
RJ10372 (A0602-044) February 22, 2006
Computer Science

IBM Research Report

ACE: Classification for Information Lifecycle Management

Gauri Shah, Kaladhar Voruganti
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Piyush Shivam
Department of Computer Science

Duke University
Durham, NC 27708

Maria Alvarez
Department of Computer Science

University of California
Santa Barbara, CA 93106

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

© Copyright IBM Corp. 2005

ACE: Classification for Information Lifecycle Management

Gauri Shah, Kaladhar Voruganti
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

gauris, kaladhar@us.ibm.com

Piyush Shivam∗

Dept. of CS
Duke University

Durham, NC 27708
shivam@cs.duke.edu

Maria Alvarez∗

Dept. of CS
University of California

Santa Barbara, CA 93106
malvarez@cs.ucsb.edu

Abstract

One of the principal problems in Information Lifecycle
Management is to align the business value of data with
the most cost-effective and appropriate storage infras-
tructure. In this paper, we introduce ACE: a framework of
tools for ILM, that classifies data and storage resources,
and generates a data placement plan for informed utiliza-
tion of the available storage resources in the system. The
goal of ACE is to design a data placement plan that pro-
vides cost benefits to an organization while allowing effi-
cient access to all important data. To achieve this goal,
ACE uses a policy-based approach to classify data and
storage based on the metadata attributes and capabilities
respectively. The main advantage of using ACE is that it
enables appropriate usage of under-utilized storage sys-
tems without extensive human intervention. Another key
characteristic of ACE is that it uses a policy-based ar-
chitecture to automate the process of data valuation and
storage classification.

We implement the ACE framework and evaluate its
benefits for three real data sets. One data sets consists
of 1.28 million anonymous medical industry record files
of total size 1461GB, and we show that ACE provides a
cost benefit of greater than 70% over the lifetime of the
data. In addition to the novel valuation algorithms and
overall architecture, we also demonstrate optimizations
that reduce the total performance time to 85% of the time
taken without these optimizations, while still maintaining
classification accuracy of over 85%.

1 Introduction

Storage needs of most enterprises are increasing at an
exponential pace because organizations are automating
more and more of their business processes, which is in
turn leading to more data getting digitized and stored
persistently. A study conducted by IBM predicted that
the 3.2 million exabytes of information that existed on
earth in the year 2001 would reach 43 million exabytes

1This work was done when the author was a summer intern at IBM
Almaden Research Center

by the year 2005 [3]. This large corpus of data poses
many challenges for intelligent data and storage manage-
ment. In addition, new legislation such as Sarbannes-
Oxley, HIPAA, Basle II, and IFRS [26, 15, 14], which
require legal compliance of the storage of data adds to
the complexity of data management.

Organizations can only continue to increase the size
of their storage facilities or find intelligent ways to re-
duce the overall size and number of stored files. Most
organizations are deploying storage area network (SAN)
controllers, and network attached storage (NAS) servers
at a fast rate to satisfy their organization’s growing stor-
age demand. IDC reports that the amount of new stor-
age capacity installed each year is increasing by almost
80% annually [19]. Gartner also reports that an enterprise
spends an average of three dollars managing storage for
every one dollar spent on storage hardware [11].

However, the percentage of useful data residing on
these expensive storage systems is becoming a very small
percentage of the overall storage space being utilized.
Data with lower business value such as temporary data,
infrequently-accessed data and orphaned data (data can-
not be traced to any application) is residing on expen-
sive storage media. Thus, there is a need to manage both
data and storage resources over time so that the storage
resources of an enterprise can be optimally utilized. Fur-
ther, as the total number of IT workers is increasing ap-
proximately at only 5% per year [19], there is a strong
requirement to automate this management of resources.

SNIA uses the term Information Lifecycle Manage-
ment (ILM) to addresses this issue. Content management,
hierarchical storage management, and storage resource
management, e.g., [10, 23, 25] are some of the tools that
are trying to solve this problem under the umbrella of
ILM. These tools provide mechanisms that allow admin-
istrators to classify their data during the deployment of
a new application’s storage. However, these tools are
limited in their functionality in providing optimal storage
resource utilization in existing system environments. In
this paper, we present ACE, a new framework of tools for
ILM, that transforms under-utilized legacy storage sys-

1

tems into ones where the right type of data resides on the
right type of storage at the right time.

Transforming legacy storage infrastructures into
business-value-aware infrastructures is a time-consuming
and difficult process due to the following reasons:

Time Consuming Process: It takes system adminis-
trators weeks (if not months) to carefully classify and as-
sign the correct business value to all of the existing data
in data stores. System administrators not only have to
deal with a large volume of data but also with the hetero-
geneous aspects of the data stores.

Lack of Application-Data Relationships: It is time
consuming to determine which data belongs to which ap-
plication. For many applications, this information is not
easily available making it difficult to value the data based
on the application that uses it.

Temporal nature of business value: The business
value of data does not remain constant [8]. For exam-
ple, tax-related data has high business value during the
tax season, and relatively lower business value otherwise.
Thus, it is important for the storage system to dynam-
ically migrate data between different classes of storage
according to its changing business value.

Non-triviality of Data Valuation: Some administra-
tors are capable of assigning business value to their data,
but most of them need guidance in this task. Adminis-
trators have to be aware that different metadata attributes
are relevant for different types of data classification.

ACE is a new framework of tools for ILM that ad-
dresses the above problems. The ACE framework con-
sists of a data classification engine, a storage classifica-
tion engine, and a data placement engine that maps the
data to the appropriate storage. The goal of ACE is to
help system administrators classify an organization’s data
and storage resources appropriately so that the data is
placed on a matching class of storage resources accord-
ing to its business value. The key features of ACE are as
follows:

Provides Classification and Data Placement: ACE
semi-automates the processes of determining the busi-
ness value of the data, identifying different classes of
data based on their business values, identifying the dif-
ferent tiers of storage quality, and aligning the data with
the right quality of storage.

Uses Policy-driven Business Valuation: In order to
aid administrators to specify the business value of data,
ACE has a policy-driven valuation mechanism. The poli-
cies determine how the data gets mapped to different
business values, and the storage gets mapped to differ-
ent tiers of storage quality. This policy specification is
very flexible and customizable.

Handles Temporal Business Value: ACE’s data clas-
sification and data placement engines are capable of han-

dling the temporal nature of the data business values by
monitoring the system and the changing metadata char-
acteristics.

Optimizes Performance: ACE uses several novel al-
gorithms that improve the classification performance by
reducing the domain space of the data that needs to be
processed as well as the policies used for classification.

