
Subspace Sampling and Relative-Error Matrix
Approximation: Column-Based Methods

Petros Drineas1, Michael W. Mahoney2,�, and S. Muthukrishnan3

1 Department of Computer Science, RPI
2 Yahoo Research Labs

3 Department of Computer Science, Rutgers University

Abstract. Given an m×n matrix A and an integer k less than the rank
of A, the “best” rank k approximation to A that minimizes the error with
respect to the Frobenius norm is Ak, which is obtained by projecting A
on the top k left singular vectors of A. While Ak is routinely used in
data analysis, it is difficult to interpret and understand it in terms of
the original data, namely the columns and rows of A. For example, these
columns and rows often come from some application domain, whereas
the singular vectors are linear combinations of (up to all) the columns or
rows of A. We address the problem of obtaining low-rank approximations
that are directly interpretable in terms of the original columns or rows of
A. Our main results are two polynomial time randomized algorithms that
take as input a matrix A and return as output a matrix C, consisting of
a “small” (i.e., a low-degree polynomial in k, 1/ε, and log(1/δ)) number
of actual columns of A such that

∥
∥A − CC+A

∥
∥

F
≤ (1 + ε) ‖A − Ak‖F

with probability at least 1− δ. Our algorithms are simple, and they take
time of the order of the time needed to compute the top k right singular
vectors of A. In addition, they sample the columns of A via the method of
“subspace sampling,” so-named since the sampling probabilities depend
on the lengths of the rows of the top singular vectors and since they
ensure that we capture entirely a certain subspace of interest.

1 Introduction

1.1 Motivation and Overview

In many applications, the data are represented by a real m × n matrix A. Such
a matrix may arise if the data consist of m objects, each of which is described
by n features. Examples of objects include documents, genomes, stocks, hyper-
spectral images, and web groups, while examples of the corresponding features
are terms, environmental conditions, temporal resolution, frequency resolution,
and individual users. In each of these application areas, practitioners spend vast
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amounts of time analyzing the data in order to understand, interpret, and ul-
timately use this data. Often the central task in this analysis is to develop a
compressed representation of A that may be easier to analyze and interpret.

The most common compressed representation of A used by data analysts is
that obtained by truncating the SVD at some number k � min{m, n} terms,
in large part because this provides the “best” rank-k approximation to A when
measured with respect to any unitarily invariant matrix norm. However, there
is a fundamental difficulty with this representation: the new “dimensions” (the
so-called eigencolumns and eigenrows) of Ak are linear combinations of (up to
all) the original dimensions. As such, they are notoriously difficult to interpret in
terms of the underlying data and processes generating that data. For example,
the vector [(1/2) age - (1/

√
2) height + (1/2) income], being one of the significant

uncorrelated “factors” from a dataset of people’s features is not particularly
informative. From an analyst’s point of view, it would be highly preferable to
have a low-rank approximation that is nearly as good as that provided by the
SVD but that is expressed in terms of a small number of actual columns and/or
actual rows of a matrix, rather than linear combinations of those columns and
rows. For example, consider recent data analysis work in DNA microarray and
DNA Single Nucleotide Polymorphism (SNP) analysis [15, 16, 18], where linear
combinations of genes or loci in the human genome have no clear biological
interpretation.

In this paper, we focus on choosing columns of a matrix A in order to approx-
imate very precisely a data matrix A as the product CX , where C consists of a
few columns of A and where X is a matrix that expresses every column of A in
terms of the basis provided by the columns of C.

1.2 Review of Linear Algebra

Let [n] denote the set {1, 2, . . . , n}. For any matrix A ∈ R
m×n, let A(i), i ∈ [m]

denote the i-th row of A as a row vector, and let A(j), j ∈ [n] denote the j-th
column of A as a column vector. The Singular Value Decomposition (SVD) of
A will be denoted by A = UΣV T , where U ∈ R

m×ρ, Σ ∈ R
ρ×ρ, V ∈ R

n×ρ,
and where ρ is the rank of A. The “best” rank-k approximation to A (with
respect to, e.g., the Frobenius norm, ||A||F =

√
∑

i,j A2
ij) will be denoted by

Ak = UkΣkV T
k , where Uk ∈ R

m×k is the first k columns of U , etc. The SVD and
hence the best rank-k approximation of a general matrix A can be computed in
O(min{n2m, nm2}) time, and optimal rank-k approximations to it can be com-
puted more rapidly with, e.g., Lanczos methods. We will use SV D(Ak) to denote
the time to compute Ak. For more details on linear algebra, see [1, 12, 14, 17],
and for more details on notation and our sampling matrix formalism, see [5, 9].

