LOG-SOBOLEV INEQUALITIES AND SAMPLING
FROM LOG-CONCAVE DISTRIBUTIONS

Alan Frieze* Ravi Kannan†

October 23, 1997

Abstract

We consider the problem of sampling according to a distribution with log-concave density F over a convex body $K \subseteq \mathbb{R}^n$. The sampling is done using a biased random walk and we prove polynomial upper bounds on the time to get a sample point with distribution close to F.

1 Introduction

This paper is concerned with the efficient sampling of random points from \mathbb{R}^n where the underlying density F is log-concave (i.e. $\log F$ is concave). This is a natural restriction which is satisfied by many common distributions e.g. the multi-variate normal. The algorithm we use generates a sample path from a Markov chain whose stationary distribution is (close to) F. The algorithm falls into the class of Metropolis algorithms. Using recent developments in the theory of rapidly mixing Markov chains, in particular the notion of conductance [8, 5] Applegate and Kannan [1] proved a bound on the convergence rate of the chain considered in this paper. In a recent paper Frieze, Kannan and Polson [3] proved tighter bounds using an approach related to the classical Poincaré inequalities instead of conductance. In this paper we improve these bounds still further by using Logarithmic Sobolev inequalities, see Diaconis and Saloff-Coste [2] for an expository article.

Instead of sampling from the continuum of points in \mathbb{R}^n, we discretize the problem by assuming that \mathbb{R}^n is divided into a set of hypercubes C_R of side δ (δ is a given small positive real number) and the problem is to choose one of these cubes each with probability proportional to the integral of F over the cube. [If necessary, a sample from the continuum can then be picked by standard rejection sampling techniques from the cube chosen; we omit details of this.] Secondly, we assume that we have a compact convex set of diameter d and we wish to choose points only from K (not all of \mathbb{R}^n). This is justified because clearly for any positive real number ε, we can find a compact convex set (for example a ball or hypercube) such that the integral of F over the set is at least $(1-\varepsilon)$ times the integral over \mathbb{R}^n.

Let C denote the set of cubes which which intersect K. Let C denote the set of centres of these cubes. For $x \in \mathbb{R}^n$ we denote the cube of side δ and centre x by $C(x)$. (Thus $C(x) \in C$ if and only if $x \in C$.) We choose our sample point X by performing a random walk over C. The walk is biased so that its steady state is (close to) what we want and we run the

*Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213, U.S.A., supported in part by NSF grant CCR-9530674.
†Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A., supported in part by NSF grant 9528973
walk until it is close enough to the steady state. The result of this paper concerns the rate of convergence of the walk to its steady state.

We may not be able to compute F exactly and so we assume we have good approximations $\tilde{F}(x), x \in C$. Further we assume that $F(x)$ is strictly positive for all $x \in C$. We extend \tilde{F} to the whole of K by putting $\tilde{F}(y) = \tilde{F}(x)$ for $y \in C(x), x \in C$.

We can only take advantage of the log-concavity of F if our grid is sufficiently fine and our approximations $\tilde{F}(x)$ are sufficiently good. In this context we will assume that for some small $\alpha > 0$

$$(1 + \alpha)^{-1} F(x) \leq \tilde{F}(y) \leq (1 + \alpha) F(x) \quad \forall y \in C(x).$$

When we have $\tilde{F} = F$, it is easy to check that this condition is satisfied if we choose α to be $e^{M\delta} - 1$ where M is the Lipschitz constant of $\ln F$ with respect to the infinity norm, (i.e., M satisfies $|\ln F(x) - \ln F(y)| \leq M|x - y|_\infty$); $\forall x, y \in K$. However, an α smaller than $e^{M\delta} - 1$ may satisfy (1); this is in fact the case for important functions like $F(x) = e^{-c|x|}$ and $F(x) = e^{-c|x|^2}$ as tedious, but simple calculations show. As we will see the rate of convergence to the steady state depends upon $(1 + \alpha)$. In typical applications, one would make $1 + \alpha$ a constant. (For example this can be ensured by choosing $\delta = O(1/M)$.)

