
Searching XML Databases for Semantically-related Schemas
Gauri Shah Tanveer Syeda-Mahmood

IBM Almaden Research Center IBM Almaden Research Center
 650 Harry Road, San Jose, CA 95120 650 Harry Road, San Jose, CA 95120

ABSTRACT
In this paper, we address the problem of searching schema
databases for semantically-related schemas. We first give a
method of finding semantic similarity between pair-wise schemas
based on tokenization, part-of-speech tagging, word expansion,
and ontology matching. We then address the problem of indexing
the schema database through a semantic hash table. Matching
schemas in the database are found by hashing the query attributes
and recording peaks in the histogram of schema hits. Results
indicated a 90% improvement in search performance while
maintaining high precision and recall.

1. INTRODUCTION
A number of applications including business data warehousing
and business process integration, require data consolidation and
integration by system integrators and data warehouse specialists.
Currently, this is done in a time-consuming fashion by manually
looking at schemas and recording semantic relationships on
spreadsheets. The problem of automatically finding semantic
relationships between schemas has been addressed by a number of
database researchers lately [2-10], where the focus has been on
semantic schema matching of schema pairs. But when the number
of schemas is large, it is impractical to use approaches such as
similarity flooding [2], and other detailed matching approaches to
find related database schemas in response to query. In this paper,
we present an information retrieval technique for finding
semantically related schemas in the database. Our approach is
based on the rationale that related schemas in the database have an
overwhelming number of attributes semantically related to query
attributes so that indexing based on query attributes could point to
relevant matching schemas. Finding semantic relationship
between query attributes is difficult, in general, because (1) query
attributes could be multi-word terms (e.g.
Customer2Identification, PhoneCountry, etc. which require
tokenization. Any tokenization must capture naming conventions
used by DBAs, system integrators, programmers to form attribute
names. (2) Finding meaningful matches would need to account for
senses of the word as well as their part-of-speech through a
thesaurus. (3) Finally, multiple matches of attributes must be
taken into account.

2. Selecting matching schemas
Given a set of schemas in the database, it is reasonable to assume
that the best matching schemas are those that have a large number
of semantically related attributes. Assuming semantic relationship
between attributes can be defined, let us consider how we may
select the best matching schemas. Let there be k schemas in the
database. Let h1, h2,…, hk be the number of attributes of schemas
S1, S2,…, Sk that have found a match to one or more of the R
query attributes. Let q1, q2,…, qk be number of query attributes
that found a match to at least one attribute in schemas S1, S2…,
Sk. Let n1, n2,…, nk be the number of attributes present in schemas

S1, S2,...,Sk. Then the overall match of the query schema to a
database schema is given by
Mi = min{hi/ni, qi/R}..(1)
The best matching schema to a query schema is given by
Sbest = max{Mi} for all 1 ≤ i ≤ k...……………………………(2)

Further, the values of Mi can be sorted to get a ranked list of
matching schemas. By taking max{Mi}, we look for those matches
that have the lowest number of unmatched attributes relative to
their schema size.

2.1 Finding semantically related attributes
For the above operation to be meaningful, the individual attributes
must be matched semantically. In this paper, we focus on
capturing semantics through similarity in names of attributes
taking into account their multi-word nature. Using a technique
similar to the one in [3], we parse the words to find ontological
similarity in their tokens. The parsing uses tokenization, part-of-
speech tagging, filtering and abbreviation expansion to generate
list of candidate words. Thus CustomerPurchase will be separated
into Customer and Purchase. The tokenization uses font changes,
underscores, spaces, numbers and other delimiters. Abbreviations
such as CustPurch will be expanded into CustomerPurchase,
CustomaryPurchase, etc, using a domain-dependent abbreviation
expansion dictionary generated a priori. Filtering removes stop
words and part-of-speech tagging classifies words as nouns,
adjectives, etc. The resulting words are then used to index an
ontology (Wordnet Thesaurus [1]) to obtain a list of synonyms.
Consider a pair of candidate matching attributes (A, B). Let A, B
have m and n valid tokens respectively, and let Syi and Syj be their
expanded lists based on ontological processing. We consider each
token i in source attribute A to match a token j in destination
attribute B if i ε Syi or j ε Syi. The semantic similarity between
attributes A and B is then given by
Sem(A, B) = 2*Match(A,B)/(m + n)………………………….(3)
where Match(A, B) are the matching tokens based on the
definition above. The semantic similarity allows us to match
attributes such as (state, province), (CustomerIdentification,
ClientID), (CustomerClass, ClientCategory), etc.

3. Indexing Schemas
A straightforward implementation of the above algorithms would
not scale very well for large schema databases. For example, in a
database of 500 schemas, a schema could have over 50 attributes,
and 2-5 tokens per attribute, and 5-30 synonyms per token,
making the search for a query of 50 attributes easily around 50
million operations per query. To enable indexing, we developed a
semantic hash table for the schema database. Specifically, the
synonyms for tokens derived from all attributes in all schemas are
used as keys of a semantic hash table that records 3-tuple indices
{(ti,wj,sk)…} indicating the index of the token, the attribute from
which the token is derived, and the schema from which the
attribute is derived.