In addition to developing the novel algorithms for clas-
sification and the entire ACE framework, we also imple-
ment ACE and evaluate its performance in a real deploy-
ment on three real data sets. Two of the data sets are local
code files and personal user data. The third set represents
a 1.4TB of anonymous medical record files. We eval-
uate the cost benefits of using ACE for data placement,
and show that ACE reduces the total storage cost by upto
70% over the lifetime of the data. We demonstrate that
our novel algorithms, e.g. example-based classification
which uses linear regression techniques, give improved
performance and flexibility of policy specification with
little classification error. We also prove that our perfor-
mance optimizations such as file sampling in the data do-
main reduce the total performance time by almost 85%
of the time taken without these optimizations, with only
15% classification errors.

The rest of the paper is organized as follows. Section 2
describes the ACE architecture. This section includes the
details of the classification algorithms and the classifica-
tion performance enhancement techniques. Section 3 de-
scribes the details of our evaluation framework. Section 4
discusses the related work. Finally, our conclusions and
future work are presented in Section 5.

2 ACE Architecture

ACE provides a modular framework to scan an existing
system for its data and storage resources, and gives a data
placement solution to best utilize the available storage re-
sources. ACE provides cost benefits to an organization by
mapping appropriate data to enterprise storage and thus
reducing the amount of such storage required. The objec-
tives of ACE are three-fold:

1. To provide a business valuation to the data based on
mining of their metadata attributes.

2. To determine the different tiers of storage quality
available.

3. To provide a suitable data placement to ensure in-
formed use of the storage resources.

Figure 1 shows the high-level ACE architecture.
In order to achieve its objectives, the ACE framework

has the following three main components:

Data Classification Engine: This component is re-
sponsible for mining the metadata attributes of the data,

CLASSIFICATION

ACE DATA

ENGINE

CLASSIFICATION

ENGINE

ACE STORAGE

PLACEMENT

ACE DATA

ENGINE

STORAGE

SOLUTIONS

KNOWLEDGE

REPOSITORY

USER

INPUT

CLASSES

DATA

CLASSES

STORAGE

OBSERVABLE
ATTRIBUTES

(DATA & STORAGE)

Figure 1: ACE architecture

and providing an appropriate business value to the data
based on the policies. Different kinds of policies ares
used as explained in Section 2.2. The output of this en-
gine is a set of data classes each of which comprises of
a collection of data objects which have similar character-
istics and the same business values. Thus, there is a 1:1
mapping between the valuation provided to the data and
the data classes generated using these values. We note
that we only use metadata attributes for data classification
and do not deal with content classification. However, as
we point out later on in Section 2.3, the ACE architecture
is complementary to, and flexible enough to accommo-
date content-based classification as well.

In our evaluation, we use the range of [1− 9] to assign
business values to the data, 9 being the highest. An intu-
itive mapping of these business values to the importance
of the data is guided by [7] and given in Table 1.

Business Value Importance of Data
9 Mission Critical
8 Business Critical
7 Essential
6 Consequential
5 Non-Critical

3-4 Inconsequential
1-2 Disposable

Table 1: Mapping of business value to the importance of the
data.

Storage Classification Engine: This component is
responsible for mining the capabilities of the available
storage subsystems, and classifying them into different
tiers of storage quality based on their ability to provide
support for objectives such as disaster recovery, perfor-
mance, availability, etc. The output of this engine is a set
of storage classes that provide similar storage character-
istics for the data that is stored on them.

Data Placement Engine: This component glues the
two classification engines together. It uses the data
classes and the storage classes to determine a storage plan

for data placement. It recommends which data needs to
be placed on which storage resource in order to meet the
business needs of the application that uses the data. Thus,
it suggests a storage plan that allows for informed use
of the storage resources available in the system, and yet
allows the data to be accessed efficiently as required by
applications.

We note that the classification and placement is done
based on some global objective function such as disaster
recovery, performance, compliance, security, etc., that the
administrator can choose. The set of metadata attributes
chosen for monitoring, and the policies used for classifi-
cation change based on the global objective chosen. For
example, a much-used temporary log file may be impor-
tant from a performance perspective but may not be so
important from a disaster recovery perspective. ACE al-
lows the administrator to specify an objective function in
the beginning to guide the classification and data place-
ment process.

In addition, ACE architecture is modular. Existing
classification engines can easily be used in conjunction
with other ACE components. The output of other classifi-
cation engines can serve as an input to the data placement
engine to get a data placement plan for a given system.

2.1 Input

The three sources of input to ACE as shown in Figure 1
are as follows:

Knowledge Repository: This repository is a collec-
tion of policies that encapsulate domain knowledge for
data (or storage) classification. Each policy consists of
a set of observable attributes of the data (or storage), the
corresponding attribute values, and a business value for
the data (or storage) that matches these attribute values.
Each data/storage object is compared with all the poli-
cies to determine which one suits it best. Details of the
different policy types are given in Section 2.2.

Observable Attributes: This input comes from min-
ing the attributes of the data files and the capabilities of
the storage resources themselves. For example, we can
monitor different attributes of the data such as file type,
size, last update time, etc. These attributes are used in
conjunction with the policies in the knowledge repository
to classify the data into buckets of different business val-
ues, and storage into different tiers of quality.

User Input: The administrator can provide additional
input and hints about how to classify the data. For exam-
ple, she can give sample files with business values. She
can also create new customized policies that can be added
to the knowledge repository. Finally, she can override the
suggestions from ACE, and modify the data and storage
classes or the data placement solution.

2.2 Classification Mechanics

Classification in ACE is done using a simple grouping of
all data objects with the same business value into a single
class. Business values are assigned to data objects using
policies. For the rest of the paper, we refer to this process
of business valuation using policies followed by classifi-
cation as classification using policies. In ACE, there are
three ways to classify the data and the storage. In this
section, we discuss the mechanics of the classification
itself and give specific examples of different policies in
Sections 2.3 and 2.4. The classification engines mine
the attributes of the data or the storage subsystem, and
then check to see which of the policies can be used to
classify the objects. The policies are defined in three
ways depending on the expertise of the administrator as
explained below. We explain the different policies for
data objects but similar techniques can be used to define
policies for the storage resources.

Knowledge-based policies: Knowledge-based poli-
cies come pre-packaged with the ACE framework. This
information is collected over a period of time in consul-
tation with experts, and is based on experience. ACE will
have different set of policies based on the domain of the
data that is being classified. For example, data for a med-
ical application like X-rays files on a server will be classi-
fied differently (using different knowledge policies) than
files that are used by a client for personal purposes. The
administrator can also create new knowledge policies on
the fly before the classification is done. It is possible that
a particular data object does not satisfy all the attribute
values given in any knowledge-based policy so it cannot
be classified using any policy. In that case, ACE does of
the following:

• Uses the policy with the largest fraction of match-
ing attributes. Let the matching policies be
P1, P2, P3, . . . , Pn with number of attributes in each
policy as T (Pi). Let the number of matching at-
tributes for the data object with each policy be
M(Pi). Then the object is classified using the pol-

icy Pi, argmax
(

M(Pi)
T (Pi)

)
, provided the number of

matching attributes is greater than 50%. If two poli-
cies have the same maximum matching ratio, the
policy that assigns the higher business value is cho-
sen.

