
A speed-up theorem for cryptosystems.

(2000,unpublished manuscript)

George Davida1 René Peralta2

1 Electrical Engineering and Computer Science Department,

University of Wisconsin-Milwaukee (davida@cs.uwm.edu)

2 Department of Computer Science

Yale University (peralta-rene@cs.yale.edu)

Abstract. We show that any encryption/decryption system can be converted to an algorithm

which uses roughly three machine operations per bit. We prove that our technique yields an

encryption/decryption system which is as secure as the original system provided the plaintext

has full-entropy. We then show how to remove the full-entropy assumption. Our techniques

speed up software implementations of RSA by four orders of magnitude. Alternatively, our

techniques can be used as a blueprint for encryption/decryption circuits which are public-key

yet are as fast or faster than circuits implementing private-key cryptography.

1 Introduction

In many cryptographic applications, the speed of encryption/decryption is critical. Unfortunately,

public-key cryptography is several orders of magnitude slower than secret-key cryptography. For

example, many people who “trust” RSA more than DES, are still forced to use the slower RSA only

for exchanging a secret key to be used with the faster DES. The same holds for PGP, perhaps the

most widely used cryptosystem these days. Furthermore, there are applications for which public-key

cryptosystems simply can not be replaced by secret-key cryptosystems.

Some of the efforts in speeding up cryptosystems have involved improvements in the software

implementation (see, for example, [4, 7]). In the case of RSA, significant improvements in speed have

been hard to come by, mainly because the underlying algorithms are part of a long-established field

and hence have already been optimized over many decades of work.1

In this paper we show that any encryption/decryption system can be converted to an algorithm

which uses roughly three machine operations per bit without compromising security.

2 The cryptosystem

We start with a public-key encryption system E,D over GF (2)n. We will show a construction for

encrypting and decrypting full-entropy blocks of size b >> n. All vectors and matrices in this paper
1 Montgomery Multiplication and the many works on addition-chain heuristics for fast modular exponenti-

ation are among the more significant developments in this regard.

are over GF (2). For any vector V , we denote the kth bit of V by vk. For any matrix A, we denote

by Aij the bit in the ith row and jth column of A.

Let {R1, R2,Rn} be a set of row vectors chosen uniformly at random in GF(2) b. These strings

are public and form an n x b matrix R. To encrypt a full-entropy block M of length b, the sender

selects a random row-vector J of size n.2 The sender then computes and sends F (M) = J R + M

and E(J). To obtain M , the receiver first computes J = D(E(J)). Then M = F (M) + J R.

Note that each block encryption requires a different string J . If the cryptanalyst correctly guesses

the string J then he/she has decrypted the block corresponding to that string. However, this has

no implications about the security of other blocks. Thus n = | J | should be moderately large. We

suggest n = 128 for easy implementation on standard architectures.

3 Security Properties

In this section we show some of the provable security properties of our scheme. Our treatment of

security is non-asymptotic. That is, we assume the availability of an oracle that breaks our scheme

and then we count the number of calls to this oracle which are enough to invert the underlying

encyphering function E. For simplicity of exposition, we assume the oracle is deterministic, i.e. it is

simply a look-up table.

We consider two models of attack. The first is what we call the non-uniform model. In this model

we allow the oracle to be dependent on the matrix R. In this way we are able to show security

properties which hold for (almost) all R. The second model of attack is the uniform model. We

assume the availability of an oracle that extracts some information about the encrypted message

M depending on what R and M are. Note that a given security property is stronger under the

non-uniform model of attack than under the uniform model of attack.

3.1 Security in the non-uniform attack model

Here we assume R is fixed. Since R is randomly generated and b >> n, we can assume that it

possesses full rank (i.e. rank n). It is not hard to show that breaking the underlying cryptosystem

is not significantly harder than obtaining M .

Theorem 1. Fix J,R such that rank(R) = n. Suppose there is an oracle Ψ which, on input

(E(J), J R + M) outputs α such that PROB.(α = M) = ε. The probability distribution is taken

over uniformly random M . Then an expected number ε−1 of calls to Ψ are sufficient to obtain J .

Proof.

The following algorithm can be used to obtain J :
2 In this paper we will assume that generation of random (or pseudorandom) numbers is cheap, i.e. it can be

done at some constant cost per bit. Note, however, that this is not a crucial assumption since we generate

n random bits for every b >> n bits of plaintext.