The walk we consider fits into the scheme of Metropolis algorithms introduced in Metropolis, Rosenberg, Rosenbluth, Teller and Teller [7]. It was used by Applegate and Kannan [1] in their paper on volume computation and was further studied by Frieze, Kannan and Polson [3].

In the following, for any natural number $m, [m] = \{1, 2, \ldots, m\}$ and e_1, e_2, \ldots, e_m are the standard basis vectors of R^m. For convenience, we consider the continuous time version where the time between transitions is an independent negative exponential with mean one.

The Random Walk

This generates a random trajectory $X(t), t \geq 0$ where $X(0)$ is picked according to some initial distribution $p_0(x)$. Fix a time t where a transition has just taken place. At a random time $t' = t + \tau$ where τ is a negative exponential with mean one we do the following:

Step 1 Choose j randomly from $[n]$. Choose σ randomly from $\{\pm 1\}$.

Step 2 Let $y = X(t) + \delta e_j$.

Step 3 If $y \not\in C$ then $X(t') = X(t)$; replace t by t' and return to Step 1. Otherwise, put $X(t') = y$ with probability $\theta = \min \{1, \tilde{F}(y)/\tilde{F}(X_i)\}$ and $X(t') = X(t)$ with probability $1 - \theta$.

Let $\Gamma(x) = \{y \not= x : P(x, y) > 0\}$. Then the transition probabilities $P(x, y) = \Pr(X(t') = y \mid X(t) = x)$ are formally given by

$$P(x, y) = \frac{1}{2^n} \min \{1, \tilde{F}(y)/\tilde{F}(x)\} \quad \text{for } y \in \Gamma(x)$$

and

$$P(x, x) = 1 - \sum_{y \not= x} P(x, y).$$

We refer to this as “the random walk” in the paper.

The process has a steady state with probabilities $\pi(x)$ with $\lim_{t \to \infty} \Pr(X(t) = x) = \pi(x)$ for all x independent of the distribution of $X(0)$. It is easy to verify that

$$\pi(x) = \tilde{F}(x)/\Delta,$$
where $\Delta = \sum_{x \in C} \tilde{F}(x)$. We assume that the $\tilde{F}(x)$ are sufficiently good approximations so that sampling according to π can be considered to be our objective.

Note that this process is time-reversible i.e.

$$\pi(x) P(x, y) = \pi(y) P(y, x) \quad \text{for } x, y \in C.$$

Let $p_t(x) = \Pr(X_t = x)$ be the distribution at time t and let $f_t(x) = p_t(x)/\pi(x)$. Then let $M = \max_{x \in C} f_0(x) \log f_0(x)$. For $0 \leq \theta \leq 1$ let $C_\theta = \{x \in C : \text{vol}(C(x) \cap K) \geq \theta \delta^n\}$ and $\pi_\theta = \sum_{x \in C_\theta} \pi(x)$.

The variational distance between p_t and π given by

$$||p_t - \pi||_{TV} = \sum_{x \in C} |p_t(x) - \pi(x)|.$$

Our main result is

Theorem 1 Assume $d \geq \delta n^{1/2}$. There is an absolute constant $\gamma > 0$ such that

$$||p_t - \pi||_{TV} \leq \left(\frac{1}{2} \left(\exp \left\{-\frac{\gamma \theta \delta^2}{nd^2} \log \pi_*^{-1} + \frac{M \pi_\theta nd^2}{\gamma \delta^2} \right\} \right)^{1/2},$$

where $\pi^* = \min \pi(x)$.

Generally speaking it is not difficult to choose $p_0(x)$ so that for $\theta = 1/10$ say, $M\pi_\theta$ is exponentially small. Usually one has p_0 concentrated on a small set S_0 and then f_0 is zero outside this set. One can then blow up K so that π_θ is sufficiently small, while only marginally changing $p_0(x)$ for $x \in S_0$.

This improves results of [3], essentially by replacing π_*^{-1} by $\log \pi_*^{-1}$.

