence involves a few
naturally related steps: one must decide on an appropri-
ate representation, derive the necessary local features to be
measured (the measurements), and model the way nearby
coherent measurements fit together. These steps are studied
in the following subsections.

2.1. Texture flow representation

A key step in any computation is a choice of representa-
tion [13]. Following our intuition in Section 1, texture flows
can be naturally abstracted in one of few equivalent ways:

� a scalar orientation function �(q) that defines the flow’s
dominant orientation at each point q = (x; y).

Figure 3: The fact that coherent flow may contain a wide range of ori-
entations within a small area takes its toll on segmentation methods and
affects their results. (Top) Two ROIs on a zebra image and an approximate
manual segmentation as was computed in [18]. Note how the segmentation
boundaries misrepresent the single underlying object. (Bottom) The corre-
sponding texture flows computed by our system. Note that the structure is
coherent almost everywhere, except at the properly isolated singularities.



� A 2D frame field [15] E(q) = fET (q); EN (q)g over
the image plane. Naturally, we choose ET (q) as the
unit vector field tangent to the flow, while EN (q) is
the unit vector field normal to the flow.

� A 2D submanifold, or a surface in R2
� S1. Since

all our considerations are taken locally we will con-
sider this representation to be the trace of a 2D height
function s(x; y) = (x; y; �(x; y)) in R3 whose Z axis
represents orientation. We label this space by XY �.

While each representation makes explicit different prop-
erties of the object under investigation (e.g., the surface rep-
resentation suggests the analysis of surface curvatures), they
are completely equivalent in terms of their representational
power. We make use of this equivalence below.

2.2. Texture flow local measurements
Part of the goal of modeling the local behavior of texture
flow requires understanding the parameters that affect it.
Taken as a scalar orientation function, the local behavior
of the flow is governed to first order by its gradient. Unfor-
tunately, this quantity is not naturally measurable from the
image. The frame field representation provides an insightful
alternative.

Taken as a frame field over the image plane, the local
behavior of the flow is characterized by the differential be-
havior of the frame as it moves over the image plane. In
particular, one may seek a representation of this behavior in
terms of the frame itself, thus achieving an object-centered
view which is invariant to Euclidean transformations (cf.
Frenet frame and the Frenet equation for curves). This is
captured by Cartan’s connection equations [15]:

rV ET = w12(V )EN

rV EN = �w12(V )ET
(1)

where rV is the covariant derivative in the direction V .
The coefficient w12(V ) is a function of the tangent vector
V , which implies that the local behavior of the flow depends
on the direction along which we measure it (Fig. 4). Fortu-
nately, w12(V ) is a 1-form and thus linear. This allows us
to fully represent it with two scalars since

w12(V ) = w12(a E1 + b E2) = a w12(E1) + b w12(E2):

The freedom lies in choosing the basis to represent tangent
vectors. In the flow-centered view, the natural choice is to
set E1 = ET and E2 = EN , defining the following two
scalars :

�T
4
= w12(ET )

�N
4
= w12(EN )

(2)

We call �T the tangential curvature and �N the normal
curvature - they represent the rate of change of the dom-
inant orientation of the texture flow in the tangential and

EN

ET

E N
V

E T
V

V
θ

q

Figure 4: A texture flow can be represented as a differentiable frame
field which is everywhere tangent (and normal) to the streamlines of the
flow. An infinitesimal translation of the frame in a direction V rotates it by
some angle determined by the connection form of the frame field. Since
the connection form is a linear operator, it is fully characterized by two
numbers obtained by the projection on two independent directions. It is
a natural choice to use the directions defined by the frame itself, which
yields the two curvatures �T and �N .

normal directions, respectively. Based on a heuristic argu-
ment, Iverson [7] also used these curvatures. Because the
tangential and normal directions are measurable in the im-
age (based on the intensity gradient), we end up with a rep-
resentation (�T ; �N ) of the differential behavior of the flow
which is much more natural than its gradient1. Furthermore,
sincer� is also a 1-form, we can represent w12(V ),�T , and
�N all in terms of the appropriate projection:

�T = r� �ET = r� � (cos�; sin�)
�N = r� � EN = r� � (�sin�; cos�)

