Yale University
Department of Computer Science

Mechanism Design for Policy Routing

Joan Feigenbaum! Rahul Sami?
Yale University MIT

Scott Shenker?
ICSI and U.C. Berkeley

YALEU/DCS/TR-1258
November 2003

This work was supported by the DoD University Research Initiative (URI) administered by the
Office of Naval Research under Grant N00014-01-1-0795.

1 Qiimnartad in nart hy ONR o
UulJlJUl o 111 lJCll t U_y AJLNEIN dliv N

2Supported by ONR and NS
3Supported in part by NSF.

T

Mechanism Design for Policy Routing

Joan Feigenbaum* Rahul Sami? Scott Shenker*
Yale University MIT ICSI and U.C. Berkeley
feigenbaum@cs.yale.edu sami@csail.mit.edu shenker@icsi.berkeley.edu
Abstract

The Border Gateway Protocol (BGP) for interdomain routing is designed to allow autonomous sys-
tems (ASes) to express policy preferences over alternative routes. We model these preferences as arising
from an AS’s underlying utility for each route and study the problem of finding a set of routes that
maximizes the overall welfare (i.e., the sum of all ASes’ utilities for their selected routes).

We show that, if the utility functions are unrestricted, this problem is NP-hard even to approximate
closely. We then study a natural class of restricted utilities, next-hop preferences. We present a strat-
egyproof, polynomial-time computable mechanism for welfare-maximizing routing over this restricted
domain. However, we show that, in contrast to earlier work on lowest-cost routing mechanism design,
this mechanism appears to be incompatible with BGP and hence difficult to implement in the context of
the current internet. Our contributions include a new complexity measure for Internet algorithms, the
dynamic stability, which may be useful in other problem domains.

1 Introduction

The Internet is composed of many independently-managed subnetworks called domains or autonomous
systems (ASes). The task of discovering and selecting routes between these ASes is called interdomain rout-
ing. Currently, the only widely deployed protocol for interdomain routing is the Border Gateway Protocol
(BGP); through BGP, a router can learn of routes from neighboring networks, select routes from the multiple
alternatives it may learn of, and advertise its selected routes to other networks.

In this scenario, one of the key decisions an AS must make is how to select a route from all the routes
it knows of to a particular destination. One frequently studied model has each AS look at some objective
metric over the routes, such as the number of ASes the route passes through or the cost of a route, and pick
the route which minimizes this metric. In practice, however, ASes want to select a route based on many other
criteria, such as commercial relationships or perceived reliability. For example, it is common for an AS to
select a route advertised by one of its customers over all other routes. Thus, BGP was explicitly designed
to allow ASes to apply their own routing policies to the route-selection and route-advertisement processes.
This feature of interdomain routing is referred to as policy-based routing or policy routing for short.

Another aspect of routing that has recently received attention is that of incentives. The participants in
the routing process— the ASes, in this case— are independent economic entities, each with its own goals.
Thus, they cannot be relied on to follow any specified policy, if they could profit by deviating from that
policy. Further, much of the information relevant to selecting good routes, such as costs or connectivity

This work was supported by the DoD University Research Initiative (URI) administered by the Office of Naval Research under
Grant N00014-01-1-0795.
*Supported in part by ONR and NSF.
tSupported by ONR and NSF.
iSupported in part by NSE.

information, is known privately to individual ASes; thus, even if there were a central authority capable of
enforcing a policy, it could not possibly detect strategic reporting of this information. This paper explores
the extent to which one can cope with these strategic issues in a computationally feasible manner.

The algorithmic mechanism design approach, introduced by Nisan and Ronen [NRO1], was one of the
first works to address both incentives and computational complexity. Among other problems, Nisan and
Ronen studied a simple routing problem: Given a graph with a distinguished source node s, a distinguished
sink node £, and costs associated with each edge, find the lowest-cost path from s to £. The wrinkle in the
model is that each edge can strategically lie about its cost. Nisan and Ronen showed how a central authority
can compute payments for each edge such that every edge’s dominant strategy is to be honest about its cost,
yielding a strategyproof mechanism for this problem. Later, Hershberger and Suri [HSO1] presented a more
efficient algorithm to compute the payments required by this mechanism. Archer and Tardos [AT02] studied
mechanisms to select a path that minimizes a metric from a broad class, not necessarily the sum of edge
costs; this too can be viewed as a variant of lowest-cost routing.

The mechanism-design approach was extended by Feigenbaum ez al. [FPSS02], who sought lowest-
cost routing mechanisms in the context of interdomain routing. Their main contribution was to focus on
distributed mechanisms, thus adopting the distributed algorithmic mechanism design approach initiated by
Feigenbaum, Papadimitriou, and Shenker [FPSO1]. Feigenbaum ef al. [FPSS02] give a strategyproof mech-
anism for the lowest-cost routing problem, which can be computed by an efficient distributed algorithm.
Moreover, they show that this mechanism can be computed by a “BGP-based” algorithm, i.e., an algorithm
with similar data structures and communication patterns to BGP, that requires only modest increases in
communication and convergence time. Thus, the mechanism is “backward compatible” with BGP, which is
critical for any routing algorithm that must be implemented in the current Internet.

