
Searching Service Repositories by Combining Semantic and Ontological Matching

Tanveer Syeda-Mahmood, Gauri Shah

IBM Almaden Research Center
650 Harry Road, San Jose, CA

stf@almaden.ibm.com,gauris@almaden.ibm.com

Rama Akkiraju, Anca-Andrea Ivan, Richard Goodwin
IBM Watson Research Center

19 Skyline Drive, Hawthorne, NY
akkiraju@us.ibm.com,ivananca@gmail.com,rgoodwin@us.ibm.com

 Abstract
Selecting the appropriate web service from a repository is a
difficult problem as the terminology used to describe Web
Services in repositories may not be identical to the one used in a
query. In this paper, we explore the use of domain-independent
and domain-specific ontologies to find matching service
descriptions. The domain-independent relationships are derived
using an English thesaurus after tokenization and part-of-speech
tagging. The domain-specific ontological similarity is derived by
inferencing the semantic annotations associated with web service
descriptions. Matches due to the two cues are combined to
determine an overall semantic similarity score. In addition, we
integrate semantic and ontological matching with an indexing
method, which we call attribute hashing, to enable fast retrieval of
semantically related services. By combining multiple cues, we
show that better relevancy results can be obtained for service
matches from a large repository, than could be obtained using any
one cue alone.

1. Introduction
Service oriented architectures, and web services in particular, offer
the promise of easier system integration by providing standard
protocols for data exchange using XML messages and a standard
interface declaration language such as the web service description
language (WSDL). This loosely coupled approach to integration
provides encapsulation of service implementations, making it
suitable for use with legacy systems and for promoting reuse by
making external interfaces explicitly available in a WSDL
description.

In this paper, we address the problem of identifying an appropriate
web service for implementing a required function from a large
collection of available web services. The problem arises in
business transformation projects where new and modified business
processes need to be implemented and there is a desire to reuse
existing service implementations whenever possible. In the
context of a large enterprise that was created through mergers and
acquisitions, there are often thousands of applications and data
repositories, each with associated services and interface
definitions. Since these interfaces were created for different
organizations, over different periods of time and for different
initial purposes, it is unlikely that they use a common set of terms
to name services and parameters.

In performing the search to identify existing services that can be
used to implement a required service, we need to address two
fundamental issues. First, we need a way to match the
requirements and capabilities of services i.e, identify similarity
between services. Secondly, we need an efficient way to search the

service repositories so that we can avoid looking at obviously
irrelevant services.

Identifying similarity between services is a difficult problem
because the terminology used to describe Web Services may not
be identical to the one used in a query. In addition, structure and
type information present in service description will have to be
taken into account. As a result, a full-text search of the repositories
rarely retrieves relevant matches.

In this paper, we explore the use of domain-independent and
domain-specific ontologies to find matching service descriptions.
The domain-independent relationships are derived using an
English thesaurus after tokenization and part-of-speech tagging.
The domain-specific ontological similarity is derived by inferring
the semantic annotations associated with web service descriptions.
Using an ontology. Matches due to the two cues are combined to
determine an overall similarity score. In addition, we integrate
semantic and ontological matching with an indexing method,
which we call attribute hashing, to enable fast retrieval of
semantically related services. By combining multiple cues, we
show that better relevancy results can be obtained for service
matches from a large repository, than could be obtained using any
one cue alone.

The rest of the paper is organized as follows. In Section 2, we
motivate the need for modeling domain-specific and domain-
independent semantics for identifying similarity in services. In
Section 3, 4, and 5, we present matching algorithms for each of the
domain-specific and domain-independent cues and their
combination. In Section 6, we discuss the indexing of large service
repositories to perform an efficient search using a new indexing
technique called attribute hashing. Section 7 presents experimental
results on a large service repository assembled from business
process integration scenarios, and provides a comparison with
full-text searching of services repositories. Section 8 discusses
related work.

2 Use of semantics to define service similarity
As in document retrieval, searching for services should be on the
notion of similarity rather than identical matches as we are
unlikely to find exactly matching descriptions. However,
straightforward information retrieval techniques that are based on
frequency of occurrence of terms in a document cannot be used
directly, since we are more likely to find attributes in a service
definition present in many other services, rather than multiply
occurring within a service description itself. Further, the structure
and type information present in service descriptions need to be
taken into account.

mailto:stf@almaden.ibm.com

So how can similarity between services be discovered? This is a
difficult problem, in general. Ideally, we would like to match two
services if their capabilities and requirements are the same. The
current industry standards such as WSDL describe a service as a
collection of operational interfaces and their type specification
together with deployment information. These specifications are
limited in their ability to express the capabilities and requirements
of the services themselves. Even in interface specifications, the
terms used to describe matching services may be semantically
related but not necessarily identical. In other cases, the terms used
may not appear to be semantically related at all, unless domain-
specific information is used to interpret their relationships.

