A Combinatorial Toolbox for Protein Sequence
Design and Landscape Analysis in the Grand
Canonical Model*

James Aspnes'**, Julia Hartling?, Ming-Yang Kao®***, Junhyong Kim?245t,

and Gauri Shah'!

! Department of Computer Science, Yale University, New Haven, CT 06520, USA.
? Department of Ecology and Evolutionary Biology, Yale University.
3 Department of EECS, Tufts University, Medford, MA 02155, USA.
4 Department of Molecular, Cellular, and Developmental Biology, Yale University.
5 Department of Statistics, Yale University.

Abstract. In modern biology, one of the most important research prob-
lems is to understand how protein sequences fold into their native 3D
structures. To investigate this problem at a high level, one wishes to ana-
lyze the protein landscapes, i.e., the structures of the space of all protein
sequences and their native 3D structures. Perhaps the most basic com-
putational problem at this level is to take a target 3D structure as input
and design a fittest protein sequence with respect to one or more fitness
functions of the target 3D structure. We develop a toolbox of combina-
torial techniques for protein landscape analysis in the Grand Canonical
model of Sun, Brem, Chan, and Dill. The toolbox is based on linear pro-
gramming, network flow, and a linear-size representation of all minimum
cuts of a network. It not only substantially expands the network flow
technique for protein sequence design in Kleinberg’s seminal work but
also is applicable to a considerably broader collection of computational
problems than those considered by Kleinberg. We have used this tool-
box to obtain a number of efficient algorithms and hardness results. We
have further used the algorithms to analyze 3D structures drawn from
the Protein Data Bank and have discovered some novel relationships
between such native 3D structures and the Grand Canonical model.

1 Introduction

In modern biology, one of the most important research problems is to understand
how protein sequences fold into their native 3D structures. This problem can be
investigated at two complementary levels. At a low level, one wishes to determine
how an individual protein sequence folds. A fundamental computational problem

* aspnes@cs.yale.edu, julia.kreychman@yale.edu, kaoQeecs.tufts.edu,
junhyong.kim@yale.edu, gauri.shah@yale.edu.
** Supported in part by NSF Grant CCR-9820888.
*** NSF Grant CCR-~9531028.
¥ Merck Genome Research Institute Grant and NSF Grant DEB-9806570.

at this level is to take a protein sequence as input and find its native 3D structure.
This problem is sometimes referred to as the protein structure prediction problem
and has been shown to be NP-hard (e.g., [1]). At a high level, one wishes to
analyze the protein landscapes, i.e., the structures of the space of all protein
sequences and their native 3D structures. Perhaps the most basic computational
problem at this level is to take a target 3D structure as input and ask for a fittest
protein sequence with respect to one or more fitness functions of the target 3D
structure. This problem has been called the protein sequence design problem and
has been investigated in a number of studies (e.g., [2]).

The focus of this paper is on protein landscape analysis, for which several
quantitative models have been proposed in the literature (e.g., [9]). As some
recent studies on this topic have done (e.g., [6]), this paper employs the Grand
Canonical (GC) model of Sun, Brem, Chan, and Dill [9], whose definition is given
in Section 2. Generally speaking, the model is specified by (1) a 3D geometric
representation of a target protein 3D structure with n amino acid residues, (2)
a binary folding code in which the amino acids are classified as hydrophobic (H)
or polar (P), and (3) a fitness function & defined in terms of the target 3D
structure that favors protein sequences with a dense hydrophobic core and with
few solvent-exposed hydrophobic residues.

In this paper, we develop a toolbox of combinatorial techniques for protein
landscape analysis based on linear programming, network flow, and a linear-
size representation of all minimum cuts of a network [7]. This toolbox not only
substantially expands the network flow technique for protein sequence design in
Kleinberg’s seminal paper [6] but also is applicable to a considerably broader
collection of computational problems than those considered by Kleinberg. We
have used this toolbox to obtain a number of efficient algorithms and hardness
results. We have further used the algorithms to analyze 3D structures drawn from
Protein Data Bank at http://www.rcsb.org/pdb and have discovered some
novel relationships between such native 3D structures and the Grand Canonical
model (Section 6). Specifically, we report new results on the following problems,
where A is the number of terms in the fitness function or functions as further
defined in Section 3. Many of the results depend on computing a maximum
network flow in a graph of size O(A); in most cases, this network flow only
needs to be computed once for each fitness function &.