2

1. Create a random b-bit vector U .

2. Obtain Ψ(E(J), R, U) = θ (note that θ exists because the function f(θ) = J R + θ is a bijection

on GF(2) b).

3. Solve the linear equation X R + θ = U for X.

4. If E(X) = E(J) then X = J , otherwise go to step 1.

The expected number of iterations is ε−1. 2

Theorem 1 can be easily strengthened to the following

Theorem 2. Fix J,R such that rank(R) = n. Let J be a set of n column indexes of R such that the

columns are linearly independent. For any b-bit string M define MJ as the substring of M defined

by J in the obvious way. Suppose there is an oracle Ψ which, on input (E(J), J R + M) outputs α

such that PROB.(α = MJ) = ε. The probability distribution is taken over uniformly random M .

Then an expected number ε−1 of calls to Ψ are sufficient to obtain J from E(J).

The proof is essentially identical to the proof of Theorem 1. 2

Finally, we note that the ability to obtain partial information about any given bit of M implies

the ability to fully compute that bit. Let us say that an oracle has an “ε advantage” in guessing the

value of a binary function f(x) if it returns the correct value for at least 1+2ε
2 of all inputs x.

Theorem 3. For any (R, J), an oracle which has an ε advantage in guessing any one bit mk of M

on input (E(J), J R +M) can be used to obtain mk with virtual certainty. The probability of error

after s calls to the oracle is exponentially small in s.

Proof.

Queries to the oracle can be randomized via the input (E(J), JR + M + U), where U is a

uniformly random vector. The vector M + U hides, information theoretically, M from the oracle.

Majority decoding is used to obtain, with virtual certainty, the value of the bit. The Chernoff bound

Pr.[X > (1 + δ)µ] < eµ(δ−(1+δ) ln(1+δ))

applies where

– X is the number of times the oracle returns a wrong answer

– µ = s(1/2− ε)

– δ > 0.

Thus, letting δ = 2ε
1−2ε , we have

Pr.[majority decoding fails] = Pr.[X > s/2]

= Pr.[X > µ + sε]

= Pr.[X > (1 + δ)µ]

3

< eµ(δ−(1+δ) ln(1+δ))

=
[
eε+0.5 ln(1−2ε)

]s

= cs

where c < 1 (the reader can verify that c ≈ e−ε2/(1−2ε)). 2

3.2 Security in the uniform attack model

Our next goal is to prove that if any one bit of M is secure then all bits of M are secure. A

moment’s thought will convince the reader that this is not true in the non-uniform model of attack:

some matrices R can “leak” bits of M . For example, any column of R containing only zeroes will

expose the bit of M corresponding to that column. We can, however, prove that the number of pairs

(R, JR + M) which leak any one bit is statistically insignificant unless the underlying cryptosystem

can be broken.

Theorem 4. Fix J , let n ≤ b, and let Ω be the uniform probability space consisting of pairs (R,M)

where R is an n x b matrix of rank n and M is a vector of size b. Suppose oracle BITk takes as

input a pair of the form (R, JR+M) and returns mk with probability ε > 0 and “don′t know” with

probability 1 − ε. Then for all (R,M) ∈ Ω, J (and hence M) can be recovered from (R, JR + M)

with an expected (b + O(1))ε−1 number of queries to BITk.

Proof. We randomize the oracle queries as follows. Let T be a b x b matrix chosen uniformly at

random. Let U be a vector of length b chosen uniformly at random. Consider the pair (RT, (JR +

M)T + U) = (JR′ + M ′), where R′ = RT and M ′ = MT + U . Clearly M ′ is uniformly distributed

in GF (2)b and independent of R′. Since R has full rank, R′ is uniformly distributed in GF (2)b2 .

If we ignore those pairs for which R′ does not have full rank, the remaining pairs are uniformly

distributed over Ω. Let us say that an oracle query of the form BITk(R′, JR′+M ′) is “successful” if

it returns m′
k. Each successful call to the oracle yields the linear equation m′

k =
∑b

i=1(miTik + uk).

Obtaining b linearly independent such equations is enough to solve for all mi and hence obtain M .

