
Semantic Search of Schema Repositories

T. Syeda-Mahmood
Gauri Shah

IBM Almaden Research
Center

650 Harry Road
San Jose, CA

Lingling Yan
IBM SVL

555 Bailey Avenue
San Jose, CA 95141

Willi Urban
IBM Software Group

Schoenaicher Str. 220
Boeblingen 71032

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms

1. INTRODUCTION
With XML fast becoming the de facto standard for repre-

senting structured metadata in databases and internet appli-
cations, there is a rise in the need for efficient search mech-
anisms for the searching such repositories in several appli-
cation domains. In this poster, we outline the requirements
of a search engine, and lay the theoretical foundations for
a fast and efficient search mechanism for these XML (and
other) repositories.

We formulate the problem of finding matching schemas as
the problem of computing a maximum matching in the pair-
wise bipartite graph formed from the query and repository
schema attributes. The edges of the bipartite graph cap-
ture the similarity between corresponding attributes in the
schema. To ensure meaningful matches, we use both name
and type semantics in modeling attribute similarity. Since
detailed graph matching is compute-intensive, our approach
uses upper and lower bounds on the size of the matching
to prune candidate schemas. Finally, we develop a tech-
nique for schema indexing called attribute hashing for fast
database schema indexing. The matching schemas of the
database are then found by indexing the hash table using
query attributes, performing lower bound computations for
maximum matching, and recording peaks in the resulting
histogram of hits. The key rationale used is that related
schemas in the database have an overwhelming number of
attributes semantically-related to query attributes so that
indexing based on query attributes could only point to rel-
evant matching schemas.

2. SEARCH AS RANKED GRAPH MATCH-
ING

In ranked graph matching, we want as many of the query
attributes to match the repository schema attributes with
very few unmatched candidates left on both sides. We de-
sire a graph matching of maximum cardinality as well as
maximum weight. Consider a bipartite graph G = (V =

Copyright is held by the author/owner.
WWW 2005, May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

X ∪ Y, E, C) where X ∈ Q and Y ∈ D are attributes in the
query and repository schemas Q and D respectively, E are
the edges, and C : E →

�
are the similarity scores repre-

senting similarity between query and schema attributes per
edge. An edge is drawn between two attributes only if they
are semantically related.

The ranking of a schema is then given as R1(D) = 2 ·
|MD|/(|Q|+|D|) where MD is a maximum-cardinality match-
ing in the schema D. For schemas that have the same rank
R1, they are further ranked by R2(D) = Cmax(MD)/|MD|
where Cmax(MD) is the maximum-similarity score associ-
ated with the maximum matching MD. In practice, we re-
tain all matches that are above a chosen threshold T.

Although, algorithms are available for computing the maximum-
cardinality, maximum-weight bipartite graph matching [1],
finding a maximum matching of maximum weight is a compute-
intensive operation. To speed it up, we derive tight upper
and lower bounds on the size of the matching that can be
quickly computed, and use the bounds for ranking purposes.

3. CAPTURING SEMANTIC SIMILARITY
BETWEEN ATTRIBUTES

The above method is independent of the method used
to determine the relationship between query and repository
schema attributes. To ensure meaningful matches, we use
both name and type semantics in modeling similarity be-
tween attributes. We capture name semantics using a tech-
nique similar to the one in [2] detailed as follows:

Word tokenization: To tokenize words, we find word
boundaries in a multi-term word attribute using changes in
font, presence of delimiters, etc.

Part-of-speech tagging and filtering: Simple gram-
mar rules are used to detect noun phrases and adjectives.
Stop-word filtering is performed using a pre-supplied list.

Abbreviation expansion: The abbreviation expansion
uses multiple vocabularies. Multiple expansions for words
and their synonyms are retained for processing.

Synonym search: We use the WordNet thesaurus [3] to
find matching synonyms to words. Each synonym is assigned
a similarity score based on the sense index, and the order of
the synonym in the matches returned.

Match generation: Consider a pair of candidate match-
ing attributes (A,B) from the query and repository schemas
respectively. Let A, B have m and n valid tokens respec-
tively. The semantic similarity between attributes A and B

is then given by Sem(A,B) = 2·Match(A,B)
m+n

where Match(A, B)
are the matching word tokens between the two attributes.