P1 Given a 3D structure, find all its fittest protein sequences. Note that there
can be exponentially many fittest protein sequences. We show that these
protein sequences together have a representation of size O(A) that can be
computed in O(A) time after a certain maximum network flow is computed
(Theorem 1), and that individual fittest protein sequences can be generated
from this representation in O(n) time per sequence (Theorem 5).

P2 Given f 3D structures, find the set of all protein sequences that are the
fittest simultaneously for all these 3D structures. This problem takes O(A)
time after f maximum network flow computations (Theorem 4).

P3 Given a protein sequence & and its native 3D structure, find the set of all
fittest protein sequences that are also the most (or least) similar to # in

terms of unweighted (or weighted) Hamming distances. This problem takes
0O(A) time after a certain maximum network flow is computed (Theorem 3).

P4 Count the number of protein sequences in the solution to each of Prob-
lems P1, P2, and P3. These counting problems are computationally hard
(Theorem 11).

P5 Given a 3D structure and a bound e, enumerate the protein sequences whose
fitness function values are within an additive factor e of that of the fittest
protein sequences. This problem takes polynomial time to generate each
desired protein sequence (Theorem 8).

P6 Given a 3D structure, find the largest possible unweighted (or weighted)
Hamming distance between any two fittest protein sequences. This prob-
lem takes O(A) time after a certain maximum network flow is computed
(Theorem 6).

P7 Given a protein sequence £ and its native 3D structure, find the average
unweighted (or weighted) Hamming distance between & and the fittest pro-
tein sequences for the 3D structure. This problem is computationally hard
(Theorem 11).

P8 Given a protein sequence &, its native 3D structure, and two unweighted
Hamming distances d; and d», find a fittest protein sequence whose distance
from Z is also between d; and ds. This problem is computationally hard
(Theorem 12(1)).

P9 Given a protein sequence &, its native 3D structure, and an unweighted
Hamming distance d, find the fittest among the protein sequences which
are at distance d from . This problem is computationally hard (Theo-
rem 12(2)). We have a polynomial-time approximation algorithm for this
problem (Theorem 9).

P10 Given a protein sequence Z and its native 3D structure, find all the ratios
between the scaling factors a and § in Equation 1 in Section 2 for the GC
model such that the smallest possible unweighted (or weighted) Hamming
distance between & and any fittest protein sequence is minimized over all
possible @ and 3. (This is a problem of tuning the GC model.) We have a
polynomial-time algorithm for this problem (Theorem 10).

P11 Given a 3D structure, determine whether the fittest protein sequences are
connected, i.e., whether they can mutate into each other through allow-
able mutations, such as point mutations, while the intermediate protein
sequences all remain the fittest (e.g., [8]). This problem takes O(A) time
after a certain maximum network flow is computed (Theorem 7).

P12 Given a 3D structure, in the case that the set of all fittest protein sequences
is not connected, determine whether two given fittest protein sequences are
connected. This problem takes O(A) time after a certain maximum network
flow is computed (Theorem 7).

P13 Given a 3D structure, find the smallest set of allowable mutations with
respect to which the fittest protein sequences (or two given fittest protein
sequences) are connected. This problem takes O(A) time after a certain
maximum network flow is computed (Theorem 7).

