Galois Field Derivations

René Peralta
Information Technology Laboratory, NIST

Feb 11, 2018: added equations for squaring and scaling

1 Extensions and constants

In the following, bases will be defined for each of the finite fields. Each base $\left(b_{1}, b_{2}\right)$ will be such that $b_{1}+b_{2}=1$. This identity can be verified by repeated squaring of the defining irreducible polynomial and adding the telescoping sequence (verify $G F\left(2^{k}\right)$ before $G F\left(2^{2 k}\right)$).

- $G F\left(2^{2}\right)$ is built from $G F 2$ by adjoining a root W of $x^{2}+x+1$.
- basis for $G F\left(2^{2}\right)\left(W, W^{2}\right)$, with $W+W^{2}=1$.
-

$$
W^{3}=1
$$

- $G F\left(2^{4}\right)=G F 16$ is built from $G F\left(2^{2}\right)$ by adjoining a root Z of $x^{2}+x+W^{2}$.
- basis for $G F\left(2^{4}\right)$ is $\left(Z^{2}, Z^{8}\right)$, with $Z^{2}+Z^{8}=1$.

1.

$$
Z^{4}=W^{2} Z^{2}+W Z^{8}
$$

2.

$$
Z^{10}=W Z^{2}+W Z^{8}=W
$$

3.

$$
Z^{16}=W Z^{2}+W^{2} Z^{8}
$$

- Multiplication in $G F\left(2^{4}\right)$ is given by

$$
\left(a Z^{2}+b Z^{8}\right)\left(c Z^{2}+d Z^{8}\right)=\left(a c W^{2}+(a d+b c+b d) W\right) Z^{2}+\left((a c+a d+b c) W+b d W^{2}\right) Z^{8}
$$

- $G F\left(2^{8}\right)=G F 256$ is built from $G F\left(2^{4}\right)$ by adjoining a root V of $x^{2}+x+$ $W Z^{2}$.
- basis for $G F\left(2^{8}\right)$ is $\left(V, V^{16}\right)$, with $V+V^{16}=1$. Let $\Omega=W Z^{2}$.

1.

$$
V^{2}=(1+\Omega) V+\Omega V^{16}
$$

2.

$$
V^{17}=\Omega V+\Omega V^{16}=\Omega
$$

3.

$$
V^{32}=\Omega V+(1+\Omega) V^{16}
$$

- Multiplication in $G F\left(2^{8}\right)$ is given by

$$
\left(a V+b V^{16}\right)\left(c V+d V^{16}\right)=(a c+(a+b)(c+d) \Omega) V+(b d+(a+b)(c+d) \Omega) V^{16} .
$$

- $G F\left(2^{16}\right)=G F 65536$ is built from $G F\left(2^{8}\right)$ by adjoining a root T of $x^{2}+$ $x+W Z^{2} V$.
- basis for $G F\left(2^{16}\right)$ is $\left(T, T^{256}\right)$, with $T+T^{256}=1$. Let $\Theta=W Z^{2} V$.

1.

$$
T^{2}=(1+\Theta) T+\Theta T^{256}
$$

2.

$$
T^{17}=\Theta T+\Theta T^{256}=\Theta
$$

3.

$$
T^{32}=\Theta T+(1+\Theta) T^{256}
$$

- Multiplication in $\operatorname{GF}\left(2^{16}\right)$ is given by

$$
\left(a T+b T^{256}\right)\left(c T+d T^{256}\right)=(a c+\Theta(a+b)(c+d)) T+(b d+\Theta(a+b)(c+d)) T^{256}
$$

- Derivation of inverse in $G F\left(2^{16}\right)$ and $G F\left(2^{8}\right)$.

