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              Abstract 
Selecting the appropriate web service from a repository is a 
difficult problem as the terminology used to describe Web 
Services in repositories may not be identical to the one used in a 
query. In this paper, we explore the use of domain-independent 
and domain-specific ontologies to find matching service 
descriptions. The domain-independent relationships are derived 
using an English thesaurus after tokenization and part-of-speech 
tagging. The domain-specific ontological similarity is derived by 
inferencing the semantic annotations associated with web service 
descriptions. Matches due to the two cues are combined to 
determine an overall semantic similarity score. In addition, we 
integrate semantic and ontological matching with an indexing 
method, which we call attribute hashing, to enable fast retrieval of 
semantically related services. By combining multiple cues, we 
show that better relevancy results can be obtained for service 
matches from a large repository, than could be obtained using any 
one cue alone. 

1. Introduction 
Service oriented architectures, and web services in particular, offer 
the promise of easier system integration by providing standard 
protocols for data exchange using XML messages and a standard 
interface declaration language such as the web service description 
language (WSDL).  This loosely coupled approach to integration 
provides encapsulation of service implementations, making it 
suitable for use with legacy systems and for promoting reuse by 
making external interfaces explicitly available in a WSDL 
description.   

In this paper, we address the problem of identifying an appropriate 
web service for implementing a required function from a large 
collection of available web services.  The problem arises in 
business transformation projects where new and modified business 
processes need to be implemented and there is a desire to reuse 
existing service implementations whenever possible.  In the 
context of a large enterprise that was created through mergers and 
acquisitions, there are often thousands of applications and data 
repositories, each with associated services and interface 
definitions.  Since these interfaces were created for different 
organizations, over different periods of time and for different 
initial purposes, it is unlikely that they use a common set of terms 
to name services and parameters.   

In performing the search to identify existing services that can be 
used to implement a required service, we need to address two 
fundamental issues. First, we need a way to match the 
requirements and capabilities of services i.e, identify similarity 
between services. Secondly, we need an efficient way to search the 

service repositories so that we can avoid looking at obviously 
irrelevant services.  

Identifying similarity between services is a difficult problem 
because the terminology used to describe Web Services may not 
be identical to the one used in a query. In addition, structure and 
type information present in service description will have to be 
taken into account. As a result, a full-text search of the repositories 
rarely retrieves relevant matches.  
 
In this paper, we explore the use of domain-independent and 
domain-specific ontologies to find matching service descriptions. 
The domain-independent relationships are derived using an 
English thesaurus after tokenization and part-of-speech tagging. 
The domain-specific ontological similarity is derived by inferring 
the semantic annotations associated with web service descriptions. 
Using an ontology.  Matches due to the two cues are combined to 
determine an overall similarity score. In addition, we integrate 
semantic and ontological matching with an indexing method, 
which we call attribute hashing, to enable fast retrieval of 
semantically related services. By combining multiple cues, we 
show that better relevancy results can be obtained for service 
matches from a large repository, than could be obtained using any 
one cue alone. 
 
The rest of the paper is organized as follows. In Section 2, we 
motivate the need for modeling domain-specific and domain-
independent semantics for identifying similarity in services. In 
Section 3, 4, and 5, we present matching algorithms for each of the 
domain-specific and domain-independent cues and their 
combination. In Section 6, we discuss the indexing of large service 
repositories to perform an efficient search using a new indexing 
technique called attribute hashing. Section 7 presents experimental 
results on a large service repository assembled from business 
process integration scenarios,  and provides a comparison with 
full-text searching of services repositories. Section 8 discusses 
related work.  

2 Use of semantics to define service similarity 
As in document retrieval, searching for services should be on the 
notion of similarity rather than identical matches as we are 
unlikely to find exactly matching descriptions. However, 
straightforward information retrieval techniques that are based on 
frequency of occurrence of terms in a document cannot be used 
directly, since we are more likely to find attributes in a service 
definition present in many other services, rather than multiply 
occurring within a service description itself. Further, the structure 
and type information present in service descriptions need to be 
taken into account.  
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So how can similarity between services be discovered? This is a 
difficult problem, in general. Ideally, we would like to match two 
services if their capabilities and requirements are the same. The 
current industry standards such as WSDL describe a service as a 
collection of operational interfaces and their type specification 
together with deployment information. These specifications are 
limited in their ability to express the capabilities and requirements 
of the services themselves. Even in interface specifications, the 
terms used to describe matching services may be semantically 
related but not necessarily identical. In other cases, the terms used 
may not appear to be semantically related at all, unless domain-
specific information is used to interpret their relationships.   