Previously, Sun et al. [9] developed a heuristic algorithm to search the space of
protein sequences for a fittest protein sequence without a guarantee of optimality
or near-optimality. Hart [5] subsequently raised the computational tractability
of constructing a single fittest protein sequence as an open question. Kleinberg
[6] gave the first polynomial-time algorithm for this problem, which is based on
network flow. In contrast, Problem P1 asks for all fittest protein sequences and
yet can be solved with the same time complexity. Kleinberg also formulated more
general versions of Problems P11 and P12 by extending the fitness function to a
submodular function and gave polynomial-time algorithms. Our formulations of
these two problems and Problem P13 are directly based on the fitness function
of the GC model; furthermore, as is true with several other problems above,
once a solution to Problem P1 is obtained, we can solve these three problems
in O(A) time. Among the above thirteen problems, those not yet mentioned in
this comparison were not considered by Kleinberg.

The remainder of this paper is organized as follows. Section 2 defines the GC
model and states the basic computational assumptions. Section 3 describes our
three basic tools based on linear programming, network flow, and an O(A)-size
representation of minimum cuts. Section 4 extends these tools to optimize multi-
ple objectives, analyze the structures of the space of all fittest protein sequences,
and generate near-fittest protein sequences. Section 5 gives some hardness re-
sults related to counting fittest protein sequences and finding fittest protein
sequences under additional restrictions. Finally, Section 6 discusses our analysis
of empirical 3D structures from the Protein Data Bank.

2 The Grand Canonical Model

The Original Model Throughout this paper, all protein sequences are of n
residues, unless explicitly stated otherwise. The GC model is specified by a
fitness function & over all possible protein sequences x with respect to a given
3D structure of n residues [9]. In the model, to design a protein sequence z is
to specify which residues are hydrophobic (H) and which ones are polar (P).
Thus, we model z as a binary sequence z1,..., T, or equivalently as a binary
vector (x1,-..,%,), where the i-th residue in x is H (respectively, P) if and only
if z; = 1 (respectively, 0). Then, &(z) is defined as follows, where the smaller
&(x) is, the fitter z is, as the definition is motivated by the requirements that H
residues in z (1) should have low solvent-accessible surface area and (2) should
be close to one another in space to form a compact hydrophobic core.

z)=a Y gldiy))+B Y s (1)
i,j€H (z),i<j—2 i€H ()
=« Z 9(d; j)ziz; + ﬂZsim‘i, where 2)
i<j—2 i

- H(z) = {i]z; =1},

— the scaling parameters @ < 0 and § > 0 have default values —2 and %
respectively and may require tuning for specific applications (see Section 4),

— s; > 0 is the area of the solvent-accessible contact surface for the residue (in
A) 4,

— d; ; > 0 is the distance between the residues i and j (in A), and

— g is a sigmoidal function, defined by

when dz"j S 6.5

9= { Trowp(d =65)
0 when d; ; > 6.5.

Extending the Model with Computational Assumptions Let opt(®) be
the set of all protein sequences z that minimize @. This paper is generally con-
cerned with the structure of opt(®). Our computational problems assume that
& is given as input; in other words, the computations of «, 3, s;,9(d; ;) are not
included in the problems. Also, for the sake of computational generality and
notational simplicity, we assume that a may be any nonpositive number, 8 any
nonnegative number, s; any arbitrary number, and g(d; ;) any arbitrary non-
negative number; and that the terms g(d; ;) may range over 1 < i < j < n,
unless explicitly stated otherwise. Thus, in the full generality of these assump-
tions, @ need not correspond to an actual protein 3D structure. Note that the
relaxation that s; is any number is technically useful for finding #-minimizing
protein sequences x that satisfy additional constraints.

We write a;; = —a-g(d; ;) > 0 and b; = f-s; and further assume that the
coeflicients a; ; and b; are rational with some common denominator, that these
coefficients are expressed with a polynomial number of bits, and that arithmetic
operations on these coefficients take constant time.

With these assumptions, we define the following sets of specific assumptions
about @ to be used at different places of this paper.