2 Back to a continuous problem

The entropy $\text{Ent}_\pi(\mu)$ of measure μ is given by

$$\text{Ent}_\pi(\mu) = \sum_{x \in C} \mu(x) \log \frac{\mu(x)}{\pi(x)}.$$

It follows from the convexity of x^π that

$$\text{Ent}_\pi(\mu) \leq \log \pi_*^{-1}. \quad (2)$$

Inequality (2.8) of [2] shows that for any measure μ we have

$$2||\mu - \pi||_{TV}^2 \leq \text{Ent}_\pi(\mu). \quad (3)$$

[For a proof see the Appendix.]

For $\phi \in \mathbb{R}^C$ we introduce the quantities

$$\mathcal{E}(\phi, \phi) = \frac{1}{2} \sum_{x \in C} \sum_{y \in \Gamma(x)} (\phi(x) - \phi(y))^2 \pi(x) P(x, y)$$

and

$$\mathcal{L}(\phi) = \sum_{x \in C} \phi(x)^2 \log \left(\frac{\phi(x)^2}{\|\phi\|^2} \right) \pi(x),$$

$$= ||\phi||^2 \text{Ent}_\pi(\mu),$$
where
\[\|\phi\|^2 = \sum_{x \in C} \phi(x)^2 \pi(x) \quad \text{and} \quad \mu(x) = \pi(x)\phi(x)^2 / \|\phi\|^2 \quad \text{for} \ x \in C. \]

We now define the Log-Sobolev constant \(\alpha \) by
\[
\alpha = \inf \left\{ \frac{\mathcal{E}(\phi, \phi)}{\mathcal{L}(\phi)} : \mathcal{L}(\phi) \neq 0 \right\} = \inf \left\{ \frac{\mathcal{E}(\sqrt{\mu}, \sqrt{\mu}/\pi)}{\text{Ent}_\pi(\mu)} : \mu \text{ is a measure on } C \right\}.
\]

Putting \(\phi_t(x) = \sqrt{f_t(x)} \) for \(x \in C \), it is shown in [2], (see Appendix for a proof) that
\[
\frac{d}{dt} \text{Ent}_\pi(p_t) \leq -4\mathcal{E}(\phi_t, \phi_t).
\]

It follows that
\[\text{Ent}_\pi(p_t) \leq e^{-4\alpha t} \text{Ent}_\pi(p_0). \]

We need to modify this in order to account for the border cubes \(C(x), x \notin C_0 \).

2.1 Two Integrals

Given \(\phi \in \mathbb{R}^N \) and a small \(\epsilon > 0 \) we define \(\Phi_\epsilon : K \to \mathbb{R} \) as follows: suppose \(z \in C(x) \) for some \(x \in C \). Let \(C(x, \epsilon) \) denote the cube centred at \(x \) with side \(\delta - 2\epsilon \). If \(z \in C(x, \epsilon) \) we let \(\Phi_\epsilon(z) = \phi(x) \). If \(z \notin C(x, \epsilon) \) let \(D \) be a face of \(C(x) \) which is closest to \(z \). (If there is a tie for \(D \), the value of \(\Phi_\epsilon \) does not matter, as we will see.) Suppose first that \(D = C(x) \cap C(y) \) for some \(y \in C \) and that \(\text{dist}(z, D) = \eta \epsilon \) where \(0 \leq \eta < 1 \). In this case we let \(\Phi_\epsilon(z) = ((1 + \eta \phi(x) + (1 - \eta)\phi(y))/2. \) In this way, if we start at a point on a face of \(C(x, \epsilon) \) parallel to \(D \) and move towards \(D \) then \(\Phi_\epsilon \) changes linearly from \(\phi(x) \) to \(\phi(y) \) over a distance \(2\epsilon \). Finally, if the hypercube on the other side of \(D \) to \(C(x) \) is not in \(C \) then we keep \(\Phi_\epsilon(z) = \phi(x) \).