Figure 1 shows an example of two related services for describing 
inventory. The interface descriptions (inputs and outputs of 
operations) are shown here in the form of a tree for purpose of 
illustration, and are extracted from their WSDL descriptions. The 
closely related terms shown by the red arrows could be discovered 
using an English thesaurus after appropriate tokenization, word 
expansion and part-of-speech tagging. These include obvious cases 
such as terms (OrganizationID,OrgID) as well as non-obvious ones 
such as (InventoryType, StockType).  

 
Figure 1. Illustration of related services based on semantically 
related terms used in their interface descriptions.  

Figure 2 shows an example of two related services in which the 
relationships between terms could not be discovered using an 
English thesaurus alone. Figure 2a shows an extract of a WSDL 
description of an inventory checking service of an electronics 
company XYZ. It takes the requested item’s part number, delivery 
date and the requested quantity as inputs and returns the quantity 
available to be delivered on the requested date. The operation tag 
lists the inputs and outputs the service takes. The actual inputs and 
outputs are expanded in QueryAvailabilityServiceRequest and 
QueryAvailabilityServiceResponse message tags.   Figure 2b, on 
the other hand, shows another web service offered by ABC Inc. 
checking inventory. However, ABC calls it 
CheckInventoryService and its inputs and outputs are different 
from the ones offered by XYZ company’s 
QueryAvailabilityService. ABC’s service requires a Universal 
Product Code instead of a manufacture’s part number.  The term 
dueDate is used rather than DeliveryDate and NumberOfItems is 
used rather than Quantity. Also, ABC’s service just returns an 
ItemAvailabilityConfirmation, which is true if the requested 
quantity is available and false otherwise.  On the other hand, 
XYZ’s service indicates when a request can be partially filled, by 
returning the number of available items.  As can be seen, there are 
differences in the interfaces of the services. However, if the 

objective is to find a service that gives information about the 
availability of a given part, semantically, both services should be 
matched. This type of match cannot be determined using an 
English language thesaurus alone. Domain-specific information is 
needed to interpret the relationships. For example, in this domain 
due date and delivery date are synonyms, UPC expands to 
Universal Product Code,  a UPC and a manufacture’s part number 
are both unique identifiers for a product, and UPCs is a subset of 
EAN Codes.  A domain specific ontology, such as the one shown 
in figure 3, is required to record such relationships. 

. 
<message name="QueryAvailabilityServiceRequest"> 
         <part name="partNumber_in" type="xsd:string" /> 
    <part name="deliveryDate_in" type="xsd:string" /> 
         <part name="quantityRequested_in" type="xsd:string"/> 
   </message> 
   <message name="QueryAvailabilityServiceResponse"> 
       <part name="quantityAvailable_out" type="xsd:string" /> 
   </message> 
     
   <portType name="QueryAvailabilityService"> 
        <operation name="queryAvailabilityService" > 
             <input message="tns:queryAvailabilityServiceRequest" 
name="queryAvailabilityServiceRequest"/> 
             <output message="tns:queryAvailabilityServiceResponse" 
name="queryAvailabilityServiceResponse"/> 
 
        </operation> 
    </portType> 
…….. 
 
   (a) 
….. 
 
<message name="CheckInventoryService "> 
         <part name="UPC_in" type="xsd:string"/> 
 <part name="duedate_in" type="xsd:string"/> 
         <part name="numberOfItems_in" type="xsd:string"/> 
   </message> 
   <message name="CheckInventoryServiceResponse"> 
         <part name="itemAvailabilityConfirmation_out" 
type="xsd:string"/> 
   </message> 
   <portType name="CheckInventoryService"> 
        <operation name="checkINventoryService" > 
             <input message="tns:checkInventoryServiceRequest" 
name="checkInventoryServiceRequest"/> 
             <output message="tns:checkInventoryServiceResponse" 
name="checkInventoryServiceResponse"/> 
        </operation> 
    </portType> 
…….. 

               (b) 

Figure 2. Illustration of the need for modeling of  
domain-specific information for finding relationships 
between services. 

 
The above example shows that a domain independent source of 
clues gives us a breadth of coverage for common terms, while a 
domain specific ontology gives a depth of coverage by providing 
clues based on industry and application specific terms and 
relationships.  By combining these sources, we hope to improve 
both precision and recall. This is a key idea in the work reported in 
this paper. 

3. Finding related services using domain-independent 
semantics 



In this section, we discuss the use of domain-independent 
semantics to find related services.  Finding semantic relationship 
between attributes is difficult, in general, because (1) attributes 
could be multi-word terms (e.g. Customer2Identification, 
PhoneCountry, etc. which require tokenization. Any tokenization 
must capture naming conventions used by programmers to form 
attribute names. (2) Finding meaningful matches would need to 
account for senses of the word as well as their part-of-speech 
through a thesaurus. (3)  Multiple matches of attributes must be 
taken into account, and (4) finally, the structure/type information 
must be exploited so that operations match to operations, messages 
to messages, etc. 
 