• Assigns some default business value to the data ob-
ject if none of the policies have maximum matching
ratio greater than 50%.

Figure 2 show a screen shot of the list of knowledge
policies that are available in the inbuilt knowledge
repository of ACE from our implementation. The
administrator can choose a subset of these policies for

data and storage classification. She can also create a new
knowledge-based policy to add to the repository.

Figure 2: Screen shot showing the knowledge-based policies for
data and storage classification.

Expert-based policies: Expert-based policies allow
the administrator to rank attributes relatively to formu-
late a policy. The administrator chooses a set of attributes
and assigns relative ranks to them. She also gives scores
to different attributes values1. These attribute values are
then combined and normalized to form a policy function.
The metadata attributes are given as input into this pol-
icy function, and the normalized output value gives the
business value of the data.

For example, suppose the administrator chooses two
attributes: A1 = owner and A2 = access time. She ranks
them as owner being most important and access time be-
ing moderately important. ACE internally maps these rel-
ative ranks to actual ranks R1 and R2. Further suppose
that she provides three values for the owner attributes
a11, a12, a13 which are also given importance in some or-
der. Again ACE will generate internal scores for these
values as s11, s12, and s13. Similarly suppose that two
values for the access time a21, a22 are scored as s21, and
s22. ACE generates an internal policy function for a data
object d as follows:
BV(d) = R1 ·((s11 ·v(a11)+s12 ·v(a12)+s13 ·v(a13))+
R2 · ((s21 · v(a21) + s22 · v(a22))
where BV(d) is the business value of data object d.
v(aij) = 1 if Ai = aij , and 0 otherwise. Generaliz-
ing for any policy, we have:
BV(d) =

∑n
i=1 Ri ·

∑mi

j=1 sij · v(aij)
where n is the total number of attributes in the expert pol-
icy, and mi is the number of values for attribute i.

Expert-based policies are flexible but they require
expert knowledge to be formulated on the fly. Figure 3
shows a sample expert policy created by an administrator
in ACE. The attributes chosen are owner, file extension,

1These values can also be ranges for certain attributes such as access
time

and access time. Each attribute is given a rank and each
attribute value is given a score. ACE uses these ranks
and scores to generate a new policy for classification.

Figure 3: Screen shot showing one expert-based policy for data
classification.

Example-based policies: Instead of giving an expert
policy, the administrator can give a sample set of files
along with their business values. ACE will then mine the
attribute values of the sample data set, and the associated
business values to come up with a policy that meets the
specified business value. The example files serve as a
training set to standard machine learning techniques such
as regression and decision trees. In this paper we use
linear regression to learn the policy function from the ex-
ample file. A regression function is a well-known statisti-
cal technique which is used to determine the relationship
between one or more independent variables (e.g. meta-
data attributes) and a dependent variable (e.g. business
value) [4].

ACE constructs a regression function using both cate-
gorical and numerical attributes with the sample data set,
and then uses this function to classify all the data ob-
jects. Regression analysis has two primary advantages:
one, it always gives an informed business value to the data
object unlike knowledge-based policies which may give
some default value. Second, it infers information about
the metadata attributes that is not obvious to the adminis-
trator, and cannot be specified in a knowledge-based pol-
icy. For example, the regression analysis may reveal to
the administrator the relationships between different at-
tributes (e.g., function may reveal a relation between the
attributes of last read time and number of applications
using a file), and the relative importance of each attribute
for the business value. Thus, the regression function may
learn some interesting relations between the attributes to
give a more informed business value to each data object.

In our implementation, we use example-based poli-
cies only for data classification (Section 3.4), and not for
storage classification. We plan to develop example-based
policies for storage classification as future work.

The policies help to decides the business value of each
object based on its attributes. In the first method, each
policy is encoded into the system, and in the second and
third methods, it is learned on-the-fly using the metadata
attribute rankings or the training set provided by the ad-
ministrator. In the knowledge-based design, the attributes
are generic and fixed. Generic attributes are the ones that
do no have specific values in given system environment,
e.g., create time, access frequency, last modified time.
Moreover, the rank of the attributes is decided a-priori.
For the expert-based design, the attributes can be generic
and/or domain-specific, and their relative ranking can be
decided by the administrator. Domain-specific attributes
such as owner and application have specific values in a
given environment.

2.3 Data Classification Policies

Data classification is done by mining the metadata at-
tributes of the data objects. Here, we consider that the
data object is a file. Some of the metadata attributes that
are used for data classification in ACE are given in Ta-
ble 2.

ATTRIBUTE LINUX WINDOWS

Owner D D
Access rights D D
Application I I
Size D D
File type D D
Last read time D D
Last write time D D
Create time - D
Extension D D
Access frequency I I
Number of Applications I I
Growth of file I I

Table 2: List of attributes that can be mined for data clas-
sification. D=Directly available from the operating system.
I=Inferred by using internal ACE mechanisms, or a combina-
tion of native system APIs.

ACE obtains metadata attributes either by scanning the
file system or by parsing trace files of the file system.
Most of the attributes that are listed in Table 2 can be de-
termined by a single scan of the system. However, some
of the attributes such as access frequency and growth re-
quire monitoring of the system over a period of time as
explained in Section 2.8.

The policies for data classification depend on both the
global objective function chosen as well as the domain
of data objects. Policies that classify personal documents
and code files for performance are different from policies
used to classify medical records for disaster recovery. In
Table 3, we give examples of the policies we use in our

evaluation; business values range from [1− 9] as given in
Table 1, but these values can be parametrized.

So far, we have talked about mining metadata at-
tributes of objects to classify them. Many other tech-
niques classify and cluster files based on content [9, 18,
22]. Our policy-based approach is extensible to also in-
corporate content-based attributes in the attribute space.
Further, the output of any data classification component
can be used in conjunction with our storage classification
engine and data placement engine to generate a storage
resource utilization plan.

2.4 Storage Classification Policies

ACE does storage classification by mining the capabili-
ties of the storage subsystems. These attributes can be
collected using some interfaces to the subsystem itself
e.g., CIM queries [24]. However, we can use ACE in
conjunction with any other software or component which
can provide the necessary information about the storage
subsystems. Some of the attributes that are used for stor-
age classification in ACE are given in Table 4.