I show the derivation for inverse in $G F\left(2^{16}\right)$. The same derivation holds in $G F\left(2^{8}\right)$ if you set μ to $\Omega(a+b)$ instead of $\Theta(a+b)$.

$$
1=a c+\Theta(a+b)(c+d) \quad 1=b d+\Theta(a+b)(c+d)
$$

setting $\mu=\Theta(a+b)$ and summing yields

$$
1=c(a+\mu)+d \mu \quad 0=a c+b d
$$

equate the c coefficients

$$
a=c a(a+\mu)+d a \mu \quad 0=a c(a+\mu)+b d(a+\mu)
$$

sum them

$$
a=d(b(a+\mu)+a \mu) \Rightarrow d=(b(a+\mu)+a \mu)^{-1} a
$$

yields

$$
c=b d a^{-1}=b(b(a+\mu)+a \mu)^{-1} \quad d=a(b(a+\mu)+a \mu)^{-1}
$$

Therefore

$$
c=b(b a+(a+b) \mu)^{-1} \quad d=a(b a+(a+b) \mu)^{-1} .
$$

So

$$
c=b\left(b a+(a+b)^{2} \Theta\right)^{-1} \quad d=a\left(b a+(a+b)^{2} \Theta\right)^{-1}
$$

2 Squaring and scaling

2.1 GF4 squaring and scaling

$$
\begin{aligned}
\left(a_{0} W\right. & \left.+a_{1} W^{2}\right)^{2}=a_{1} W+a_{0} W^{2} \\
\left(a_{0} W+a_{1} W^{2}\right)^{2} W & =\left(a_{1} W+a_{0} W^{2}\right) W \\
& =a_{1} W^{2}+a_{0} \\
& =\left(a_{1} W^{2}+a_{0}\left(W+W^{2}\right)\right) \\
& =a_{0} W+\left(a_{0}+a_{1}\right) W^{2} \\
\left(a_{0} W+a_{1} W^{2}\right)^{2} W^{2} & =\left(a_{1} W+a_{0} W^{2}\right) W^{2} \\
& =a_{0} W^{2}+a_{1} \\
& =\left(a_{0} W^{2}+a_{1}\left(W+W^{2}\right)\right) \\
& =a_{1} W+\left(a_{0}+a_{1}\right) W^{2}
\end{aligned}
$$

i.e.

$$
\begin{aligned}
\left(a_{0}, a_{1}\right)^{2} & =\left(a_{1}, a_{0}\right) \\
\left(a_{0}, a_{1}\right)^{2} W & =\left(a_{0}, a_{0}+a_{1}\right) \\
\left(a_{0}, a_{1}\right)^{2} W^{2} & =\left(a_{1}, a_{0}+a_{1}\right)
\end{aligned}
$$

Squaring in GF4 just swaps coefficients.

2.2 GF16 squaring and scaling

2.2.1 Squaring

$$
\begin{aligned}
\left(a_{0} Z^{2}+a_{1} Z^{8}\right)^{2} & =a_{0}^{2} Z^{4}+a_{1} Z^{16} \\
& =a_{0}^{2}\left(W^{2} Z^{2}+W Z^{8}\right)+a_{1}^{2}\left(W Z^{2}+W^{2} Z^{8}\right) \\
& =\left(a_{0}^{2} W^{2}+a_{1}^{2} W\right) Z^{2}+\left(a_{0}^{2} W+a_{1}^{2} W^{2}\right) Z^{8}
\end{aligned}
$$

In exploded form this yields the linear transformation:

$$
(a, b, c, d)^{2}=(a+b+c, b+c+d, a+c+d, a+b+d)
$$

2.2.2 Scaling

$$
\begin{gathered}
(a, b, c, d) Z^{2} \rightarrow(a+b+d, a+c+d, b+d, a+b+c+d) \\
\left(a Z^{2}+b Z^{8}\right) W Z^{2}=\left(a+b W^{2}\right) Z^{2}+(a+b) W^{2} Z^{8} \\
(a, b, c, d) W Z^{2} \rightarrow(a+c+d, b+c, a+b+c+d, a+c)
\end{gathered}
$$

2.2.3 Squaring and square-scaling

$$
\begin{gathered}
(a, b, c, d)^{2} \rightarrow(a+b+c, b+c+d, a+c+d, a+b+d) \\
(a, b, c, d)^{2} W Z^{2} \rightarrow(a, a+b, a+b+c+d, b+d)
\end{gathered}
$$