1.3 Problem Definition

We start with the following definition.

Definition 1. Let A be an m × n matrix, and let C be an m × c matrix whose
columns consist of a small number c of columns of the matrix A. Then the m×n
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matrix A′ is a column-based low-rank matrix approximation to A, or a CX
matrix approximation, if it may be explicitly written as A′ = CX for some c×n
matrix X.

We prefer not to provide too precise a characterization of what we mean by a
“small” number of columns, but one should think of c � n. Also, the low-rank
matrix approximation provided by truncating the SVD at some value of k < ρ =
rank(A) will not in general satisfy the conditions of the definition. Finally, given
a set of columns C, the approximation A′ = PCA = CC+A clearly satisfies the
requirements of Definition 1. Indeed, this is the “best” such approximation to
A, in the sense that ‖A − C (C+A)‖F = minX∈Rc×n ‖A − CX‖F .

The quality of a CX matrix approximation depends on the choice of C as well
as on the matrix X . We consider the following problem.

Problem 1 (Column-based low-rank matrix approximation problem.)
Given a matrix A ∈ R

m×n and an integer k � min{m, n}, choose a sufficient
number of columns of A such that

∥
∥A − CC+A

∥
∥

F
≤ (1 + ε) ‖A − Ak‖F . (1)

Here, C is a matrix consisting of the chosen columns of A, CC+A is the pro-
jection of A on the subspace spanned by the chosen columns, and Ak is the best
rank k approximation to A. The number of columns of C should be a function
of k, 1/ε, and – in the case of randomized algorithms – a failure probability δ,
and the running time of the algorithm should be a low-degree polynomial in m
and n.

Note that is not obvious whether there exist, and if so whether one can efficiently
find, a small (depending on k, 1/ε, and 1/δ, but independent of m and n) number
of columns that provide such relative-error guarantees.

1.4 “Subspace Sampling” and Our Main Result

Our main result is the following theorem, which asserts the existence of two
related algorithms to solve Problem 1.

Theorem 1. There exists randomized algorithms that solve Problem 1.

– In one algorithm, exactly c = O(k2 log(1/δ)/ε2) columns of A are chosen to
construct C.

– In the other algorithm, c = O(k log k log(1/δ)/ε2) columns in expectation are
chosen to construct C.

Both algorithms satisfy (1) with probability at least 1 − δ, both run in time
O(SV D(Ak)), and both use the method of “subspace sampling” to sample columns
to form C.

The algorithms of Theorem 1 for constructing a matrix C consisting of a few
columns of A are simple:
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1. Construct sampling probabilities {pi}n
i=1 satisfying the “subspace sampling”

Condition (2) below.
2. Use these probabilities to randomly sample columns from A and construct

a matrix C using one of two sampling procedures.
3. Repeat these two steps O(log(1/δ)) times, and return the set of columns C

such that ‖A − CC+A‖F is smallest over all O(log(1/δ)) trials.

The first sampling procedure, which we call the Exactly(c) sampling algo-
rithm, picks exactly c columns of A to be included in C in c i.i.d. trials, where in
each trial the i-th column of A is picked with probability pi. Notice that some
columns of A may be included in the sample more than once. The second sam-
pling procedure, which we call the Expected(c) sampling algorithm, picks in
expectation at most c columns of A to create C, by including the i-th column of
A in C with probability min {1, cpi}. No column of A is included in the sample
more than once.

The key technical insight that leads to the relative-error guarantees is that
the columns are selected by a novel sampling procedure that we call “subspace
sampling.” Rather than sample columns from A with a probability distribu-
tion that depends on the Euclidean norms of the columns of A (which gives
provable additive-error bounds [5, 6, 7]), in “subspace sampling” we randomly
sample columns of A with a probability distribution that depends on the Eu-
clidean norms of the rows of the top k right singular vectors of A. This allows
us to capture entirely a certain subspace of interest. The “subspace sampling”
probabilities pi, i ∈ [n] will satisfy

pi ≥
β

∣
∣
∣(Vk)(i)

∣
∣
∣

2

k
∀i ∈ [n], (2)

for some β ∈ (0, 1]. Note that
∑n

j=1

∣
∣
∣(Vk)(j)

∣
∣
∣

2
= k and that

∑

i∈[n] pi = 1. To
construct sampling probabilities satisfying Condition (2), it is sufficient to spend
O(SV D(Ak)) time to compute (exactly or approximately, in which case β = 1
or β < 1, respectively) the top k right singular vectors of A.