Random I/O capability Capacity
Utilized capacity Max Throughput
Current Throughput Maximum IOPs
Current observed IOPs Checksum available
Encryption capability Access authentication
Supported Protocols WORM capability
Continuous Copy Snapshot Copy
Physical Dimensions Power Consumption
Active/Active capability Firmware Swapping
Multipathing software MTTR
RAID levels supported Storage Block Type
Volume resize capability MTTF
LUN addresses available Cost
Caching Buffer Size Latency
Types of disks supported Cache

Table 4: List of attributes that can be mined for storage classifi-
cation.

In the case of storage classification, the unit for clas-
sification will vary based on the objective function. If
the objective function is disaster recovery, the classifica-
tion is done at the storage controller level. Depending
on the kinds of replication mechanisms that a controller
support, we can determine what tier of disaster recovery
support it can provide. On the other hand, if the objective
function is performance, then we can classify the storage
resources at the pool level. We can distinguish between
different pools based on the RAID level, the underlying
disk RPM, the available throughput, etc. For illustrating

2Sample values for .CODE are: vbs, vbp, pas, f, c, cc, cpp, hpp, h,
tex, m, java, jar, js, jsp, mof, sql, ddl, xml, py, sh, wsdl, mat, fig, zargo,
pl, tcl, tk, xsl.

ACE classification and data placement we only focus on
the objective function of disaster recovery in our evalua-
tion.

Table 5 shows some sample storage classification poli-
cies. Storage classes range from [1 − 9] with 9 being
the highest quality class, but again these values can be
parametrized.

2.5 Data Placement

Data placement involves matching the data classes to the
appropriate storage classes. We want to store the most
important data on the best-quality storage, and store the
least important data in the lowest quality storage. In gen-
eral, ideal data placement is difficult to accomplish. Us-
ing the classes generated by the ACE data and storage
classification engines makes placement easier as it quali-
fies the type of data and storage in the system. We take a
simple approach of matching the highest data class with
the highest available storage class that has free storage to
store the new data. Similarly, we match the moderately
important data with the medium quality storage classes,
and the least important data with the lowest quality stor-
age classes. If a particular storage class is not available,
ACE recommends the next best available storage class
which may be better or worse than the ideal storage class.

While doing this matching, it is important to take into
account the free space available to migrate the data from
one storage container to another. We cannot assume that
all the data will be migrated to the suggested location,
and hence we can only estimate the available free space
on the storage resources.

2.6 Output

ACE shows the output of all the three components en-
gines. The output of the data classification engine dis-
plays the different classes of data based on their business
values. Each class display the list of files that have the
class’ business value. The administrator can choose to
see the details of any file, and also change the suggested
business value to a different one. The storage classifica-
tion engine displays the different storage classes based on
the quality of the storage. Depending on the global objec-
tive function chosen, the output shows classified storage
subsystems or classified storage pools.

2.7 Putting it all together

Putting together all the different sections explained
above, the final flow of the system (from the administra-
tor’s perspective) starting with the data classification and
ending with the data placement solution is given in Algo-
rithm 1. The the final flow of the system as seen by ACE
is outlined in Algorithm 2.

Figure 4 shows the output of the data placement en-
gine after running ACE on a small subset of sample files

Policy Business Attribute 1 Attribute 2 Attribute 3
Name Value

Code Files
New Files 6 CTIME ∈< 0, 90 > EXT=.CODE2 -
Mature Files 8 CTIME ∈< 91, 180 > EXT=.CODE -

Personal Documents
Rarely Accessed Docs 5 ATIME ∈< 45,−1 > DIR=DOCUMENTS EXT=.OFFICE
Frequently Accessed Docs 9 ATIME ∈< 0, 7 > DIR=DOCUMENTS EXT=.OFFICE
Moderately Accessed Media 7 ATIME ∈< 8, 45 > EXT=.MEDIA

Medical Data
Old Files 3 ATIME ∈< 21,−1 > EXT=.MEDICAL -
New Files 9 ATIME ∈< 0, 7 > EXT=.MEDICAL -

Table 3: Table showing some sample data classification policies for different domains. CTIME = Creation time, ATIME = Last
Access Time, EXT = Extension. Some of the values such as .CODE and .OFFICE actually represent an array of values.

Policy Storage Attribute 1 Attribute 2 Attribute 3
Name Class

Disaster Recovery
DR Tier 1 9 Continuous Copy=SYNC % Utilized ∈< 0, 50 > Active-active=YES
DR Tier 4 6 Snapshot Copy=YES Cost ∈< 0, 50 > Random I/O=YES

Performance
Highest Performance 9 Avail. BW ∈< 75, 100 > Cache ∈< 128, 256 > Disk RPM=15
Medium Performance 7 Avail. BW ∈< 25, 74 > Cache ∈< 128, 256 > Disk RPM=10

Table 5: Table showing some sample storage classification policies for different objective functions.

Figure 4: Screen shot showing the output of the data placement
engine matching the data classes (for a small sample set of files)
with the storage classes.

just for illustration. It displays the different files classi-
fied as per their business values and the corresponding
storage systems that this data can be stored on. Note that
the higher-valued data is stored on high-quality storage
as compared to the lower-valued data which is stored of
lower-quality storage. For brevity, we only give a screen
shot of the output of the data placement engine in this
paper.

2.8 Monitoring

One important design issue is how often the system
should be monitored by ACE to detect changes in busi-
ness values of data, and propose new storage solutions.
In order to determine the metadata attributes, ACE can
either scan the data objects or it can collect (and parse)
application-level and file system-level traces. On one
hand, we do not want the monitoring to affect the sys-
tem performance. On the other hand, we want the clas-
sification to be as accurate as possible over a period of
time. ACE monitors the system either as (i) an ongo-
ing activity periodically, or (ii) by taking snapshots of
the system at some regular intervals. In the first case,
the monitoring frequency is changed on the fly depend-
ing on how often the business value of the data is chang-
ing. Frequently-changing data is monitored more often
than less-frequently changing data. We let the adminis-
trator specify how often the monitoring should happen.

Algorithm 1 ACE system flow from administrator
perspective

if create new example-based policy then
repeat

pick sample file F
give business value to F

until no more sample files
else

choose an objective function O
choose knowledge-based policies from the ACE
set of policies for O

if add new knowledge-based policy then
repeat

pick attribute A
pick matching value for A

until no more attributes required
pick business value for policy
give the policy a name

if create new expert-based policy then
repeat

pick attribute A
give rank to A
repeat

pick attribute value (or range) ai

give score to ai

until no more attributes values required
until no more attributes required
pick business value for policy

choose files to classify
choose monitoring schedule and number of
snapshots
repeat choosing knowledge-based and expert-based
policies for storage classification
choose storage subsystems for data placement
review and correct data placement solution

Algorithm 2 ACE system flow from ACE perspec-
tive

if create new example-based policy then
get list of sample files; scan sample files
if business values are not given by
administrator then

get objective function O
classify sample files using knowledge-based
policies for O

generate regression policy function;
else

get objective function O
show knowledge-based policies for O
get selected knowledge-based-policies
if create new knowledge-based policy then

show attributes and attribute values
get chosen attributes and values
get business value for policy
get the policy name

if create new expert-based policy then
show attributes and attribute values
get attribute ranks
get attribute value scores
generate policy function

repeat choosing knowledge-based and expert-based
policies for storage classification
scan file system or file system traces for metadata
attributes
get list of storage subsystems to classify
classify data files
classify storage resources
determine and display data placement output

Storing snapshots allows administrators to visualize the
trends with respect to how the data is being accessed or
updated. Users can manually view the trend graphs and
use them to validate whether the policies defined for as-
signing values to the data items are reasonable.

