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Introduction
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Basic Question : Find a fittest sequence given
a target protein structure

e Heuristic to search space of sequences
Sun et al 1995

e Computational Tractability : open
Hart 1997

e Polynomial time solution
Kleinberg 1999



Grand Canonical Model (Sun et al)

Given . Target Structure with n residues
Design : Sequence X
x; = Hydrophobic(H) or Polar (P)

Fithess Function :

p(S)=a > g(dij)+8 > s
i<j—2 €Sy
i,jESH

s; . Solvent-accessible surface of residue i (A)
d;; . Distance between residues ¢ and j (A)

ij -
e Low solvent-accessible area (s;)
e Compact hydrophobic core

e a<0and >0

1 o .
o g = { 1+exp(d;;—6.5) when d;; < 6.5
0 when d;; > 6.5



1. Linear Programming

1-th residue : 0-1 variable x;

P(S)=a > gldj)+8 D> s

1<j—2 €Sy
i,jESH

D(z) =— ) a;;x;x; + Zb x;
z<] 2

,J

Let A = # of terms in the fithess function

minimize
9(z,y) = — X a5 + 2 bix;
subject to
0<z; <1 Vi
0<wy; <1
Yij < T Vi,ja;; 70
Yij < Xy

e Linear (not quadratic)
® Y = miﬂ(xi,a:j) = T;T;

e Unimodular matrix — Integral solutions



Theorem 1 x : 0-1 vector. Can find fittest
x wWith Minimum Weighted Hamming Distance

> wil|xy — T4

Proof:

x (Natural Seq)

1 :

0 <e< wamFny

W > max|wi|
Minimize fe(x) = f(z)+3; ew; |z; — ;

Suppose x minimizes f(x).

< flz)+3
< f(@)
< fe(2)

x minimizes fc(x) = x minimizes f(x)

Running Time : O(A21og A) |



2. Network Flow (Kleinberg 99)
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Capacity of Min-Cut = ®(S) + B
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S(S)=a Y g(di)+8 ) s

i<j—2 i€Sy
Goldberg-Tarjan Min Cut : O(VEIlog(VZ2/E))



Compact Min Cut Representation
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Picard-Queyranne 1980
1-1 correspondence : Min Cuts and Ideals
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Space of all Fittest Sequences

Theorem 2 Can enumerate all 0-1 f-minimizing
vectors x in O(n) time per vector.

Proof: Steiner 1986 : Enumerates the ideals
in O(n) time per ideal i1

Theorem 3 Can find diameter (k) in Ham-
ming distance of the set of 0-1 vectors x min-
imizing f(x) in O(n) time.
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Fittest Sequence for k functions

Theorem 4 Given k fitness functions, deter-
mine if no simultaneous solution exists, or con-
struct a graph which represents all possible so-

QP
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Adjacency of fittest sequences

A = Set of allowable mutations

Downward closed system of subsets of

{1,...,n}
e.g. {11, 3, 5}, {1}, 13}, {5}, {1, 3}, {3, 5},
{1, 5}}
HPPPHHPPHP
HPHPPHPPHP
PPHPPHPPHP
RESIDUES - - PQ GRAPH

Smallest A = p= (I AT

I : Ideal of x
I' : Ideal of X’






Enumerating sub-optimal sequences

Lawler's method (1972)
Best-First Search
**%k%*
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At each step :
e Pick f-minimizing vector
e Remove and replace by n pairs

e Update priority queue

Total cost : O(nA2logA) per value



Structure of space of all fittest seq

g = @E




Computational Hardness Results

Theorem 5 Q2 = set of all x that minimize
f(x). #P-complete problems:

1. Computing the size of Qf.

2. Counting the number of vectors x that si-
multaneously minimize f¢(z) for all £ (for

any ).

3. Computing the average weight |z| of ele-
ments of Qf.

4. Computing the average Hamming distance
lz—Z| of elements of Q¢ from a given target
.

5. Computing the number of elements of Qp
at a given Hamming distance k from a given
target .



ole

(zv;, Tw;) contributes 1 to the HD

. |2¢| = # of f'-minimizing vectors at HD
k from

where k = |G{,| = 31



Theorem 6 NP-complete to find a fittest seq
x such that k < |z| <1

Proof:
Partially Ordered Knapsack:
s(u) = v(u) = {3,1,2}

Z s(u) < B Z v(u) > K

u€ideal 1 u€ideal 1

Gl,=2Go=U
An ideal of G/, corresponds to an ideal of U

z] =) |C(w)| = ) s(u)

u€el uecl
Set k=K and = B.



Applications to Empirical Structures
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Relationship between % similarity to
native proteins vs. PFAM family size.
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Open Questions

e Use another folding code (bigger alphabet)

e Improve quality of Fithess Function

Apply model to all PDB structures



Summary of Results

Enumerate all f-minimizing vectors in O(n)
time per vector

Find diameter in Hamming Distance of all
f-minimizing vectors in O(n) time

Find fittest sequence for k functions or de-
termine if it does not exist

Compute smallest set of mutations required
for adjacency of sequences

Enumerate sub-optimal sequences by Lawler’s
method in O(nAZ2log A) time per sequence



