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ABSTRACT
Database theory and database practice are typically the do-
main of computer scientists who adopt what may be termed
an algorithmic perspective on their data. This perspective is
very different than the more statistical perspective adopted
by statisticians, scientific computers, machine learners, and
other who work on what may be broadly termed statistical
data analysis. In this article, I will address fundamental as-
pects of this algorithmic-statistical disconnect, with an eye
to bridging the gap between these two very different ap-
proaches. A concept that lies at the heart of this disconnect
is that of statistical regularization, a notion that has to do
with how robust is the output of an algorithm to the noise
properties of the input data. Although it is nearly com-
pletely absent from computer science, which historically has
taken the input data as given and modeled algorithms dis-
cretely, regularization in one form or another is central to
nearly every application domain that applies algorithms to
noisy data. By using several case studies, I will illustrate,
both theoretically and empirically, the nonobvious fact that
approximate computation, in and of itself, can implicitly
lead to statistical regularization. This and other recent work
suggests that, by exploiting in a more principled way the sta-
tistical properties implicit in worst-case algorithms, one can
in many cases satisfy the bicriteria of having algorithms that
are scalable to very large-scale databases and that also have
good inferential or predictive properties.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

Keywords
Approximate Computation, Implicit Regularization, Data

1. INTRODUCTION
Several years ago, I had the opportunity to give in several

venues a keynote talk and to write an associated overview
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article on the general topic of “Algorithmic and Statistical
Perspectives on Large-Scale Data Analysis” [31]. By the al-
gorithmic perspective, I meant roughly the approach that
someone trained in computer science might adopt;1 and by
the statistical perspective, I meant roughly the approach that
someone trained in statistics, or in some area such as scien-
tific computing where strong domain-specific assumptions
about the data are routinely made, might adopt.2 My main
thesis was twofold. First, motivated by problems drawn
from a wide range of application domains that share the
common feature that they generate very large quantities of
data, we are being forced to engineer a union between these
two extremely different perspectives or worldviews on what
the data are and what are interesting or fruitful ways to view
the data. Second, rather than first making statistical mod-
eling decisions, independent of algorithmic considerations,
and then applying a computational procedure as a black
box—which is quite typical in small-scale and medium-scale
applications and which is more natural if one adopts one
perspective or the other—in many large-scale applications
it will be more fruitful to understand and exploit what may
be termed the statistical properties implicit in worst-case
algorithms. I illustrated these claims with two examples
from genetic and Internet applications; and I noted that this
approach of more closely coupling the computational proce-
dures used with a statistical understanding of the data seems
particularly appropriate more generally for very large-scale
data analysis problems.

Here, I would like to revisit these questions, with an em-
phasis on describing in more detail particularly fruitful di-
rections to consider in order to “bridge the gap” between the
theory and practice of Modern Massive Data Set (MMDS)

1From this perspective, primary concerns include database
issues, algorithmic questions such as models of data access,
and the worst-case running time of algorithms for a given ob-
jective function; but there can be a lack of appreciation, and
thus associated cavalierness, when it comes to understanding
how the data can be messy and noisy and poorly-structured
in ways that adversely affect how confident one can be in
the conclusions that one draws about the world as a result
of the output of one’s fast algorithms.
2From this perspective, primary concerns include questions
such as how well the objective functions being considered
conform to the phenomenon under study, how best to model
the noise properties in the data, and whether one can make
reliable predictions about the world from the data at hand;
but there tends to be very little interest in understanding
either computation per se or the downstream effects that
constraints on computation can have on the reliability of
statistical inference.
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analysis. On the one hand, very large-scale data are typ-
ically stored in some sort of database, either a variant of
a traditional relational database or a filesystem associated
with a supercomputer or a distributed cluster of relatively-
inexpensive commodity machines. On the other hand, it is
often noted that, in large part because they are typically gen-
erated in automated and thus relatively-unstructured ways,
data are becoming increasingly ubiquitous and cheap; and
also that the scarce resource complementary to large-scale
data is the ability of the analyst to understand, analyze, and
extract insight from those data. As anyone who has “rolled
up the sleeves” and worked with real data can attest, real
data are messy and noisy and poorly-structured in ways that
can be hard to imagine before (and even sometimes after)
one sees them. Indeed, there is often quite a bit of very prac-
tical “heavy lifting,” e.g., cleaning and preparing the data,
to be done before starting to work on the “real” problem—
to such an extent that many would say that big data or
massive data applications are basically those for which the
preliminary heavy lifting is the main problem. This clearly
places a premium on algorithmic methods that permit the
analyst to “play with” the data and to work with the data
interactively, as initial ideas are being tested and statistical
hypotheses are being formed. Unfortunately, this is not the
sort of thing that is easy to do with traditional databases.

To address these issues, I will discuss a notion that lies
at the heart of the disconnect between the algorithmic per-
spective and the statistical perspective on data and data
analysis. This notion, often called regularization or statis-
tical regularization, is a traditional and very intuitive idea.
Described in more detail in Section 2.3, regularization basi-
cally has to do with how robust is the output of an algorithm
to the noise properties of the input data. It is usually formu-
lated as a tradeoff between “solution quality” (as measured,
e.g., by the value of the objective function being optimized)
and “solution niceness” (as measured, e.g., by a vector space
norm constraint, a smoothness condition, or some other re-
lated measure of interest to a downstream analyst). For
this reason, when applied to noisy data, regularized objec-
tives and regularized algorithms can lead to output that is
“better” for downstream applications, e.g., for clustering or
classification or other things of interest to the domain scien-
tist, than is the output of the corresponding unregularized
algorithms. Thus, although it is nearly completely absent
from computer science, which historically has taken the in-
put data as given and modeled algorithms discretely, regu-
larization in one form or another is central to nearly every
application domain that applies algorithms to noisy data.3

I will also discuss how, by adopting a very non-traditional
perspective on approximation algorithms (or, equivalently,
a non-traditional perspective on statistical regularization),
one can in many cases satisfy the bicriteria of having algo-

3Clearly, there will be a problem if the output of a computer
scientist’s algorithm is manifestly meaningless in terms of
the motivating application or if the statistician’s objective
function takes the age of the universe to optimize. The point
is that, depending on one’s perspective, data are treated as
a black box with respect to the algorithm, or vice versa; and
this leads one to formulate problems in very different ways.
From an algorithmic perspective, questions about the relia-
bility and robustness of the output to noise in the input are
very much secondary; and from a statistical perspective, the
same is true regarding the details of the computation and the
consequences of resource constraints on the computation.

rithms that are scalable to very large data sets and that also
have good statistical or inferential or predictive properties.
Basically, the non-traditional perspective is that approxi-
mate computation—either in the sense of approximation
algorithms in theoretical computer science or in the sense
of heuristic design decisions (such as binning, pruning, and
early stopping) that practitioners must make in order to im-
plement their algorithms in real systems—often implicitly
leads to some sort of regularization. That is, approximate
computation, in and of itself, can implicitly lead to statis-
tical regularization. This is very different than the usual
perspective in approximation algorithms, where one is in-
terested in solving a given problem, but since the problem is
intractable one “settles for” the output of an approximation.
In particular, this means that, depending on the details of
the situation, approximate computation can lead to algo-
rithms that are both faster and better than are algorithms
that solve the same problem exactly.