(3)

Since ET and EN are rigidly coupled, we can rewrite Eq. 3
only in terms of ET to yield the following relationships:

�T = r�ET

�N = r �ET
(4)

2.3. A Gestalt quality of texture flow
If �T and �N were known functions of position q, equa-
tion 3 could be viewed as a PDE and be solved for �(q).
This raises the question of the degree to which �T and �N
are independent. Are they completely independent, as cur-
vature and torsion are for curves, or are they dependent in
the way the Gaussian and mean curvatures of surfaces are?
We observe the following:

Proposition 1 Unless �T and �N both equal zero, they
cannot be simultaneously constant in a neighborhood
around q, however small, or else the induced flow is non-
integrable.

1Note in particular that �T (q) is just the curvature of the streamline
passing through q.



This observation has an important implication: In gen-
eral, at least one of the curvatures must vary, or the two
curvatures need to covary in any neighborhood of the tex-
ture flow. This gestalt quality [25] of texture flow is for-
mally characterized as follows:

Proposition 2 Given any texture flow fET ; ENg, its cur-
vature functions �T and �N must satisfy the relationship

r�T �EN �r�N � ET = �2T + �2N

2.4. Texture flow coherence
Since the local behavior of the flow is characterized (up to
Euclidean transformation) by a pair of curvatures, it is nat-
ural to conclude that nearby local measurements of texture
flow orientation should relate to each other based on these
curvatures. Put differently, measuring a particular curvature
pair (�T (q); �N (q)) at a point q should induce a field of co-
herent measurements (i.e., an orientation function �(x; y))
in the neighborhood of q. Clearly, that field, which we call
the texture flow osculating object, should be a function of
(�T (q); �N (q)). Coherence of local measurements of tex-
ture flow can then be determined in a manner analogous to
cocircularity for tangents to a curve via the osculating cir-
cle [16].

Solving Eq. (3) with initial data at a single point q is
equivalent to constructing the texture flow surface s(x; y)
(Sec. 2.1) given a single tangent plane at q. The set of
possible solutions is infinite and the problem is underde-
termined. We now make it well-posed by including the no-
tion of “slowly varying dominant local orientation” (Sec. 1).
We formalize this by introducing minimization constraints
on the behavior of �(x; y). But which one? The view of
�(x; y) as a 2D scalar function suggests looking for the crit-
ical points of the harmonic energyZ Z

jjr�jj2 dxdy (5)

in the spirit of Tang et al. [21]. On the other hand, the view
of the flow as a surface suggests minimization of surface
tension and looking for critical points of the area functionalZ Z q

1 + �2x + �2y dxdy: (6)

While each constraint individually is not sufficient to deter-
mine a unique solution to the construction problem, apply-
ing them both results in a surprising conclusion:

Proposition 3 The solution for �(x; y) satisfying the initial
conditions at q and both constraints (5) and (6) is either

a plane �(x; y) = KTx+KNy;

a right Helicoid �(x; y) = tan�1( KTx+KNy

1+KNx�KTy
);

or a left Helicoid �(x; y) = tan�1( KTx+KNy
1�KNx+KTy

):

The proof is based on minimal surface theory [14] and on
Hamel’s theorem for harmonic minimal surfaces [3, 1].
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Figure 5: The only three solutions of Eq. 3 that are simultaneous critical
points of the energy expressions (5) and (6), and that satisfy the initial
conditions at q. We illustrate these three solutions for �T (q) = 0:9 and
�N (q) = 0:7 both as surfaces in XY � and their corresponding flows
in the image plane. To set a visual context, we plot these solutions in
a large neighborhood to show the singular point of the helicoids and the
periodicity over the range (�

�

2
; �
2
].

The three solutions are visualized in Fig. 5. Naturally,
all have the same tangent plane at q and one can show that
the two helicoids even have identical local shape at q (i.e.,
the principle curvatures and directions of their surface rep-
resentation coincide at q). Interestingly, they uniquely share
another property:

Proposition 4 The three solutions from Prop. 3 are the
only functions (that satisfy the initial data and) whose
p-Laplacian �P (�) vanishes simultaneously for all p.