All the work on mechanism design for routing has focused on variants of lowest-cost routing. In practice,
this has two drawbacks: The cost model is oversimplified, and the requirement that all ASes use a lowest-cost
routing policy is too restrictive. In this paper, we investigate whether the distributed algorithmic mechanism
design approach can be extended to general policy routing. In essence, we look at interdomain routing at
a higher level of abstraction: We assume that source ASes have preferences over alternative routes to a
destination, but we do not model the causes of these preferences. Thus, in our initial model, an AS can
express any routing policy, provided that it is based on some underlying utility function— it need not arise
from the cost of the route but may take into account unspecified, subjective route attributes as well. The goal
of the mechanism is to compute routes for every source-destination pair such that the overall welfare, i.e.,
the sum of all ASes’ utility for their selected routes, is maximized. The only constraint on the selected routes
is that all routes to a given destination must form a tree; this is a very natural constraint in the Internet, where
packet forwarding decisions are based only on the destination (not source and destination) of the packet.

Our first result is that, for general preferences, computing an optimal set of routes is NP-hard; it is even
NP-hard to compute a solution that approximates the optimum to within a factor of O(niff). We prove this
result by an approximability-preserving reduction from the Maximum Independent Set problem.

This leads us to consider a restricted class of utility functions, next-hop preferences. The restriction is
that an AS’s utility for a route can only depend on the first hop along that route. This class of utility functions
captures preferences arising from customer/provider/peer relationships an AS might have with its neighbors.
These commercial relationships are a major motivation for allowing flexible policy routing in BGP, and so
this is an interesting class of preferences to study. We show that, for next-hop preferences, the welfare-
maximization problem reduces to finding a maximum-weight directed spanning tree to each destination and
is hence computable in polynomial time. We derive a strategyproof mechanism for this problem, and show
that it can also be computed in polynomial time.

We next ask whether it is possible to implement this mechanism with a distributed, BGP-based algo-
rithm. Unfortunately, we find that this is not the case. In order to prove that a BGP-based implementation is

impractical, we refine the model of BGP-based computation given in [FPSS02] and show that any implemen-
tation of the welfare-maximizing policy-routing mechanism would be unacceptable, even on Internet-like
graphs with small numeric valuations, for two reasons: (1) The selected routes may be long, and hence the
routing algorithm may take a long time to converge; and (2) Any change in any AS’s utilities may require
communication to £2(n) nodes, which defeats the rationale of using a path-vector protocol such as BGP.
Thus, we conclude that, unlike the lowest-cost routing mechanism of [FPSS02], this mechanism is not easy
to implement in the current Internet.

The rest of this paper is structured as follows: We formulate the welfare-maximizing policy-routing
problem in Section 2. In Section 3, we prove that, with arbitrary preferences, the problem is NP-hard,
even to approximate closely. We then turn to the next-hop preference model in Section 4. We design
a strategyproof, polynomial-time computable mechanism, the MDST mechanism, that maximizes welfare
in this model. In Section 5, we elaborate the BGP-based computation model and show that the MDST
mechanism is hard to implement in this model. Finally, in Section 6, we summarize and present some open
questions. Portions of this work appeared in preliminary form in the second author’s PhD Thesis [SamO03].

2 The Policy-Routing Problem

The network consists of n Autonomous Systems. For simplicity, we treat each AS as an atomic entity; thus,
we model the network as a graph with nodes corresponding to the autonomous systems. The edges in this
graph correspond to BGP peering or transit relationships between ASes: We have a directed edge from node
a to node b if b advertises its routes to a. In practice, the edges in this graph may vary with the destination
under consideration; however, we assume that these edges are identical for routes to any destination.

A route from a node ¢ to a node j is simply a directed path, with no cycles, from ¢ to j in the AS graph.
The routing problem in this network is as follows: For each pair of nodes ¢ and j, we need to select a single
route from 7 to 7. Further, we insist that the set of all routes to destination 7 forms a tree rooted at j. This is
a natural restriction when packets are routed one hop at a time (as opposed to being routed in an end-to-end
manner, e.g., source-routed). A candidate solution to the routing problem is thus a set of directed trees,
one for each destination. The trees for different destinations are independent of each other, and hence it is
possible to analyze the model for a single destination.

The basic difference between the lowest-cost routing problem and the policy-routing problem lies in the
source of preferences. In the former, the costs incurred by transit carriers result in their preferring routes
that do not pass through them; in the latter, ASes have differing preferences over alternative routes, and the
constraint that routes form a tree leads to conflicts of interest. There are many reasons why ASes may have
real economic preferences for different routes: Two different routes from ¢ to 7 may lead to differing transit
costs, customer satisfaction, or service payments. In this paper, we assume that AS i’s preferences among
the candidate solutions are dictated entirely by the route from 7 to j in each solution, independent of the
routes from other nodes to j. In a sense, this is complementary to the lowest-cost routing model, in which
AS ¢’s utility for a tree depends only on the routes on which it was a transit node.

Specifically, we suppose that AS #’s preferences for paths can be expressed as a utility function u; :
Pi; — R, where P;; is the union of all possible paths from ¢ to 7 and the empty path 1 (which corresponds
to solutions in which there is no route from ¢ to 7). Only the relative utilities are important, and so we can
normalize this function by requiring that u;(_L) = 0. Further, we assume that, for any route P;; from i to j,
ui{Pi;) > 0; in other words, having any route to j cannot be worse for ¢ than having no route at all.