While particular examples of this phenomenon are well-
known, typically heuristically and amongst practitioners, in
my experience the general observation is quite surprising
to both practitioners and theorists of both the algorithmic
perspective and the statistical perspective on data. Thus,
I will use three “case studies” from recent MMDS analysis
to illustrate this phenomenon of implicit regularization via
approximate computation in three somewhat different ways.
The first involves computing an approximation to the lead-
ing nontrivial eigenvector of the Laplacian matrix of a graph;
the second involves computing, with two very different ap-
proximation algorithms, an approximate solution to a popu-
lar version of the graph partitioning problem; and the third
involves computing an approximation to a locally-biased ver-
sion of this graph partitioning problem. In each case, we will
see that approximation algorithms that are run in practice
implicitly compute smoother or more regular answers than
do algorithms that solve the same problems exactly.

Characterizing and exploiting the implicit regularization
properties underlying approximation algorithms for large-
scale data analysis problems is not the sort of analysis that
is currently performed if one adopts a purely algorithmic
perspective or a purely statistical perspective on the data.
It is, however, clearly of interest in many MMDS applica-
tions, where anything but scalable algorithms is out of the
question, and where ignoring the noise properties of the data
will likely lead to meaningless output. As such, it repre-
sents a challenging interdisciplinary research front, both for
theoretical computer science—and for database theory in
particular—as well as for theorists and practitioners of sta-
tistical data analysis more generally.

2. SOME GENERAL OBSERVATIONS . . .
Before proceeding further, I would like to present in this

section some general thoughts. Most of these observations
will be“obvious”to at least some readers, depending on their
background or perspective, and most are an oversimplified
version of a much richer story. Nevertheless, putting them
together and looking at the “forest” instead of the “trees”
should help to set the stage for the subsequent discussion.

2.1 . . . on models of data
It helps to remember that data are whatever data are—

records of banking and other financial transactions, hyper-
spectral medical and astronomical images, measurements
of electromagnetic signals in remote sensing applications,
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DNA microarray and single-nucleotide polymorphism mea-
surements, term-document data from the Web, query and
click logs at a search engine, interaction properties of users in
social and information networks, corpora of images, sounds,
videos, etc. To do something useful with the data, one must
first model them (either explicitly or implicitly4) in some
way. At root, a data model is a mathematical structure such
that—given hardware, communication, input-output, data-
generation, sparsity, noise, etc. considerations—one can per-
form computations of interest to yield useful insight on the
data and processes generating the data. As such, choosing
an appropriate data model has algorithmic, statistical, and
implementational aspects that are typically intertwined in
complicated ways. Two criteria to keep in mind in choosing
a data model are the following.

• First, on the data acquisition or data generation side,
one would like a structure that is “close enough” to the
data, e.g., to the processes generating the data or to
the noise properties of the data or to natural opera-
tions on the data or to the way the data are stored or
accessed, that modeling the data with that structure
does not do too much “damage” to the data.

• Second, on the downstream or analysis side, one would
like a structure that is at a “sweet spot” between de-
scriptive flexibility and algorithmic tractability. That
is, it should be flexible enough that it can describe a
range of types of data, but it should not be so flexible
that it can do “anything,” in which case computations
of interest will likely be intractable and inference will
be problematic.

Depending on the data and applications to be considered,
the data may be modeled in one or more of several ways.

• Flat tables and the relational model. Particularly com-
mon in database theory and practice, this model views
the data as one or more two-dimensional arrays of data
elements. All members of a given column are assumed
to be similar values; all members of a given row are
assumed to be related to one another; and different
arrays can be related to one another in terms of pred-
icate logic and set theory, which allows one to query,
e.g., with SQL or a variant, the data.

• Graphs, including special cases like trees and expanders.
This model is particularly common in computer sci-
ence theory and practice; but it is also used in statis-
tics and machine learning, as well as in scientific com-
putation, where it is often viewed as a discretization
of an underlying continuous problem. A graph G =
(V, E) consists of a set of vertices V , that can rep-
resent some sort of “entities,” and a set of edges E,
that can be used to represent pairwise “interactions”
between two entities. There is a natural geodesic dis-
tance between pairs of vertices, which permits the use

4By implicitly, I mean that, while computations always re-
turn answers (yes, modulo issues associated with the Halting
Problem, infinite loops, etc.), in many cases one can say that
a given computation is the “right” thing to do for a certain
class of data. For example, performing matrix-based compu-
tations with �2-based objectives often has an interpretation
in terms of underlying Gaussian processes. Thus, perform-
ing that computation in some sense implicitly amounts to
assuming that that is what the data “look like.”

of ideas from metric space theory to develop algo-
rithms; and from this perspective natural operations
include breadth-first search and depth-first search. Al-
ternatively, in spectral graph theory, eigenvectors and
eigenvalues of matrices associated with the graph are
of interest; and from this perspective, one can consider
resistance-based or diffusion-based notions of distance
between pairs of vertices.

• Matrices, including special cases like symmetric posi-
tive semidefinite matrices. An m×n real-valued matrix
A provides a natural structure for encoding informa-
tion about m objects, each of which is described by
n features; or, if m = n, information about the cor-
relations between all m objects. As such, this model
is ubiquitous in areas of applied mathematics such as
scientific computing, statistics, and machine learning,
and it is of increasing interest in theoretical computer
science. Rather than viewing a matrix simply as an
m×n array of numbers, one should think of it as repre-
senting a linear transformation between two Euclidean
spaces, R

n and R
m; and thus vector space concepts

like dot products, orthogonal matrices, eigenvectors,
and eigenvalues are natural. In particular, matrices
have a very different semantics than tables in the re-
lational model, and Euclidean spaces are much more
structured objects than arbitrary metric spaces.

Of course, there are other ways to model data—e.g., DNA
sequences are often fruitfully modeled by strings—but ma-
trices and graphs are most relevant to our discussion below.

Database researchers are probably most familiar with the
basic flat table and the relational model and its various
extensions; and there are many well-known advantages to
working with them. As a general rule, these models and
their associated logical operations provide a powerful way
to process the data at hand; but they are much less well-
suited for understanding and dealing with imprecision and
the noise properties in that data. (See [18, 16] and ref-
erences therein.) For example, historically, the focus in
database theory and practice has been on business appli-
cations, e.g., automated banking, corporate record keeping,
airline reservation systems, etc., where requirements such as
performance, correctness, maintainability, and reliability (as
opposed to prediction or inference) are crucial.

The reason for considering more sophisticated or richer
data models is that much of the ever-increasing volume of
data that is currently being generated is either relatively-
unstructured or large and internally complex in its original
form; and many of these noisy unstructured data are better-
described by (typically sparse and poorly-structured) graphs
or matrices than as dense flat tables. While this may be ob-
vious to some, the graphs and matrices that arise in MMDS
applications are very different than those arising in classi-
cal graph theory and traditional numerical linear algebra;
and thus modeling large-scale5 data by graphs and matri-
ces poses very substantial challenges, given the way that
5Clearly, large or big or massive means different things to
different people in different applications. Perhaps the most
intuitive description is that one can call the size of a data
set: small if one can look at the data, fairly obviously see a
good solution to problems of interest, and find that solution
fairly easily with almost any “reasonable” algorithmic tool;
medium if the data fit in the RAM on a reasonably-priced
laptop or desktop machine and if one can run computations
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databases (in computer science) have historically been con-
structed, the way that supercomputers (in scientific comput-
ing) have historically been designed, the tradeoffs that are
typically made between faster CPU time and better IO and
network communication, etc.