2.3 GF256 squaring and scaling

2.3.1 Squaring

Recall $\Omega=W Z^{2}$. Then

$$
\begin{aligned}
\left(a_{0} V+a_{1} V^{16}\right)^{2} & =a_{0}^{2} V^{2}+a_{1}^{2} V^{32} \\
& =a_{0}^{2}(1+\Omega) V+a_{0}^{2} \Omega V^{16}+a_{1}^{2} \Omega V+a_{1}^{2}(1+\Omega) V^{16} \\
& =\left(a_{0}^{2}(1+\Omega)+a_{1}^{2} \Omega\right) V+\left(a_{0}^{2} \Omega+a_{1}^{2}(1+\Omega)\right) V^{16} \\
& =\left(a_{0}^{2}+\left(a_{0}^{2}+a_{1}^{2}\right) \Omega\right) V+\left(a_{1}^{2}+\left(a_{0}^{2}+a_{1}^{2}\right) \Omega\right) V^{16} \\
& =\left(a_{0}^{2}+\left(a_{0}+a_{1}\right)^{2} \Omega\right) V+\left(a_{1}^{2}+\left(a_{0}+a_{1}\right)^{2} \Omega\right) V^{16}
\end{aligned}
$$

This leads to the linear transformation

$$
(a 0, a 1, a 2, a 3, a 4, a 5, a 6, a 7)^{2}=(h 0, h 1, h 2, h 3, h 4, h 5, h 5, h 7)
$$

where

$$
\begin{aligned}
h 0 & =a 1+a 2+a 4 \\
h 1 & =a 0+a 2+a 3+a 4+a 5 \\
h 2 & =a 1+a 4+a 5+a 6+a 7 \\
h 3 & =a 0+a 5+a 7 \\
h 4 & =a 0+a 5+a 6 \\
h 5 & =a 0+a 1+a 4+a 6+a 7 \\
h 6 & =a 0+a 1+a 2+a 3+a 5 \\
h 7 & =a 1+a 3+a 4
\end{aligned}
$$

We can compute this with 14 XORs at depth 3:

```
1 4 \text { gates}
inputs
a0 a1 a2 a3 a4 a5 a6 a7
8 outputs
h0 h7 h1 h6 h2 h4 h5 h3
begin
T1 = a0 + a5
T2 = a1 + a4
T3 = a6 + a7
T4 = T2 + T3
T5 = a2 + a3
T6 = T1 + T5
h0 = a2 + T2
h7 = a3 + T2
h1 = a4 + T6
h6 = a1 + T6
h2 = a5 + T4
h4 = a6 + T1
h5 = a0 + T4
h3 = a7 + T1
end
```


2.3.2 Scaling

For multiplication in $G F\left(2^{16}\right)$ I need to scale by V in $G F\left(2^{8}\right)$ (because $\Theta=$ $\left.W Z^{2} V=\Omega V\right)$. We can use

$$
V^{2}=(1+\Omega) V+\Omega V^{16}
$$

and

$$
V^{17}=\Omega V+\Omega V^{16}=\Omega
$$

Then

$$
\begin{aligned}
\left(a_{0} V+a_{1} V^{16}\right) V & =\left(a_{0} V^{2}+a_{1} V^{17}\right) \\
& =\left(a_{0}+\left(a_{0}+a_{1}\right) \Omega\right) V+\left(a_{0}+a_{1}\right) \Omega V^{16}
\end{aligned}
$$

3 Mapping the solution to other representations

Consider constructing $G F\left(2^{16}\right)$ from $G F(2)$ by adjoining a root Δ of $p(x)=$ $x^{16}+x^{5}+x^{3}+x+1$. I will call this the target representation and the previous one the tower representation.

We can look for Δ using the algebra developed in the previous sections. There are sixteen possible values. I will pick

$$
\begin{aligned}
\Delta & =(1000100001001000) \\
& =W Z^{2} V T+W Z^{2} V^{16} T+W^{2} Z^{2} V T^{256}+W Z^{2} V^{16} T^{256}
\end{aligned}
$$

This gives us linear transformations between the two representations. The transformation from target to tower is given by the matrix

$$
A=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

The rows of the matrix are the powers (0 through 15) of Δ. A vector v in the target representation is mapped to a vector in the tower representation by computing $v A$.

The inverse of A is

$$
A^{-1}=\left[\begin{array}{llllllllllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

A vector v in the tower representation is mapped to a vector in the target representation by computing $v A^{-1}$.