AS preferences are private information, and hence an AS may misreport its preferences, unless it is given
appropriate incentives. These incentives are provided through a mechanism. Abstractly, a mechanism for
the routing problem for destination j takes as input the user utility profile u = (uq, ug,. .. , u,) and outputs
a routing tree T" and a vector of payments p = (p1, ... ,pn), where p; is the amount of money paid to 7. We

use the notation u;(T") to denote ’s utility for its path to j in the tree 7. We assume that the utility functions
are quasilinear and thus can be expressed directly in terms of money. Then, AS ¢’s combined benefit from
the mechanism can be expressed as the sum (u;(7") + p;). A mechanism is strategyproof if the payments
are such that every AS ¢’s dominant strategy is to truthfully report w;. In other words, strategyproofness
requires that, regardless of other ASes reported utility functions, each AS ¢ maximizes the sum (u;(T) + p;)
by reporting its true utility function u; to the mechanism.

The economic goal of this routing mechanism is to maximize the overall welfare, i.e., to choose a routing
tree T that maximizes W(T') = >, _p u;(T). We call this the welfare-maximizing routing problem.

3 NP-hardness of the general problem

In this section, we show that the general form of the welfare-maximizing routing problem stated in Section 2
is not tractable. We will focus on computing routes to a single destination only. BGP essentially computes
routes to different destinations in parallel, and so it is sufficient to consider the single-destination case.
Moreover, our results show that a policy-routing mechanism is hard to compute, even for a single destination.
It follows a fortiori that it is hard to compute the mechanism when all destinations are considered (although
the complexity may not grow by a factor of n).

An instance of the routing problem we are considering is as follows: We are given a directed graph G,
with a distinguished destination node j. Each node i is associated with a set S; of allowed paths' from i to
J in G and a utility function u; : S; — R>g.

We now show that, for the very general class of utility functions defined in Section 2, it is NP-hard to
compute a tree that maximizes the overall welfare. We prove this result by a reduction from the Independent
Set problem: Given a graph GG with vertices N, find a largest subset S of N such that no two vertices in S
have an edge between them. This problem is known to be NP-hard [Kar72]; in fact, it is even NP-hard to
approximate the size of the largest independent set to within a factor of n3=e [H4s99].

Given an instance G = (N, E) of the Independent Set problem, we construct an instance of the welfare-
maximizing routing problem. The construction of the network H is illustrated in Figure 1. For each vertex v
in N, we have a terminal vertex t, in H. In addition, for each edge e = (v1, v2) in E, we add three vertices
e, e, and e to H. We also add directed edges from € to €”* and e¢“2. Finally, we add a special destination
vertex j to H. We then choose an arbitrary order for the edges in . For a vertex v in N, let ey, ea,... ,e; be
the edges incident on v in G, in that order. We add the directed edges (,,€1), (€], €2),... (€] ,@), (€}, 7}
to H.

In this manner, we construct a directed path

Py, = (tmél)a (517611])7 (611]762)7' . 7(élae;])7 (e;]a])

for each terminal vertex ¢,. Now, we let Sy, = {F,}, and u, (P,) = 1, for each such vertex. For a
nonterminal vertex € corresponding to an edge e = (vq,v2) in G, we let Sz = {P,,,, P,,}, where P,, is the
suffix of P,, from € to §, and P,, is the suffix of P, from @ to j. We let uz(Py,) = uz(Py,) = 0. Similarly,
for a vertex of the form e”, we let Sev contain only the suffix of P, from e’ to 7, and let e”’s utility for this
path be 0.

'There may be an exponentially high number of paths from i to j in the graph (and, indeed, in the Internet). Thus, it might seem
that even describing the AS utility functions completely is a hopeless task. However, it is possible that an AS’s utility function can
be described with polynomial amounts of space. We include a set of allowed paths in the problem description simply to provide
one such representation: A path P;; implicitly has utility O if it is not in the allowed set. The NP-hardness reduction in this section
shows that, even when all ASes have utility functions that can be expressed concisely using this representation, it is NP-hard to find
a welfare-maximizing routing tree. Any other concise representation of utility functions with small support would suffice for the
reduction described here.

Figure 1: Reduction from Independent Set. The path F, is shown in bold.

Lemma 1 Given an instance G = (N, E) of the Independent Set problem, let (H,{S;}, {u;(-)}) be an
instance of the welfare-maximizing routing problem constructed as described above. Let T be an optimal
routing tree for this problem. Then, the following conditions hold:

(i). For any vertices v1,vy € N such that (vi,v9) is an edge in G, at most one of t,,, and t,, has a path
to jinT*,

(ii). If S C N is an independent set, then W (T*) > |S|.

Proof: (i) Let e be the edge (v, v2). If ¢,, has a path to 7, it must be the path P,,. The vertex € lies on this
path, and hence the unique path from € to 7 in 7™ must pass through e¥!, not €2, It then follows that the
path P,, is not contained in 7", and hence there is no path from ¢,, to j in T™*.