2.2 . . . on the relationship between algorithms
and data

Before the advent of the digital computer, the natural
sciences (and to a lesser extent areas such as social and eco-
nomic sciences) provided a rich source of problems; and sta-
tistical methods were developed in order to solve those prob-
lems. Although these statistical methods typically involved
computing something, there was less interest in questions
about the nature of computation per se. That is, although
computation was often crucial, it was in some sense sec-
ondary to the motivating downstream application. Indeed,
an important notion was (and still is) that of a well-posed
problem—roughly, a problem is well-posed if: a solution
exists; that solution is unique; and that solution depends
continuously on the input data in some reasonable topol-
ogy. Especially in numerical applications, such problems
are sometimes called well-conditioned problems.6 From this
perspective, it simply doesn’t make much sense to consider
algorithms for problems that are not well-posed—after all,
any possible algorithm for such an ill-posed problem will
return answers that are not be meaningful in terms of the
domain from which the input data are drawn.

With the advent of the digital computer, there occurred a
split in the yet-to-be-formed field of computer science. The
split was loosely based on the application domain (scientific
computing and numerical computation versus business and
consumer applications), but relatedly based on the type of
tools used (continuous mathematics like matrix analysis and
probability versus discrete mathematics like combinatorics
and logic); and it led to two very different perspectives (ba-
sically the statistical and algorithmic perspectives) on the
relationship between algorithms and data.

On the one hand, for many numerical problems that arose
in applications of continuous mathematics, a two-step ap-
proach was used. It turned out that, even when working with
a given well-conditioned problem,7 certain algorithms that
solved that problem “exactly” in some idealized sense per-
formed very poorly in the presence of “noise” introduced by
the peculiarities of roundoff and truncation errors. Roundoff
errors have to do with representing real numbers with only
finitely-many bits; and truncation errors arise since only a
finite number of iterations of an iterative algorithm can ac-
tually be performed. The latter are important even in“exact
arithmetic,” since most problems of continuous mathemat-

of interest on the data in a reasonable length of time; and
large if the data doesn’t fit in RAM or if one can’t relatively-
easily run computations of interest in a reasonable length of
time. The point is that, as one goes from medium-sized data
to large-scale data sets, the main issue is that one doesn’t
have random access to the data, and so details of communi-
cation, memory access, etc., become paramount concerns.
6In this case, the condition number of a problem, which
measures the worst-case amount that the solution to the
problem changes when there is a small change in the input
data, is small for well-conditioned problems.
7Thus, the first step is to make sure the problem being con-
sidered is well-posed. Replacing an ill-posed problem with
a related well-posed problem is common and is, as I will
describe in Section 2.3, a form of regularization.

ics cannot even in principle be solved by a finite sequence
of elementary operations; and thus, from this perspective,
fast algorithms are those that converge quickly to approxi-
mate answers that are accurate to, e.g, 2 or 10 or 100 digits
of precision.

This led to the notion of the numerical stability of an al-
gorithm. Let us view a numerical algorithm as a function f
attempting to map the input data x to the “true” solution y;
but due to roundoff and truncation errors, the output of the
algorithm is actually some other y∗. In this case, the forward
error of the algorithm is Δy = y∗−y; and the backward error
of the algorithm is the smallest Δx such that f(x+Δx) = y∗.
Thus, the forward error tells us the difference between the
exact or true answer and what was output by the algorithm;
and the backward error tells us what input data the algo-
rithm we ran actually solved exactly. Moreover, the forward
error and backward error for an algorithm are related by the
condition number of the problem—the magnitude of the for-
ward error is bounded above by the condition number mul-
tiplied by the magnitude of the backward error.8 In general,
a backward stable algorithm can be expected to provide an
accurate solution to a well-conditioned problem; and much
of the work in numerical analysis, continuous optimization,
and scientific computing can be seen as an attempt to de-
velop algorithms for well-posed problems that have better
stability properties than the “obvious” unstable algorithm.

On the other hand, it turned out to be much easier to
study computation per se in discrete settings (see [38, 9] for
a partial history), and in this case a simpler but coarser one-
step approach prevailed. First, several seemingly-different
approaches (recursion theory, the λ-calculus, and Turing
machines) defined the same class of functions. This led to
the belief that the concept of computability is formally cap-
tured in a qualitative and robust way by these three equiva-
lent processes, independent of the input data; and this high-
lighted the central role of logic in this approach to the study
of computation. Then, it turned out that the class of com-
putable functions has a rich structure—while many problems
are solvable by algorithms that run in low-degree polynomial
time, some problems seemed not to be solvable by anything
short of a trivial brute force algorithm. This led to the no-
tion of the complexity classes P and NP, the concepts of NP-
hardness and NP-completeness, etc., the success of which
led to the belief that the these classes formally capture in
a qualitative and robust way the concept of computational
tractability and intractability, independent of any posedness
questions or any assumptions on the input data.

Then, it turned out that many problems of practical inter-
est are intractable—either in the sense of being NP-hard or
NP-complete or, of more recent interest, in the sense of re-
quiring O(n2) or O(n3) time when only O(n) or O(n log n)
time is available. In these cases, computing some sort of
approximation is typically of interest. The modern theory
of approximation algorithms, as formulated in theoretical
computer science, provides forward error bounds for such
problems for “worst-case” input. These bounds are worst-
case in two senses: first, they hold uniformly for all possible
input; and second, they are typically stated in terms of a
relatively-simple complexity measure such as problem size,

8My apologies to those readers who went into computer sci-
ence, and into database theory in particular, to avoid these
sorts of numerical issues, but these distinctions really do
matter for what I will be describing below.
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independent of any other structural parameter of the input
data.9 While there are several ways to prove worst-case
bounds for approximation algorithms, a common procedure
is to take advantage of relaxations—e.g., solve a relaxed lin-
ear program, rather than an integer program formulation
of the combinatorial problem [41, 23]. This essentially in-
volves “filtering” the input data through some other “nicer,”
often convex, metric or geometric space. Embedding theo-
rems and duality then bound how much the input data are
distorted by this filtering and provide worst-case quality-of-
approximation guarantees [41, 23].

2.3 . . . on explicit and implicit regularization
The term regularization refers to a general class of meth-

ods [34, 13, 8] to ensure that the output of an algorithm
is meaningful in some sense—e.g., to the domain scientist
who is interested in using that output for some downstream
application of interest in the domain from which the data
are drawn; to someone who wants to avoid “pathological”
solutions; or to a machine learner interested in prediction
accuracy or some other form of inference. It typically man-
ifests itself by requiring that the output of an algorithm
is not overly sensitive to the noise properties of the input
data; and, as a general rule, it provides a tradeoff between
the quality and the niceness of the solution.