This proposition reveals a formal relationship to [21]
since it implies that each of the three functions is a station-
ary point of a gradient flow of the p-harmonic energy of the
orientation function �(x; y), regardless of the chosen met-
ric p. While the theoretical consequences of this property
remain to be analyzed, it reinforces the uniqueness of this
set of solutions over others. Each of the three serves as a
candidate osculating object for texture flow.

2.5. Curvatures covariation revisited
The discussion so far suggests two main observations with
regard to the modeling and computation of coherent texture
flow: (1) that texture flow measurements should include two
curvature measurements (in addition to position and orien-
tation), and (2) that nearby measurements should be con-
sidered coherent if they are part of (or “close” to) the same



osculating object. A question remains whether or not one
of the three candidates is a better choice than the others.

As mentioned in Sec. 2.3, any nontrivial texture flow,
and thus any osculating object, must incorporate some co-
variation of �T and �N around the point of measurement q.
Representational and computational considerations dictate
simple covariation; thus it is striking that

Proposition 5 Of the three solutions of Prop. 3 (and of all
orientation functions in general), the right helicoid has the
“simplest” possible covariation of �T and �N since it is the
only one to satisfy

�T (x; y)

�N (x; y)
= const =

�T (q)

�N(q)
8(x; y) 2 N(q)

The fact that this behavior is unique to the helicoid can
be derived from Eq. (3) by imposing constant covariation on
�T and �N and reducing the system to a single quasi-linear
differential equation

~n � (�N (q)cos� + �T (q)sin�; �N (q)sin� � �T (q)cos�; 0) = 0

where ~n denotes a normal of the solution surface. One can
then show that the characteristic curves of this PDE in XY �

constitute a ruling that defines a right helicoid.
The constant covariation of the two curvatures as in-

duced by the right helicoid has an important computational
advantage, since only one curvature (say, �T ) needs to be
explicitly maintained. The following section outlines how
we use the right helicoid in a relaxation labeling network
for the organization of texture flow.

3. Organization via relaxation labeling
The advantage of having a model for the local behavior of
a “good” texture flow lies in the ability to assess the degree
to which a particular measurement is compatible, or consis-
tent, with the context in which it is embedded. This, in turn,
can be used to refine noisy measurements, remove spurious
ones, and fill in “holes” so that local ambiguity is reduced
and global structures become coherent.

A natural framework with which one can pursue this task
while maximizing the average consistency over a domain
of interest is relaxation labeling [6]. We developed such a
relaxation network for the organization of coherent texture
flows and derived the compatibility function which governs
its behavior from the right helicoidal model. The following
is a short overview of that system, the details of which are
described elsewhere.

A direct abstraction of the relaxation process for texture
flow should involve an image-based 2D network of nodes
i = (x; y) (i.e., pixels) whose labels are drawn from the set

� = f(�; �T ; �N ) j � 2 (�
�

2
;
�

2
] ; �T ; �N 2 [�K;K]g [ no-flow
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Figure 6: A visualization of the 5 dimensional consistency volume cor-
responding to particular measurements of �, �T and �N at the origin. (a)
shows the projection of that volume on XY �. (b) shows its projection
on XY �T , and (c) shows its projection on XY �N . (d) depicts the pro-
jection of the consistency volume as orientation segments on the image
plane (brightness represents degree of compatibility while the inhibitory
surround is shown as black segments; see text).

after it has been quantized appropriately. Motivated by the
columnar architecture of the visual cortex [4] and to al-
low for the representation of either “no-flow” or multiple
flows at a pixel, we replace this abstraction with a 5D net-
work of nodes i = (x; y; �; �T ; �N ) whose labels are ei-
ther TRUE or FALSE. For each node i, pi(TRUE)
denotes the confidence that a texture flow of orientation �

and curvatures �T ; �N passes through pixel (x; y). Since
pi(FALSE) = 1 � pi(TRUE) we need to maintain and
update the confidence of only one label at a node.

The geometrical compatibilities rij(�; �0) that drive our
relaxation process are computed from the right helicoidal
model. Measurements quantization implies that every pos-
sible node i represents an equivalence class of measure-
ments, each of which induces a helicoidal field of compat-
ible labels in the neighborhood of i. In the continuum, the
union of all these fields forms a consistent 5D “volume” that
after quantization results in a set of excitatory labels. Since
the 5D relaxation network lacks an intrinsic normalization
of labels at a position, we surround the excitatory region
with an inhibitory surround (Fig. 6).