(ii) No two vertices in S have any edge in common; hence, if vy, vy € S, the paths F,, and P,, are disjoint.
Thus, the union of paths P, for all v € S forms a tree T'(S). Further, we note that W (T(S)) = |S|. T* is
optimal, and hence W (T*) > |S]|. O

Corollary 1 If S is a maximum independent set in G, then T(S) is an optimal routing tree. Conversely, if
T* is an optimal routing tree, then S = {v|t,, has a path to j in T*} is a maximum independent set in G.

a

Finally, we observe that this reduction implies that even an approximately optimal routing tree is hard to
find: If 7" is an approximately optimal routing tree, then S = {v|t, has a path to j in T} is an approximately
maximum independent set in G, with the same approximation factor. Note that we reduce a graph with n
vertices to a network with O(n?) nodes and O(n?) allowed paths. Thus, an (n?) = pa approximation
to the welfare-maximizing routing problem would give us an n3—% approximation to the independent set
problenel, and an (n?) 3¢ = pl=s approximation to the welfare-maximizing routing problem would give us

an '~ 2 approximation to the independent set problem. Combining this with known results on the hardness

of computing exactly maximum independent sets and approximately maximum independent sets [Kar72,
Has99], we have proved the following theorem:

Theorem 1 Given a general network on n nodes, with a total of O(n) allowed paths and arbitrary AS-path
utility functions,

o Unless NP = P, there is no polynomial-time algorithm to compute a welfare-maximizing routing
tree.

o For any ¢ > 0, unless NP = P, there is no polynomial-time algorithm to compute a tree the total

. . oL . . 1
welfare of which approximates that of a welfare-maximizing routing tree to within a factor of n1~*.

o Foranye > 0, unless NP = Z PP, there is no polynomial-time algorithm to compute a tree the total
€

welfare of which approximates that of a welfare-maximizing routing tree to within a factor of n=e

O

Theorem 1 probably rules out the possibility of solving this problem exactly or approximately in the most

general case. There are two possible approaches to restricting the scope of the problem in order to make

it more tractable. The first is to restrict the class of networks, while still covering Internet-like situations.

The second approach is to restrict the class of allowable utility functions; we pursue the second approach in
Section 4.

4 Next-hop preferences

In this section, we consider solutions to the welfare-maximizing routing problem with a restricted class of
AS preferences. Specifically, we assume that AS ¢’s utility u;(P;;) for route P;; depends only on the next hop
from ¢ on this route (i.e., the utility depends only on which of ¢’s neighbors this route passes through). The
motivation for this is that an AS is likely to have different economic relationships with different neighbors
(customers, providers, and peers), leading to different utilities for routes depending on which neighbor is
used for transit; however, it is reasonable to assume that two routes to j through the same neighbor have a
similar economic impact on 7. Further, we assume that the set of allowed routes from ¢ is likewise determined
solely by which neighbors of ¢ may be used to transit packets destined to j.

With this assumption, 4’s utility function can be written as a function u;(a) of the neighboring AS a.
Similarly, the set of ¢’s allowed routes can be expressed as a set S; of 7’s neighbors that can be used to carry
transit traffic to j. (The set S; reflects agreements between 7 and its neighbors: If ¢ € §;, it means that, in
principie, ¢ is willing to send packets through a, and a is willing to accept packets from ¢ for destination 7.)

This leads to a convenient combinatorial form of the welfare-maximizing routing problem. We construct
a graph G, with a vertex corresponding to each AS, and an identified destination vertex j. If a € S;, we
include a directed edge e from 7 to a; we assign this edge a weight u, = u;(a). A routing tree is then simply
a directed tree (arborescence) T' with all edges directed towards the root j. Further, an AS ¢’s utility for its
route in 7' is the weight u, of the edge outgoing from ¢ in 7" if such an edge exists or 0 otherwise. Thus, the
overall welfare with routing tree T is

wW(T) = Z Ue

ecT

It follows that the welfare-maximizing routing tree 1™ is a maximum-weight directed tree withroot j in G;.
We first show that we can restrict our attention to directed spanning trees.

Lemma 2 Suppose we are given a weighted graph G ;, with vertex set N. Define R C N by

R%f {i € N | There is a path from i to j in G;} U {5}

Then, there is a maximum-weight directed tree with root j that spans R.

Proof: Let 7™ be a maximum-weight directed tree with root j. Suppose there is some veriex v € R such
that v ¢ T*. There is a path from v to j in G;; we can add edges from this path to 7 without decreasing
its weight, because the utilities are always non-negative. By adding edges along this path in order, we can
eventually grow the tree to include v, without reducing its weight. O

Note that the ASes that cannot even reach j can be completely ignored for the purpose of finding routes
to 7. Also, itis easy to compute, for each AS ¢, whether j is reachable from s. This, combined with Lemma 2,
means that without loss of generality, we can assume that 7™ spans the vertex set N,

Thus, we want to compuie a maximum-weight direcied spanning tree, with edges directed towards j
(a maximum-weight j-arborescence).” This is a well-studied problem; one distributed algorithm for this
problem was given by Humblet [Hum83].

4.1 A VCG Mechanism

We now describe an efficient, strategyproof mechanism for the welfare-maximizing routing problem with
next-hop preferences. This is a direct application of the theory of Vickrey-Clarke-Groves (VCG) mecha-
nisms. It follows from the characterization of efficient, strategyproof mechanisms [GL79] that the payment
to AS ¢ must have the form:

pi =Y ua(T*) + hi(u) (1)
aFti

Here, h;(-) is an arbitrary function of u™?, the vector of utilities of all agents other than i. We normalize
the payment by requiring that nodes that do not carry transit traffic (leaf nodes in 7™) are not paid. The
rationale for this requirement here is that leaf nodes are not contributing to other agents’ value.