Regularization arose in integral equation theory where
there was interest in providing meaningful solutions to ill-
posed problems [40]. A common approach was to assume
a smoothness condition on the solution or to require that
the solution satisfy a vector space norm constraint. This
approach is followed much more generally in modern statis-
tical data analysis [22], where the posedness question has to
do with how meaningful it is to run a given algorithm, given
the noise properties of the data, if the goal is to predict well
on unseen data. One typically considers a loss function f(x)
that specifies an “empirical penalty” depending on both the
data and a parameter vector x; and a regularization func-
tion g(x) that provides “geometric capacity control” on the
vector x. Then, rather than minimizing f(x) exactly, one
exactly solves an optimization problem of the form:

x̂ = argminxf(x) + λg(x), (1)

where the parameter λ intermediates between solution qual-
ity and solution niceness. Implementing regularization ex-
plicitly in this manner leads to a natural interpretation in
terms of a trade-off between optimizing the objective and
avoiding over-fitting the data; and it can often be given
a Bayesian statistical interpretation.10 By optimizing ex-
actly a combination of two functions, though, regularizing
in this way often leads to optimization problems that are
harder (think of �1-regularized �2-regression) or at least no
easier (think of �2-regularized �2-regression) than the origi-
nal problem, a situation that is clearly unacceptable in many
MMDS applications.

On the other hand, regularization is often observed as a

9The reason for not parameterizing running time and ap-
proximation quality in terms of structural parameters is that
one can encode all sorts of pathological things in combina-
torial parameters, thereby obtaining trivial results.

10Roughly, such an interpretation says that if the data are
generated according to a particular noise model, then g(·)
encodes “prior assumptions” about the input data, and reg-
ularizing with this g(·) is the “right” thing to do [22].

side-effect or by-product of other design decisions.11 For
example, “binning” is often used to aggregate the data into
bins, upon which computations are performed; “pruning” is
often used to remove sections of a decision tree that pro-
vide little classification power; taking measures to improve
numerical properties can also penalize large weights (in the
solution vector) that exploit correlations beyond the level of
precision in the data generation process; and “adding noise”
to the input data before running a training algorithm can
be equivalent to Tikhonov regularization. More generally,
it is well-known amongst practitioners that certain heuris-
tic approximations that are used to speed up computations
can also have the empirical side-effect of performing smooth-
ing or regularization. For example, working with a trun-
cated singular value decomposition in latent factor models
can lead to better precision and recall; “truncating” to zero
small entries or “shrinking” all entries of a solution vector
is common in iterative algorithms; and “early stopping” is
often used when a learning model such as a neural network
is trained by an iterative gradient descent algorithm.

Note that in addition to its use in making ill-posed prob-
lems well-posed—a distinction that is not of interest in the
study of computation per se, where a sharp dividing line
is drawn between algorithms and input data, thereby ef-
fectively assuming away the posedness problem—the use of
regularization blurs the rigid lines between algorithms and
input data in other ways.12 For example, in addition to
simply modifying the objective function to be optimized,
regularization can involve adding to it various smoothness
constraints—some of which involve modifying the objective
and then calling a black box algorithm, but some of which
are more simply enforced by modifying the steps of the origi-
nal algorithm. Similarly, binning and pruning can be viewed
as preprocessing the data, but they can also be implemented
inside the algorithm; and adding noise to the input before
running a training algorithm is clearly a form of prepro-
cessing, but empirically similar regularization effects are ob-
served when randomization is included inside the algorithm,
e.g., as with randomized algorithms for matrix problems
such as low-rank matrix approximation and least-squares
approximation [30]. Finally, truncating small entries of a
solution vector to zero in an iterative algorithm and per-
forming early stopping in an iterative algorithm are clearly
heuristic approximations that lead an algorithm to compute
some sort of approximation to the solution that would have
been computed had the truncation and early stopping not
been performed.

3. THREE EXAMPLES OF IMPLICIT
REGULARIZATION

In this section, I will discuss three case studies that il-

11See [34, 13, 8, 22, 32] and references therein for more details
on these examples.

12In my experience, researchers who adopt the algorithmic
perspective are most comfortable when given a well-defined
problem, in which case they develop algorithms for that
problem and ask how those algorithms behave on the worst-
case input they can imagine. Researchers who adopt the sta-
tistical perspective will note that formulating the problem is
typically the hard part; and that, if a problem is meaningful
and well-posed, then often several related formulations will
behave similarly for downstream applications, in a manner
quite unrelated to their worst-case behavior.
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lustrate the phenomenon of implicit regularization via ap-
proximate computation in three somewhat different ways.
For each of these problems, there exists strong underlying
theory; and there exists the practice, which typically in-
volves approximating the exact solution in one way or an-
other. Our goal will be to understand the differences be-
tween the theory and the practice in light of the discussion
from Section 2. In particular, rather than being interested
in the output of the approximation procedure insofar as it
provides an approximation to the exact answer, we will be
more interested in what the approximation algorithm actu-
ally computes, whether that approximation can be viewed as
a smoother or more regular version of the exact answer, and
how much more generally in database theory and practice
similar ideas can be applied.

3.1 Computing the leading nontrivial eigen-
vector of a Laplacian matrix

The problem of computing eigenvectors of the Laplacian
matrix of a graph arises in many data analysis applications,
including (literally) for Web-scale data matrices. For exam-
ple, the leading nontrivial eigenvector, i.e., the eigenvector,
v2, associated with the smallest non-zero eigenvalue, λ2, is
often of interest: it defines the slowest mixing direction for
the natural random walk on the graph, and thus it can be
used in applications such as viral marketing, rumor spread-
ing, and graph partitioning; it can be used for classification
and other common machine learning tasks; and variants of
it provide “importance,”“betweenness,” and “ranking” mea-
sures for the nodes in a graph. Moreover, computing this
eigenvector is a problem for which there exists a very clean
theoretical characterization of how approximate computa-
tion can implicitly lead to statistical regularization.

Let A be the adjacency matrix of a connected, weighted,
undirected graph G = (V, E), and let D be its diagonal de-
gree matrix. That is, Aij is the weight of the edge between
the ith node and the jth node, and Dii =

P
j:(ij)∈E Aij .

The combinatorial Laplacian of G is the matrix L = D−A.
Although this matrix is defined for any graph, it has strong
connections with the Laplace-Beltrami operator on Rieman-
nian manifolds in Euclidean spaces. Indeed, if the graph is
a discretization of the manifold, then the former approaches
the latter, under appropriate sampling and regularity as-
sumptions. In addition, the normalized Laplacian of G is
L = D−1/2LD−1/2 = I − D−1/2AD−1/2. This degree-
weighted Laplacian is more appropriate for graphs with sig-
nificant degree variability, in large part due to its connection
with random walks and other diffusion-based processes. For
an n node graph, L is an n×n positive semidefinite matrix,
i.e., all its eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn are nonnegative,
and for a connected graph, λ1 = 0 and λ2 > 0. In this case,
the degree-weighted all-ones vector, i.e., the vector whose
ith element equals (up to a possible normalization) Dii and
which is often denoted v1, is an eigenvector of L with eigen-
value zero, i.e., Lv1 = 0v1. For this reason, v1 is often called
trivial eigenvector of L, and it is the next eigenvector that
is of interest. This leading nontrivial eigenvector, v2, is that
vector that optimizes the Rayleigh quotient, defined to be
xTLx for a unit-length vector x, over all vectors perpendic-
ular to the trivial eigenvector.13

13Eigenvectors of L can be related to generalized eigenvectors
of L: if Lx = λx, then Ly = λDy, where y = D−1/2x.