Figure 1 shows an example of two related services for describing
inventory. The interface descriptions (inputs and outputs of
operations) are shown here in the form of a tree for purpose of
illustration, and are extracted from their WSDL descriptions. The
closely related terms shown by the red arrows could be discovered
using an English thesaurus after appropriate tokenization, word
expansion and part-of-speech tagging. These include obvious cases
such as terms (OrganizationID,OrgID) as well as non-obvious ones
such as (InventoryType, StockType).

Figure 1. Illustration of related services based on semantically
related terms used in their interface descriptions.

Figure 2 shows an example of two related services in which the
relationships between terms could not be discovered using an
English thesaurus alone. Figure 2a shows an extract of a WSDL
description of an inventory checking service of an electronics
company XYZ. It takes the requested item’s part number, delivery
date and the requested quantity as inputs and returns the quantity
available to be delivered on the requested date. The operation tag
lists the inputs and outputs the service takes. The actual inputs and
outputs are expanded in QueryAvailabilityServiceRequest and
QueryAvailabilityServiceResponse message tags. Figure 2b, on
the other hand, shows another web service offered by ABC Inc.
checking inventory. However, ABC calls it
CheckInventoryService and its inputs and outputs are different
from the ones offered by XYZ company’s
QueryAvailabilityService. ABC’s service requires a Universal
Product Code instead of a manufacture’s part number. The term
dueDate is used rather than DeliveryDate and NumberOfItems is
used rather than Quantity. Also, ABC’s service just returns an
ItemAvailabilityConfirmation, which is true if the requested
quantity is available and false otherwise. On the other hand,
XYZ’s service indicates when a request can be partially filled, by
returning the number of available items. As can be seen, there are
differences in the interfaces of the services. However, if the

objective is to find a service that gives information about the
availability of a given part, semantically, both services should be
matched. This type of match cannot be determined using an
English language thesaurus alone. Domain-specific information is
needed to interpret the relationships. For example, in this domain
due date and delivery date are synonyms, UPC expands to
Universal Product Code, a UPC and a manufacture’s part number
are both unique identifiers for a product, and UPCs is a subset of
EAN Codes. A domain specific ontology, such as the one shown
in figure 3, is required to record such relationships.

.
<message name="QueryAvailabilityServiceRequest">
 <part name="partNumber_in" type="xsd:string" />
 <part name="deliveryDate_in" type="xsd:string" />
 <part name="quantityRequested_in" type="xsd:string"/>
 </message>
 <message name="QueryAvailabilityServiceResponse">
 <part name="quantityAvailable_out" type="xsd:string" />
 </message>

 <portType name="QueryAvailabilityService">
 <operation name="queryAvailabilityService" >
 <input message="tns:queryAvailabilityServiceRequest"
name="queryAvailabilityServiceRequest"/>
 <output message="tns:queryAvailabilityServiceResponse"
name="queryAvailabilityServiceResponse"/>

 </operation>
 </portType>
……..

 (a)
…..

<message name="CheckInventoryService ">
 <part name="UPC_in" type="xsd:string"/>
 <part name="duedate_in" type="xsd:string"/>
 <part name="numberOfItems_in" type="xsd:string"/>
 </message>
 <message name="CheckInventoryServiceResponse">
 <part name="itemAvailabilityConfirmation_out"
type="xsd:string"/>
 </message>
 <portType name="CheckInventoryService">
 <operation name="checkINventoryService" >
 <input message="tns:checkInventoryServiceRequest"
name="checkInventoryServiceRequest"/>
 <output message="tns:checkInventoryServiceResponse"
name="checkInventoryServiceResponse"/>
 </operation>
 </portType>
……..

 (b)

Figure 2. Illustration of the need for modeling of
domain-specific information for finding relationships
between services.

The above example shows that a domain independent source of
clues gives us a breadth of coverage for common terms, while a
domain specific ontology gives a depth of coverage by providing
clues based on industry and application specific terms and
relationships. By combining these sources, we hope to improve
both precision and recall. This is a key idea in the work reported in
this paper.

3. Finding related services using domain-independent
semantics

In this section, we discuss the use of domain-independent
semantics to find related services. Finding semantic relationship
between attributes is difficult, in general, because (1) attributes
could be multi-word terms (e.g. Customer2Identification,
PhoneCountry, etc. which require tokenization. Any tokenization
must capture naming conventions used by programmers to form
attribute names. (2) Finding meaningful matches would need to
account for senses of the word as well as their part-of-speech
through a thesaurus. (3) Multiple matches of attributes must be
taken into account, and (4) finally, the structure/type information
must be exploited so that operations match to operations, messages
to messages, etc.