2.9 Performance Optimizations

With the architecture described above, ACE scans each
data object for its metadata attributes and then compares
it to every policy to determine the business value of the
data object. With m policies and n data objects, the
worst-case running time of the system is O(m · n). In
this section, we describe four potential optimizations to
improve the performance of the system. We implement
the first two optimizations, and we evaluate their perfor-
mance in Sections 3.4 and 3.5.

2.9.1 Optimization in the policy domain

One way to improve the performance is to reduce the size
of the policy domain by using a regression function to
represent the policies used for classification. We use the
given policy table to classify a given set sample files. We
compute the business values of these sample files using
the knowledge-based policies. Alternatively, the admin-
istrator can even specify the business values of the sam-
ple files. We then use the metadata attributes of the files
and the computed/given business values to generate a re-
gression function. This single function can now be used
to classify the input data rather than compare each data
object to every policy. Thus, we reduce the worst-case
performance time to O(n). However, using regression
may result in some inaccuracies in classification from the
original policies as it will only approximate the original
knowledge-based policies. Thus, we have to consider the
trade-off between the improvement in performance ver-
sus the loss of accuracy in classification (Section 3.4).

2.9.2 Optimization in the data domain

Another way to improve the performance is to reduce the
size of the data object domain. We propose three tech-
niques to achieve this goal.

File Sampling: Instead of scanning the entire data set,
we can sample a small set of files in every directory. We
choose a fixed percentage of the total files in every di-
rectory, and only scan those files for their metadata at-
tributes. Based on the values of the metadata attributes
of the sample set in each directory, ACE uses one of the
following methods to classify the rest of the files:

• Pick the policy that is applicable to most of the files
in the sample set, and apply the business value from
that policy to all the files in the directory.

• Out of all the matching policies, pick the one that
has the highest business value and apply that value

to all the other files.

• Take an average of the business values all the match-
ing policies and apply that value to all the files.

However, this method involves a trade-off between im-
provement in performance versus the loss of accuracy in
classification. The results of using this approach are sen-
sitive to the original location of the data objects in the
object namespace (Section 3.5).

Preprocessing policies: ACE can pre-process the poli-
cies to see which attributes of the data objects need to be
scanned. Some of the attributes need not be considered
if none of the policies are defined using those attributes.
This approach helps to improve the scan performance.

Trapping System Events: In a very large system, scan-
ning the entire system to gather all the metadata attributes
may be time- and resource-consuming. In such a sce-
nario, the system events such as file creation, deletion,
access, etc., may be trapped to constantly monitor any
changes to the data set. Such event trapping may degrade
the system performance but it may be worth it if the clas-
sification performance is of importance. It is useful if the
system needs to be up-to-date with the classification in-
formation for better resource utilization.

3 Case Studies

To evaluate the ACE framework, we implement and test
it using three real data sets from different domains, and
several storage resources for classification and data place-
ment. We evaluate the benefit of using ACE, and also
demonstrate the improvement in performance using the
different optimizations outlined in Section 2.9. We show
that ACE is beneficial in identifying important data, and
providing large savings in the cost to store this data by
suggesting an appropriate data placement.

3.1 Experimental Setup

We run our evaluation tests on an Intel P4 3GHz, 2GB
RAM machine running Microsoft Windows 2000 Ad-
vanced Server. We implement the ACE framework in
about 6200 lines of JAVA code. For mining the meta-
data attributes of a Windows system, we use Windows
API through Java Native Interface (JNI). We use handle
a freeware tool [13] to determine the application-data re-
lationship. We use a relational database for storing the
existing or administrator-supplied knowledge-based poli-
cies. We implement ACE such that it scans the target di-
rectories, and also accept traces containing the metadata
attributes of data objects. Currently ACE supports traces
output by NFS tracing utilities (e.g.,nfsdump), and unix
ls and stat commands.

We use three real data sets in our evaluation that are
shown in Table 6.

NAME TOTAL TOTAL

FILES SIZE

CODE 12796 316MB
USER 32800 18.4GB

MEDICAL 1.28 million 1461GB

Table 6: List of data sets that we use for our evaluation.

The CODE data set is a local laboratory CVS reposi-
tory used for the last three years by about 30 users to store
their project development code. The USER data set is a
collection of personal documents of a single user over a
period of five years. This data set includes personal doc-
uments, media files, code files, web documents, etc. The
MEDICAL data set is a collection of metadata information
about anonymous medical files. This data set consists of
1.28 million files which are rarely modified or deleted.
This data set is an excellent sample to evaluate ACE be-
cause the medical data archiving industry represents the
bottom-end of the storage market and is very cost con-
scious. ACE is an ideal framework to use for this market
segment as it can handle a large number of files, and pro-
vides storage solutions for cost-effective use of the avail-
able resources.

We gather metadata attributes of data objects of the
USER data set using ACE’s internal scan mechanism, the
CODE data set using the attributes gathered by the unix
ls utilities, and the MEDICAL data set from an anony-
mous metadata attribute trace supplied by a medical in-
dustry company. We use knowledge-based policies to
classify each of the data sets. Each data set belongs to
a different domain and has different data classification
policies; please see some of the sample policies given in
Section 2.3. All the data sets and the framework software
reside on the same machine.

For storage resources, we use a catalog that contains
data about different storage systems and their capabilities.
We use different storage classification policies as given in
Section 2.4 to classify the storage resources as enterprise,
mid-range, low-end, and tape.

We present the following results to evaluate ACE:

1. We show that ACE provides huge cost savings by
recommending a data placement solution to store
different data on different quality of storage, over
the lifetime of the data (Section 3.2).

2. We show that ACE is capable of determining the
temporal nature of the business value of data over its
lifetime, and change the suggested data placement
plan to provide further cost savings (Section 3.3).

3. We evaluate the accuracy of the classification while
reducing the size of the policy domain by using re-
gression for example-based policies (Section 3.4).

4. We also evaluate the accuracy of the classification
while reducing the size of the data domain by sam-
pling only a few files (Section 3.5).