In most applications where this leading nontrivial eigen-
vector is of interest, other vectors can also be used. For ex-
ample, if λ2 is not unique then v2 is not uniquely-defined and
thus the problem of computing it is not even well-posed; if λ3

is very close to λ2, then any vector in the subspace spanned
by v2 and v3 is nearly as good (in the sense of forward er-
ror or objective function value) as v2; and, more generally,
any vector can be used with a quality-of-approximation loss
that depends on how far it’s Rayleigh quotient is from the
Rayleigh quotient of v2. For most small-scale and medium-
scale applications, this vector v2 is computed “exactly” by
calling a black-box solver.14 It could, however, be approxi-
mated with an iterative method such as the Power Method15

or by running a random walk-based or diffusion-based proce-
dure; and in many larger-scale applications this is preferable.

Perhaps the most well-known example of this is the com-
putation of the so-called PageRank of the Web graph [35].
As an example of a spectral ranking method [42], PageR-
ank provides a ranking or measure of importance for a Web
page; and the Power Method has been used extensively to
perform very large-scale PageRank computations [7]. Al-
though it was initially surprising to many, the Power Method
has several well-known advantages for such Web-scale com-
putations: it can be implemented with simple matrix-vector
multiplications, thus not damaging the sparsity of the (adja-
cency or Laplacian) matrix; those matrix-vector multiplica-
tions are strongly parallel, permitting one to take advantage
of parallel and distributed environments (indeed, MapRe-
duce was originally developed to perform related Web-scale
computations [17]); and the algorithm is simple enough that
it can be “adjusted” and “tweaked” as necessary, based on
systems considerations and other design constraints. Much
more generally, other spectral ranking procedures compute
vectors that can be used instead of the second eigenvector
v2 to perform ranking, classification, clustering, etc. [42].

At root, these random walk or diffusion-based methods
assign positive and/or negative “charge” (or relatedly prob-
ability mass) to the nodes, and then they let the distribution
evolve according to dynamics derived from the graph struc-
ture. Three canonical evolution dynamics are the following.

• Heat Kernel. Here, the charge evolves according to
the heat equation ∂Ht

∂t
= −LHt. That is, the vector of

charges evolves as Ht = exp(−tL) =
P∞

k=0
(−t)k

k!
Lk,

where t ≥ 0 is a time parameter, times an input seed
distribution vector.

• PageRank. Here, the charge evolves by either moving
to a neighbor of the current node or teleporting to a

14To the extent, as described in Section 2.2, that any numer-
ical computation can be performed “exactly.”

15The Power Method takes as input any n × n symmetric
matrix A and returns as output a number λ and a vector v
such that Av = λv. It starts with an initial vector, ν0, and
it iteratively computes νt+1 = Aνt/||Aνt||2. Under weak
assumptions, it converges to vmax, the dominant eigenvector
of A. The reason is clear: if we expand ν0 =

Pn
i=1 γivi

in the basis provided by the eigenfunctions {vi}n
i=1 of A,

then νt =
Pn

i=1 γt
ivi → vmax. Vanilla versions of the Power

Method can easily be improved (at least when the entire
matrix A is available in RAM) to obtain better stability
and convergence properties; but these more sophisticated
eigenvalue algorithms can often be viewed as variations of
it. For instance, Lanczos algorithms look at a subspace of
vectors generated during the iteration.
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random node. That is, the vector of charges evolves as

Rγ = γ (I − (1 − γ) M)−1 , (2)

where M = AD−1 is the natural random walk tran-
sition matrix associated with the graph and where
γ ∈ (0, 1) is the so-called teleportation parameter,
times an input seed vector.

• Lazy Random Walk. Here, the charge either stays
at the current node or moves to a neighbor. That is,
if M is the natural random walk transition matrix,
then the vector of charges evolves as some power of
Wα = αI + (1 − α)M , where α ∈ (0, 1) represents the
“holding probability,” times an input seed vector.

In each of these cases, there is an input “seed” distribution
vector, and there is a parameter (t, γ, and the number of
steps of the Lazy Random Walk) that controls the “aggres-
siveness” of the dynamics and thus how quickly the diffu-
sive process equilibrates. In many applications, one chooses
the initial seed distribution carefully16 and/or prevents the
diffusive process from equilibrating to the asymptotic state.
(That is, if one runs any of these diffusive dynamics to a lim-
iting value of the aggressiveness parameter, then under weak
assumptions an exact answer is computed, independent of
the initial seed vector; but if one truncates this process early,
then some sort of approximation, which in general depends
strongly on the initial seed set, is computed.) The justifi-
cation for doing this is typically that it is too expensive or
not possible to solve the problem exactly; that the resulting
approximate answer has good forward error bounds on it’s
Rayleigh quotient; and that, for many downstream applica-
tions, the resulting vector is even better (typically in some
sense that is not precisely described) than the exact answer.

To formalize this last idea in the context of classical reg-
ularization theory, let’s ask what these approximation pro-
cedures actually compute. In particular, do these diffusion-
based approximation methods exactly optimize a regularized
objective of the form of Problem (1), where g(·) is nontrivial,
e.g., some well-recognizable function or at least something
that is “little-o” of the length of the source code, and where
f(·) is the Rayleigh quotient?

To answer this question, recall that v2 exactly solves the
following optimization problem.

minimize
x

xTLx

subject to xT x = 1,

xT D1/21 = 0.

(3)

The solution to Problem (3) can also be characterized as the
solution to the following SDP (semidefinite program).

minimize
X

Tr(LX)

subject to X � 0,

Tr(X) = 1,

XD1/21 = 0,

(4)

16In particular, if one is interested in global spectral graph
partitioning, as in Section 3.2, then this seed vector could
have randomly positive entries or could be a vector with
entries drawn from {−1, +1} uniformly at random; while
if one is interested in local spectral graph partitioning [39,
1, 15, 33], as in Section 3.3, then this vector could be the
indicator vector of a small “seed set” of nodes.

where Tr(·) stands for the matrix Trace operation. Prob-
lem (4) is a relaxation of Problem (3) from an optimization
over unit vectors to an optimization over distributions over
unit vectors, represented by the density matrix X. These
two programs are equivalent, however, in that the solution
to Problem (4), call it X∗, is a rank-one matrix, where the
vector into which that matrix decomposes, call it x∗, is the
solution to Problem (3); and vice versa.

Viewing v2 as the solution to an SDP makes it easier to
address the question of what is the objective that approx-
imation algorithms for Problem (3) are solving exactly. In
particular, it can be shown that these three diffusion-based
dynamics arise as solutions to the following regularized SDP.

minimize
X

Tr(LX) + 1
η
G(X)

subject to X � 0,

Tr(X) = 1,

XD1/21 = 0,

(5)

where G(·) is a regularization function, which is the gener-
alized entropy, the log-determinant, and a certain matrix-
p-norm, respectively [32]; and where η is a parameter re-
lated to the aggressiveness of the diffusive process [32]. Con-
versely, solutions to the regularized SDP of Problem (5) for
appropriate values of η can be computed exactly by running
one of the above three diffusion-based approximation algo-
rithms. Intuitively, G(·) is acting as a penalty function, in
a manner analogous to the �2 or �1 penalty in Ridge regres-
sion or Lasso regression, respectively; and by running one of
these three dynamics one is implicitly making assumptions
about the functional form of G(·).17 More formally, this re-
sult provides a very clean theoretical characterization of how
each of these three approximation algorithms for computing
an approximation to the leading nontrivial eigenvector of a
graph Laplacian can be seen as exactly optimizing a regu-
larized version of the same problem.