Let 7~* be the maximum weight j-arborescence in N\{i}.> Then, W (T %) is a function of u~* alone.
Recall that an AS can refuse to accept transit traffic, i.e., effectively cut off all incoming edges. If AS 7 did
this, it would force the optimal tree to have it as a leaf node. We would then have 7% = T~" U (i, a), where
(7,a), an edge from AS i to some other AS « in the network, is the heaviest outgoing edge from i. As i
would be a leaf, the payment p; must be 0 in this case; for this to occur, we must have h;(u™%) = —W (T%).
Substituting back into Equation 1, we get the following formula for the payment p;:

pio= S ulT*) — W(T™) = W(T*) —w(T*) — W(T™) @
aFi

We call this the MDST mechanism. In order to compute this mechanism, we will have to compute the
MDST, as well as the payment p; to be given to each AS 4. The payments can be computed by solving (n—1)
minimum-weight j-arborescence instances (one for each node except 7), and thus the MDST mechanism is
polynomial-time computable.

5 Hardness of BGP-based Implementation

Up to this point, we have formulated the problem of finding the welfare-maximizing routing tree with next-
hop preferences as a maximum-weight directed-spanning-tree problem and derived the natural sirategyproof,
efficient mechanism for this problem. This mechanism is polynomial-time computable in a centralized

“This is essentially equivalent to the problem of computing a minimum-weight j-arborescence, with weights adjusted appropri-
ately.
*We assume the network is 2-connected, and hence such a tree exists.

computational model; this leads us to hope that, as in the case of lowest-cost routing [FPSS02], we can find
a BGP-based distributed algorithm for it. Unfortunately, this appears not to be the case. In Section 5.1, we
further develop the BGP-based computational model; in sections 5.2 and 5.3, we argue that this mechanism
is incompatible with BGP.

5.1 The BGP-based Distributed Computation model

We start by recalling the BGP-based computation model defined by Feigenbaum et al. [FPSS02]: An algo-
rithm is “BGP-based” if it has similar data structures and communication pattern to (a simplified abstraction
of) BGP. Further, such an algorithm has acceptable performance if the storage space per router, time to
convergence, and total communication required in running the algorithm are within a constant factor of the
requirements for running BGP itself.

This definition of BGP-based algorithms is not yet complete. For proving that a specific algorithm,
such as the price computation algorithm in [FPSS02], does not cause large changes in the structure or
performance of BGP, it is adequate— it is possible to assure ourselves by inspection that the algorithm “has
similar structure” to BGP. However, for proving impossibility results, we need a more precise specification
of the class of acceptable algorithms. Thus, we need to elaborate on the specific properties that we expect a
BGP-based computation to have.

Consider routing to some destination j. The properties we require of any BGP-based computation of the
routes to j are:

P1 The routing tables should use O(!) space to store a route of length /.

P2 Routes should be computable in time proportional to the diameter of the network rather than the total
size of the network.

P3 When a node fails, or there is a change in the information (such as costs or preferences) associated
with the node, the change should not always have to propagate to the whole network; instead, it should
usually be propagated only to a small subset of nodes. Formally, we require that there are o(n) nodes
that trigger 2(n) UPDATE messages when one of them fails and comes back up or changes its cost or
utility function by an infinitesimal amount.

Property P1 says that the routing table should have roughly the same size as BGP routing tables, or
be smaller; this is clearly desirable in any proposed routing algorithm. While the number of ASes in the
Internet has grown rapidly, the AS-graph diameter has remained small. In addition, current Internet routes
typically pass through few intermediate ASes. Property P2 requires a routing algorithm to stabilize rapidly
in networks of this form.

The justification for Property P3 is as follows: In a link-state routing protocol, any change has to be
broadcast to all the nodes in the network. BGP is a path-vector protocol, partly to avoid this dynamic
communication burden; thus, a BGP-based algorithm should preserve this property. As the set of routes to
7 forms a tree, we cannot prevent changes in a few nodes near the root from affecting many other nodes.
Similarly, it seems acceptable that a large change in the cost or preference of node ¢ can put it near the root
and hence affect many nodes. However, we don’t want every change to result in this much communication;
this is expressed in the statement of P3.

Property P3 is an unusual feature of our model in that it deals with the dynamic performance of an
algorithm- specifically, it requires the algorithm to have dynamic stabiliry. The main analytic reason for
introducing this constraint is to rule out algorithms that compute routes in a centralized fashion at a single
locaiion, using logarithmic-depih spanning irees io colleci ihe inpuis and disiribuie the ouipuis. Such an
algorithm is clearly not similar to BGP, yet it could meet the static performance requirements with some

clever encoding in the routing tables. The dynamic stability requirement prevents this, and also provides
new insight as to why a fully distributed algorithm, such as BGP, may be preferable in loosely-coupled
systems.