 
Figure3: A simple Electronics domain ontology  

3.1 Capturing domain-independent similarity of service 
attributes 
 
We capture name semantics using a technique similar to the one  
in [9][14].  Specifically, multi-term query attributes are parsed into 
tokens.  Part-of-speech tagging and stop-word filtering is 
performed. Abbreviation expansion is done for the retained words 
if necessary, and then a thesaurus is used to find the similarity of 
the tokens based on synonyms. The resulting synonyms are 
assembled back to determine matches to candidate multi-term 
word attributes of the repository services after taking into account 
the tags associated with the attributes. The details are described 
below:  
 
Work Tokenization  
To tokenize words, we exploit common naming conventions used 
by programmer analysts. In particular, we find word boundaries in 
a multi-term word attribute using changes in font, presence of 
delimiters such as underscore, spaces, and numeric to 
alphanumeric transitions. Thus words such as CustomerPurchase 
will be separated into Customer and Purchase. Address_1, 
Address_2 would be separated into Address,1 and Address,2 
respectively. This allows for semantic matches of the attributes. 
 
Part-of-speech tagging and filtering 
Simple grammar rules are used to detect noun phrases and 
adjectives. Stop-word filtering is performed using a pre-supplied 
list. We have used common stop words in the English language 
similar to those used in search engines, including words such as 
and, or, the, etc.  
 

Abbreviation expansion 
 The abbreviation expansion uses domain-independent as well as 
domain-specific vocabularies. It is possible to have multiple 
expansions for a candidate words. All such words and their 
synonyms are retained for later processing. Thus, a word such as 
CustPurch will be expanded into CustomerPurchase, 
CustomaryPurchase, etc.   
 
Association of tag type with attributes 
All resulting tokens and their words are associated back with their 
tags in the service descriptions. Thus tokens from operation names 
would be tagged with an operation type and tokens from messages 
with a message type and so on.  
 
Synonym search 
We used the WordNet thesaurus [16] to find matching synonyms 
to words.  Each synonym was assigned a similarity score based on 
the sense index, and the order of the synonym in the matches 
returned.   
  
Match generation 
 Consider a pair of candidate matching attributes (A, B) from the 
query and repository services respectively. These matching 
attributes could be a pair of inputs to be matched from a service 
request and an available service from a repository. Let A, B have 

m and n valid tokens respectively, and let  and be their 

expanded synonym lists based on ontological processing. We 
consider each token  i  in source attribute  A  to match a token  j  in 
destination attribute  B  where i ε S

iyS
jyS

yi and j  ε Syi.  The semantic 
similarity between attributes A and B is then given by 
 
Sem(A, B) = 2*Match(A,B)/(m + n)………………………….(1)       
  
where Match(A, B) are the matching tokens based on the 
definition above. The semantic similarity allows us to match 
attributes such as (state, province), (CustomerIdentification, 
ClientID), (CustomerClass, ClientCategory), etc.  
 
3.2 Ranking services based on domain-independent similarity 
Our approach to ranking services using domain-independent 
similarity is based on the rationale that related services in the 
repository have an overwhelming number of attributes that are 
semantically related to query attributes, so that indexing based on 
query attributes could point to relevant matching services.   
Give a query WSDL file and a set of WSDL files in a repository, it 
is reasonable to assume that the best matching services are those 
that have a large number of semantically related attributes.  Let 
there be k services in the repository. Let h1, h2,…, hk be the 
number of attributes of services S1, S2,…, Sk that can be matched 
with  query attributes using the semantic match score of Equation 
1. Let n1, n2,…, nk be the number of attributes present in services 
S1, S2,...,Sk.  Then the overall match of the query service to a 
repository service is given by 

Msem,i=  min{hi/ni, hi/|Q|}...........................................................  (2) 
The best matching service to a query service is then given by 
Ssem = max{Msem,i} for all 1 ≤ i ≤ k...…………………………  (3) 
    

Further, the values of Mi can be sorted to get a ranked list of 
matching services. By taking max{Msem,i}, we look for those 
matches that have the lowest number of unmatched attributes 
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relative to their service size.  Thus if we had a query service of 5 
attributes with matches to all 5 query attributes in two services S1 
and S2 with the number of attributes 10 and 6 respectively, then 
S2 is preferred over S1 because of the larger ratio of number of 
attributes matched. 
 

4. Finding related services using domain-specific 
semantics 
Following the argument in Section 2, while domain-independent 
cues give us a breadth of coverage for common terms, we still 
need domain-specific ontological information to find deeper 
relationships based on industry and application specific terms that 
could not otherwise have been provided through language-
dependent thesauruses. In this section, we discuss the use of 
domain-specific ontologies to find similar services.  