3.2 Cost savings

In this section, we show the cost benefit of using ACE for
data placement versus a naı̈ve data placement of all data
on enterprise storage. We use knowledge-based policies
to classify the data and storage resources. We use a sim-
ple data placement mechanism that maps data files with
business values 9 and 8 to enterprise storage, 7 and 6 to
medium-end disk, 5 and 4 to low-end disk, and finally
1 − 3 on tape.

Figure 5(a) shows the percentage of the size of each
data set that can be stored on different quality storage as
per the business values of the data. We see that nearly
70% of the CODE data set, and nearly 65% of the USER

data set is old, and can be stored on low-end disk. Nearly
70% of the MEDICAL data set can be stored on tape. This
graph shows that ACE can identify high business-valued
data and recommend an appropriate data placement solu-
tion for it.

Figure 5(b) shows the percentage of cost required
for different kinds of storage by following ACE-
recommended classification and placement as compared
to storing all data on enterprise storage. We use
standard, industry average numbers for calculating the
cost; enterprise storage is $20/GB, medium-end storage
is $13.46/GB, low-end storage is $7/GB, and tape is
$1.20/GB [6]. We see that there is a significant cost ben-
efit ranging from 50% in the CODE data set to 65% in the
MEDICAL data set. The savings in the MEDICAL data set
are particularly notable because of the size of the data set;
using enterprise storage costs about $30, 000 compared to
the cost of $6, 600 by using the ACE data placement so-
lution.

Table 7 gives some details of the output of the data
classification engine for the USER data set.

3.3 Temporal Analysis

Next, we evaluate the benefit of using ACE over a pe-
riod of time as the business value of the data changes.
We use ACE to generate the data placement plan at dif-
ferent points of time in the past and the future. Fig-
ure 6(a) shows the results of these plans over a period of
18 months for the CODE data set with plans generated
every three months. Figure 6(b) shows similar results
for the MEDICAL data set over seven weeks with plans
generated every week. We see how the value of the data
changes over time, as more and more data gets classified
as old data. We see that the data grows over a period of
time (until the current time) and then it stays constant (as
we do not generate new files for plans generated in the
future). Even though the data size remains constant, the

Policy Name Total % Files Total % Total % Storage % of Total
Files in Class of Files Storage (MB) in Class Storage

TEMPORARY FILES 1 48 72.73% 0.15% 1.90735E-05 0.00% 0.00%
OLD BACKUP FILES 2 9 13.64% 0.03% 3734.101563 99.91% 19.81%
DELETED FILES 1 1.52% 0.00% 0.05403614 0.00% 0.00%
TOTAL BUSINESS VALUE 1 66 100.00% 0.20% 3737.323895 100.00% 19.83%
OLD WEB DOCUMENTS 2736 100.00% 8.34% 14.11757755 100.00% 0.07%
TOTAL BUSINESS VALUE 2 2736 100.00% 8.34% 14.11757755 100.00% 0.07%
CLASS FILES 3776 99.45% 11.51% 8.754601479 1.17% 0.05%
ARCHIVED FILES 21 0.55% 0.06% 737.6234837 98.83% 3.91%
TOTAL BUSINESS VALUE 3 3797 100.00% 11.58% 746.3780851 100.00% 3.96%
OLD MEDIA FILES 20667 92.36% 63.01% 8486.905873 75.31% 45.03%
OLD CODE 1513 6.76% 4.61% 31.24714756 0.28% 0.17%
OLD LOG FILES 4 0.02% 0.01% 0.021150589 0.00% 0.00%
TOTAL BUSINESS VALUE 4 22377 100.00% 68.22% 11269.15622 100.00% 59.79%
OLD PERSONAL DOCUMENTSS 686 71.24% 2.09% 881.5213194 53.63% 4.68%
DEFAULT BUSINESS VALUE 277 28.76% 0.84% 762.3001347 46.37% 4.04%
TOTAL BUSINESS VALUE 5 963 100.00% 2.94% 1643.821454 100.00% 8.72%
MEDIUM MEDIA FILES 522 23.31% 1.59% 322.327776 42.32% 1.71%
HIDDEN FILES 15 0.67% 0.05% 0.001497269 0.00% 0.00%
TOTAL BUSINESS VALUE 6 2239 100.00% 6.83% 761.665102 100.00% 4.04%
SYSTEM BINARIES 78 57.78% 0.24% 552.9692068 92.14% 2.93%
SYSTEM FILES 3 12 8.89% 0.04% 0.847621918 0.14% 0.00%
TOTAL BUSINESS VALUE 7 135 100.00% 0.41% 600.1682491 100.00% 3.18%
MATURE CODE 478 98.35% 1.46% 15.86468124 21.32% 0.08%
RECENT MEDIA FILES 7 1.44% 0.02% 58.54503918 78.68% 0.31%
NEW LOG FILES 1 0.21% 0.00% 0.000547409 0.00% 0.00%
TOTAL BUSINESS VALUE 8 486 100.00% 1.48% 74.41026783 100.00% 0.39%
RECENTLY ACCESSED PERSONAL DOCS 1 100.00% 0.00% 0.06837368 100.00% 0.00%
TOTAL BUSINESS VALUE 9 1 100.00% 0.00% 0.06837368 100.00% 0.00%

Table 7: This table shows the detailed classification of the USER data set using the different data classification policies in this
domain. It shows the number and size of some of the files in the business value classes, and some of the policies that are used in
each class.

Mid−range disk
Low−end disk
Tape

Enterprise

 80%

 100%

USER
 0%

CODE

Pe
rc

en
ta

ge
 o

f
to

ta
l s

to
ra

ge
 u

sa
ge

Data Sets

MEDICAL

 20%

 40%

 60%

(a) This graph shows the percentage of size of the data sets that
can be stored on different quality storage subsystems based on the
business value of each file.

Low−end disk
Tape

Mid−range disk
Enterprise

 80%

 100%

USER
 0%

CODE

Pe
rc

en
ta

ge
 o

f
to

ta
l c

os
t

Data Sets

MEDICAL

 20%

 40%

 60%

(b) This graph shows the percentage of the cost of storage for dif-
ferent types of storage with (left bar) and without (right bar) ACE
data placemcent recommendations.

Figure 5: Usage of different storage and effective cost savings using ACE.

storage cost decreases over time as the data becomes less
important and is moved to lower-quality cheaper storage.
Figure 6 shows how ACE is able to capture the temporal
nature of the business value and save storage cost over a
period of time.

3.4 Optimizing Policy Domain

In this section, we outline the regression analysis of the
USER data set to illustrate the use of example-based poli-
cies, and also the reduction in the policy domain for data
classification. The goal is to learn a regression func-
tion that predicts the business value of a file as a func-
tion of file metadata attributes, and then use it to classify
other files instead of evaluating the full list of available
knowledge-based policies.