Figure3: A simple Electronics domain ontology

3.1 Capturing domain-independent similarity of service
attributes

We capture name semantics using a technique similar to the one
in [9][14]. Specifically, multi-term query attributes are parsed into
tokens. Part-of-speech tagging and stop-word filtering is
performed. Abbreviation expansion is done for the retained words
if necessary, and then a thesaurus is used to find the similarity of
the tokens based on synonyms. The resulting synonyms are
assembled back to determine matches to candidate multi-term
word attributes of the repository services after taking into account
the tags associated with the attributes. The details are described
below:

Work Tokenization
To tokenize words, we exploit common naming conventions used
by programmer analysts. In particular, we find word boundaries in
a multi-term word attribute using changes in font, presence of
delimiters such as underscore, spaces, and numeric to
alphanumeric transitions. Thus words such as CustomerPurchase
will be separated into Customer and Purchase. Address_1,
Address_2 would be separated into Address,1 and Address,2
respectively. This allows for semantic matches of the attributes.

Part-of-speech tagging and filtering
Simple grammar rules are used to detect noun phrases and
adjectives. Stop-word filtering is performed using a pre-supplied
list. We have used common stop words in the English language
similar to those used in search engines, including words such as
and, or, the, etc.

Abbreviation expansion
 The abbreviation expansion uses domain-independent as well as
domain-specific vocabularies. It is possible to have multiple
expansions for a candidate words. All such words and their
synonyms are retained for later processing. Thus, a word such as
CustPurch will be expanded into CustomerPurchase,
CustomaryPurchase, etc.

Association of tag type with attributes
All resulting tokens and their words are associated back with their
tags in the service descriptions. Thus tokens from operation names
would be tagged with an operation type and tokens from messages
with a message type and so on.

Synonym search
We used the WordNet thesaurus [16] to find matching synonyms
to words. Each synonym was assigned a similarity score based on
the sense index, and the order of the synonym in the matches
returned.

Match generation
 Consider a pair of candidate matching attributes (A, B) from the
query and repository services respectively. These matching
attributes could be a pair of inputs to be matched from a service
request and an available service from a repository. Let A, B have

m and n valid tokens respectively, and let and be their

expanded synonym lists based on ontological processing. We
consider each token i in source attribute A to match a token j in
destination attribute B where i ε S

iyS
jyS

yi and j ε Syi. The semantic
similarity between attributes A and B is then given by

Sem(A, B) = 2*Match(A,B)/(m + n)………………………….(1)

where Match(A, B) are the matching tokens based on the
definition above. The semantic similarity allows us to match
attributes such as (state, province), (CustomerIdentification,
ClientID), (CustomerClass, ClientCategory), etc.

3.2 Ranking services based on domain-independent similarity
Our approach to ranking services using domain-independent
similarity is based on the rationale that related services in the
repository have an overwhelming number of attributes that are
semantically related to query attributes, so that indexing based on
query attributes could point to relevant matching services.
Give a query WSDL file and a set of WSDL files in a repository, it
is reasonable to assume that the best matching services are those
that have a large number of semantically related attributes. Let
there be k services in the repository. Let h1, h2,…, hk be the
number of attributes of services S1, S2,…, Sk that can be matched
with query attributes using the semantic match score of Equation
1. Let n1, n2,…, nk be the number of attributes present in services
S1, S2,...,Sk. Then the overall match of the query service to a
repository service is given by

Msem,i= min{hi/ni, hi/|Q|}... (2)
The best matching service to a query service is then given by
Ssem = max{Msem,i} for all 1 ≤ i ≤ k...………………………… (3)

Further, the values of Mi can be sorted to get a ranked list of
matching services. By taking max{Msem,i}, we look for those
matches that have the lowest number of unmatched attributes

Due Date

Delivery Date

EquivalentClass

NumberOfItems

Quantity

EquivalentClass

EANCod
EANCod

UPC

UPC Version UPC Version E

EANCod
EAN

EANCod
EAN

subClassOf

type type

type

type

EANCode
PartNumber

subClassOf

relative to their service size. Thus if we had a query service of 5
attributes with matches to all 5 query attributes in two services S1
and S2 with the number of attributes 10 and 6 respectively, then
S2 is preferred over S1 because of the larger ratio of number of
attributes matched.

4. Finding related services using domain-specific
semantics
Following the argument in Section 2, while domain-independent
cues give us a breadth of coverage for common terms, we still
need domain-specific ontological information to find deeper
relationships based on industry and application specific terms that
could not otherwise have been provided through language-
dependent thesauruses. In this section, we discuss the use of
domain-specific ontologies to find similar services.

4.1 Domain-specific ontologies
We create domain-specific ontologies using OWL[5]. Specifically
we use a semantic network-based ontology management system
known as SNoBASE (Lee et al 2003) that offers DQL-based (DQL
2003) Java API for querying ontologies represented in OWL. The
OWL-specified ontologies loaded into SNOBASE are parsed to
populate its internal data store with facts and instances. A simple
domain-specific ontology that models the relationships between
electronic parts is indicated in Figure 3. As can be seen, four
different types of relationships, namely, subClassOf(A,B),
subClassOf(B,A) – which is essentially superClassOf, type (A,B) –
which is instanceOf, and equivalenceClass(A,B) are modeled
where A and B are two given concepts. Larger ontologies may
model more relationships.