4.1 Domain-specific ontologies 
We create domain-specific ontologies using OWL[5]. Specifically 
we use a semantic network-based ontology management system 
known as SNoBASE (Lee et al 2003) that offers DQL-based (DQL 
2003) Java API for querying ontologies represented in OWL. The 
OWL-specified ontologies loaded into SNOBASE are parsed to 
populate its internal data store with facts and instances. A simple 
domain-specific ontology that models the relationships between 
electronic parts is indicated in Figure 3. As can be seen, four 
different types of relationships, namely, subClassOf(A,B), 
subClassOf(B,A) – which is essentially superClassOf, type (A,B) – 
which is instanceOf, and equivalenceClass(A,B) are modeled 
where A and B are two given concepts. Larger ontologies may 
model more relationships. 

4.2 Finding related terms in an ontology 
Given a domain-specific ontology and a query term, the related 
terms in an ontology are found using rule-based inference. In the  
SNoBASE system we used, IBM’s ABLE (Bigus et al 2001) 
engine for inference. The ABLE library includes rule-based 
inference using Boolean and fuzzy logic, forward chaining, 
backward chaining etc. Rule sets created using the ABLE Rule 
Language can be used by any of the provided inference engines, 
which range from simple if-then scripting to light-weight 
inferencing to heavy-weight AI algorithms using pattern matching 
and unification [1]. 

4.3 Annotating domain-specific information in services 
 In order to use domain-specific ontological information, 
references to the ontology must be present in the service 
description. The standard WSDL specification does not have a 
mechanism to denote such ontological information and hence must 
be augmented before such information can be used to determine 
matching services. The subject of semantic annotation is an active 
area of research in the semantic web community with languages 
such as OWL-S , WSDL-S, etc. In this paper, we have adopted the 
WSDL-S specification due to the following reasons. First, users 
can describe, in an upwardly compatible way, both the semantics 
and operation level details in WSDL- a language that the 
developer community is familiar with. Secondly, by externalizing 
the semantic domain models, we take an agnostic approach to 
ontology representation languages. This allows Web service 
developers to annotate Web services with their choice of ontology 
language (such as UML or OWL) unlike in OWL-S.  This is 
significant because the ability to reuse existing domain models 

expressed in modeling languages like UML can greatly alleviate 
the need to separately model semantics.  Finally, it is relatively 
easy to update the existing tooling around WSDL specification to 
accommodate our incremental approach. 
…….. 
xmlns:wssem=" 
http://www.myschema.com/schemas/2004/wssem" 
xmlns:ElectronicsOntology="http://www.standards.com/ontologie
s/ElectronicsDomain.owl" >    
 
 <message name="CheckInventoryServiceRequest"> 
         <part name="iUPC_in" type="xsd:string" 
wssem:modelReference="ElectronicsOntology#UPC"/> 
    <part name="dueDate_in" type="xsd:string" 
wssem:modelReference="ElectronicsOntology#DeliveryDate"/> 
         <part name="numberOfItems_in" type="xsd:string" 
wssem:modelReference="ElectronicsOntology#Quantity"/> 
   </message> 
 
   <message name="CheckInventoryServiceResponse"> 
         <part name="itemAvailabilityConfirmation_out" 
type="xsd:string"/> 
   </message> 
 
…….. 

Figure 4: An excerpt of a semantically annotated WSDL 
for inventory checking service in figure 2b. 

 
 

Using the WSDL-S specification, we annotate elements in the 
WSDL file using the attribute wssem:modelReferences. Its value is 
an OWL ontology concept specified by the name of the ontology 
and the relevant ontological term. Such an annotated WSDL file 
corresponding to the web service description of Figure 1 is shown 
in Figure 4. In this figure, the input UPC_in which is of type 
xsd:string has an annotation that points to the concept Universal 
Product Code in the Electronics Ontology.  

4.2 Capturing domain-dependent similarity of service 
attributes 
Given an ontology-annotated attribute in a query service, the 
potential matching attributes from services in the repository can be 
found as follows. The query attribute is used as a fact for inference 
by the SNOBASE system against the corresponding ontology.  
The matches  returned are a set of related concepts along with 
distance scores representing distance between concepts. Each 
related concept models a specific type of relationship. In our case, 
we model EquivalentClass, subClassOf, superClassOf, and type as 
shown in Figure 3.  We use the simple scoring scheme shown in 
Table 1 to compute distance between related concepts in the 
ontology. The discretization of the score into three values (0, 0.5, 
1.0) gives a coarse idea of semantic separation between 
ontological concepts. For example, in the electronics domain 
ontology shown in Figure 2, concepts DueDate and DeliveryDate 
have a distance of 0 while EANCode and UPC have a distance of 
0.5.   More refined scoring schemes are possible, but the current 
choice works well in practice without causing a deep semantic 
bias.  Thus given a query attribute with an ontological annotation 
term ‘DueDate’ will return ontologically matching concepts as the 
terms (DeliveryDate) while a query term “UPC” will return as 
related concepts (EAC code, Part Number, EAN8, 



EAN13,UPCversion A, UPC version E) using inference in the 
ontology of Figure 3. If these terms were the associated 
annotations with service attributes, then the corresponding 
attributes can also be identified through the related concepts 
retrieved. In practice, we can choose a suitable threshold T so that 
all related concepts with distance scores above T can be ignored. 
From now on, we use the term related concepts to refer to such 
filtered attributes with scores above the threshold T.   