We use general linear models for learning the regres-
sion function since it allows for the use of both categor-
ical as well as numeric variables [16]. The independent
variables of the function are owner, file type, last access
time, last write time, create time, file size, and file exten-
sion. We test all the independent variables for statistical
significance (p-value < .05). We also look at 95% con-
fidence intervals for the predictions and make sure that
they are ‘narrow’. For brevity, we are only presenting
the key details here. We use our knowledge-based poli-
cies (policies gathered from domain experts) to generate
a training and a test set from the USER data set. In this
data set which consists of 32800 files, we held 2500 files
for validation, and use the remaining for estimating the
model using different training set sizes.

We test the accuracy of our regression function for dif-
ferent training set sizes. Our accuracy metric is the mean

absolute percentage error in prediction of the business
value for both the training set (estimation period) and the
test set (validation period). Figure 7 shows the prediction
error of the function for different training set sizes. We
see that we get excellent results in the USER data set with
the misclassification error less than 15%. The CODE data
set does not give as good results for smaller training sets,
but it does well with larger training sets. Note that the
error does not always go down with increasing training
set, since any regression function is always skewed to the
data set on which it was trained.

3.5 Optimizing Data Domain

We now explore the performance optimizations for data
reduction explained in Section 2.9. We sample files in
each directory rather than scan all the files in the system
as given in Section 2.9.2. Figure 8 shows the results of
using sampling for data classification on the USER data
set. We measure the accuracy of the classification in two
different ways:

1. Accuracy =
(
1 − Number of misclassified files

Total number of files

)
.

This measure of accuracy simply gives the percent-
age of misclassified files.

2. Let I(Fi) be the ideal business value and C(Fi) be
the computed business value for each file Fi.

Accuracy =
(

1 −
∑

i
|I(Fi)−C(Fi)|

Total number of files

)
.

This measure also indicates the magnitude of mis-
classification as it measures the distance of the mis-
classified data from the ideal classification.

 0

 20

 40

 60

 80

 100

Apr04 Jul04 Oct04 Jan05 Apr05 Jul05 Oct05 Jan06 Apr06 Jul06 Oct06

P
er

ce
nt

ag
e

Time

Old Code
New Code

Mature Code
Total Storage Cost

Data Size

(a) Cost benefit for CODE data set.

 0

 20

 40

 60

 80

 100

20Jun 27Jun 4Jul 11Jul 18Jul 25Jul 1Aug

P
er

ce
nt

ag
e

Time

New Med
Recent Med

Old Med
Total Storage Cost

Data Size

(b) Cost benefit for MEDICAL data set.

Figure 6: This graph shows how ACE captures the temporal nature of the business value of data over time. The percentage of data
with lower business value grows over time and more data gets older. Older data is recommended to be stored on low-end or tape
storage resulting in significant cost savings.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

%
 e

rr
or

 in
 c

la
ss

ifi
ca

tio
n

Percentage of files used as sample set for training

Sample set error
Validation set error

(a) CODE data set

 0

 5

 10

 15

 20 30 40 50 60 70 80 90

%
 e

rr
or

 in
 c

la
ss

ifi
ca

tio
n

Percentage of files used as sample set for training

Sample set error
Validation set error

(b) USER data set

Figure 7: This graph shows the classification done using example-based policies and regression function analysis for the two data
sets CODE and USER.

Figure 8(a) shows the percentage of time taken and the
percentage accuracy of classification using both measures
of accuracy when the average business value of sampled
files is applied to all the remaining files. Similarly, fig-
ures 8(b) and 8(c) show the graphs for maximum busi-
ness value, and the business value applicable to most files
in the sample set. The time taken for the three methods
for this data set with 100% sampling is 379 seconds, 374
seconds, and 554 seconds respectively for 32800 files of
total size 18.4GB. We see that we get upto 90% classifi-
cation accuracy with just 10% sampling of files for all but
one valuation technique for the USER data set. Further,

we reduce the total time to 15% of the time without this
optimization while maintaining 85% accuracy. The result
shows that if the files are well organized into directories,
then sampling of files may be very useful to improve the
overall performance of ACE.

We note that we only perform this evaluation on this
data set because it is the only one where we scan the sys-
tem for mining the metadata attributes. Since we use trace
files for the CODE and MEDICAL data sets, there is very
little time difference between using the data from a part
of the trace versus using the whole trace because we need
to parse the entire trace in any case. Thus, the trade-off
between time and accuracy is not very significant in the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 A

cc
ur

ac
y

an
d

T
im

e
fo

r
cl

as
si

fic
at

io
n

Percentage of files sampled per directory

Avg. Number
Avg. Dist.
Avg. Time

(a) Average business value

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 A

cc
ur

ac
y

an
d

T
im

e
fo

r
cl

as
si

fic
at

io
n

Percentage of files sampled per directory

Max BV Number
Max BV Distance

Max BV Time

(b) Maximum business value

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 A

cc
ur

ac
y

an
d

T
im

e
fo

r
cl

as
si

fic
at

io
n

Percentage of files sampled per directory

Policy Number
Policy Distance

Policy Time

(c) Highest matching policy.

Figure 8: This graph shows the trade-off of classification accuracy and time performance by sampling only a few files rather than
scanning the USER data set. The inaccuracy of classification is calculated in two different ways: (i) by counting only the number
of misclassified files, and (ii) counting the distance by which each file is misclassified.

case of traces. We also note that the performance bene-
fit may not be obvious for a small data set like the USER

data set, but it can be huge when the data set is very large
e.g., petabytes of data.

4 Related Work

ACE is a component in a comprehensive architecture for
ILM and draws from several areas such as information
valuation, data and storage classification, machine learn-
ing, and storage planning. We briefly describe how our
work is related to some of these areas.

Data Classification Several approaches exist to clas-
sify data based on its content as well as its metadata.
Our approach is to solely look at the file’s metadata, and
hence is different from most of the existing data mining
techniques. Some recent examples that look at file meta-
data for classification include the work done by Ellard
et al. [20], and Zadok et al. [28]. The main difference
is that ACE classes cannot directly be inferred from the
metadata. ACE classes are determined by the business
value of data, and hence the key challenge in our case is
to quantify the business value of files before they can be
classified. The business value of the files can be deter-
mined using the metadata attributes and the policies for
valuation.