The probability that b linearly independent equations are not yet obtained after b+s successful calls

to the oracle is exponentially small in s. The expected number of queries necessary for b+ s of them

to be successful is (b + s)ε−1. 2

4 Asymptotic cost of encryption and decryption

We are mainly interested in the per-bit time cost of our scheme. Since decryption costs are essentially

the same as those of encryption, we will only discuss the latter. This cost will be dominated by the

time necessary to compute E(J) and JR. The per-bit cost is then given by

Time(E(J)) + Time(JR)
b

. (1)

4

Fixing the parameter n and allowing b to grow, this expression is asymptotic to Time(JR))/b. It

takes roughly three machine instructions to perform each basic operation involved in computing

JR. Thus the expected number of such operations is (3 (n/2)(b/w))/b = 3n/2w, where w is

the word length of the machine and n/2 is the expected Hamming weight of J . We have proposed

using n = 128. We may take the value of w to be 64. Thus the asymptotic cost per bit reduces to

3 machine operations. This in turn translates to encryption/decryption speeds on the order of tens

of megabytes per second. However, we must note that the memory requirements increase with b.

At b = 221, the matrix R is of size 32MB. The fact that we may not, in practice, allow b to grow

arbitrarily may cause the term Time(E(J))/b to dominate in (1).

We implemented our method using RSA − 1024 as our underlying encryption function and

32 megabytes of memory. We used one RSA encryption to send 8 = 1024/128 vectors J1 . . . J8.

Nevertheless, Time(E(Ji)) dominates over Time(JiR)). Thus it becomes clear that recursive use

of our technique can further speed up encryption/decryption. For example, to encrypt 232 bytes,

a single MASTER J of length 218 bytes can contain 214 indexes J1 . . . J214 of length 128 each.

MASTER J is a random (and therefore full-entropy) string which can be sent using our technique.

Only one RSA encryption (of which only the last 128 bits of the RSA encrypted message would

be used) is needed. Thus we have managed to encrypt four gigabytes of data using a single RSA

encryption. This achieves rates in the tens or hundreds of megabytes per second on a modern PC.

An alternative use of the recursive method is to achieve high speeds while using a much smaller

block length (and hence a much smaller matrix R). As an example, this technique yields (on our

150MHz processor) encryption speeds of

– 2MB per second using a matrix R of size 1MB;

– 8MB per second using a matrix R of size 2MB.

5 On the full-entropy assumption

Almost all security proofs for cryptosystems rely on some version of the full-entropy assumption (the

notable exception being those systems based on probabilistic encryption [5]). However, cleartext is

not likely to have the full-entropy property. The applications engineer is often encouraged to use

compression to lower the potential risks associated with a cryptanalyst possessing partial information

about the cleartext. This is likely (but is not guaranteed) to increase the ratio of entropy to cleartext

length.

Our cryptosystem is, however, critically vulnerable to an attack based on partial information

about the cleartext. The reader can easily verify that if the cryptanalyst can obtain n bits out of

the b bits in a block of plaintext, then the remaining b − n bits of the block can be obtained by

simply solving a system of linear equations. To solve this problem, we use a technique of “randomized

scrambling”.

5

6 Randomized scrambling

The technique we use here is a special case of a commonly-used heuristic (what Bellare and Rogaway

call “simple-embedding scheme” [3]). The heuristic is used to convert deterministic encryption into

randomized encryption. In addition to yielding randomized encryption, this technique aims at making

prior knowledge of linear relationships between bits of a plaintext M useless to an attacker.

The scheme is the following:

– generate a random DES key K.

– map the message M to M ′ = (K, DESK(M)).

– transmit M ′ rather than M .

Recovery of M now involves one application of DES to a block of length b. DES chips can deliver

throughputs of five to ten gigabits per second.3 This means that adding the randomized scrambling

step introduces no significant delay to our design.

The above design would be appropriate for the construction of an ultra fast public-key encryp-

tion/decryption board. For software implementations, however, DES is not the optimal choice for

randomized scrambling. A faster function, such as SEAL [7] can be used in this case.

7 On the generation and distribution of R

Our design is fastest when R is large. Besides the memory limitations on the size of R, we must also

consider scenarios where the speed of generation and/or distribution of R is of concern. In practice,

R may not be truly random but pseudo-random. The question then arises of which pseudo-random

generator to use. When speed of generation of R is not a concern, a cryptographically secure pseudo

random number generator should be used. When speed is a concern, then faster generators can be

used. In particular, the techniques of Aiello, Rajagopalan, and Venkatesan should be considered [1].