Concept Pair Relationship Distance Score 

(A,B) EquivalentClass 0 

(A,B) RDFType 0 

(B,A) SubClassOf 0.5 

(A,B) SubClassOf 0.5 

(A,B) Other 1 

Table 1: Distance scoring scheme in our ontology 
matcher 

4.4 Ranking services based on ontological matching 
As with domain-independent semantics-based ranking, the 
ontology-based matcher takes as input a query WSDL file and a 
set of WSDL files. The output is a subset of the original list of 
WSDL files, ordered by their relevance.  Note that unlike in the 
case of domain-independent semantic matching, not all attributes 
in a service description may be annotated with ontological terms. 
Thus a separate normalization is necessary. 

Let there be k services in the repository. Let h1, h2,…, hk be the 
number of annotated attributes of services S1, S2,…, Sk whose 
ontological concepts are related to those of corresponding query 
attributes (i.e whose ontological match score exceeds the threshold 
T).  Let n1, n2,…, nk be the number of ontologically-annotated 
attributes present in services S1, S2,...,Sk.  Then the overall match 
of the query service to a repository service Si is given by 

Mont,i = min{
i

j
ij

n

c∑
, 

|| Q

c
j

ij∑
}....................................   (4) 

Where  and dist(i,j) is the ontological 

distance between the jth term in service S

),(1 jidistcij −=
i  and a corresponding 

query term. The best matching service to a query service is then 
given by 
 
Sont= max{Mont,i} for all 1 ≤ i ≤ k...…………………………… (5) 
    

Further, the values of Mi can be sorted to get a ranked list of 
matching services. By taking max{Mi}, we look for those matches 
that have the lowest number of unmatched attributes relative to 
their service size as before. 
5. Combining domain-specific and domain-
independent ranking of services 
The combination of domain-specific and domain-independent cues 
to find related services can be done at either an inner-level during 
the attribute similarity computations or after the individual 
rankings are produced. In either case, a winner-take-all scheme 
makes sense in which the best possible score (ontology-wise or 

semantic-matching-wise) is percolated up for the ranking 
computations.  This scheme for the case of ranking already 
retrieved matches is described below.  

For each potential matching service Si, let Msem,i be the matching 
score using semantic matching. Let Mont,i be the matching score 
using ontological matching. Then a new score can be computed for 
each potential matching service Si as  

isemi MM ,max{= , }  ……………………………(6) iontM ,

The best matching service can again be given by  

}max{ ibest MS =  ……………………………………(7) 

6. Attribute hashing 
In the above formulation of the ranking of services, all services 
attributes would have to be searched for each query service to find 
potential matches and to assemble the overall match results.  
We now present an efficient indexing scheme, called attribute 
hashing, that avoids detailed search of the service repositories 
while ensuring at the same time that no extra false positives or 
negatives are made for the same choice of ranking thresholds. 
 
To understand the role of indexing, let us consider a service 
repository of 500 services. If each service has about 50 attributes 
(quite common for enterprise-level services), and 2 to 3 tokens per 
word attribute, and about 30 synonyms per token, the semantic 
matching alone would make the search for  a query of 50 attributes 
easily around 50 million operations per query!  
 
Indexing of the repository schemas is, therefore, crucial to 
reducing the complexity of search. Specifically, if the candidate 
attributes of the repository schemas can be directly identified for 
each query attribute without linearly searching through all 
attributes, then significant savings can be achieved. 
 
6.1 Attribute hashing 
We now present attribute hashing, an efficient indexing scheme 
that achieves the desired savings in search time. The key idea in 
attribute hashing can be explained as follows. Let ‘a’ be an entity 
derived from a repository service description. Let F(a) be the set of 
related entities of ‘a’ in the entire service repository (also called 
feature set here).  In the case of domain-independent semantics ‘a’ 
refers to a token and F(a) is the set of synonyms of ‘a’. In the case 
on ontological matching, ‘a’ refers to an ontological annotation 
term, and F(a) are the ontologically related concepts to a (eg. terms 
related by subclass, equivalenceClass, is-a, etc. relationships) .  
Now, given a query entity q derived from a query service Q, q is 
related to a iff q ε  F(a).  Thus instead of indexing the set F(a) 
using the attribute a as a key as may be done in normal indexing,  
we use the terms in the set F(a) as keys to index a hash table and 
record ‘a’ as an entry in the hash table repeatedly for each such 
key. The advantage of this operation is that since q ε  F(a), q is 
indeed one of the keys of the hash function. If this operation is 
repeated for all entities in the service repository, then each hash 
table entry indexed by a key records all entities whose related term 
set includes the key. Thus indexing the hash table using the query 
entity q directly identifies all related entities from the service 
repository without further search! Once the related entities per 
query term can be identified this way, a histogram of hits for each 
service contributing to the match can be taken and ranked list of 