F1 Let ¢(.’L‘) = _21§i<j§n Qi ;T + ZISiSH b;z;, where a;; > 0, b; is arbi-
trary, and m of the coefficients a; ; are nonzero. Let A =n + m.
F2 For each 8 > 0, let $5(z) = — 31 <icjcn 3i,jTi%5 + B X1 <icy SiTi, Where

a;; > 0, s; > 0, and m of the coefficients a; ; are nonzero. Let A =n + m.
F3 For each ¢ from 1 to f, define the ¢-th fitness function & (z) = — Y, ., <j<n

af’jl'ifl?j + 2 i<i<n bz;, where af,j > 0 and b is arbitrary. Let A = fn?.

Sometimes we measure the dissimilarity between a fittest protein sequence x
and a target protein sequence Z in terms of Hamming distance. This distance is
essentially the count of the positions ¢ where x; # Z; and can be measured in two
ways. The unweighted Hamming distance is |z — |, where |y| denotes the norm
of vector y, i.e., Y. |yi|. The weighted Hamming distance is Y . ; w;-|z; — &;].
Throughout this paper, the weights wy, ..., w, are all arbitrary unless explicitly
stated otherwise.

3 Three Basic Tools

This section describes our basic tools for computing fittest and near-fittest pro-
tein sequences. For instance, Lemma 1 gives a representation of the problem of
minimizing ¢ as a linear program. Lemma 2 further gives a representation of this
problem as a minimum-cut problem, which generalizes a similar representation
of Kleinberg [6]. Theorem 1 gives a compact representation of the space opt(®)
using a Picard-Queyranne graph [7].

Linear Programming From Equation 2, minimizing &(z) is an optimization
problem in quadratic programming. Fortunately, because all the coefficients a; ;
are nonnegative, it can be converted to a linear program, as shown in Lemma 1.

Lemma 1 (characterizing ® via linear program). Let & be as defined in
Assumption F1. Consider the following linear program whose variables consist
of the variables x;, together with new variables y; ; for all i,j with a; ; # 0:

minimize ' (z,y) = — > a; jyi; + 2 bix;

subject to
0<z; <1 Vi
0<y; <1 ®)
Yij <m pVi,j:a;; #0
Yij < Tj

There is a one-to-one correspondence that preserves x between the protein se-
quences that minimize ®(x) and the basic optimal solutions to Linear Program

(3).

Note that any z; with a negative coefficient b; is set to 1 in any optimal
solution, as in this case all terms containing z; have negative coefficients and
are minimized when z; = 1. So an alternative to allowing negative coeflicients is
to prune out any z; with a negative coefficient. This process must be repeated
recursively, since setting x; to 1 reduces terms of the form —a; jx;z; to —a; ;x;,
and may yield more degree-1 terms with negative coefficients. To simplify our
discussion, we let the linear program (or, in Section 3, the minimum-cut algo-
rithm) handle this pruning.

Network Flow Recall that an s-t cut is a partition of the nodes of a digraph
into two sets V; and V;, with s € V; and ¢ € V;. Also, a minimum s-t cut is an
s-t cut with the smallest possible total capacity of all edges from nodes in Vs to
nodes in V;.

In Kleinberg’s original construction [6], #(z) was minimized by solving an s-t
minimum cut problem in an appropriate digraph G. Lemma 2 describes a more
general construction that includes additional edges (s,v;) to handle negative
values for b;.

Lemma 2 (characterizing ® via network flow). Let & be as defined in
Assumption F1. Let G® be a graph with a source node s, a sink node t, a node v;
for each i, and a node u; ; for each i,j with a; ; # 0, for a total of n +m +2 =
A + 2 nodes. Let the edge set of G® consist of

— (s,u4,5) for each w; ;, with capacity a; ;,

— (vy,t) for each v; with b; > 0, with capacity b;,

— (s,v;) for each v; with b; < 0, with capacity —b;, and

— (us,5,vi) and (uq,5,v5), for each u; ;, with infinite capacity,

for a total of O(A) edges.

There is a one-to-one correspondence between the minimum s-t cuts in G®
and the protein sequences in opt(®), such that v; is in the s-component of a cut
if and only if x; =1 in the corresponding protein sequence.