1.5 Related Work

The seminal work of Frieze, Kannan and Vempala [10, 11] can be viewed, in
our parlance, as sampling columns from a matrix A to form a matrix C such
that ‖A − CX‖F ≤ ‖A − Ak‖F + ε ‖A‖F . The matrix C has poly(k, 1/ε, 1/δ)
columns and is constructed after making only two passes over A using O(m+n)
work space. Under similar resource constraints, a series of papers have fol-
lowed [10, 11] in the past seven years [4, 6, 20], improving the dependency of
c on k, 1/ε, and 1/δ, and analyzing the spectral as well as the Frobenius norm,
yielding bounds of the form

‖A − CX‖ξ ≤ ‖A − Ak‖ξ + ε ‖A‖F (3)
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for ξ = 2, F , and thus providing additive-error guarantees for column-based
low-rank matrix approximations.

Most relevant for our relative-error column-based low-rank matrix approxima-
tion of Problem 1 is the recent work of Rademacher, Vempala and Wang [19] and
Deshpande, Rademacher, Vempala and Wang [2]. Using two different methods
(in one case iterative sampling in a backwards manner and an induction on k
argument [19] and in the other case an argument which relies on estimating the
volume of the simplex formed by each of the k-sized subsets of the columns [2]),
they reported the existence of a set of O(k2/ε2) columns that provide relative-
error CX matrix approximation. No algorithmic result was presented, except for
an exhaustive algorithm that ran in Ω(nk) time.

To the best of our knowledge, the first nontrivial algorithmic result for relative-
error low-rank matrix approximation was provided by a preliminary version
of this paper [8]. In particular, an earlier version of Theorem 1 provided the
first known relative-error column-based low-rank approximation in polynomial
time [8]. The major difference between our Theorem 1 and our result in [8] is that
the sampling probabilities in [8] are more complicated. The algorithm of [8] runs
in O(SV D(Ak)) time (although it was originally reported to run in O(SV D(A))
time), and it has a sampling complexity of O(k2 log(1/δ)/ε2) columns.

Subsequent to the completion of the preliminary version of this paper [8],
several developments have been made on relative-error low-rank matrix ap-
proximation algorithms. First, Har-Peled reported an algorithm that in roughly
O(mnk2 log k) time returns as output a rank-k matrix A′ with a relative-error
approximation guarantee [13]. His algorithm uses geometric ideas and involves
sampling and merging approximately-optimal k-flats; it is not clear if this ap-
proximation can be expressed in terms of a small number of columns of A. Then,
Deshpande and Vempala [3] reported an algorithm that also returns a relative-
error approximation guarantee. Their algorithm extends ideas from [19, 2] and
it leads to a CX matrix approximation consisting of O(k log k) columns of A.
The complexity of their algorithm is O(Mk2 log k), where M is the number of
nonzero elements of A, and their algorithm can be implemented with O(k log k)
passes over the data. In light of these developments, we simplified and gener-
alized our preliminary results [8], and we performed a more refined analysis to
improve our sampling complexity to O(k log k).

2 Proof of Theorem 1

Regardless of whether the columns are chosen with the Exactly(c) algorithm
or Expected(c) algorithm, we can construct a column sampling matrix S, such
that C = AS. Similarly, we may introduce a diagonal rescaling matrix D in this
expression, which rescales each sampled column by 1/

√
cpj for the Exactly(c)

algorithm and 1/ min{1,
√

cpj} for the Expected(c) algorithm. For details on
this formalism, see [9]. Since scaling the columns of a matrix does not change the
subspace spanned by its columns, A−CC+A = A−ASD (ASD)+ A. Our careful
choice for S and D will allow us to apply matrix perturbation results from [5, 21]
to bound this latter expression. For simplicity, we assume that ε ∈ (0, 1].