We consider the two integrals
\[I_\epsilon = \int_K |\nabla \Phi_\epsilon(z)|^2 F(z)g(z)dz \]
and
\[J_\epsilon = \int_K \Phi_\epsilon(z)^2 \log \left(\frac{\Phi_\epsilon(z)^2 \int_K F(z)g(z)dz}{\int_K \Phi_\epsilon(z)^2 F(z)g(z)dz} \right) F(z)g(z)dz. \]

Here \(g : K \to \mathbb{R} \) is defined by
\[g(y) = \frac{F(x)}{F(y)} \quad \text{for} \ y \in C(x), x \in C. \]

Thus in particular,
\[\int_{C(x)} F(y)g(y)dy = \delta^n F(x), \quad x \in C, \]
and
\[(1 + \alpha)^{-1} \leq g(y) \leq 1 + \alpha. \]
\(\Phi_e \) is not differentiable on a set \(Z \) of measure zero (consisting of points for which there is a tie for \(D \)). We can however easily “smooth out” \(\Phi_e \) close to \(Z \) so that (4) and (1) imply

\[
I_e = \sum_{x \in C} \int_{K \cap C(x)} |\nabla \Phi_e(z)|^2 \tilde{F}(z)dz \\
\leq \sum_{x \in C} \int_{C(x)} |\nabla \Phi_e(z)|^2 F(z)dz \\
\leq \epsilon^{-1} \delta^{n-1} \sum_{x \in C} \sum_{y \in \Gamma(x)} \left(\frac{\phi(x) - \phi(y)}{2} \right)^2 \tilde{F}(x) + O(1) \quad (O(1) \text{ as } \epsilon \to 0) \\
\leq \left(\frac{1 + \alpha}{4} \right) \epsilon^{-1} \delta^{n-1} \sum_{x \in C} \sum_{y \in \Gamma(x)} (\phi(x) - \phi(y))^2 \min \{ \tilde{F}(x), \tilde{F}(y) \} + O(1) \\
= (1 + \alpha) \epsilon^{-1} \Delta n \delta^{n-1} \mathcal{E}(\phi, \phi) + O(\epsilon),
\]

where the term \(O(1) \) may depend on \(n, F, \phi \).

On the other hand, the concavity of \(\ln \tilde{F} \) implies that it is continuous; so for small enough \(\epsilon \), we have:

\[
\int_S F(\zeta)d\zeta \leq (1 + f(\epsilon)) \int_{C(x) \cap C(y)} F(\zeta)d\zeta \text{ where } S \text{ is obtained by translating } C(x) \cap C(y) \text{ towards } x \text{ by some } \epsilon' \in [0, \epsilon] \text{ and } f \text{ is some function with } \lim \sup_{\epsilon \to 0} f(\epsilon) = 0.
\]

This along with (1) implies that

\[
I_e \geq \epsilon^{-1} (1 + f(\epsilon))^{-1} (1 + \alpha)^{-1} \int_K |\nabla \Phi_e(z)|^2 F(z)g(z)dz - O(1).
\]

So

\[
\mathcal{E}(\phi, \phi) \geq \frac{\epsilon I_e}{(1 + \alpha)^2 (1 + f(\epsilon)) n \delta^{n-1} \Delta} - O(\epsilon).
\]

(9)

We decompose

\[
\text{Ent}_\pi(p_\theta) = \text{En}_F(p_\theta) + \text{En}_B(p_\theta)
\]

where \(\text{En}_F(p_\theta) = \sum_{x \in C_\theta} p_\theta(x) \log f_\theta(x) \) etc..

Arguing as we did for \(\mathcal{E}(\phi, \phi) \) we see that

\[
J_e \geq \sum_{x \in C_\theta} \int_{K \cap C(x)} \Phi_e(z)^2 \log \left(\frac{\Phi_e(z)^2 \int_K F(\zeta)g(\zeta)d\zeta}{\int_K \Phi_e(\zeta)^2 F(\zeta)g(\zeta)d\zeta} \right) F(z)g(z)dz \\
\geq \theta \delta^n \Delta \sum_{x \in C_\theta} \phi(x)^2 \log \left(\frac{\phi(x)^2}{||\phi||^2} \right) \pi(x) + O(\epsilon) \\
= \delta^n \Delta \text{En}_F(\mu) + O(\epsilon),
\]

(11)

where \(\mu \) is as in (5).