Given a query, the best matching schemas are found as follows.
Each token of the query attribute is used as the key to index the
semantic hash table. All the hit counts of attributes present in the
hash table entries are updated by 1. When all tokens of the query
are processed, the attribute match score is computed using
Equation 3. If the semantic relationship score is above a threshold
T, then the match is retained and the schema hit is updated by 1.
The attribute hit of the query for that schema is updated by 1 as
well. We chose T=0.67 based on results of user studies in which
a large fraction of people chose those attributes to be semantically
related if at least 2/3rd of their tokens were related. After all the
query attributes are processed, the final scores of matching
schemas are computed using Equation 1 and 2. The result is a
ranked list of matching schemas. By using a suitable threshold T2,
different tradeoff between precision and recall could be
demonstrated.

4. Results
We tested the performance of semantic schema retrieval on a
business object database consisting of 517 application-specific
and generic business objects drawn from Crossworlds business
object library. The business objects tend to have a larger number
of member attributes (over 100). Further, there is frequently
schema embedding in the XSD documents describing the
schemas. Table 1 shows a subset of the matching attributes in a
query and its matching database schema. As can be seen, semantic
match of attributes allows for term matches when words are out of
order, abbreviated, or have close meanings.

SCHEMA: PaymentInformation SCHEMA: Email_PurchaseOrder
PaymentMethod Hdr.PaymentTerm
PaymentAmount Summary.TotalAmount
CreditCardType Hdr.Payment.CInfo.CardType
CreditCardNumber Hdr.Payment.CInfo.CardNum
NameOnCredictCard Hdr.Payment.CInfo.CardHolderName
CreditCardApproval Hdr.Payment.CInfo.CardAuthCode
Table 1: A subset of the attributes of two sample matching schemas.

We tested the indexing performance of the hashing scheme by
noting the fraction of the database touched during search. Using
the semantic hash table, the complexity of search reduces
significantly, as only matching tokens are explored. In fact, our
experiments show that on average a 90- 95% reduction in search
is achieved by the indexing step. The entire 517 schema database
consisting of over 100,000 total attributes indexes in less than 2
minutes on an Intel M-Pro 2 GHz Pentium, and the matching
schemas for queries are retrieved instantaneously.

Table 2 shows the performance for sample query schemas. As can
be seen, the matching schemas are in close agreement in the
number of matching attributes. It can also be notes that only 3-5%
of the database tokens are touched in the semantic hash table.
Next, we varied the threshold T2 to see the effect on precision and
recall. The precision-recall curves for sample queries are
illustrated in Figure 1. The average precision-recall curve over all
queries tested is also shown in this figure (as thick line). From this
figure, we can note that with a suitable choice of threshold it is
possible to get an average precision of 85% with a recall of over
90%.

5. Conclusions
In this paper, we have presented an approach to search for
semantically related schemas in the database, in response to
queries. The indexing of the database using a semantic hash table
generated from the synonyms of tokens of schema attributes

allows for increased time performance without sacrificing
precision and recall.

6. REFERENCES
[1] G.A. Miller. Wordnet: A lexical database for English. Communications of the
ACM, 38(11):39-41, 1995.

[2] S. Melnik, H. Garcia-Molina and E. Rahm. Similarity Flooding: A Versatile Graph
Matching Algorithm and Its Application to Schema Matching. In Proc. ICDE 2002.

[3] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with
Cupid. In The VLDB Journal, pages 49-58, 2001.

[4] S. Bergamaschi, S. Castano, M. Vincini and D. Beneventano. Semantic Integration
of Heterogeneous Information Sources. In Data and Knowledge Engineering,
36(3):215-249, 2001.

[5] W. Li and C. Clifton. SEMINT: A Tool for Identifying Attribute Correspondences
in Heterogeneous Databases using Neural Networks. In Data and Knowledge
Engineering, 33(1):49-84, 2000.

[6] A. Doan, P. Domingos and A. Halevy. Reconciling Schemas of Disparate Data
Sources: A Machine-Learning Approach. In Proc. SIGMOD 2001.

[7] H. Do and E. Rahm. COMA: A System for Flexible Combination of Schema
Matching Approaches. In Proc. VLDB 2002.

[8] A. Doan, J. Madhavan, P. Dominogos and A. Halevv. Learning to Map between
Ontologies on the Semantic Web. In Proc. WWW 2002.

[10] E. Rahm and P. Bernstein. A Survey of Approaches to Automatic Schema
Matching. In VLDB Journal, 10(4):334-350, 2001.

[11]. B. He and K. Chang. Statistical Schema Matching across Web Query Interfaces.
In Proc. SIGMOD 2003

Figure 1: Precision-recall curves for queries. The dark curve is the average
precision and recall across all queries tried...

Table 2: Sample query schemas with matches from database schemas.

	INTRODUCTION
	Selecting matching schemas
	Finding semantically related attributes

	Indexing Schemas
	Results
	Conclusions
	REFERENCES
	�
	Figure 1: Precision-recall curves for queries. The dark curve is the average precision and recall across all queries tried...