Lemma 3. Let @ be as defined in Assumption F1. Given ® as the input, we can
find an z € opt(®) in O(A%log A) time.

A Compact Representation of Minimum Cuts A given & may have more
than one fittest protein sequence. Theorem 1 shows that opt(®) can be sum-
marized compactly using the Picard-Queyranne representation of the set of all
minimum s-t cuts in a digraph G [7], which is computed by the following steps:

1. computing any maximum flow ¢ in G;

2. computing strongly connected components in the residual graph G whose
edge set consists of all edges in G that are not saturated by ¢, plus edges
(v,u) for any edge (u,v) that has nonzero flow in ¢;

3. contracting G4 by contracting into single supernodes the set of all nodes
reachable from s, the set of all nodes that can reach ¢, and each strongly
connected component in the remaining graph.

The resulting graph G, is a dag in which s and ¢ are mapped to distinct su-
pernodes by the contraction. Furthermore, there is a one-to-one correspondence
between the minimum s-t¢ cuts in G and the ideals in G, ¢, where an ideal is any
node set I with the property that any predecessor of a node in I is also in 1.

Lemma 4 (see [7]). Given a digraph G with designated nodes s and t, there is
a graph G, ¢ together with a mapping k from V(G) to V(Gs,:) with the following
properties:

1 [V(Gop)| < V(G-

2. The node k(s) has out-degree 0 while k(t) has in-degree 0.

3. Given G as the input, G, and k can be computed using one mazimum-flow
computation and O(|E(G)|) additional work.

4. A partition (V, Vi) of V(G) is an s-t minimum cut in G if and only if
Vi = k Y(I) for some ideal I of Gy that contains k(t) but not k(s).

Combining Lemmas 2 and 4 gives the desired compact representation of the
space of all fittest protein sequences, as stated in the next theorem.

Theorem 1 (characterizing ® via a dag). Let & be as defined in Assump-
tion F1. There exists a dag G‘ﬁt with designated nodes s' and t' and o mapping
p from {1,...,n} to V(G‘it) with the following properties:

1. G2, has at most n + 2 nodes.

2. Given ® as the input, G‘ﬁt and p can be computed in O(A%log A) time.

3. There is a one-to-one correspondence between the protein sequences x €
opt(P) and the ideals of Gs ¢ =GP, —{s',t'}, in which z; = 0 if and only if
p(i) =t or p(i) is in the ideal corresponding to .

Intuitively, what Theorem 1 says is the following. For any &, the residues in
fittest protein sequences are grouped into clusters, where the cluster p=1(s) is
always H, the cluster p~1(t) is always P, and for each of the remaining clusters,
all residues in the cluster are either all H or all P. In addition, there is a de-
pendence given by the edges of Gs 4, such that if a cluster corresponding to the
source of an edge is all H then the cluster at the other end is also all H.

There is no additional restriction on the structure of the space of all fittest
protein sequences beyond those that follow from correspondence with the ideals
of some digraph. As shown in Theorem 2, any graph may appear as G?,, with
any number of residues mapped to each supernode.

ERZ

Theorem 2 (characterizing a dag via ®). Let G be an arbitrary digraph
with n nodes, labeled 1 to n, and m edges. Let Go be the component graph of
G obtained by contracting each strongly connected component of G toa single
supernode through a contraction map k. Then, there exists some @ as defined in
Assumption F1 such that for the G‘it and p defined in Theorem 1, an isomor-

phism exists between @‘ﬁt and Go mapping each p(i) to k().

4 Further Tools for Protein Landscape Analysis

Optimizing Multiple Objectives We can extend the results of Section 3
beyond optimizing a single fitness function.

With more than one fittest protein sequence to choose from, we may wish
to find a fittest protein sequence z that is the closet to some target protein
sequence £ in unweighted or weighted Hamming distance. Theorem 3 shows
that this optimization problem is as easy as finding an arbitrary fittest protein
sequence.