Subspace Sampling and Relative-Error Matrix Approximation 321

2.1 Constructing C with the Exactly(c) Algorithm

The first claim of Theorem 1 considers the situation when the columns of A
are sampled with the Exactly(c) algorithm. In this subsection, we provide its
proof. The proof of the second claim is similar, and we outline the differences in
the next subsection.

To prove our main result, we must “disentangle” the “top” singular sub-
space of A from the “bottom” singular subspace. To do so, first note that using
the unitary invariance of the Frobenius norm, and since

(

UAΣAV T
A SD

)+ =
(

ΣAV T
A SD

)+
UT

A , it follows that

∥
∥A − CC+A

∥
∥

2
F
=

∥
∥
∥ΣA −

(

ΣAV T
A SD

) (

ΣAV T
A SD

)+
ΣA

∥
∥
∥

2

F
(4)

=
∥
∥
∥
∥

[
Σk

0

]

−
(

ΣAV T
A SD

) (

ΣAV T
A SD

)+
[

Σk

0

]∥
∥
∥
∥

2

F

+
∥
∥
∥
∥

[
0

Σρ−k

]

−
(

ΣAV T
A SD

) (

ΣAV T
A SD

)+
[

0
Σρ−k

]∥
∥
∥
∥

2

F

. (5)

Next, to upper bound the second term on the right hand side of (5), recall that
since I −

(

ΣAV T
A SD

) (

ΣAV T
A SD

)+ is a projector matrix, it may be dropped
without increasing a unitarily invariant norm, and thus

∥
∥
∥
∥

(

I −
(

ΣAV T
A SD

) (

ΣAV T
A SD

)+
)[

0
Σρ−k

]∥
∥
∥
∥

2

F

≤ ‖A − Ak‖2
F . (6)

Finally, to establish the first claim of Theorem 1, we seek to upper bound the
first term on the right hand side of (5) by ε ‖A − Ak‖2

F . That is, we seek an
upper bound that does not depend at all on any of the top k singular values of
A. To this end, note that

∥
∥
∥
∥

[
Σk

0

]

−
(

ΣAV T
A SD

) (

ΣAV T
A SD

)+
[

Σk

0

]∥
∥
∥
∥

2

F

= min
X∈Rc×k

∥
∥
∥
∥

[

Σk

0

]

−
(

ΣAV T
A SD

)

X

∥
∥
∥
∥

2

F

(7)

≤
∥
∥
∥
∥

[
Σk

0

]

−
(

ΣAV T
A SD

) (

ΣkV T
k SD

)+
Σk

∥
∥
∥
∥

2

F

. (8)

Equations (7) and (8) follow from least-squares approximation theory: (7) fol-

lows since
(

ΣAV T
A SD

) (

ΣAV T
A SD

)+
[

Σk

0

]

is the exact projection of the matrix
[
Σk

0

]

on the subspace spanned by the columns of ΣAV T
A SD; and (8) follows

since X =
(

ΣkV T
k SD

)+
Σk ∈ R

c×k is a suboptimal – but as we will see below
very convenient – choice for X in (7).
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To see that (8) provides the bound we seek, let the rank of the k × c matrix
V T

k SD be k̃, and let its SVD be V T
k SD = UV T

k SDΣV T
k SDV T

V T
k SD

. Clearly k̃ ≤ k.
Among other things, the following lemma states that, given our construction of
S and D, all the singular values of V T

k SD are close to 1 and thus that the rank
of V T

k SD is equal to k.

Lemma 1. If c ≥ 40k2/βε2, then with probability at least 0.9:

– k̃ = k, i.e., rank(V T
k SD) = rank(Vk),

–
∥
∥
∥

(

V T
k SD

)+ −
(

V T
k SD

)T
∥
∥
∥

2
=

∥
∥
∥Σ−1

V T
k SD

− ΣV T
k SD

∥
∥
∥

2
,

–
(

ΣkV T
k SD

)+ =
(

V T
k SD

)+
Σ−1

k , and

–
∥
∥
∥ΣV T

k SD − Σ−1
V T

k SD

∥
∥
∥

2
≤ ε/

√
2.