matching services can be obtained after suitable normalization. 
This is the key idea of attribute hashing. 

,....},{)( 21 OOfH i =     ………………………………(9) 
  
The  hash table is constructed in an off-line index creation step in 
which all repository services are processed to extract multi-term 
word attributes and their associated ontological terms, if any. Each 
multi-term word attributes is tokenized, expanded and part-of-
speech tagged as described in Section 3.1 and its synonyms are 
derived. Similarly, each ontological term is used to look up the 
corresponding domain-specific ontology to retrieve related terms. 
All such synonyms and related terms form the feature set F={ fi   
}. A hash table is formed by recording all the indexing information 
described in Equation 8 to be indexed using the keys in F.  

 Of course, this is done at the cost of redundant storage (the entity 
‘a’ is stored repeatedly as an entry under each relevant key). 
However, with the growth of computer memory, storage is a 
relatively inexpensive tradeoff. 
 
The purpose of attribute hashing is to identify relevant services. 
Exact ranking of services can be then be performed using detailed 
matching computations with domain-specific and domain-
independent semantics and their combination as described in 
Sections 3, 4 and 5. Not that since a single query term can match 
multiple terms of the same service in the repository,  this can lead 
to multiple counting of the same service hit. To avoid this, we take 
a greedy approach, i.e. the first time a query term finds a match in 
a service, further matches per service are not counted. We have 
shown earlier that such a choice still provides a lower bound on 
the size of the actual match between a query and repository 
service. This is still sufficient for retaining good service matches if 
we choose match thresholds based on the lower bound since the 
actual number of matching attributes may, in fact,  be higher.  
Also, for purposes of pruning the set of irrelevant services, it is 
sufficient to know the number of matching attributes rather than 
their extent of similarity as given by distance scores.  Thus 
distance scores will initially be ignored in attribute hashing, and 
will be reutilized later during detailed matching on the pruned set 
of services. 

 
6.3 Ranking services using attribute hashing 
To find related services using attribute hashing, query services are 
processed in a manner similar to the repository services during the 
offline index creation stage. While the basic unit of indexing is a 
term (token of a word attribute or ontological term), the histogram 
of hits is recorded per attribute and per service in the repository. 
Each query term in query service  Q with associated indexing 

information, 

iq
>=< qlqk bw ,Oqi  is used to index the hash table 

and the service hits are recorded.  Following the argument in 
Section 6.1, we use the greedy approach to pick the first set of 
matching terms to query terms and count only the number of 
matches and not their distance scores for similarity.   To avoid 
double counting, we record the hits to attributes using two arrays 
D and D’ where D (wqk)  =0 if the query attribute wqk  has not been 
matched to any service attribute in the repository based on 
domain-independent cues. Similarly D’(wqk ) = 0 if the query 
attribute has not been matched to any service attributes based on 
domain-dependent cues. The entries D(wk) and D’(wk ) for any 
service attribute can be defined similarly. The detailed algorithm 
for attribute hashing is given in Figure 5.  

 
6.2 Offline index creation 
More formally,  let fi be the feature set computed from an entity ai .   
Let  Oj  represent all relevant indexing information corresponding 
to the entity ai  which in our case is given by 

>=< mlkmjjj SbwctO ,,,,  ………………………(8) 

where tj is the entity whose feature is fi . In case of domain-
independent matching, tj is the token whose synonym is fi , while 
in the case of domain-dependent matching tj is a ontological term 
that is related to the term fi using one of the relations defined in the 
ontology.  Further cmi is extent of similarity measured as 1- match 
distance.  The domain-independent matcher uses a simple model 
of similarity for synonyms so that cmi =1 for all synonyms of a 
token. Future work will be similarity scores of synonyms using the 
SureWord thesaurus.  For domain-dependent matching cmi    is the 
cost of matching the ith ontological term tj  in service Sm to the 
feature term fi.  
 