Applying (6) and (9) (with \(\phi = \phi_\theta \)) and (11) (with \(\mu = p_\theta \)) we find that for some absolute constant \(A_1 > 0 \)

\[
\frac{d}{dt} \text{Ent}_\pi(p_\theta) \leq -A_1 \frac{\epsilon I_e}{n \delta^{n-1} \Delta} + O(\epsilon) \\
\leq -A_1 \frac{\delta I_e}{J_e} \text{En}_F(t) + O(\epsilon)
\]

(12)

In the next section we prove
Theorem 2 Suppose K is a convex set in \mathbb{R}^n of diameter d, F is a (positive real valued) log-concave function on K and g any sufficiently smooth real valued function on K satisfying (7). Then with $f = \Phi$, and $d \geq \delta n^{1/2}$ we have
\[
\int_K f(x)^2 \log \left(\frac{f(x)^2 \int_K Fg dx}{\int_K f^2 F g dx} \right) F(z) g(z) dz \leq A_2 d^2 \varepsilon^{-1} \int_K |\nabla f(x)|^2 F(z) g(z) dx,
\]
for some absolute constant $A_2 > 0$.

Letting $\varepsilon \to 0$ we see from (12) and the above theorem that
\[
\frac{d}{dt} \text{Ent}_\pi(p_t) \leq -A_1 A_2 \frac{\delta^2}{n d^2} \text{Ent}_f(t).
\]

In the proof of (6) (see (29)) we find that
\[
f_t(x) = e^{-t(1-F)} f_0(x).
\]
This implies that
\[
\max_x f_t(x) \leq \max_x f_0(x)
\]
and consequently
\[
\text{Ent}_B(t) \leq M \pi_\theta.
\]

It follows from (14) and (15) that
\[
\text{Ent}_\pi(p_t) \leq e^{-\beta t} \text{Ent}_\pi(p_0) + \frac{M \pi_\theta}{\beta},
\]
where $\beta = A_1 A_2 \frac{\delta^2}{n d^2}$. Theorem 1 now follows from (3) and (16).

3 Proof of Theorem 2

As in [3], we use the localisation lemma of Lovász and Simonovits [6] to reduce the geometry to one dimension.

Lemma 1 Let f_1, f_2 be upper semi-continuous functions defined on \mathbb{R}^n such that
\[
\int_{\mathbb{R}^n} f_i(x) dx > 0 \quad i = 1, 2.
\]

Then there exist $a, b \in \mathbb{R}^n$ and a linear function $\ell : [0, 1] \to \mathbb{R}_+$ such that
\[
\int_{t=0}^{1} f_i(ta + (1-t)b) \ell(t)^{n-1} dt > 0, \quad i = 1, 2.
\]

We use the fact that (13) fails to hold if and only if there exists $\lambda > 0$ such that
\[
\int_K F(x) g(x) dx > \lambda \int_K f(x)^2 F(x) g(x) dx
\]
and
\[
\int_K f(x)^2 F(x) g(x) log(\lambda f(x)^2) dx > A d^2 \varepsilon^{-1} \int_K |\nabla f(x)|^2 F(x) g(x) dx.
\]
So we put

\[f_1 = Fg(1 - \lambda f^2)\chi_K \]

and

\[f_2 = Fg(f^2 \log(\lambda f^2) - A\delta^2e\delta^{-1}|\nabla f|^2)\chi_K, \]

where \(\chi_K \) is the indicator function of the body \(K \).

Let \(a, b, \ell \) be as in Lemma 1. We observe that we can take \(a, b \in K \) because of the factor \(\chi_K \). Let \(f(t) = \Phi_x((1 - t)a + tb), \ g(t) = g((1 - t)a + tb), \ h(t) = F((1 - t)a + tb)\ell(t)^{n-1}, \) and

\[\tilde{g}(t) = |\nabla \Phi_x((1 - t)a + tb)|. \]

Note that \(h(t) \) is log-concave. We can assume that \(|b - a| = d \) as \(|b - a| \leq d \) and \(|b - a| \) can replace \(d \) in our proof.