Proof: Note that for all i ∈ [k̃],
∣
∣1 − σ2

i

(

V T
k SD

)∣
∣ =

∣
∣σi

(

V T
k Vk

)

− σi

(

V T
k SDDST Vk

)∣
∣

≤
∥
∥V T

k Vk − V T
k SDDST Vk

∥
∥

2 . (9)

Since the probabilities of (2) satisfy the condition of Theorem 1 of [5]

E
[ ∥
∥V T

k Vk − V T
k SDDST Vk

∥
∥

2
F

]

≤ 1
βc

‖Vk‖4
F =

k2

βc
, (10)

where the equality follows since ‖Vk‖2
F = k. By applying Markov’s inequality to

(10), taking square roots of both sides, combining it with (9), and using ‖·‖2 ≤
‖·‖F and the assumed choice of c, it follows that

∣
∣1 − σ2

i

(

V T
k SD

)∣
∣ ≤ ε/2 ≤ 1/2,

since ε ≤ 1. This implies that all singular values of V T
k SD are strictly positive,

and thus that k̃ = k. The remainder of the proof is similar to that of Lemma 4.1
of [9].

	
Using Lemma 1, we manipulate the right hand side of (8) as follows:

∥
∥
∥
∥

[
Σk

0

]

−
(

ΣAV T
A SD

) (

ΣkV T
k SD

)+
Σk

∥
∥
∥
∥

2

F

=
∥
∥
∥
∥

[

Σk

0

]

−
[

Σk 0
0 Σρ−k

] [
V T

k

V T
ρ−k

]

SD
(

V T
k SD

)+
∥
∥
∥
∥

2

F

=
∥
∥
∥
∥

[
Σk

0

]

−
[

ΣkV T
k

Σρ−kV T
ρ−k

]

SD
(

V T
k SD

)+
∥
∥
∥
∥

2

F

=

∥
∥
∥
∥
∥
∥
∥

Σk − Σk V T
k SD

(

V T
k SD

)+

︸ ︷︷ ︸

=Ik

∥
∥
∥
∥
∥
∥
∥

2

F

+
∥
∥
∥Σρ−kV T

ρ−kSD
(

V T
k SD

)+
∥
∥
∥

2

F
(11)

=
∥
∥
∥Σρ−kV T

ρ−kSD
(

V T
k SD

)+
∥
∥
∥

2

F
. (12)
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The first term of (11) is the most important point of the proof. The sampling
probabilities {pi} are carefully constructed to guarantee that the k × c matrix
V T

k SD has full rank; thus its columns – which are k-dimensional vectors – span
R

k. As a result, the projection of Σk on the subspace spanned by the columns of
V T

k SD is equal to Σk. Thus, since Σk does not appear in (12), at this point in
the proof, we have removed any dependency of the error on the top k singular
values of A.

We can combine (5), (6), (8), and (12), and take the square root of both sides
to get

∥
∥A − CC+A

∥
∥

F
≤ ‖A − Ak‖F +

∥
∥
∥Σρ−kV T

ρ−kSD
(

V T
k SD

)+
∥
∥
∥

F
. (13)

From this, the triangle inequality, and the fact that for any two matrices A and
B, ‖AB‖F ≤ ‖B‖2 ‖A‖F , we have that

∥
∥
∥Σρ−kV T

ρ−kSD
(

V T
k SD

)+
∥
∥
∥

F

≤
∥
∥
∥XSD

(

V T
k SD

)T
∥
∥
∥

F
+

∥
∥
∥XSD

((

V T
k SD

)+ −
(

V T
k SD

)T
)∥
∥
∥

F

≤
∥
∥XSDDST Vk

∥
∥

F
+

∥
∥
∥Σ−1

V T
k SD

− ΣV T
k SD

∥
∥
∥

2
‖XSD‖F , (14)

where we have let X = Σρ−kV T
ρ−k. The following lemma will be used to bound

(14); the proof is omitted.

Lemma 2. For any probabilities {pi},
∥
∥
∥Σρ−kV T

ρ−kSD
∥
∥
∥

F
≤ 10 ‖A − Ak‖F , with

probability at least 0.9.

The following lemma will also be used to bound (14).

Lemma 3. If c ≥ 10k/βε2, then
∥
∥
∥Σρ−kV T

ρ−kSDDST Vk

∥
∥
∥

F
≤ ε ‖A − Ak‖F , with

probability at least 0.9.