Information Valuation Quantifying the business value
of data is hard. Several existing approaches use market-
based principles for calculating the cost, revenue, and
utility of data, e.g., [12, 21]. However, these approaches
are often labor and time-intensive, and preclude the sys-
tem administrator from making quick storage manage-
ment decisions for ILM. Ying Chen’s work [5] looks at
a file’s recency and its frequency of use for deriving its
value, demonstrating the viability of metadata based val-
uation. This approach is limited in the set of metadata
attributes it uses for information valuation. Erez Zadok et

al. [28] use a file’s extension, directory and its elastic bit
to decide its importance category. This work is perhaps
closest in nature to the ACE architecture, and ACE can
use some of their data valuation techniques to determine
the business value of the data. However, the main differ-
ence between the two systems is that ACE not only looks
at data valuation but it also provides storage classifica-
tion, and determines a data placement plan for better stor-
age resource utilization. Further, ACE’s valuation uses a
richer set of metadata attributes, is applicable to a larger
variety of files, incorporates both administrator and appli-
cation knowledge, and is driven by a high level objective
function such as disaster recovery, or performance.

Storage Planning for ILM Hierarchical Storage
Management systems, e.g., [23, 27] address the lifecycle
management of data by moving the less-frequently ac-
cessed files to a slower disk or tape. ACE complements
HSM systems by quantifying the importance of files
based on a large collection of file metadata attributes,
and allowing the migration policies to incorporate both
administrator and application knowledge.

ACE is also complementary to the existing work
on automated storage planning for disaster recovery,
e.g., [17], performance, e.g., [1, 2] etc. ACE data and
storage classes can serve as an input to the existing plan-
ning tools, allowing them to create more efficient plans.
Overall, we believe that ACE is an end-to-end solution
that combines both data and storage classification to de-
termine a data placement plan for informed use of the
available storage resources.

5 Conclusions and Future Work

In this paper, we have introduced ACE, a new architec-
ture to perform data and storage classification, and data
placement using metadata attributes of files and capabili-
ties of storage resources. We have demonstrated that ACE

is beneficial in identifying the business valuation of data
and assigning data to the appropriate storage hardware for
informed resource utilization. ACE performs well with
large data sets, and provides significant cost benefits by
determining the data placement solution. We believe that
ACE is a first step in a comprehensive solution for Infor-
mation Lifecycle Management.

With the current ACE design, there are still several in-
teresting open problems. We use a simple approach for
data placement which involves matching the highest data
classes to the best storage classes, and moving down in
the classification hierarchy. However, this approach may
not give the optimal data placement. It would be very in-
teresting to see how to optimize the data placement. Cur-
rently, we only take into account which application is us-
ing what data but ignore the data access pattern for that
application. The workload characteristics of the applica-
tion may give us some more hints about data placement.

Further, in this paper we focus on storage controllers
for the storage classification and data placement. In a real
system, the storage controller characteristics are not suf-
ficient; what we are really interested is in the path man-
agement of data. The data has to be stored on the storage
that is optimal from an access path point of view starting
from the host that accesses the data, through the switches,
links, etc., until it finally reaches the storage subsystem.
Future work involves optimal path management for the
data.

References
[1] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,

and A. Veitch. Hippodrome: Running Circles Around
Storage Administration. In Proceedings of Conference on
File And Storage Technologies, Jan. 2002.

[2] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan,
and Q. Wang. Ergastulum: Quickly Finding Near-optimal
Storage System Designs. HP Laboratories SSP technical
report HPL-SSP-2001-05, June 2002.

[3] Anonymous for Blind Review.
[4] D. E. Bell and A. Schleifer. Data Analysis, Regression

and Forecasting. South-Western College Pub, Oct. 1994.
[5] Y. Chen. Information valuation for Information Lifecycle

Management. In Proceedings of International Conference
on Autonomic Computing, June 2005.

[6] Cost of storage per byte. In private communication with
the market analysts from IBM, 2005.

[7] M. Croy. The Business Value of Data. http:
//www.technologyexecutivesclub.com/
Articles/artBusinessValueofData%.htm.

[8] Understanding Data Lifecycle Management. http://
www.veritas.com/van/articles/4435.jsp,
2003.

[9] I. S. Dhillon and D. S. Modha. Concept Decompositions
for Large Sparse Text Data using Clustering. Machine
Learning, 42(1):143–175, Jan. 2001.

[10] EMC Documentum. http://www.documentum.

com.
[11] Gartner. Emerging Technology: Keeping Storage Costs

Under Control. Network Magazine, Oct. 2002.
[12] R. Glazer. Measuring the Value of Information: The

Information-Intensive Organization. IBM Systems Jour-
nal, 32(1):99–110, 1993.

[13] Process Explorer. http://www.sysinternals.
com/Utilities/Handle.html.

[14] HIPPA. http://www.hippa.org.
[15] International Financial Reporting Standards. http://

www.iasplus.com/standard/standard.htm.
[16] R. Jain. The Art of Computer Systems Performance Anal-

ysis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling. Wiley- Interscience, Apr.
1991.

[17] K. Keeton, C. A. Santos, D. Beyer, J. S. Chase, and
J. Wilkes. Designing for Disasters. In Proceedings of
Conference on File And Storage Technologies, pages 59–
72, Apr. 2004.

[18] D. Koller and M. Sahami. Hierarchically Classifying Doc-
uments Using Very Few Words. In Proceedings of the
Fourteenth International Conference on Machine Learn-
ing, pages 170–178, July 1997.

[19] J. T. McArthur. Storage Networking: Business Drivers for
SANs. IDC, 2003.

[20] M. Mesnier, E. Thereska, G. R. Ganger, D. Ellard, and
M. I. Seltzer. File Classification in Self-* Storage Sys-
tems. In Proceedings of International Conference on Au-
tonomic Computing, pages 44–51, May 2004.

[21] D. Moody and P. Walsh. The Value of Information: An
Asset Valuation Approach. In Proceedings of Seventh Eu-
ropean Conference on Information Systems (ECIS ’99),
June 1999.

[22] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text
Classification from Labeled and Unlabeled Documents us-
ing EM. Machine Learning, 39(2/3):103–134, 2000.

[23] SGI InfiniteStorage Data Migration Facility (DMF). A
White Paper. http://www.sgi.com/pdfs/3631.
pdf.

[24] Storage Networking Industry Association.
http://www.snia.org/home.

[25] IBM Tivoli Storage Manager. http://www-306.
ibm.com/software/tivoli/products/
storage-mgr/.

[26] UK Companies Bill. http://www.dti.gov.uk/
companiesbill/.

[27] VERITAS NetBackup Storage Migrator for UNIX v4.5.
A White Paper. http://eval.veritas.com/
mktginfo/products/White_Papers/Data_
Protection/%smu_unix45_wp.pdf.

[28] E. Zadok, J. Osborn, A. Shater, C. P. Wright,
K. Muniswamy-Reddy, and J. Nieh. Reducing Storage
Management Costs via Informed User-Based Policies. In
Proceedings of the 12th NASA Goddard, 21st IEEE Con-
ference on Mass Storage Systems and Technologies (MSST
2004), pages 193–197, Apr. 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