We then see that if (13) fails to hold then, where \(\psi(t) = g(t)h(t), \)

\[
\int_0^1 f(t)^2 \log \left(\frac{f(t)^2 \int_0^1 \psi(t) dt}{\int_0^1 f(t)^2 \psi(t) dt} \right) \psi(t) dt > A\delta^2e\delta^{-1} \int_0^1 \tilde{g}(t)^2 \psi(t) dt. \tag{17}
\]

Suppose on this line segment, \(h \) attains its maximum at \(\zeta \). We consider the two parts of the line segment \([0, \zeta]\) and \([\zeta, 1]\) separately. The arguments are symmetric and we give only one part. In fact we will assume for simplicity that \(\zeta = 0 \).

So, we assume \(h \) decrease monotonically on \([0, 1]\).

We can make the following normalizations (the first by scaling \(h \) and the second by then scaling \(f \), neither of which changes the Theorem.)

\[
\int_0^1 \psi(t) dt = 1 \tag{18}
\]

\[
\int_0^1 f(t)^2 \psi(t) dt = 1.
\]

Let \(X \in [0, 1] \) be a random variable with density function \(\psi \). Now

\[
f(t)^2 \leq 2(f(t) - f(0))^2 + 2f(0)^2. \tag{19}
\]

Also (from the fact that log is a concave function,)

\[
\int_0^1 f(0)^2 \log(f(t)^2)\psi(t) dt \leq f(0)^2 \log \left(\int_0^1 f(t)^2 \psi(t) dt \right)
\]

\[
= 0. \tag{20}
\]

Now, putting \(u = (b - a)/d \) we get

\[
(f(t) - f(0))^2 = \left(\int_{s=0}^t f'(s) ds \right)^2
\]

\[
= d^2 \left(\int_{s=0}^t \sum_{j=1}^n u_j \chi_j(s) \frac{\partial \Phi_x}{\partial x_j}((1 - s)a + sb) \ ds \right)^2,
\]

where \(\chi_j \) is defined by

\[
\chi_j(s) = \begin{cases}
1 & \text{if } \frac{\partial \Phi_x}{\partial x_j}((1 - s)a + sb) \neq 0 \\
0 & \text{otherwise}.
\end{cases}
\]

7
By the Cauchy-Schwarz inequality, we have

\[
\sum_{j=1}^{n} |u_j \chi_j(s) \frac{\partial \Phi}{\partial x_j}((1-s)a + sb)| \leq \left(\sum_{j=1}^{n} u_j^2 \chi_j(s) \right)^{1/2} \tilde{g}(s).
\]

So we get with another application of Cauchy-Schwarz,

\[
(f(t) - f(0))^2 \leq d^2 \left(\int_{s=0}^{t} \left(\sum_{j=1}^{n} u_j^2 \chi_j(s) \right)^{1/2} \tilde{g}(s) ds \right)^2 \\
\leq d^2 \left(\int_{s=0}^{t} \sum_{j=1}^{n} u_j^2 \chi_j(s) ds \right) \left(\int_{s=0}^{t} \tilde{g}(s)^2 ds \right).
\]

Now each time the line from 0 to t crosses a hyperplane of the form \(x_j = m\delta \), \(m \) an integer, we get a contribution of \(2\epsilon/d_u_j \) to \(\int \chi_j(s) ds \). Furthermore, the number of such crossings is at most

\[
\frac{d_u_j t}{\delta} + 1.
\]

So we get (using the facts that \(\sum_{j=1}^{n} u_j^2 = 1 \) and \(\sum |u_j| \leq \sqrt{n} \)

\[
(f(t) - f(0))^2 \leq 2d^2 \epsilon \left(\frac{t}{\delta} + \frac{n^{1/2}}{d} \right) \int_{s=0}^{t} \tilde{g}(s)^2 ds.
\]