Proof: Note that Σρ−kV T
ρ−kVk = 0, and we will view Σρ−kV T

ρ−kSDDST Vk as
approximating this matrix product. We apply Lemma 4 of [5] (see also Figure 5
of [5]) to get

E
[ ∥
∥Σρ−kV T

ρ−kSDDST Vk − Σρ−kV T
ρ−kVk

∥
∥

2

F

]

≤ 1
βc

‖A − Ak‖2
F ‖Vk‖2

F

=
k

βc
‖A − Ak‖2

F .

The lemma follows by applying Markov’s inequality and taking the square roots
of both sides of the resulting inequality.

	
If c ≥ 40k2/βε2, then Lemmas 1, 2, and 3 hold simultaneously with probability
at least 1 − 3(0.1) = 0.7. We condition on this event. Then, from (14), using
Lemmas 1, 2, and 3, we get

∥
∥
∥Σρ−kV T

ρ−kSD
(

V T
k SD

)+
∥
∥
∥

F
≤ 9ε ‖A − Ak‖F .
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By combining this with (13), it follows that
∥
∥A − CC+A

∥
∥

F
≤ (1 + 9ε) ‖A − Ak‖F .

The first claim of Theorem 1 follows with probability at least 0.7 by letting
ε′ = ε/9 and adjusting c to O(k2/βε′2); it follows with probability at least 1 − δ
by running O(log(1/δ) trials and using standard boosint procedures.

Note that setting c = O(k2/ε2) was required by Lemma 1, but that Lemmas 2
and 3 hold with c = O(k/ε2). In particular, (10) of Lemma 1 required setting c =
O(k2/ε2) in order to bound the error by ε/2. We conjecture that the same bound
holds if c = O(k log k/ε2). This result would follow from a stronger spectral
norm bound than that provided by the Frobenius norm bound of Theorem 1
of [5]. Instead, in the next section, we will reduce c to O(k log k/ε2) by slightly
modifying our sampling technique and using Theorem 3.1 of [21].

2.2 Constructing C with the Expected(c) Algorithm

The second claim of Theorem 1 considers the situation when the columns of A
are sampled with the Expected(c) algorithm. In this subsection, we outline its
proof.

If the columns of A are sampled with the Expected(c) algorithm, then the
number of columns of S, and thus the number of rows and columns of D, is
a random variable with expectation at most c. On the other hand, with this
sampling procedure we can directly bound the spectral norm of (9), as opposed
to bounding it indirectly via the Frobenius norm. To do so, consider the following
theorem, which is a small extension of Theorem 3.1 in [21] to include the β factor;
see also [20].

Theorem 2. Let X ∈ R
m×n and let c ≤ n be a positive integer. If S and D

are constructed with the Expected(c) algorithm using sampling probabilities
pi, i ∈ [n] such that

∑

i pi = 1 and pi ≥ β
∣
∣X(i)

∣
∣
2
/ ‖X‖2

F , then

E
[ ∥
∥XXT − XSDDST XT

∥
∥

2

]

≤ O

(√

log c

βc

)

‖X‖F ‖X‖2 .

All of the derivations of Section 2.1 up to Lemma 1 hold for this modified sam-
pling procedure. The following lemma is the analog of Lemma 1 with this new
sampling prodecure, and it leads to an improved dependency of c on k.

Lemma 4. (Analog of Lemma 1) If c = O
(

k log k/βε2
)

, then each of the
claims of Lemma 1 holds with probability at least 0.9.

Proof: From Theorem 2 and since ‖Vk‖F =
√

k and ‖Vk‖2 = 1, it follows that

E
[ ∥
∥V T

k Vk − V T
k SDDST Vk

∥
∥

2

]

≤ O
(√

log c/βc ‖Vk‖F ‖Vk‖2

)

= O
(√

k log c/βc
)

.
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Using the assumed value of c, by Markov’s inequality, and since ε ≤ 1,
∣
∣1 − σ2

i

(

V T
k SD

)∣
∣ ≤ ε/2 ≤ 1/2 with probability at least 0.9, which implies that

k̃ = k. The rest of the proof is the same as in Lemma 1.
	

The remainder of the proof parallels the proof of Section 2.1.

3 Concluding Remarks

We conclude with three open problems.

– To what extent do the results of the present paper generalize to other matrix
norms?

– What hardness results can be established for the optimal choice of columns?
– Does there exist a deterministic (any factor) approximation algorithm to the

problem we consider?
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