In Equation (8) the term wk refers to the actual service attribute 
from which the term tj is derived. In the case of domain-dependent 
matching, this is the service attribute which was annotated with the 
ontological term tj, while in the case of domain-independent 
matching, it is the word from which the token tj is derived as 
explained in Section 3.1. Next bl refers to the type tag associated 
with the term to allow for constrained matching based on tag 
information (operations to operations, messages to messages, etc.)  
Finally, the service information Sm is retained so as to allow the 
selection of appropriate services.  
 
Since fi   can be the related term for many terms derived from 
attributes in the service repository, we could collect all such 
entries in a hash table and record all associated indexing 
information to be indexed by the feature key as: 

Figure 5. Algorithm for ranking services using attribute hashing. 

7. Results 
To demonstrate retrieval of web services based on domain-
independent and domain-dependent semantics, we tested on a large  



repository of industrial-strength web services drawn from about 
500  business objects  designed for Oracle, PeopleSoft and SAP 
applications as well as  473 WSDL documents assembled from 
legacy applications such as COBOL copybooks and from the 
general services offered on xmlmethods.com. Each of the services 
has embedded schemas that were  rather large containing 100 or 
more attributes.  
 
We measured the performance of our ranking scheme  along three 
dimensions, namely, (a) precision versus recall for various choice 
of ranking thresholds Γ ,  (b) reduction in search time due to 
indexing using attribute hashing, and (c) role of domain-
independent and domain-dependent semantics for retrieving 
relevant services.  We also compared its performance to two other 
techniques of searching schemas, namely, full-text indexed search, 
and lexical match search. Full-text search engine for these 
repositories was developed by creating an inverted index of all the 
words extracted from services and computing the histogram of 
service hits using every query word to index the full-text index. 
The second method we implemented was to illustrate the power of 
semantic search techniques over lexical match methods. In this we 
keep the indexing and search the same as our approach, but replace 
the domain-independent and domain-dependent matching  
computation described in Section 3 and 4 with  a lexical similarity 
measure given by the edit distance of two strings representing the 
word attributes (no tokenization was done).  
 
7.1 Precision-Recall Studies 
To conduct the precision and recall we manually recorded the 
number of matching services in the repository for a sample of 40 
queries. Figure 6 show the average precision  versus recall using 
the three different methods of ranking services tried, namely, full-
text indexing, lexical matching, and  domain-independent semantic 
matching.  The average precision and recall was recorded for 
various choice of the ranking threshold  between 0 and 1.0. 
From these figure, we can observe that domain-independent 
semantic matching has better recall than full-text search. In 
practice, we observed that the precision of semantic ranking is 
lower but the recall is higher. This can be improved when domain-
dependent semantics are combined for ranking as we will show in 
Section 7.3.  From this figure, we can also select an appropriate 
threshold for ranking. For example, by choosing a threshold of  

we can obtain 80% recall and 60% precision using 
domain-independent semantic matching.  

Γ

4.0=Γ

 
7.2 Indexing performance 
Our approach to ranking has a large off-line one-time index 
creation overhead for the repository (periodically updated), but the 
search time is considerably smaller. Figure 7 shows the relative 
time performance of the ranking by attribute hashing in 
comparison to full-text index-based ranking and lexical match-
based ranking. As can be seen, the search time is considerably 
smaller using attribute hashing.  
 
We tested the indexing performance of the hashing scheme by 
noting the fraction of the repository touched during search. Using 
attribute hashing, the complexity of search reduces significantly, 
as only matching terms are explored. In fact, our experiments 
show that on average a 90-95% reduction in search is achieved by 
the use of attribute hashing. The entire repository consisting of 
over 100,000 total attributes indexes in less than two minutes on 

an Intel M-Pro 2 GHz Pentium with 1G RAM, and the matching 
services for queries are retrieved instantaneously. 
 
7.3 Role of domain-dependent semantics 
To assess the role of domain-dependent semantics, we ran the 
attribute hashing-based ranking using the same queries but with  
domain-independent thesaurus information alone in one case,  and 
then with combination with ontological information as described 
in Figure 5. We used as input a set of 30 WSDL files annotated 
with OWL notions from the various ontologies.  

Figure 8 illustrates the comparison results, as the ratio of combined 
matching score to domain-independent semantics-based score for 
matches returned averaged across the queries. As can be seen from 
this figure, the combined matcher improves the precision of 
matches by raising the rank of those services that match through 
the use of ontological information even though they may not have 
semantically similar terms. Thus the ranked order of matches 
returned can be different using the combined scheme. Finally, 
Figure 9 summarizes the relative effect of each cue in determining 
matches to sample queries. As can be seen from Figure 9, using 
ontology alone is not sufficient, while the performance of the 
semantic matcher is best when combined with ontology matching. 

8.Related Work 
The work presented in this paper is  closely related to three areas, 
namely,  UDDI registries, ontological matching, and document 
retrieval applications to web services.  
  