So, putting

\[
B = 2d^2 \epsilon \left(\frac{1}{\delta} + \frac{n^{1/2}}{d} \right)
\]

we obtain

\[
\int_{t=0}^{1} (f(t) - f(0))^2 \log(f(t)^2) \psi(t) dt \leq B \int_{t=0}^{1} \int_{s=0}^{t} \tilde{g}(s)^2 ds \log(f(t)^2) \psi(t) dt \\
= B \int_{s=0}^{1} \tilde{g}(s)^2 \mathbf{Pr}(X \geq s) \int_{t=s}^{1} \log(f(t)^2) \frac{\psi(t)}{\mathbf{Pr}(X \geq s)} dt ds \\
\leq B \int_{s=0}^{1} \tilde{g}(s)^2 \mathbf{Pr}(X \geq s) \log \left(\int_{t=s}^{1} \frac{f(t)^2 \psi(t)}{\mathbf{Pr}(X \geq s)} dt \right) ds \\
\leq B \int_{s=0}^{1} \tilde{g}(s)^2 \mathbf{Pr}(X \geq s) \log \left(\frac{1}{\mathbf{Pr}(X \geq s)} \right) ds.
\]

We will prove that

\[
\mathbf{Pr}(X \geq s) \log \left(\frac{1}{\mathbf{Pr}(X \geq s)} \right) \leq (1 + \alpha)(1 + e^{-1})h(s) \quad (22)
\]

\[
\leq (1 + \alpha)^2 (1 + e^{-1}) \psi(s) \quad \text{by (7)}
\]

Let \(h(t) = e^{-\eta(t)} \) where \(\eta(t) \) is convex. Let \(\lambda = \eta'(s) \). Then

\[
h(t) \leq h(s)e^{-\lambda(t-s)}.
\]

...
So,
\[
\Pr(X \geq s) = \int_{t=s}^{1} \psi(t)dt \\
\leq (1 + \alpha) \int_{t=s}^{\infty} h(s)e^{-\lambda(t-s)}dt \\
= \frac{(1 + \alpha)h(s)}{\lambda}.
\] (24)

We also have
\[
(1 + \alpha)^{-1} \leq h(0) \leq h(s)e^{\lambda}.
\] (25)

The first inequality follows from the monotonicity of \(h \) and (18). The second follows from (23). Thus
\[
h(s) \geq (1 + \alpha)^{-1}e^{-\lambda}.
\] (26)

The function \(\xi \log(1/\xi) \) increases monotonically from 0 at \(\xi = 0 \) to \(e^{-1} \) at \(\xi = e^{-1} \) and decreases monotonically from then on. So if \(h(s) \geq 1/((1 + \alpha)e) \) then
\[
\Pr(X \geq s)\log(1/\Pr(X \geq s)) \leq e^{-1} \leq h(s)(1 + \alpha)
\] (27)

which implies (22) in this case.

Now assume that \(h(s) < e^{-1}/(1 + \alpha) \).

Now \(\Pr(X \geq y) = \int_{y}^{1} \psi \leq (1 + \alpha)h(s) \leq e^{-1} \). So,
\[
\Pr(X \geq y)\log \left(\frac{1}{\Pr(X \geq y)} \right) \leq (1 + \alpha)h(s)\log \left(\frac{1}{(1 + \alpha)h(s)} \right) \\
\leq (1 + \alpha)h(s)\lambda \quad \text{from (26)}.
\]

So \(\lambda \leq 1 \) will imply that (27) holds again. We can therefore assume that \(\lambda > 1 \). But then \(h(s)/\lambda < h(s) < e^{-1}/(1 + \alpha) \) and so we obtain from (24) that
\[
\Pr(X \geq y)\log \left(\frac{1}{\Pr(X \geq y)} \right) \leq \frac{(1 + \alpha)h(s)}{\lambda} \log \left(\frac{\lambda}{(1 + \alpha)h(s)} \right) \\
\leq \frac{(1 + \alpha)h(s)}{\lambda} \log(\lambda e^{\lambda}) \quad \text{from (26)} \\
= (1 + \alpha)h(s) \left(\frac{\log \lambda}{\lambda} + 1 \right) \\
\leq (1 + \alpha)(e^{-1} + 1)h(s),
\] (28)

as claimed.

So if
\[
C = 2B(1 + \alpha)^2(1 + e^{-1})
\]

then
\[
\int_{t=0}^{1} (f(t) - f(0))^2 \log(f(t)^2)\psi(t)dt \leq C \int_{t=0}^{1} g^2\psi(t)dt.
\]

Theorem 1 follows. \(\Box \)

There is an alternative random walk, the \textit{Ball Walk} which has been applied in this area [5], [6] and [4]. It is in some sense preferable to the one we have studied since better upper bounds are known on its “mixing time”.