With the network structure, labels, and compatibilities
all designed, one can compute the support s i(�) that label
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Figure 7: The organization of texture flow via relaxation labeling based on right helicoidal compatibilities. (a) is a noisy synthetic texture flow composed
of two parts. Note that although the flow is almost everywhere continuous in terms of orientation, it is discontinuous in the tangential curvature along
a vertical line. (b) depicts the initial distribution of orientation measurements while (c) and (d) illustrate the initial distribution of tangential and normal
curvatures, respectively. Note that while the XY plane of (b)-(d) corresponds to the image plane, the Z axis represents either orientation (b), tangential
curvature (c), or normal curvature (d). Sections (e) through (h) represent the corresponding distributions of labels’ confidence after 10 iterations of relaxation
labeling (Æ = 0:25). Missing measurements were filled in while noisy measurements were filtered out, making the entire structure globally coherent. Note
that the discontinuity in tangential curvature was not smoothed out.

� at node i gathers from its neighborhood. s i(�) is typi-
cally the sum of the individual support of all labels j in the
neighborhood of i,

si(�) =
X
j

X
�0

rij(�; �
0)pj(�

0) ;

and it can be designed to be stable at discontinuities or flow
boundaries that cross i, i.e., it can support a coherent struc-
ture along one side of a discontinuity even when consistent
measurements on its other side are lacking. Such s i(�) is
then used to update the confidence pi(�) by gradient as-
cent followed by non-linear projection. Under the 2-label
paradigm and an appropriate way of considering negative
(FALSE) versus positive (TRUE) evidence, the projec-
tion operator takes a particularly simple form and the update
rule reduces to

pi(�) �1
0 (pi(�) + Æsi(�))

where �1
0(x) projects its operand to the nearest point on the

interval [0; 1] and Æ is the step size of the gradient descent.

4. Experimental results
We tested the proposed model and relaxation system on a
variety of inputs, both synthetic and natural. In all cases we
quantized orientation to 16 equivalence classes and curva-
tures to 5. Figs. 7 to 9 show the results on synthetic flows.
For such flows we computed exact initial measurements and
then corrupted them along the orientation and curvature di-
mensions with additive and/or salt-and-pepper noise. Fig. 7
shows an example of a texture flow composed of two parts.
Although the entire pattern is mostly continuous, there is
a vertical line of discontinuity in the tangential curvature.
Taken to be the flow underlying the shading on a bullet-like
object, the preservation of such a discontinuity is of utmost
importance since it indicates a second-order discontinuity
in the observed shape, a property which may be used for
part decomposition and object description. In this example,
as in Figs. 8 and 9, the relaxation labeling process is able
to eliminate the noise, to fill in holes, and to converge to a
globally coherent structure while preserving the discontinu-
ity. This counters the inherent limitation of orientation dif-
fusion processes to represent lack of measurements (holes),
flow boundaries (over which no oriented data exists) and
multiple measurements (overlapping flows).
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Figure 8: The organization of coherent structure based on right heli-
coidal compatibilities (20 iterations, Æ = 0:25). Note the removal of noisy
measurements, the filling in of missing measurements, and the ability to
cope with boundaries and overlapping flows. As opposed to orientation
diffusion or averaging, non coherent structures are not relaxed to some
meaningless average but rather are classified as non flows.

Fig. 10 (also - Fig. 3) shows the results of applying our
system to natural texture and shading flows. Initial mea-
surements for these flows were computed directly from the
image gradient orientation and application of Eq. (3). For
texture flows (but not shading flows) we considered only
high magnitude responses. Although this crude method of
measuring flows provides very noisy curvature measure-
ments, the relaxation process succeeded to extract the co-
herent structure. Note in particular how, in accordance with
perception, the relaxation process successfully interpolates
sparse texture flow measurements to a dense representation.
In addition, note how non-flow structures are not smoothed
to some meaningless average orientation, as orientation dif-
fusion might do, but rather they are classified as no flows.
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