When seed-size is a concern (either because of storage or speed of distribution constraints), R can

be an ε-biased string [6, 2]. The latter exhibit super-polynomial expansion while preserving provable

pseudo-random properties.

8 Remarks

We remark here on some of the salient features and possible enhancements of our design.

– It speeds up any public-key cryptosystem to a limiting speed of about three machine opera-

tions per bit. This effectively removes the speed differential between symmetric and asymetric

cryptosystems.

– The resulting cryptosystem is still public-key.
3 In particular, the chip recently developed at Sandia National Labs can achieve this and higher speeds

with a key size of 112 bits. We thank Ed Witzke for providing us with this information.

6

– It removes any cryptographic weakness that might arise from partial information known to the

cryptanalyst when using the underlying public-key cryptosystem. This is because our method

uses the latter only to encrypt/decrypt a random bit string.

– Provided one believes in the “scrambling” properties of DES (or whatever function is used for

randomized scrambling), our design offers a guarantee of bit-wise security akin, in practice, to

that of probabilistic encryption.

– Our technique can also be used to speed-up private-key cryptosystems. This might prove useful in

practice for software implementations. However, the “randomized scrambling” function utilized

must then be chosen so as to not be a bottleneck with respect to speed.

– Our method yielded a speed-up of four orders of magnitude when applied to our software im-

plementation of RSA. Higher speeds can be obtained by recursive use the technique (see section

4).

– The results presented here extend to public-key cryptosystems which are not length preserving,

i.e. E : Zn
2− > Zm

2 and D : Zm
2 − > Zn

2 , where m > n.

– Theorem 2 can be strengthened further by allowing the n columns of R to be linearly dependent

but of rank no smaller than, say, n − k. In this case k bits of M must be guessed in order to

recover J in the security proof. In this way we obtain the result that almost all sets of n bits of

M are provably secure. To quantify “almost all” we need to know the probability that an n x n

random binary matrix will have rank no smaller than n−k. Unfortunately, we know of no closed

formula for this probability. However, it is not hard to see that the function fn(m, r) for the

probability that a random binary n x m matrix has rank r satisfies the following recurrence

2n fn(m, r) = 2r fn(m− 1, r) + (2n − 2r−1) fn(m− 1, r − 1)

fn(m, r) = 0 r > max(n, m)

fn(m, 0) = 2−nm

For n = 128 and k = 20, direct computation yields that the probability that a random binary

128 X 128 matrix has rank less than 108 is approximately 6 x 10−133.

– The proven security properties of our design should be sufficient for most cryptographic applica-

tions. In those cases where the user requires proof of stronger security properties (e.g. semantic

security or non-malleability), the techniques of Bellare and Rogaway [3] can be used in conjunc-

tion with ours. Their techniques enhance the security of any system based on trapdoor one-way

functions.

9 Acknowledgments

Moti Yung’s comments on a first draft of this paper are gratefully acknowledged. We would also

like to thank our students Dennis Meilecke and Fethiye Akbulut for their assistance in software

development.

7

References

1. W. Aiello, S. Rajagopalan, and R. Venkatesan. Design of practical and provably good random number

generators. Journal of Algorithms, 29:358–389, 1998.

2. N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise independent

random variables. Random Structures and Algorithms, 3(3):289–304, 1992.

3. M. Bellare and P. Rogaway. Provably secure session key distribution - the three party case. In Annual

Symposium on the Theory of Computing, pages 57–66. ACM, 1995.

4. H. Everle. A high-speed DES implementation for network applications. In Advances in Cryptology -

Proceedings of CRYPTO 92, volume 740 of Lecture Notes in Computer Science, pages 521–539, 1993.

5. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28:270–

299, 1984.

6. J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applications. In Proceed-

ings of the 22th Annual ACM Symposium on the Theory of Computing, pages 213–223, 1990. To appear

in Siam Journal on Computing.

7. P. Rogaway and D. Coppersmith. A software-optimized encryption algorithm. Journal of Cryptology,

11(4):273–287, 1998. US Patent Issued 5,454,039, 9/26/1995.

8