We may also wish to consider what protein sequences are simultaneously the
fittest for more than one fitness function. Theorem 4 shows how to compute a
representation of this set similar to that provided by Theorem 1.

Theorem 3 (optimizing Hamming distances and H-residue counts over
opt(®)). Let be as defined in Assumption F1.

1. Given a target protein sequence T, some weights w;, and ¢ as the input,
we can find in O(A%log A) time an x € opt(®) with the minimum weighted
Hamming distance), wi|x; — &;| over opt(P).

2. Given & as the input, we can find in O(A%log A) time an z € opt(P) with
the largest (or smallest) possible number of H residues over opt(®).

Theorem 4 (minimizing multiple fitness functions). Let &',..., &7 be as
defined in Assumption F3. For each £, let ijS and p* be the dag and map com-

puted from & in Theorem 1. Given all G‘f; and p* as the input, there is an
O(A)-time algorithm that either (a) determines that there is no protein sequence
x that simultaneously minimizes ®' through &, or (b) constructs a dag Gf; with
designated nodes s' and t' and a mapping p* from {1,...,n} to V(Gf’;), such
that there is a one-to-one correspondence between the protein sequences x that
simultaneously minimize all $(x) and the ideals of Gf; = Gf; — {s',t'}, in
which x; = 0 if and only if p*(1) =t' or p*(i) is in the ideal corresponding to x.

The Space of All Fittest Protein Sequences Here we discuss some applica-
tions of the representation of the space opt(®) given by Theorem 1. Theorem 5
gives an algorithm to enumerate this space. Theorem 6 gives an algorithm to
compute the diameter of the space in nonnegatively weighted Hamming distance.
Theorem 7 gives an algorithm to determine connectivity properties of the space
with respect to various classes of mutations.

Theorem 5 (enumerating all protein sequences). Let ¢ be as defined in
Assumption F1. Given the Git and p defined in Theorem 1 as the input, the
protein sequences in opt(®) can be enumerated in O(n) time per protein sequence.

Theorem 6 (computing the diameter). Let & be as defined in Assump-
tion F1. Given the G‘it and p defined in Theorem 1 as the input, it takes O(n)
time to compute the diameter of opt(®) in weighted Hamming distance where
the weights w; are all nonnegative.

We can use @?t to determine whether opt(®) is connected for various models
of mutations. For instance, we can determine whether the space is connected for
one-point mutations, in which at most one residue changes with each mutation
and all intermediate protein sequences must remain the fittest. More generally,
we can determine the minimum £ so that the space is connected where each
mutation modifies at most &k residues.

We adopt a general model proposed by Kleinberg [6]. In the model, there is
a system A of subsets of {1,...,n} that is closed downward, i.e.,if A C B € A,
then A € A. Two protein sequences x and y are A-adjacent if they are in opt(®P)
and differ exactly at the positions indexed by elements of some member of A. A
A-chain is a sequence of protein sequences in opt(®) where each adjacent pair
is A-adjacent. Two protein sequences x and y are A-connected if there exists a
A-chain between x and y. A set of protein sequences is A-connected if every pair
of elements of the set are A-connected. We would like to tell for any given A and
& whether particular protein sequences are A-connected and whether the entire
opt(®P) is A-connected.

Kleinberg [6] gives polynomial-time algorithms for these problems that take
A as input (via oracle calls) and depend only on the fact that @ is submodular.
We describe a much simpler algorithm that uses @f,t from Theorem 1. This
algorithm not only determines whether two protein sequences (alternatively, all

protein sequences in opt(®P)) are connected for any given A, but also determines
the unique minimum A for which the desired connectivity holds. Almost all of
the work is done in the computation of G‘f,t; once we have this representation,
we can read off the connectivity of opt(®) directly.

Theorem 7 (connectivity via mutations). Let ¢ be as defined in Assump-
tion F1. The following problems can both be solved in O(n) time.