4. ATTRIBUTE HASHING
Indexing of the repository schemas is crucial to reduc-

ing the complexity of search. We introduce and use a new
method called attribute hashing, to index schemas that al-
lows determination of valid edges of the bipartite graph to
find the matching faster. We only give a high-level view of
attribute hashing.

The basic idea of attribute hashing is to hash the feature
list i.e. synonyms per word token of each attribute. All the
attributes with the same feature list are hashed together in
the same location. The hash table also maintains the index-
ing schema of these attributes such as word index within a
schema, and schema index within the repository. Then given
an attribute from the query schema, the matching attributes
from repository schemas are obtained by computing the fea-
ture list of the query attribute, and indexing using the hash
function.

5. SEMANTIC SEARCH ALGORITHM
We now describe our overall approach to searching schema

repositories.
Schema Parsing: The first step in off-line index creation

is to parse the metadata to create the schemas. We use
different parsers based on the metadata types.

Offline index creation: The parsers used to extract
the schemas are also used to extract word attributes along
with their tag types. We then separate multiple terms in
each word into tokens, perform part-of-speech tagging and
word expansion, and derive synonyms per token using the
WordNet thesaurus.

Query processing: Query schemas are processed in a
similar fashion to repository schemas except that no syn-
onyms are looked up for the tokens of query attributes. The
tokens are directly used to find matches to get closer matches
than those obtained by looking up synonyms of synonyms.

Search algorithm: The search algorithm extracts the
word tokens for each attribute of the query schema, and
computes the semantic hash for each such token. It checks
that the type tags of the hashed entries match, and updates
the hit counts of the words from the schema repository. A
semantic match of a query word to a repository schema word
is indicated if enough number of tokens of the query word
find a match to the repository schema word. When the
words are found to be semantically related, the histogram
of the schema hits is updated only if the degree counts of the
corresponding attributes are 0. This ensures that each query
word is accounted for only once in the matching repository
schema. The resulting histogram is normalized to derive the
schema rank.

6. RESULTS
The algorithm for searching for XML schemas was tested

on a business object repository consisting of 517 business
objects drawn from Crossworlds business object library de-
signed for Oracle, PeopleSoft and SAP applications.

Figure 1 shows the average precision versus recall using
three different methods of schema matching: full-text in-
dexing, lexical matching, and our semantic matching for 20
query schemas. For each schema, we manually selected the
ideal matching schemas from the whole database. We then
ran the semantic match algorithm and counted the number
of matching schemas for each threshold value. For com-

parison with other methods, we allowed as many schema
matches as with the semantic match, and then computed
the average precision and recall. We can see that the se-
mantic match method performs much better than that other
methods in the precision versus recall graphs.

We tested the indexing performance of the hashing scheme
by noting the fraction of the database touched during search.
Our experiments show that on average a 90-95% reduction
in search is achieved by the indexing step.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.

R
e
c
a
l
l

Avg. Precision

SEMANTIC
LCS

FULL INDEX

Figure 1: Average precision versus recall.

0.01

0.1

1

10

100

LCS Full Text Semantic

M
i
n
u
t
e
s

[
L
o
g
]

Index
Query

Figure 2: Time to index database and query it.

Figure 2 shows the time taken to run queries using the
three different methods. We note that indexing the database
using semantic matching takes a long time but this is a one-
time offline requirement. Queries using semantic matching
are much faster than the queries using full-text indexing and
lexical matching.

7. CONCLUSIONS
In this poster, we have laid the theoretical foundations of

searching through XML schema repositories for semantically-
related schemas. We have captured semantic relationships
coupled with fast indexing mechanisms. Comparison with
full-text search has shown the semantic search method out-
performs full-text search in both precision and recall while
keeping the search time comparable.

8. ADDITIONAL AUTHORS

9. REFERENCES
[1] Andrew V. Goldberg and R. Kennedy. An Efficient Cost Scaling

Algorithm for the Assignment Problem. SIAM Journal on

Discrete Mathematics, 6(3):443–459, Apr. 1993.

[2] J. Madhavan, P. Bernstein, K. Chen, A. Halevy, and P. Shenoy.
Corpus-based Schema Matching. In Proceedings of the
Information Integration on the Web, pages 59–66, Acapulco,
Mexico, Aug. 2003.

[3] G. A. Miller. WordNet: A Lexical Database for the English
Language. http://www.cogsci.princeton.edu/ wn/.