It may be argued that requirements P2 and P3 capture desirable properties of distributed algorithms
generally and not BGP-based algorithms in particular. This is not an obstacle for our purposes in this
section. Because we are trying to show that the MDST mechanism is nor BGP-compatible, it suffices to
show that it does not have properties required for a larger class of algorithms that contain those that are
BGP-based. These three properties that suffice for the negative result sought in this section. We do not
claim that these properties provide us with a fully fleshed out “BGP computational model”; that is a goal for
future work.

Another important point is that we do not necessarily require these conditions to hold for all possible
networks and all possible cost or preference values. The only networks that we care about are “Internet-
like” networks— those that can plausibly represent an AS graph or some subgraph of an AS graph. For this
reason, we restrict ourselves to networks that satisfy three properties: They must be sparse, with average
node degree O(1); they must have small diameter— specifically, diameter O(logn); and, when any one node
is removed from the network, the diameter must remain O(logn).

It is more difficult to identify what “reasonable” cost or preference values might be. We definitely want
them to be polynomial in 7 and preferably polylogarithmic in n. Further, we are not as concerned with
hardness that may arise because of some strange coincidence of specific numerical values that happen to
produce a very unstable state. At the same time, there is no single natural distribution with respect to which
we can analyze the average-case complexity of an algorithm. Instead, we insist that any hardness result hold
over an open set of cost or preference values; this means that the hardness holds over a region of preference
space with non-zero volume, instead of at isolated points. This is similar in spirit to the smoothed analysis
of Spieclman and Teng [STO1].

We note that the lowest-cost routing mechanism in [FPSS02] satisfies these propetties, provided the node
costs are similar to each other, not very skewed. By contrast, we now show that the welfare-maximizing
routing problem does not satisfy these properties, even for networks and preference values that fit our defi-
nition of “reasonable.”

5.2 Long convergence time

Destination j Edee in MDST
g=4

Q
1 1
) / \ ----> Edge not in MDST

blﬁ b

N SN

2 2 2 C\ 2. ..
! as as aa

Figure 2: Network with low diameter and a long path in MDST.

Figure 2 shows an example of a network with 2n — 1 nodes for which a BGP-based algorithm for the
welfare-maximizing routing mechanism takes €2(n) stages to converge. The network consists of a balanced

j-arborescence. The leaf nodes are a1, a9, ... ,a,. The network can be extended to have diameter 2 logn
by adding reverse edges with lower preference values; these reverse edges do not affect our argument, and
so we omifted them from Figure 2. Similarly, by adding one more low-preference edge from each internal
node, we can arrange for the diameter to remain small even when any one node is removed. Each node is
adjacent to at most 4 other nodes, and so the network satisfies the sparseness requirement as well.

The preference values are shown as numbers (weights) on the edges in Figure 2. Each a; in {a1, ag, ...,
an—1} prefers to route through its neighbor a;11 (value 2) rather than take the path up the tree (value 1).
Thus, the welfare-maximizing routing solution, given by the maximum-weight directed spanning tree in this
network, consists of the path ayas - - - a,, attached to the remainder of the tree at a,,. Note that the values
are in a small range [1,2]. We also remark that this remains the optimal solution even if any subset of the
next-hop values are perturbed by a small amount (less than 0.5 each).

Thus, the optimal solution has a route of length Q(n), for any preference values in an open set around
the specified values. BGP builds routes on a hop-by-hop basis. An AS can use a route only when its next
hop on the route has advertised it, and it can itself extend and advertise the route only in the next stage.
Thus, we have proved that any such algorithm does not satisfy property P2:

Theorem 2 Any BGP-based algorithm for computing the next-hop welfare-maximizing mechanism in the
network of Figure 2, over an open set of preference values in a small range, takes Q)(n) stages to converge.

O

Given the hop-by-hop route construction in BGP, it may seem that a more reasonable requirement than

P2 is that the number of stages required for convergence is proportional to the length of the longest route.

However, the length of the longest selected route is also a function of the mechanism under consideration

(in this case, the MDST mechanism); for this reason, we prefer the more stringent requirement P2, which

is independent of the mechanism. One of the reasons that the MDST mechanism is incompatible with BGP

is precisely that it may select very long routes even in networks with small diameter and hence will cause
BGP (or any hop-by-hop protocol substrate) to converge very slowly.

5.3 Extensive dynamic communication

It may be argued that the long route in Figure 2 is unlikely to arise, because long routes are inherently unde-
sirable, and hence ASes will lower their preference values for neighbors with long routes to the destination.
In other words, even though next-hop preferences may adequately capture an AS’s preferences at any given
time, these preferences will themselves evolve (over a longer time period, perhaps) to rule out value profiles
that lead to long routes. In this section, we show that, even if there are no long routes, any algorithm to
compute the next-hop welfare-maximizing mechanism will not satisfy condition P3: There are situations in
which every change in a single node’s utility function will trigger update messages to at least half of the
other nodes.

We show this by constructing a network as depicted in Figure 3. The network has n = 2 + 1 nodes.
We construct it with by recursively constructing clusters of nodes.

At the bottom, we construct a 1-cluster that consists of two nodes, B and R. The 1-cluster has two
edges, a “blue” edge from R to B and a “red” edge from B to R. Here, “blue” and “red” are simply labels
that we attach to the edges to clarify the analysis; they have no particular semantics. Each of these two edges
has weight L — 1, where L = 2m + 4.