1. Given the Gf,t and p defined in Theorem 1 and two protein sequences x and
x' in opt(®) as the input, compute the mazimal elements of the smallest
downward-closed set system A such that x and x' are A-connected.

2. Given the Gf,t and p defined in Theorem 1 as the input, compute the maximal
elements of the smallest downward-closed set system A such that opt(P) is
A-connected.

Generating Near-Fittest Protein Sequences Finding good protein se-
quences other than the fittest is trickier, as Lemma 1 breaks down if we are not
looking at the fittest protein sequences. Here we give two algorithms that avoid
this problem. Theorem 8 describes an algorithm to generate all protein sequences
z in order of increasing #(x). Theorem 9 describes an algorithm to generate the
fittest protein sequences at different unweighted Hamming distances, which is
useful for examining the trade-off between fitness and distance.

Theorem 8 (enumerating all protein sequences). Let ¢ be as defined in
Assumption F1. With & as the input, we can enumerate all protein sequences x
in order of increasing ®(x) in time O(nA?log A) per protein sequence.

Let & be a target protein sequence. For d € {0, ...,n}, let F(d) be the smallest
&(x) over all protein sequences z at unweighted Hamming distance d from Z. A
basic task of landscape analysis is to plot the graph of F. As Theorem 12(2) in
Section 5 shows, this task is computationally difficult in general. Therefore, one
way to plot the graph of F' would be to use Theorem 8 to enumerate all protein
sequences z in order of increasing #(x) until for each d, at least one protein
sequence at distance d from Z has been enumerated. This solution may require
processing exponentially many protein sequences before F is fully plotted. As an
alternative, Theorem 9 gives a tool for plotting F' approximately in polynomial
time.

Theorem 9 (approximately plotting the energy-distance landscape).
Let & be as defined in Assumption F1. For each e, let ®.(z) = &(z) + €|z — 3.
Let ®(¢€) be the minimum b, (x) over all x.

1. & is a continuous piecewise linear concave function defined on R with at
most n + 1 segments and thus at most n+ 1 corners.

2. Let (e1,D(€1)),. .., (ex, P(er)) be the corners of @, where e1 < --- < €. Let d;
be the slope of the segment immediately to the right of €;. Let dy be the slope of
the segment immediately to the left of e1. Then, n =do > dy > --- > dp = 0.

3. Given & and & as the input, we can compute (e1,P(€1)), ..., (ex, P(er)) and
do,...,dr in O(nA%log A) time.

10

Tuning the Parameters of the GC Model Here we show how to systemat-
ically tune the parameters o and 8 so that a fittest protein sequence for a given
3D structure matches the 3D structure’s native protein sequence as closely as
possible in terms of unweighted or weighted Hamming distance. For this pur-
pose, we assume s; > 0. Furthermore, since the fitness function does not have
an absolute scale, we may fix a at —1 and vary f.

Theorem 10 (tuning o and j3). Let be as defined in Assumption F2. Given
a target protein sequence & and ¢ as the input, we can find in O(nA%log A) time
the set of all B where the closest unweighted (or weighted) Hamming distance
between & and any protein sequence in opt(Pg) is the minimum over all 3.

5 Computational Hardness Results

Theorem 11 (hardness of counting and averaging). Let ¢ be as defined
in Assumption F1. The following problems are all #P-complete:

1. Given @ as the input, compute the cardinality of opt(P).

2. Given ®',..., &% as the input, where f is any fized positive integer and
&' ..., BT are as defined in Assumption F3, compute the number of protein
sequences = that simultaneously minimize ®¢(x) for all £ =1,..., f.

3. Given @ as the input, compute the average norm |z|, i.e., the average number
of H residues in x, over all x € opt(P).

4. Given ® and a target protein sequence & as the input, compute the average
unweighted Hamming distance | — Z| over all z € opt(P).

5. Given &, a target protein sequence &, and an integer d as the input, compute
the number of protein sequences in opt(®) at unweighted Hamming distance
d from .

Theorem 12 (hardness of plotting the energy-distance landscape). Let
® be as defined in Assumption F1.