8.1 UDDI registries 
The notion of search through repositories has been popular in web 
services.  Web service schemas are published to a public or private 
UDDI registry. The design of UDDI allows simple forms of 
searching and allows trading partners to publish data about 
themselves and their advertised Web services to voluntarily 
provide categorization data.  Several companies are trying to put 
forward UDDI registries [8] including IBM  and HP. 
 
  

 
Figure 6. Illustration of precision and recall during search for 
matching services.  
 
The three predominant ways of searching metadata repositories are 
(a) visual browsing through categories (b)   keyword searches, and 
(3) XPath expressions.  Visual navigation relies on a priori 
categorization of the services  as in UDDIs, a laborious and 



inexact process where a misclassification can lead to a false 
negative or a false positive.  Keyword-based search techniques use 
information retrieval methods to do a full-text search of the 
underlying repository. Full-text search of web services based on a 
few keywords, however, can retrieve  a number of false positives 
since the same keywords may occur in different services possibly 
within a different context and structure. Finally, XQuery specifies 
search through XPath expressions that capture the structure of the 
XML documents during navigation and search. While such 
structured queries can find exact matches, they are more difficult 
to use for similarity searches. Further, they require a priori 
knowledge of the schema to construct path queries.  
8.2 Web service search 
Recently, clustering and classification techniques from machine 
learning are being applied to the problem of web service matching 
and classification at either the whole web service level [10] or at 
the operation level [9]. In [10] for example, all terms from 
portTypes, operations and messages in a WSDL document are 
treated as a bag of words and multi-dimensional vectors created 
from these bag of words are used for web service classification. 
Although this type of classification retrieves matches with higher 
precision that full-text indexed search, the overall matches 
produced, however, do not guarantee a match of operations to 
operations, messages to messages, etc. The paper by Madhavan et 
al [9] addresses this aspect by focusing on matching of operations 
in web services. Specifically, it clusters parameters present in 
input and outputs of operations (i.e. messages) based on their co-
occurrence into parameter concept clusters. This information is 
exploited at the parameter, the inputs and output, and operation 
levels to determine similarity of operations in web services. All 
these approaches use simplistic web services available on the 
web. Since there are only a handful of parameters per operation, 
and only partial matches of parameters can be expected in realistic 
web services.  Thus it is not clear how this method scales to 
industrial strength web services that have few parameters  each 
modeled though by complete XSD schemas wherein lies the true 
information for matching parameters.  
 
8.3 Semantic matching 
The problem of automatically finding semantic relationships 
between schemas has also  been addressed by a number of 
database researchers lately [12][11].  The notion of elemental and 
structural level schema matching has been present in the   
METEOR-S project, where the engine can perform both element 
and structure level schema matching for Web services. The 
element level matching is based on a combination of Porter 
Stemmer for root word selection, WordNet dictionary for 
synonyms, abbreviation dictionary to handle acronyms and NGram 
algorithm for linguistic similarity of the names of the two 
concepts. The schema matching examines the structural similarity 
between two concepts. Both element match score and schema 
match score are then used to determine the final match score.  
 
8.4 Ontological matching 
One of the earliest ontology-based semantic matchmaking engines 
is Sycara et al MatchMaker [13] that is available on the Web as a 
service. In addition to utilizing a capability-based semantic match, 
the engine also uses various other IR- based filters thereby 
reducing the number of false positives. Another related effort is 
Racer [15], that focuses solely on a service capability-based 
semantic match for application in e-commerce systems.  Method 

for semantically enhancing the service capabilities in UDDI was 
proposed earlier in [1]. In a related effort, Patil et al have 
developed MWSAF, a web service annotation framework [14]. In 
their work, they generate recommendations for automatically 
annotating WSDL documents. To accomplish this they match 
XML schema used by the WSDL files with ontologies by creating 
canonical schema graphs.  

9. Conclusions. 
In this paper, we explore the use of domain-independent and 
domain-specific ontologies to find matching service descriptions. 
The approach taken in this paper fundamentally differs from 
previous work in the following respects. First, it combines domain-
dependent ontological information with domain-independent 
semantics for matching. Both name and type information is 
retained to select possible matches using either cue. Secondly, it 
presents an efficient indexing scheme to allow scalability of search 
across large service repositories.  Finally. we perform extensive 
experiments to evaluate our approach on  industrial strength web 
services used in enterprise application integration  that often have 
large schemas (in excess of 100 attributes) and demonstrate the 
effectiveness of attribute hashing over straightforward document 
retrieval approaches in retrieving precise matches to web services 
with minimum search.  

 
 
Figure 7: Illustration of search reduction due to attribute hashing. 
 
 

 

 

 

 

 

Figure  8.  Comparison between the three matc
matcher improves precision. 
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 Figure 6. Comparison between the three matchers: Combined 
matcher improves precision.  
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