4.2 Finding related terms in an ontology
Given a domain-specific ontology and a query term, the related
terms in an ontology are found using rule-based inference. In the
SNoBASE system we used, IBM’s ABLE (Bigus et al 2001)
engine for inference. The ABLE library includes rule-based
inference using Boolean and fuzzy logic, forward chaining,
backward chaining etc. Rule sets created using the ABLE Rule
Language can be used by any of the provided inference engines,
which range from simple if-then scripting to light-weight
inferencing to heavy-weight AI algorithms using pattern matching
and unification [1].

4.3 Annotating domain-specific information in services
 In order to use domain-specific ontological information,
references to the ontology must be present in the service
description. The standard WSDL specification does not have a
mechanism to denote such ontological information and hence must
be augmented before such information can be used to determine
matching services. The subject of semantic annotation is an active
area of research in the semantic web community with languages
such as OWL-S , WSDL-S, etc. In this paper, we have adopted the
WSDL-S specification due to the following reasons. First, users
can describe, in an upwardly compatible way, both the semantics
and operation level details in WSDL- a language that the
developer community is familiar with. Secondly, by externalizing
the semantic domain models, we take an agnostic approach to
ontology representation languages. This allows Web service
developers to annotate Web services with their choice of ontology
language (such as UML or OWL) unlike in OWL-S. This is
significant because the ability to reuse existing domain models

expressed in modeling languages like UML can greatly alleviate
the need to separately model semantics. Finally, it is relatively
easy to update the existing tooling around WSDL specification to
accommodate our incremental approach.
……..
xmlns:wssem="
http://www.myschema.com/schemas/2004/wssem"
xmlns:ElectronicsOntology="http://www.standards.com/ontologie
s/ElectronicsDomain.owl" >

 <message name="CheckInventoryServiceRequest">
 <part name="iUPC_in" type="xsd:string"
wssem:modelReference="ElectronicsOntology#UPC"/>
 <part name="dueDate_in" type="xsd:string"
wssem:modelReference="ElectronicsOntology#DeliveryDate"/>
 <part name="numberOfItems_in" type="xsd:string"
wssem:modelReference="ElectronicsOntology#Quantity"/>
 </message>

 <message name="CheckInventoryServiceResponse">
 <part name="itemAvailabilityConfirmation_out"
type="xsd:string"/>
 </message>

……..

Figure 4: An excerpt of a semantically annotated WSDL
for inventory checking service in figure 2b.

Using the WSDL-S specification, we annotate elements in the
WSDL file using the attribute wssem:modelReferences. Its value is
an OWL ontology concept specified by the name of the ontology
and the relevant ontological term. Such an annotated WSDL file
corresponding to the web service description of Figure 1 is shown
in Figure 4. In this figure, the input UPC_in which is of type
xsd:string has an annotation that points to the concept Universal
Product Code in the Electronics Ontology.

4.2 Capturing domain-dependent similarity of service
attributes
Given an ontology-annotated attribute in a query service, the
potential matching attributes from services in the repository can be
found as follows. The query attribute is used as a fact for inference
by the SNOBASE system against the corresponding ontology.
The matches returned are a set of related concepts along with
distance scores representing distance between concepts. Each
related concept models a specific type of relationship. In our case,
we model EquivalentClass, subClassOf, superClassOf, and type as
shown in Figure 3. We use the simple scoring scheme shown in
Table 1 to compute distance between related concepts in the
ontology. The discretization of the score into three values (0, 0.5,
1.0) gives a coarse idea of semantic separation between
ontological concepts. For example, in the electronics domain
ontology shown in Figure 2, concepts DueDate and DeliveryDate
have a distance of 0 while EANCode and UPC have a distance of
0.5. More refined scoring schemes are possible, but the current
choice works well in practice without causing a deep semantic
bias. Thus given a query attribute with an ontological annotation
term ‘DueDate’ will return ontologically matching concepts as the
terms (DeliveryDate) while a query term “UPC” will return as
related concepts (EAC code, Part Number, EAN8,

EAN13,UPCversion A, UPC version E) using inference in the
ontology of Figure 3. If these terms were the associated
annotations with service attributes, then the corresponding
attributes can also be identified through the related concepts
retrieved. In practice, we can choose a suitable threshold T so that
all related concepts with distance scores above T can be ignored.
From now on, we use the term related concepts to refer to such
filtered attributes with scores above the threshold T.

Concept Pair Relationship Distance Score

(A,B) EquivalentClass 0

(A,B) RDFType 0

(B,A) SubClassOf 0.5

(A,B) SubClassOf 0.5

(A,B) Other 1

Table 1: Distance scoring scheme in our ontology
matcher

4.4 Ranking services based on ontological matching
As with domain-independent semantics-based ranking, the
ontology-based matcher takes as input a query WSDL file and a
set of WSDL files. The output is a subset of the original list of
WSDL files, ordered by their relevance. Note that unlike in the
case of domain-independent semantic matching, not all attributes
in a service description may be annotated with ontological terms.
Thus a separate normalization is necessary.