In each cluster in our construction, we identify two special nodes: One is the “blue port” and one is the
“red port.” For a 1-cluster, B is the blue port and R is the red port. We recursively construct (k + 1)-clusters
from two k-clusters, for £ = 1,2,... ,m — 1: We add a biue edge from the biue port of the right &-cluster
to the blue port of the left k-cluster; the latter then serves as the blue port of the (k + 1)-cluster. Similarly,

10

3-cluster

——= blue edge

---> red edge

~

N
N
N <

SN e AL ~._ 7

2-cluster R 5 e 7

3

Figure 3: Construction of network for Section 5.3, for m = 3.

we add a red edge from the red port of the left k-cluster to the red port of the right £-cluster, which serves
as the red port of the (k + 1)-cluster. These edges both have weight L — 2k — 1.

Once we have built up the m-cluster in this manner, we complete the network construction as follows:
We add one more node, the destination j. We also add a blue edge from the blue port of the m-cluster
to 7, with weight L — 2m — 1 = 3, and a red edge from the red port of the m-cluster to 7, with weight
L — 2m — 2 = 2. The complete network, for m = 3, is shown in Figure 3.

This network is sparse (each node has only iwo outgoing edges) and has low diameter, as required. As
in Section 5.2, we can augment it with edges of lower value so that the diameter stays low on removing an
edge; these edges do not affect the analysis, and so we ignore them here. All the valuations are in the range
[1, L], where L = O(logn). The network we have just built has two distinguished directed spanning trees
to destination j: one consisting of all the blue edges and one consisting of all the red edges. In each of
these trees, the longest path (route) has m + 1 = O(logn) hops. We will now show that these two directed
spanning trees have greater weight than any other directed spanning tree with destination j.

Lemma 3 If T is a j-arborescence in a network of the form shown in Figure 3, and T has both blue and
red edges, then there is another j-arborescence T such that W(T) > W(T) + 2.

Proof: Consider a minimum-sized cluster that has both red and blue outgoing edges in T". Suppose this is
a (k + 1) — cluster, as shown in Figure 4(a). Consider the two k-clusters it is composed of, and label the
ports By, Ry, Bo, Ry as shown.

Now, the (k + 1)-cluster has a blue outgoing edge; it must be from the blue port By. All smaller clusters
have only one color of outgoing edge in T'. It follows that the left k-cluster must have only blue edges.
Similarly, the red outgoing edge must be from the port Ry, and so the right k-cluster must have all red
edges. Thus, the spanning tree 7' must include the blue spanning tree of the left k-cluster, the red spanning
tree of the right k-cluster, and the two outgoing edges with weight L — 2k — 3 (or less if £ = m — 1).

We now construct the tree 7' as shown in Figure 4(b): we replace the red spanning tree by a blue spanning
tree, and replace the red outgoing edge by the blue edge within the (k + 1)-cluster, with weight L — 2k — 1.
Because of the symmetric construction of the k-clusters, the red and blue spanning trees have the same
weight. Thus, the overall weight of T is at least 2 higher than the weight of T'. O

Lemma 4 For the network and weights u as constructed in Figure 3, the maximum-weight j-arborescence
T*(w) is the biue spanning tree. Further, for any node By that is the blue node of its i-cluster, T~ 5= (u)
(the maximum-weight j-arborescence on N\{B,}) is the red spanning tree restricted to N\{B}.

11

J
J
jeamm g e
\ [

\

\ CD “
\ X |
A ‘

N '
. '
| /
\

h
| /
| ;

h
\
N
%)

k-cluster k-cluster

(k + 1)-cluster

L—(2k+3)

(a) Tree T

k-cluster k-cluster

{k + 1)-cluster

L —(2k +3)
(b) Tree T'

Figure 4: Consiruction to increase the weight of a tree I" with both red and blue edges.

Proof: From Lemma 3, we know that the maximum weight j-arborescence must be either entirely blue
or entirely red. At the top level, the blue edge has a higher weight than the red edge; at all other levels
of the construction, the weights are the same. Thus, the blue spanning tree must be the maximum-weight
j-arborescence T%(u).

The red spanning tree has B, as a leaf and has weight onl

with B ag a leaf mmst have hoth red and hlne ed
wltil 2, dd 4 1lar Hiust flave O0ul ICU allG Oiul CG

less than optimal. Any other j-arborescence

ht at leagt 2 lege than ontimal hv
L dt aCdst 4 1055 il Opulilas, Uy

Lemma 3. Finally, we observe that any j-arborescence on {B.} can be extended to a j-arborescence
that has B, as a leaf, by adding the red edge (B,, R,) with weight L — 1. Thus, the restriction of the red
subtree to N'\{ B} must be optimal. O

Now, consider perturbing the weights u by adding an amount &, to the weight of each edge e, for any 4,
with absolute value less than % Then, the weight of any spanning tree cannot change by 1 or more, and so
Lemma 4 still holds. This leads us to the hardness result for this section:

Theorem 3 For the network constructed in Figure 3 and an open set of valuations in a small range, any
infinitesimal change in valuation must cause UPDATE messages to be sent to at least (n — 3)/2 nodes.