3.2 Graph partitioning
Graph partitioning refers to a family of objective func-

tions and associated approximation algorithms that involve
cutting or partitioning the nodes of a graph into two sets
with the goal that the cut has good quality (i.e., not much
edge weight crosses the cut) as well as good balance (i.e.,
each of the two sets has a lot of the node weight).18 As
such, it has been studied from a wide range of perspectives
and in a wide range of applications. For example, it has
been studied for years in scientific computation (where one
is interested in load balancing in parallel computing appli-
cations), machine learning and computer vision (where one
is interested in segmenting images and clustering data), and
theoretical computer science (where one is interested in it

17For readers interested in statistical issues, I should note
that one can give a statistical framework to provide
a Bayesian interpretation that makes this intuition pre-
cise [36]. Readers not interested in statistical issues should
at least know that these assumptions are implicitly being
made when one runs such an approximation algorithm.

18There are several standard formalizations of this bi-
criterion, e.g., the graph bisection problem, the β-balanced
cut problem, and quotient cut formulations. In this article,
I will be interested in conductance, which is a quotient cut
formulation, but variants of most of what I say will hold for
the other formulations.
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as a primitive in divide-and-conquer algorithms); and more
recently it has been studied in the analysis of large social
and information networks (where one is interested in find-
ing “communities” that are meaningful in a domain-specific
context or in certifying that no such communities exist).

Given an undirected, possibly weighted, graph G = (V, E),
the conductance φ(S) of a set of nodes S ⊂ V is:

φ(S) =
|E(S, S)|

min{A(S), A(S̄)} , (6)

where E(S,S) denotes the set of edges having one end in
S and one end in the complement S; where | · | denotes
cardinality (or weight); where A(S) =

P
i∈S

P
j∈V Aij ; and

where A is the adjacency matrix of a graph.19 In this case,
the conductance of the graph G is:

φ(G) = min
S⊆V

φ(S). (7)

Although exactly solving the combinatorial Problem (7) is
intractable, there are a wide range of heuristics and approx-
imation algorithms, the respective strengths and weaknesses
of which are well-understood in theory and/or practice, for
approximately optimizing conductance. Of particular inter-
est here are spectral methods and flow-based methods.20

Spectral algorithms compute an approximation to Prob-
lem (7) by solving Problem (3), either exactly or approxi-
mately, and then performing a“sweep cut”over the resulting
vector. Several things are worth noting.

• First, Problem (3) is a relaxation of Problem (7), as
can be seen by replacing the x ∈ {−1, 1}n constraint in
the corresponding integer program with the constraint
x ∈ R

n subject to xT x = 1, i.e., by satisfying the
combinatorial constraint “on average”.

• Second, this relaxation effectively embeds the data on
the one-dimensional21 span of v2—although, since the
distortion is minimized only on average, there may be
some pairs of points that are distorted a lot.

• Third, one can prove that the resulting partition is
“quadratically good,” in the sense that the cut returned
by the algorithm has conductance value no bigger than
φ if the graph actually contains a cut with conductance
O(φ2) [12, 14]. This bound comes from a discrete

19For readers more familiar with the concept of expansion,
where the expansion α(S) of a set of nodes S ⊆ V is

α(S) = |E(S, S)|/ min{|S|, |S|)}, the conductance is simply
a degree-weighted version of the expansion.

20Other methods include local improvement methods, which
can be used to clean up partitions found with other meth-
ods, and multi-resolution methods, which can view graphs
at multiple size scales. Both of these are important in prac-
tice, as vanilla versions of spectral algorithms and flow-based
algorithms can easily be improved with them.

21One can also view this as “embedding” a scaled version of
the complete graph into the input graph. This follows from
the SDP formulation of Problem (4); and this is of interest
since a complete graph is like a constant-degree expander—
namely, a metric space that is “most unlike” low-dimensional
Euclidean spaces such as one-dimensional lines—in terms
of its cut structure [29, 26]. This provides tighter duality
results, and the reason for this connection is that the identity
on the space perpendicular to the degree-weighted all-ones
vector is the Laplacian matrix of a complete graph [33].

version of Cheeger’s inequality, which was originally
proved in a continuous setting for compact Rieman-
nian manifolds; and it is parameterized in terms of a
structural parameter of the input, but it is indepen-
dent of the number n of nodes in the graph.

• Finally, note that the worst-case quadratic approxi-
mation factor is not an artifact of the analysis—it is
obtained for spectral methods on graphs with “long
stringy” pieces [21], basically since spectral methods
confuse “long paths” with “deep cuts”—and that it is
a very “local” property, in that it is a consequence of
the connections with diffusion and thus it is seen in
locally-biased versions of the spectral method [39, 1,
15, 33].

Flow-based algorithms compute an approximation to Prob-
lem (7) by solving an all-pairs multicommodity flow prob-
lem. Several things are worth noting.

• First, this multicommodity flow problem is a relax-
ation of Problem (7), as can be seen by replacing the
x ∈ {−1, 1}n constraint (which provides a particu-
lar semi-metric) in the corresponding integer program
with a general semi-metric constraint.

• Second, this procedure effectively embeds the data into
an �1 metric space, i.e., a real vector space R

n, where
distances are measured with the �1 norm.

• Third, one can prove that the resulting partition is
within an O(log n) factor of optimal, in the sense that
the cut returned by the algorithm has conductance no
bigger than O(log n), where n is the number of nodes in
the graph, times the conductance value of the optimal
conductance set in the graph [29, 26, 23]. This bound
comes from Bourgain’s result which states that any n-
point metric space can be embedded into Euclidean
space with only logarithmic distortion, a result which
clearly depends on the number n of nodes in the graph
but which is independent of any structural parameters
of the graph.

• Finally, note that the worst-case O(log n) approxima-
tion factor is not an artifact of the analysis—it is ob-
tained for flow-based methods on constant-degree ex-
pander graphs [29, 26, 23]—and that it is a very“global”
property, in that it is a consequence of the fact that
for constant-degree expanders the average distance be-
tween all pairs of nodes is O(log n).

Thus, spectral methods and flow-based methods are com-
plementary in that they relax the combinatorial problem
of optimizing conductance in very different ways;22 they
succeed and fail for complementary input (e.g., flow-based
methods do not confuse “long paths” with “deep cuts,” and
spectral methods do not have problems with constant-degree
expanders); and they come with quality-of-approximation

22For readers familiar with recent algorithms based on
semidefinite programming [4], note that these methods may
be viewed as combining spectral and flow in a particular way
that, in addition to providing improved worst-case guaran-
tees, also has strong connections with boosting [22], a sta-
tistical method which in many cases is known to avoid over-
fitting. The connections with what I am discussing in this
article remain to be explored.
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guarantees that are structurally very different.23 For these
and other reasons, spectral and flow-based approximation
algorithms for the intractable graph partitioning problem
provide a good “hydrogen atom” for understanding more
generally the disconnect between the algorithmic and sta-
tistical perspectives on data.

Providing a precise statement of how spectral and flow-
based approximation algorithms implicitly compute regular-
ized solutions to the intractable graph partitioning problem
(in a manner, e.g., analogous to how truncated diffusion-
based procedures for approximating the leading nontrivial
eigenvector of a graph Laplacian exactly solve a regular-
ized version of the problem) has not, to my knowledge, been
accomplished. Nevertheless, this theoretical evidence—i.e.,
that spectral and flow-based methods are effectively “filter-
ing” the input data through very different metric and geo-
metric places24—suggests that this phenomenon exists.