Let there be k services in the repository. Let h1, h2,…, hk be the
number of annotated attributes of services S1, S2,…, Sk whose
ontological concepts are related to those of corresponding query
attributes (i.e whose ontological match score exceeds the threshold
T). Let n1, n2,…, nk be the number of ontologically-annotated
attributes present in services S1, S2,...,Sk. Then the overall match
of the query service to a repository service Si is given by

Mont,i = min{
i

j
ij

n

c∑
,

|| Q

c
j

ij∑
}.................................... (4)

Where and dist(i,j) is the ontological

distance between the jth term in service S

),(1 jidistcij −=
i and a corresponding

query term. The best matching service to a query service is then
given by

Sont= max{Mont,i} for all 1 ≤ i ≤ k...…………………………… (5)

Further, the values of Mi can be sorted to get a ranked list of
matching services. By taking max{Mi}, we look for those matches
that have the lowest number of unmatched attributes relative to
their service size as before.
5. Combining domain-specific and domain-
independent ranking of services
The combination of domain-specific and domain-independent cues
to find related services can be done at either an inner-level during
the attribute similarity computations or after the individual
rankings are produced. In either case, a winner-take-all scheme
makes sense in which the best possible score (ontology-wise or

semantic-matching-wise) is percolated up for the ranking
computations. This scheme for the case of ranking already
retrieved matches is described below.

For each potential matching service Si, let Msem,i be the matching
score using semantic matching. Let Mont,i be the matching score
using ontological matching. Then a new score can be computed for
each potential matching service Si as

isemi MM ,max{= , } ……………………………(6) iontM ,

The best matching service can again be given by

}max{ ibest MS = ……………………………………(7)

6. Attribute hashing
In the above formulation of the ranking of services, all services
attributes would have to be searched for each query service to find
potential matches and to assemble the overall match results.
We now present an efficient indexing scheme, called attribute
hashing, that avoids detailed search of the service repositories
while ensuring at the same time that no extra false positives or
negatives are made for the same choice of ranking thresholds.

To understand the role of indexing, let us consider a service
repository of 500 services. If each service has about 50 attributes
(quite common for enterprise-level services), and 2 to 3 tokens per
word attribute, and about 30 synonyms per token, the semantic
matching alone would make the search for a query of 50 attributes
easily around 50 million operations per query!

Indexing of the repository schemas is, therefore, crucial to
reducing the complexity of search. Specifically, if the candidate
attributes of the repository schemas can be directly identified for
each query attribute without linearly searching through all
attributes, then significant savings can be achieved.

6.1 Attribute hashing
We now present attribute hashing, an efficient indexing scheme
that achieves the desired savings in search time. The key idea in
attribute hashing can be explained as follows. Let ‘a’ be an entity
derived from a repository service description. Let F(a) be the set of
related entities of ‘a’ in the entire service repository (also called
feature set here). In the case of domain-independent semantics ‘a’
refers to a token and F(a) is the set of synonyms of ‘a’. In the case
on ontological matching, ‘a’ refers to an ontological annotation
term, and F(a) are the ontologically related concepts to a (eg. terms
related by subclass, equivalenceClass, is-a, etc. relationships) .
Now, given a query entity q derived from a query service Q, q is
related to a iff q ε F(a). Thus instead of indexing the set F(a)
using the attribute a as a key as may be done in normal indexing,
we use the terms in the set F(a) as keys to index a hash table and
record ‘a’ as an entry in the hash table repeatedly for each such
key. The advantage of this operation is that since q ε F(a), q is
indeed one of the keys of the hash function. If this operation is
repeated for all entities in the service repository, then each hash
table entry indexed by a key records all entities whose related term
set includes the key. Thus indexing the hash table using the query
entity q directly identifies all related entities from the service
repository without further search! Once the related entities per
query term can be identified this way, a histogram of hits for each
service contributing to the match can be taken and ranked list of

matching services can be obtained after suitable normalization.
This is the key idea of attribute hashing.

,....},{)(21 OOfH i = ………………………………(9)

The hash table is constructed in an off-line index creation step in
which all repository services are processed to extract multi-term
word attributes and their associated ontological terms, if any. Each
multi-term word attributes is tokenized, expanded and part-of-
speech tagged as described in Section 3.1 and its synonyms are
derived. Similarly, each ontological term is used to look up the
corresponding domain-specific ontology to retrieve related terms.
All such synonyms and related terms form the feature set F={ fi
}. A hash table is formed by recording all the indexing information
described in Equation 8 to be indexed using the keys in F.

 Of course, this is done at the cost of redundant storage (the entity
‘a’ is stored repeatedly as an entry under each relevant key).
However, with the growth of computer memory, storage is a
relatively inexpensive tradeoff.