1. Given & and two integers di,ds as the input, it is NP-complete to determine
whether there is an $-minimizing x with d; < |z| < ds.

2. Let & be a target protein sequence. Ford € {0,...,n}, let F(d) be the smallest
&(z) over all protein sequences x at unweighted Hamming distance d from
Z. Given @ and d as the input, it is NP-hard to compute F(d).

6 Applications to Empirical Protein 3D Structures

To demonstrate our algorithms, we chose 34 proteins with known 3D structures
from the Protein Data Bank (PDB) at http://www.rcsb.org/pdb. These 3D
structures included 8 from Kleinberg’s study [6] but excluded the protein frag-
ments and multimeric proteins used in that study. The chosen 3D structures
were then represented by centroids for each side chain calculated from the co-
ordinates of each atom in the side chain; in the case of 3D structures solved
by NMR, hydrogen atoms were included into centroid calculations. For glycine,

11

the centroid was taken to be the position of C,. For each side chain, the area
of solvent accessible surface was computed via the Web interface of the ASC
program with default parameters [4]. In accordance to the GC model, each of
the chosen native protein sequences was converted into a binary H/P sequence
following Sun et al. [9], where A, C, F, I, L, M, V, W, Y are H, and the other
amino acids are P.

The detailed results of this small-scale empirical study can be found in the
full version of this paper, which is deposited at Computing Research Repository
as http://xxx.lanl.gov/abs/cs.CE/0101015.

As anticipated, our algorithms computed fittest protein sequences that are
closer to native protein sequences than found by Kleinberg [6]. We further con-
jectured a significant relationship between a computed fittest protein sequence’s
similarity to a native protein sequence and the diversity of the native protein
in nature. Such a relationship would be highly intriguing biologically. We ex-
amined this conjecture by assessing the diversity of native proteins using the
database PFAM at http://pfam.wustl.edu, which is a database of protein
families determined through Hidden Markov Models [3]. Our study confirmed
this conjecture.

We are currently planning a large-scale analysis of further empirical protein
3D structures; the results will be reported in a subsequent paper.

References

1. J. Atkins and W. E. Hart. On the intractability of protein folding with a finite
alphabet of amino acids. Algorithmica, 25(2-3):279-294, 1999.

2. J. Banavar, M. Cieplak, A. Maritan, G. Nadig, F. Seno, and S. Vishveshwara.
Structure-based design of model proteins. Proteins: Structure, Function, and Ge-
netics, 31:10-20, 1998.

3. A. Bateman, E. Birney, R. Durbin, S. R. Eddy, K. L. Howe, and E. L. L. Sonnham-
mer. PFAM— A database of protein domain family alignments and HMMs. Nucleic
Acids Research, 28:263—-266, 2000.

4. F. Eisenhaber, P. Lijnzaad, P. Argos, C. Sander, and M. Scharf. The double cube
lattice method: Efficient approaches to numerical integration of surface area and
volume and to dot surface contouring of molecular assemblies. Journal of Compu-
tational Chemistry, 16(N3):273-284, 1995.

5. W. E. Hart. On the computational complexity of sequence design problems. In
RECOMB, pages 128-136, 1997.

6. J. M. Kleinberg. Efficient algorithms for protein sequence design and the analysis
of certain evolutionary fitness landscapes. In RECOMB, pages 226-237, 1999.

7. J.-C. Picard and M. Queyranne. On the structure of all minimum cuts in a network
and applications. Mathematical Programming Study, (13):8-16, 1980.

8. C. Reidys, P. Stadler, and P. Schuster. Generic properties of combinatory maps:
Neutral networks of RNA secondary structures. Bulletin of Mathematical Biology,
59:339-397, 1997.

9. S. J. Sun, R. Brem, H. S. Chan, and K. A. Dill. Designing amino acid sequences
to fold with good hydrophobic cores. Protein Engineering, 8(12):1205-1213, Dec.
1995.

12