\textbf{Ball Walk}

Replace Steps 1 and 2 of the previously discussed walk by
Step 1' Choose \(u \) uniformly at random from the set \(\{ u \in \mathbb{R}^n : |u| \leq \delta \} \).

Step 2' Let \(y = X(t) + u \).

Problem: estimate the Log-Sobolev constant for the Ball Walk.

References

A Appendix

Proof of (3) Observe first that for \(u > 0 \) we have

\[
3(u - 1)^2 \leq (4 + 2u)(u \log u - u + 1).
\]

Applying this with \(u = \mu(x)/\pi(x) \) and then multiplying by \(\pi(x) \) we obtain

\[
\sqrt{3} |\mu(x) - \pi(x)| \leq (4\pi(x) + 2\mu(x))^{1/2}(\mu(x) \log(\mu(x)/\pi(x)) - \mu(x) + \pi(x))^{1/2}.
\]

Applying the Cauchy-Schwartz inequality,

\[
(\sqrt{3} |\mu - \pi|_\mathcal{V})^2 \leq \sum_x (4\pi(x) + 2\mu(x)) \sum_x (\mu(x) \log(\mu(x)/\pi(x)) - \mu(x) + \pi(x))
= 6\text{Ent}_\pi(\mu).
\]

Proof of (6) \qed

10
The following sequence of derivations relies heavily on the time-reversibility of our process.

We indicate these uses by an * at the end of the line. Observe first that if \(f_t(x) = p_t(x)/\pi(x) \) and \(H_t = e^{-t}e^{tP} \) then

\[
\begin{align*}
 f_t(x) &= \sum_{n=0}^{\infty} \frac{t^n e^{-t}}{n!} \sum_{y \in C} \frac{p_0(y) \pi^n(y, x)}{\pi(x)} \\
 &= \sum_{n=0}^{\infty} \frac{t^n e^{-t}}{n!} \sum_{y \in C} \frac{p_0(y) \pi^n(x, y)}{\pi(y)} \quad * \\
 &= H_t f_0(x). \\
\end{align*}
\]

(29)

We apply this to compute the rate of change of \(\text{Ent}_\pi(p_t) \) with respect to \(t \).

\[
\begin{align*}
 \frac{d}{dt} \text{Ent}_\pi(p_t) &= \sum_{x \in C} \pi(x) \frac{d}{dt} (f_t(x) \log f_t(x)) \\
 &= \sum_{x \in C} \pi(x) (1 + \log f_t(x)) \frac{d}{dt} f_t(x) \\
 &= \sum_{x \in C} \pi(x) (1 + \log f_t(x)) \frac{d}{dt} H_t f_0(x) \\
 &= \sum_{x \in C} \pi(x) (1 + \log f_t(x)) (P - I) f_t(x) \\
 &= \sum_{x \in C} \pi(x) (1 + \log f_t(x)) \sum_{y \in C} P(x, y) (f_t(y) - f_t(x)) \\
 &= \sum_{x \in C} \pi(x) \log f_t(x) \sum_{y \in C} P(x, y) (f_t(y) - f_t(x)) \quad * \\
 &= -\frac{1}{2} \sum_{x, y \in C} \pi(x) P(x, y) (\log f_t(x) - \log f_t(y)) (f_t(x) - f_t(y)). \\
\end{align*}
\]

Now [2] show ((2.7) of that paper) that if \(a \geq b \geq 0 \) then

\[
(\log a - \log b)(a - b) \geq 4(a^{1/2} - b^{1/2})^2.
\]

Hence,

\[
\begin{align*}
 \frac{d}{dt} \text{Ent}_\pi(p_t) &\leq -2 \sum_{x, y \in C} \pi(x) P(x, y) (f_t(x)^{1/2} - f_t(y)^{1/2})^2 \\
 &= -4\epsilon(f_t^{1/2}, f_t^{1/2}) \\
 &\leq -4\alpha \text{Ent}_\pi(p_t),
\end{align*}
\]

which proves (6). \(\square \)