Proof: We start with the weight vector u. A perturbed weight vector @ can be constructed from u as
follows: For each node 4, we add 6}’1% to the weight of the blue outgoing edge from 7 and 6{6‘1 to the
weight of the red outgoing edge from 7, where |5})lue|7 |6{ed| < % This corresponds to picking a weight
vector from an open set around u.

(Concider the navment ns dne to come nod
LULLIGUL UiV paylililiit . Gul WU SUILL UG

but not the blue port of a (k + 1)-cluster. Then,

The red outgoing edge from B, must have weight (L — 1), and so using Lemma 4 and Equation 2, we get

-

2l B £k Trr/

pp, = W(I") —up,(I7) - W(

/ m— B
t L)
= W(blue spanning tree) — (L — 2k — 1) — [W (red spanning tree) — (L — 1)]

= [W(blue spanning tree) — W (red spanning tree) | + 2k

1+ (gPlue _ gredy| 4o 3)
€N

Note that pp, satisfies Equation (3) for any perturbed weight vector u in the given range. Now, suppose
we start from some weight vector u, and then there is an infinitesimal change in 651‘16 (or 5£ed) for some
node a. It follows from Equation (3) that pp, changes when this happens, and hence node B, must receive
an update message (or else, it cannot update its value of pg_). This is true for every blue node, and thus an
infinitesimal change in any node’s preference must cause price updates at every blue node (a total of ”T_l
nodes). Apart from the node a that originated the change (which may be a blue node), every other blue node
must receive an update message, thus proving the theorem statement.* O
Theorem 3 shows the essence of why the MDST mechanism appears difficult for a BGP-based computational
model: A small change at any one node can cause changes that are global, not confined to the routes the node
lies on. This appears to be an inherent problem of the maximum-weight directed spanning tree structure:
Even if we neglected the payment computation, the failure of any blue node would force the red spanning
tree to be used, effectively changing the routes of all other nodes.

6 Conclusion

In summary, we presented a formulation of welfare-maximizing policy routing in the mechanism design
framework. We showed that in the most general case, it is NP-hard to maximize the overall welfare, or even
approximate it o within any reasonable [actor. When ulility [unctions are restricted Lo the class of next-hop
preferences, an optimal strategyproof mechanism is polynomial-time computable. However, a BGP-based
distributed implementation of this mechanism appears to be unrealistic: It may converge very slowly even
on small diameter networks, and it may require messages to be sent to a large fraction of the nodes whenever
any node changes its preferences.

This raises several natural questions for further study. We can ask whether it is possible to design
a mechanism for the next-hop preference setting that approximately maximizes the overall welfare and
also has a low-complexity BGP-based distributed implementation. Another approach is to find reasonable
additional restrictions on the preferences for which an efficient exact algorithm exists.

An unusual feature of our computational model is the use of the dynamic communication requirement as
a complexity measure. This is possibly relevant to other problem domains as well: Many network protocols
are designed to operate over long periods of time, during which their inputs frequently change. Thus, it may
be useful to extend the dynamic-stability analysis in Section 5.3 to other distributed optimization problems.

*We assume here that the payment pp, must be stored at B,.. Even if this is not true, we could get a result that is nearly as strong,
as follows: pp, must be stored at some node. By property P1, each node can store O(m) values only; thus, the payments for ail
the blue nodes must be distributed across Q(n/m) = Q(&) nodes, which must all receive UPDATEs every time the preferences
change.

13

References

Arm

[AT02]

[FPSO1]

[FPSS02]

[GL79]

[H&s99]

[HSO1]

[Hum83]

[Kar72]

[NROI1]

[Sam03]

[STO1]

Aaron Archer and Eva Tardos. Frugal path mechanisms. In Proceedings of 13th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 02), pages 991-999. ACM Press/SIAM, New
York, January 2002.

Joan Feigenbaum, Christos Papadimitriou, and Scott Shenker. Sharing the cost of multicast
transmissions. Journal of Computer and System Sciences, 63:21-41, 2001.

Joan Feigenbaum, Christos Papadimitriou, Rahul Sami, and Scott Shenker. A BGP-based mech-
anism for lowest-cost routing. In Proceedings of the 21st ACM Symposium on Principles of
Distributed Computing (PODC ’02), pages 173-182. ACM Press, New York, 2002.

J. Green and J. Laffont. Incentives in public decision making. In Studies in Public Economics,
volume |, pages 65-78. North Holland, Amsterdam, 1979.

Johan Hastad. Clique is hard to approximate within n'~¢. Acta Mathematica, 182:105-142,
1999.

John Hershberger and Subhash Suri. Vickrey prices and shortest paths: What is an edge worth?
In Proceedings of the 42nd annual ACM Symposium on the Foundations of Computer Science
(FOCS "01), pages 129-140. ACM Press, New York, 2001.

Pierre A. Humblet. A distributed algorithm for minimum weight directed spanning trees. [EEE
Transactions on Communications, COM-31(6):756-762, June 1983.

Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Complexity of Computer Computations (Proceedings of a Symposium
on the Complexity of Computer Computations), pages 85-103. Plenum Press, New York, 1972,

Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic Behavior,

35:166-196, 2001.
Rahul Sami. Distributed Algorithmic Mechanism Design. PhD thesis, Yale University, 2003.

Daniel Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the simplex al-
gorithm usually takes polynomial time. In Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing (STOC "01), pages 296-305. ACM Press, New York, July 2001.

14