The purpose of attribute hashing is to identify relevant services.
Exact ranking of services can be then be performed using detailed
matching computations with domain-specific and domain-
independent semantics and their combination as described in
Sections 3, 4 and 5. Not that since a single query term can match
multiple terms of the same service in the repository, this can lead
to multiple counting of the same service hit. To avoid this, we take
a greedy approach, i.e. the first time a query term finds a match in
a service, further matches per service are not counted. We have
shown earlier that such a choice still provides a lower bound on
the size of the actual match between a query and repository
service. This is still sufficient for retaining good service matches if
we choose match thresholds based on the lower bound since the
actual number of matching attributes may, in fact, be higher.
Also, for purposes of pruning the set of irrelevant services, it is
sufficient to know the number of matching attributes rather than
their extent of similarity as given by distance scores. Thus
distance scores will initially be ignored in attribute hashing, and
will be reutilized later during detailed matching on the pruned set
of services.

6.3 Ranking services using attribute hashing
To find related services using attribute hashing, query services are
processed in a manner similar to the repository services during the
offline index creation stage. While the basic unit of indexing is a
term (token of a word attribute or ontological term), the histogram
of hits is recorded per attribute and per service in the repository.
Each query term in query service Q with associated indexing

information,

iq
>=< qlqk bw ,Oqi is used to index the hash table

and the service hits are recorded. Following the argument in
Section 6.1, we use the greedy approach to pick the first set of
matching terms to query terms and count only the number of
matches and not their distance scores for similarity. To avoid
double counting, we record the hits to attributes using two arrays
D and D’ where D (wqk) =0 if the query attribute wqk has not been
matched to any service attribute in the repository based on
domain-independent cues. Similarly D’(wqk) = 0 if the query
attribute has not been matched to any service attributes based on
domain-dependent cues. The entries D(wk) and D’(wk) for any
service attribute can be defined similarly. The detailed algorithm
for attribute hashing is given in Figure 5.

6.2 Offline index creation
More formally, let fi be the feature set computed from an entity ai .
Let Oj represent all relevant indexing information corresponding
to the entity ai which in our case is given by

>=< mlkmjjj SbwctO ,,,, ………………………(8)

where tj is the entity whose feature is fi . In case of domain-
independent matching, tj is the token whose synonym is fi , while
in the case of domain-dependent matching tj is a ontological term
that is related to the term fi using one of the relations defined in the
ontology. Further cmi is extent of similarity measured as 1- match
distance. The domain-independent matcher uses a simple model
of similarity for synonyms so that cmi =1 for all synonyms of a
token. Future work will be similarity scores of synonyms using the
SureWord thesaurus. For domain-dependent matching cmi is the
cost of matching the ith ontological term tj in service Sm to the
feature term fi.

In Equation (8) the term wk refers to the actual service attribute
from which the term tj is derived. In the case of domain-dependent
matching, this is the service attribute which was annotated with the
ontological term tj, while in the case of domain-independent
matching, it is the word from which the token tj is derived as
explained in Section 3.1. Next bl refers to the type tag associated
with the term to allow for constrained matching based on tag
information (operations to operations, messages to messages, etc.)
Finally, the service information Sm is retained so as to allow the
selection of appropriate services.

Since fi can be the related term for many terms derived from
attributes in the service repository, we could collect all such
entries in a hash table and record all associated indexing
information to be indexed by the feature key as:

Figure 5. Algorithm for ranking services using attribute hashing.

7. Results
To demonstrate retrieval of web services based on domain-
independent and domain-dependent semantics, we tested on a large

repository of industrial-strength web services drawn from about
500 business objects designed for Oracle, PeopleSoft and SAP
applications as well as 473 WSDL documents assembled from
legacy applications such as COBOL copybooks and from the
general services offered on xmlmethods.com. Each of the services
has embedded schemas that were rather large containing 100 or
more attributes.

We measured the performance of our ranking scheme along three
dimensions, namely, (a) precision versus recall for various choice
of ranking thresholds Γ , (b) reduction in search time due to
indexing using attribute hashing, and (c) role of domain-
independent and domain-dependent semantics for retrieving
relevant services. We also compared its performance to two other
techniques of searching schemas, namely, full-text indexed search,
and lexical match search. Full-text search engine for these
repositories was developed by creating an inverted index of all the
words extracted from services and computing the histogram of
service hits using every query word to index the full-text index.
The second method we implemented was to illustrate the power of
semantic search techniques over lexical match methods. In this we
keep the indexing and search the same as our approach, but replace
the domain-independent and domain-dependent matching
computation described in Section 3 and 4 with a lexical similarity
measure given by the edit distance of two strings representing the
word attributes (no tokenization was done).

7.1 Precision-Recall Studies
To conduct the precision and recall we manually recorded the
number of matching services in the repository for a sample of 40
queries. Figure 6 show the average precision versus recall using
the three different methods of ranking services tried, namely, full-
text indexing, lexical matching, and domain-independent semantic
matching. The average precision and recall was recorded for
various choice of the ranking threshold between 0 and 1.0.
From these figure, we can observe that domain-independent
semantic matching has better recall than full-text search. In
practice, we observed that the precision of semantic ranking is
lower but the recall is higher. This can be improved when domain-
dependent semantics are combined for ranking as we will show in
Section 7.3. From this figure, we can also select an appropriate
threshold for ranking. For example, by choosing a threshold of

we can obtain 80% recall and 60% precision using
domain-independent semantic matching.