To observe this phenomenon empirically, one should work
with a class of data that highlights the peculiar features of
spectral and flow-based methods, e.g., that has properties
similar to graphs that “saturate” spectral’s and flow’s worst-
case approximation guarantees. Empirical evidence [27, 28]
clearly demonstrates that large social and information net-
works have these properties—they are strongly expander-
like when viewed at large size scales; their sparsity and noise
properties are such that they have structures analogous to
stringy pieces that are cut off or regularized away by spectral
methods; and they often have structural regions that at least
locally are meaningfully low-dimensional. Thus, this class
of data provides a good “hydrogen atom” for understand-
ing more generally the regularization properties implicit in
graph approximation algorithms.

In light of this, let’s say that we are interested in find-
ing reasonably good clusters of size 103 or 104 nodes in a
large social or information network. (See [31] for why this
might be interesting.) In that case, Figure 1 presents very
typical results. Figure 1(a) presents a scatter plot of the
size-resolved conductance of clusters found with a flow-based
approximation algorithm (in red) and a spectral-based ap-
proximation algorithm (in blue).25 In this plot, lower values
on the Y-axis correspond to better values of the objective

23These differences highlight a rather egregious theory-
practice disconnect (that parallels the algorithmic-statistical
disconnect). In my experience, if you ask nearly anyone
within theoretical computer science what is a good algo-
rithm for partitioning a graph, they would say flow-based
methods—after all flow-based methods run in low-degree
polynomial time, they achieve O(log n) worst-case approx-
imation guarantees, etc.—although they would note that
spectral methods are better for expanders, basically since
the quadratic of a constant is a constant. On the other hand,
nearly everyone outside of computer science would say spec-
tral methods do pretty well for the data in which they are
interested, and they would wonder why anyone would be in-
terested in partitioning a graph without any good partitions.

24That is, whereas traditional regularization takes place
by solving a problem with an explicitly-imposed geometry,
where an explicit norm constraint is added to ensure that
the resulting solution is “small,” one can view the steps of an
approximation algorithm as providing an implicitly-imposed
geometry. The details of how and where that implicitly-
imposed geometry is “nice” will determine the running time
and quality-of-approximation guarantees, as well as what in-
put data are particularly challenging or well-suited for the
approximation algorithm.

25Ignore the “size-resolved” aspect of these plots, since by

(a) Objective func-
tion value

(b) One “niceness”
measure

(c) Another “nice-
ness” measure

Figure 1: Scatter plot (on log-log scales) of size-
resolved conductance (in Fig. 1(a)) and two “nice-
ness” measures (Fig. 1(b) shows average shortest
path length and Fig. 1(c) shows the ratio of ex-
ternal conductance to the internal conductance) for
clusters found in the AtP-DBLP (AuthToPap-dblp)
network with a spectral algorithm (blue) and a flow-
based algorithm (red). See [27, 28] for details.
For all plots, lower values of the Y-axis are “bet-
ter.” In this and other examples, the flow-based
algorithm (red, Metis+MQI) generally yields clus-
ters with better conductance scores, while the spec-
tral algorithm (blue, LocalSpectral) generally yields
clusters that are nicer.

function; and thus the flow-based procedure is unambigu-
ously better than the spectral procedure at finding good-
conductance clusters. On the other hand, how useful these
clusters are for downstream applications is also of interest.
Since we are not explicitly performing any regularization, we
do not have any explicit “niceness” function, but we can ex-
amine empirical niceness properties of the clusters found by
the two approximation procedures. Figures 1(b) and 1(c)
presents these results for two different niceness measures.
Here, lower values on the Y-axis correspond to “nicer” clus-
ters, and again we are interested in clusters with lower Y-
axis values. Thus, in many cases, the spectral procedure is
clearly better than the flow-based procedure at finding nice
clusters with reasonably good conductance values.

Formalizations aside, this empirical tradeoff between so-
lution quality and solution niceness is basically the defining
feature of statistical regularization—except that we are ob-
serving it here as a function of two different approximation
algorithms for the same intractable combinatorial objective
function. That is, although we have not explicitly put any
regularization term anywhere, the fact that these two dif-
ferent approximation algorithms essentially filter the data
through different metric and geometric spaces leaves easily-
observed empirical artifacts on the output of those approxi-
mation algorithms.26 One possible response to these empir-
ical results is is to say that conductance is not the “right”

assumption we are interested in clusters of roughly 103 or
104 nodes (but [27, 28] provides details on this); and don’t
worry about the details of the flow-based and spectral-based
procedures, except to say that there is a nontrivial theory-
practice gap (again, [27, 28] provides details).

26For other data—in particular, constant-degree expanders—
the situation should be reversed. That is, theory clearly pre-
dicts that locally-biased flow-based algorithms [3] will have
better niceness properties than locally-biased spectral-based
algorithms [1]. Observing this empirically on real data is
difficult since data that are sufficiently unstructured to be
expanders, in the sense of having no good partitions, tend
to have very substantial degree heterogeneity.
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objective function and that we should come up with some
other objective to formalize our intuition;27 but of course
that other objective function will likely be intractable, and
thus we will have to approximate it with a different spectral-
based or flow-based (or some other) procedure, in which case
the same implicit regularization issues will arise [27, 28].

3.3 Computing locally-biased graph partitions
In many applications, one would like to identify locally-

biased graph partitions, i.e., clusters in a data graph that
are “near”a prespecified set of nodes. For example, in nearly
every reasonably large social or information network, there
do not exist large good-conductance clusters, but there are
often smaller clusters that are meaningful to the domain
scientist [2, 27, 28]; in other cases, one might have domain
knowledge about certain nodes, and one might want to use
that to find locally-biased clusters in a semi-supervised man-
ner [33]; while in other cases, one might want to perform al-
gorithmic primitives such as solving linear equations in time
that is nearly linear in the size of the graph [39, 1, 15].

One general approach to problems of this sort is to modify
the usual objective function and then show that the solution
to the modified problem inherits some or all of the nice prop-
erties of the original objective. For example, a natural way
to formalize the idea of a locally-biased version of the lead-
ing nontrivial eigenvector of L that can then be used in a
locally-biased version of the graph partitioning problem is
to modify Problem (3) with a locality constraint as follows.

minimize
x

xTLx

subject to xT x = 1,

xT D1/21 = 0

(xT D1/2s)2 ≥ κ,

(8)

where s is a vector representing the “seed set,” and where
κ is a locality parameter. This locally-biased version of the
usual spectral graph partitioning problem was introduced
in [33], where it was shown that solution inherits many of
the nice properties of the solution to the usual global spectral
partitioning problem. In particular, the exact solution can
be found relatively-quickly by running a so-called Personal-
ized PageRank computation; if one performs a sweep cut on
this solution vector in order to obtain a locally-biased parti-
tion, then one obtains Cheeger-like quality-of-approximation
guarantees on the resulting cluster; and if the seed set con-
sists of a single node, then this is a relaxation of the following
locally-biased graph partitioning problem: given as input a
graph G = (V, E), an input node u, and a positive integer
k, find a set of nodes S ⊆ V achieving

φ(u, k, G) = min
S⊆V :u∈S,vol(S)≤k

φ(S), (9)

i.e., find the best conductance set of nodes of volume no
greater than k that contains the input node v [33]. This
“optimization-based approach” has the advantage that it is
explicitly solving a well-defined objective function, and as
such it is useful in many small-scale to medium-scale appli-
cations [33]. But this approach has the disadvantage, at least

27Conductance probably is the combinatorial quantity that
most closely captures the intuitive bi-criterial notion of what
it means for a set of nodes to be a good “community,” but
it is still very far from perfect on many real data.

for Web-scale graphs, that the computation of the locally-
biased eigenvector “touches” all of the nodes in the graph—
and this is very expensive, especially when one wants to find
small clusters.