Γ

4.0=Γ

7.2 Indexing performance
Our approach to ranking has a large off-line one-time index
creation overhead for the repository (periodically updated), but the
search time is considerably smaller. Figure 7 shows the relative
time performance of the ranking by attribute hashing in
comparison to full-text index-based ranking and lexical match-
based ranking. As can be seen, the search time is considerably
smaller using attribute hashing.

We tested the indexing performance of the hashing scheme by
noting the fraction of the repository touched during search. Using
attribute hashing, the complexity of search reduces significantly,
as only matching terms are explored. In fact, our experiments
show that on average a 90-95% reduction in search is achieved by
the use of attribute hashing. The entire repository consisting of
over 100,000 total attributes indexes in less than two minutes on

an Intel M-Pro 2 GHz Pentium with 1G RAM, and the matching
services for queries are retrieved instantaneously.

7.3 Role of domain-dependent semantics
To assess the role of domain-dependent semantics, we ran the
attribute hashing-based ranking using the same queries but with
domain-independent thesaurus information alone in one case, and
then with combination with ontological information as described
in Figure 5. We used as input a set of 30 WSDL files annotated
with OWL notions from the various ontologies.

Figure 8 illustrates the comparison results, as the ratio of combined
matching score to domain-independent semantics-based score for
matches returned averaged across the queries. As can be seen from
this figure, the combined matcher improves the precision of
matches by raising the rank of those services that match through
the use of ontological information even though they may not have
semantically similar terms. Thus the ranked order of matches
returned can be different using the combined scheme. Finally,
Figure 9 summarizes the relative effect of each cue in determining
matches to sample queries. As can be seen from Figure 9, using
ontology alone is not sufficient, while the performance of the
semantic matcher is best when combined with ontology matching.

8.Related Work
The work presented in this paper is closely related to three areas,
namely, UDDI registries, ontological matching, and document
retrieval applications to web services.

8.1 UDDI registries
The notion of search through repositories has been popular in web
services. Web service schemas are published to a public or private
UDDI registry. The design of UDDI allows simple forms of
searching and allows trading partners to publish data about
themselves and their advertised Web services to voluntarily
provide categorization data. Several companies are trying to put
forward UDDI registries [8] including IBM and HP.

Figure 6. Illustration of precision and recall during search for
matching services.

The three predominant ways of searching metadata repositories are
(a) visual browsing through categories (b) keyword searches, and
(3) XPath expressions. Visual navigation relies on a priori
categorization of the services as in UDDIs, a laborious and

inexact process where a misclassification can lead to a false
negative or a false positive. Keyword-based search techniques use
information retrieval methods to do a full-text search of the
underlying repository. Full-text search of web services based on a
few keywords, however, can retrieve a number of false positives
since the same keywords may occur in different services possibly
within a different context and structure. Finally, XQuery specifies
search through XPath expressions that capture the structure of the
XML documents during navigation and search. While such
structured queries can find exact matches, they are more difficult
to use for similarity searches. Further, they require a priori
knowledge of the schema to construct path queries.
8.2 Web service search
Recently, clustering and classification techniques from machine
learning are being applied to the problem of web service matching
and classification at either the whole web service level [10] or at
the operation level [9]. In [10] for example, all terms from
portTypes, operations and messages in a WSDL document are
treated as a bag of words and multi-dimensional vectors created
from these bag of words are used for web service classification.
Although this type of classification retrieves matches with higher
precision that full-text indexed search, the overall matches
produced, however, do not guarantee a match of operations to
operations, messages to messages, etc. The paper by Madhavan et
al [9] addresses this aspect by focusing on matching of operations
in web services. Specifically, it clusters parameters present in
input and outputs of operations (i.e. messages) based on their co-
occurrence into parameter concept clusters. This information is
exploited at the parameter, the inputs and output, and operation
levels to determine similarity of operations in web services. All
these approaches use simplistic web services available on the
web. Since there are only a handful of parameters per operation,
and only partial matches of parameters can be expected in realistic
web services. Thus it is not clear how this method scales to
industrial strength web services that have few parameters each
modeled though by complete XSD schemas wherein lies the true
information for matching parameters.

8.3 Semantic matching
The problem of automatically finding semantic relationships
between schemas has also been addressed by a number of
database researchers lately [12][11]. The notion of elemental and
structural level schema matching has been present in the
METEOR-S project, where the engine can perform both element
and structure level schema matching for Web services. The
element level matching is based on a combination of Porter
Stemmer for root word selection, WordNet dictionary for
synonyms, abbreviation dictionary to handle acronyms and NGram
algorithm for linguistic similarity of the names of the two
concepts. The schema matching examines the structural similarity
between two concepts. Both element match score and schema
match score are then used to determine the final match score.