An alternative more “operational approach” is to do the
following: run some sort of procedure, the steps of which
are similar to the steps of an algorithm that would solve
the problem exactly; and then either use the output of that
procedure in a downstream application in a manner similar
to how the exact answer would have been used, or prove
a theorem about that output that is similar to what can
be proved for the exact answer. As an example of this ap-
proach, [39, 1, 15] take as input some seed nodes and a
locality parameter and then run a diffusion-based procedure
to return as output a “good” cluster that is “nearby” the
seed nodes. In each of these cases, the procedure is similar
to the usual procedure,28 except that at each step of the al-
gorithm various “small” quantities are truncated to zero (or
simply maintained at zero), thereby minimizing the num-
ber of nodes that need to be touched at each step of the
algorithm. For example, [39] sets to zero very small proba-
bilities, and [1] uses the so-called push algorithm [24, 10] to
concentrate computational effort on that part of the vector
where most of the nonnegligible changes will take place.

The outputs of these strongly local spectral methods ob-
tain Cheeger-like quality-of-approximation guarantees, and
by design these procedures are extremely fast—the running
time depends on the size of the output and is independent
even of the number of nodes in the graph. Thus, an advan-
tage of this approach is that it opens up the possibility of
performing more sophisticated eigenvector-based analytics
on Web-scale data matrices; and these methods have already
proven crucial in characterizing the clustering and commu-
nity structure of social and information networks with up
to millions of nodes [2, 27, 28]. At present, though, this
approach has the disadvantage that it is very difficult to
use: the exact statement of the theoretical results is ex-
tremely complicated, thereby limiting its interpretability;
it is extremely difficult to characterize and interpret for
downstream applications what actually is being computed
by these procedures, i.e., it is not clear what optimization
problem these approximation algorithms are solving exactly;
and counterintuitive things like a seed node not being part
of “its own cluster” can easily happen. At root, the reason
for these difficulties is that the truncation and zeroing-out
steps implicitly regularize—but they are done based on com-
putational considerations, and it is not known what are the
implicit statistical side-effects of these design decisions.

The precise relationship between these two approaches
has not, to my knowledge, been characterized. Informally,
though, the truncating-to-zero provides a“bias” that is anal-
ogous to the early-stopping of iterative methods, such as
those described in Section 3.1, and that has strong struc-
tural similarities with thresholding and truncation methods,
as commonly used in �1-regularization methods and opti-
mization more generally [19]. For example, the update step
of the push algorithm, as used in [1], is a form of stochastic
gradient descent [20], a method particularly well-suited for
large-scale environments due to its connections with regular-

28Namely, the three diffusion-based procedures that were
described in Section 3.1: [39] performs truncated random
walks; [1] approximates Personalized PageRank vectors;
and [15] runs a modified heat kernel procedure.
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ization and boosting [11]; and the algorithm terminates after
a small number of iterations when a truncated residual vec-
tor equals zero [20], in a manner similar to other truncated
gradient methods [25].

Perhaps more immediately-relevant to database theory
and practice as well as to implementing these ideas in large-
scale statistical data analysis applications is simply to note
that this operational and interactive approach to database
algorithms is already being adopted in practice. For ex-
ample, in addition to empirical work that uses these meth-
ods to characterize the clustering and community structure
of large networks [2, 27, 28], the body of work that uses
diffusion-based primitives in database environments includes
an algorithm to estimate PageRank on graph streams [37],
the approximation of PageRank on large-scale dynamically-
evolving social networks [6], and a MapReduce algorithm for
the approximation of Personalized PageRank vectors of all
the nodes in a graph [5].

4. DISCUSSION AND CONCLUSION
Before concluding, I would like to share a few more gen-

eral thoughts on approximation algorithm theory, in light of
the above discussion. As a precursor, I should point out the
obvious fact that the modern theory of NP-completeness is
an extremely useful theory. It is a theory, and so it is an
imperfect guide to practice; but it is a useful theory in the
sense that it provides a qualitative notion of fast computa-
tion, a robust guide as to when algorithms will or will not
perform well, etc. The theory achieved this by considering
computation per se, as a one-step process that divorced the
computation from the input and the output except insofar
as the computation depended on relatively-simple complex-
ity measures like the size of the input. Thus, the success
is due to the empirical fact that many natural problems of
interest are solvable in low-degree polynomial time, that the
tractability status of many of the “hardest” problems in NP
is in some sense equivalent, and that neither of these facts
depends on the input data or the posedness of the problem.

I think it is also fair to say that, at least in a very wide
range of MMDS applications, the modern theory of approx-
imation algorithms is nowhere near as analogously useful.
The bounds the theory provides are often very weak; the
theory often doesn’t provide constants which are of inter-
est in practice; the dependence of the bounds on various
parameters is often not even qualitatively right; and in gen-
eral it doesn’t provide analogously qualitative insight as to
when approximation algorithms will and will not be use-
ful in practice for realistic noisy data. One can speculate
on the reasons—technically, the combinatorial gadgets used
to establish approximability and nonapproximability results
might not be sufficiently robust to the noise properties of
the input data; many embedding methods, and thus their
associated bounds, tend to emphasize the properties of “far
apart” data points, while in most data applications “nearby”
information is more reliable and more useful for downstream
analysis; the geometry associated with matrices and spectral
graph theory is much more structured than the geometry as-
sociated with general metric spaces; structural parameters
like conductance and the isoperimetric constant are robust
and meaningful and not brittle combinatorial constructions
that encode pathologies; and ignoring posedness questions
and viewing the analysis of approximate computation as a
one-step process might simply be too coarse.

The approach I have described involves going “beyond
worst-case analysis” to addressing questions that lie at the
heart of the disconnect between what I have called the algo-
rithmic perspective and the statistical perspective on large-
scale data analysis. At the heart of this disconnect is the
concept of regularization, a notion that is almost entirely ab-
sent from computer science, but which is central to nearly
every application domain that applies algorithms to noisy
data. Both theoretical and empirical evidence demonstrates
that approximate computation, in and of itself, can implic-
itly lead to statistical regularization, in the sense that ap-
proximate computation—either approximation algorithms
in theoretical computer science or heuristic design decisions
that practitioners must make in order to implement their al-
gorithms in real systems—often implicitly leads to some sort
of regularization. This suggests treating statistical model-
ing questions and computational considerations on a more
equal footing, rather than viewing either one as very much
secondary to the other.

The benefit of this perspective for database theory and the
theory and practice of large-scale data analysis is that one
can hope to achieve bicriteria of having algorithms that are
scalable to very large-scale data sets and that also have well-
understood inferential or predictive properties. Of course,
this is not a panacea—some problems are simply hard; some
data are simply too noisy; and running an approximation
algorithm may implicitly be making assumptions that are
manifestly violated by the data. All that being said, under-
standing and exploiting in a more principled manner the sta-
tistical properties that are implicit in scalable worst-case al-
gorithms should be of interest in many very practical MMDS
applications.
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