8.4 Ontological matching
One of the earliest ontology-based semantic matchmaking engines
is Sycara et al MatchMaker [13] that is available on the Web as a
service. In addition to utilizing a capability-based semantic match,
the engine also uses various other IR- based filters thereby
reducing the number of false positives. Another related effort is
Racer [15], that focuses solely on a service capability-based
semantic match for application in e-commerce systems. Method

for semantically enhancing the service capabilities in UDDI was
proposed earlier in [1]. In a related effort, Patil et al have
developed MWSAF, a web service annotation framework [14]. In
their work, they generate recommendations for automatically
annotating WSDL documents. To accomplish this they match
XML schema used by the WSDL files with ontologies by creating
canonical schema graphs.

9. Conclusions.
In this paper, we explore the use of domain-independent and
domain-specific ontologies to find matching service descriptions.
The approach taken in this paper fundamentally differs from
previous work in the following respects. First, it combines domain-
dependent ontological information with domain-independent
semantics for matching. Both name and type information is
retained to select possible matches using either cue. Secondly, it
presents an efficient indexing scheme to allow scalability of search
across large service repositories. Finally. we perform extensive
experiments to evaluate our approach on industrial strength web
services used in enterprise application integration that often have
large schemas (in excess of 100 attributes) and demonstrate the
effectiveness of attribute hashing over straightforward document
retrieval approaches in retrieving precise matches to web services
with minimum search.

Figure 7: Illustration of search reduction due to attribute hashing.

Figure 8. Comparison between the three matc
matcher improves precision.

0.8

1

1.2

1.4

1.6

1.8

Sc
or

e
ra

tio

hers: Combined

Matches returned

[13] K. Sycara et al. “Dynamic service match making among
agents in open information environments,” in Jl. ACM
SIGMOD Record, 1999.

0

10

20

30

40

50

60

70

80

90

QueryItemAvailability-sem.w sdl CheckItemAvailability-sem.w sdl CheckInventory-sem.w sdl

R
el

ev
an

ce
 s

co
re

Ontology matcher Semantic matcher Semantic + Ontology matcher

[14] A.Patil et al. “Meteor-s web service annotation framework”,
in Proc. WWW conference, pp. 553-562, 2004.

[15] L. Li and I. Horrocks, “ A software framework for
matchmaking based on semantic web terminology,” in Proc.
WWW Conference, 2003.

[16] G.A. Miller, “WordNet: A lexical database for the English
language,” in Comm. ACM 1983.

 Figure 6. Comparison between the three matchers: Combined
matcher improves precision.

References

[1] R. Akkiraju, R. Goodwin, P. Doshi, and S. Roeder. “A

Method for Semantically Enhancing the Service Discovery
Capabilities of UDDI”. In the workshop proceedings of
Eighteenth International Joint Conference on Artificial
Intelligence 2003. Information Integration on the Web. WEB-
1 pg: 87-92

[2] A. Ankolekar, M. Burstein, J. J. Hobbs, et al. “DAML-S:
Semantic Markup for Web Services”. In Proceedings of the
International Semantic Web Working Symposium (SWWS)
2001.

[3] E. Christenson, F. Curbera, G. Meredith, and S.
Weerawarana. “Web Services Description Language”
(WSDL) 2001. www.w3.org/TR/wsdl

[4] IBM. “IBM Websphere UDDI Registry”. 2003 http://www-
3.ibm.com/software/webservers/appserv/was/network/

[5] OWL Technical Committee. “Web Ontology Language
(OWL)”. 2002. http://www.w3.org/TR/2002/WD-owl-ref-
20021112/

[6] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
“Semantic Matching of Web Services Capabilities”. The First
International Semantic Web Conference (ISWC), Sardinia
(Italy), June, 2002.

[7] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
“Importing the Semantic Web in UDDI”. In Web Services, E-
Business and Semantic Web Workshop. 2002.

[8] UDDI Technical Committee. “Universal Description,
Discovery and Integration (UDDI)”. http://www.oasis-
open.org/committees/uddi-spec/

[9] X. Dong et al. “Similarity search for web services,” in Proc.
VLDB, pp.372-283, Toronto, CA, 2004.

[10] A.Hess and N. Kushmerick, “Learning to attach metadata to
web services,” in Proc. Intl. Semantic web conference, 2003.

[11] J. Madhavan et al, “Generic schema matching with cupid,” in
Proc. VLDB 2001.

[12] S. Melnik et al, “Similarity flooding: A versatile graph
matching algorithm and its application to schema matching,”
in Proc. ICDE, 2002.

http://www.w3.org/TR/wsdl
http://www.uddi.org/
http://www.uddi.org/

	Introduction
	4. Finding related services using domain-specific semantics

	6. Attribute hashing
	7. Results
	8.Related Work
	References

