
On the Feasibility of a Technological Response
to the Surveillance Morass

Joan Feigenbaum and Jérémie Koenig

Yale University, New Haven CT, 06520-8285 USA
E-mail: {joan.feigenbaum, jeremie.koenig}@yale.edu

Abstract. We consider mass surveillance from a computer-science per-
spective. After presenting some objections to the behavior of the US
National Security Agency and its counterparts in allied nations (em-
phasizing technical problems associated with such behavior, rather than
political, legal, and social problems), we propose a grass-roots, techno-
logical response: decentralized cloud services, facilitated by open-source,
decentralized configuration-management tools.

1 Introduction

Since June 2013, information leaked by Edward Snowden has revealed that the
US National Security Agency (NSA) has for years been conducting dragnet
surveillance both domestically and internationally, covertly sabotaging security
standards and products, and pressuring major US technology companies to co-
operate in its activities. Apparently, sister agencies in allied nations (particularly
Canada, the UK, Australia, and New Zealand – the four other Anglophone na-
tions of the “five eyes” consortium) have collaborated with NSA in the collection,
storage, and mining of unprecedented amounts of sensitive information. In other
words, “all our paranoid dreams of the past twenty years have come true.”1

In this paper, we consider the surveillance morass from a computer-science
perspective. In Section 2, we present some objections to government surveillance
of entire populations, emphasizing the technical problems associated with it
rather than the political, legal, and social problems. In the same section, we
ask whether the US business community has both the incentive and the power
to bring about change in its government’s policies on mass surveillance and
security sabotage; we conclude that there are some reasons for hope but also some
reasons for despair on that front. In Sections 3 and 4, we outline a possible grass-
roots, technological response to our current predicament, to wit: a transition
to more decentralized cloud services, facilitated by open-source, decentralized
configuration-management tools.

1 Call for Papers, Cambridge Security Protocols Workshop, 2014

2 The Surveillance Morass

2.1 Problem Description

We use the term “surveillance morass” to refer both to intelligence-agency prac-
tices that we find objectionable and to ambient conditions in the Internet that
enable these practices and may make it difficult to put a stop to them.

Objectionable practices have been covered steadily by the news media since
the Snowden story broke in June 2013. Indeed, as reported in [1], the NSA itself
provided the following summary of its “collection posture” in a slide presentation
at a multinational meeting of intelligence agencies in 2011:

Collect it all. Process it all. Exploit it all. Partner it all. Sniff it all. Know
it all.

To accomplish its panoptic goal, the agency, often in cooperation with its sister
agencies in allied nations, has been collecting massive amounts of communica-
tions “metadata” (including but not limited to the phone numbers, date, time,
location, and duration of every cell-phone call made in the US), surveilling both
corporate databases and user-generated data of major Internet companies (with
the companies’ cooperation when it can be obtained and by breaking into data
centers when it cannot), and engaging in security sabotage (covert and deliberate
undermining of cryptographic standards and products and of the standardization
process). A comprehensive explanation of these practices is beyond the scope of
this paper and has been undertaken by others; see, for example, Greenwald’s
recent book [1].

An essential enabler of this breathtaking surveillance regime is the ubiquity
of computers, smart phones, and communication networks in everyday life. More
and more of our daily activities in commerce, education, government, recreation,
and even friendship and romance are mediated by electronic devices that create
records of these activities, either as their primary products or as by-products.
A growing number of ad-supported cloud services require companies to retain,
interpret, and mine records of our daily activities so that ads can be targeted well
enough to fetch high prices. Arguments against targeted advertising and the data
mining that supports it have been advanced for years, but their abolition could
spell the end of the Web as we know it [2]. The troves of personal data created
by modern communication networks and cloud services are and will always be
irresistible, fat targets for intelligence services.

To explain one of our technical objections to intelligence-agency overreach,
we first recall a legal objection that many (but not all) participants in the debate
have raised, i.e., that dragnet surveillance is a prima facie violation of the Fourth
Amendment of the US Constitution. Recall that the amendment guarantees that

The right of the people to be secure in their persons, houses, papers, and
effects, against unreasonable searches and seizures, shall not be violated,
and no warrants shall issue, but upon probable cause, supported by oath
or affirmation, and particularly describing the place to be searched, and
the persons or things to be seized.

Unlike the First, Second, and Fifth Amendments, the Fourth has not tradition-
ally played much of a role in American popular culture, but it played a huge role
in American history. Rejection of “general warrants,” under which agents of the
British government subjected entire communities to search and seizure, was one
the main reasons that 18th-century American colonists fought the Revolutionary
War.

The Fourth Amendment is an early expression of a consistent theme in discus-
sions of law enforcement and intelligence generally and of electronic surveillance
in particular: the belief that privacy and security are both important goals but
that they are inherently at odds with each other. One straightforward interpreta-
tion of the amendment is that, under normal circumstances, citizens are entitled
to personal privacy but that, if there is credible and particularized suspicion that
a specific citizen has committed a specific crime (thereby violating others’ secu-
rity), government authorities may be granted a warrant to search his home and
seize his possessions (thereby violating his privacy). This simple example of the
need for law-enforcement agencies to “balance” or “trade off” privacy and secu-
rity makes sense intuitively, and US citizens have centuries of experience with
lawfully obtained search warrants’ enabling police officers to catch criminals and
collect evidence that can be used to convict them in court.

In the debate about NSA surveillance, however, some people have implicitly
made a much stronger and more general assumption that is not supported by
real-world experience or by scientific research, i.e., that there is a robust, tunable
tradeoff between security and privacy in which the security of society at large
is always guaranteed to improve if the privacy of individuals within the society
is allowed to erode. Even some civil-liberties supporters who argue that limits
must be placed on NSA data collection say things like “it’s a tradeoff. If we had
perfect information, then we’d have perfect security, but we cannot tolerate the
level of government intrusion necessary to achieve perfect information.” Nothing
in the scientific literature establishes the existence of this type of robust, tunable
tradeoff. The fact that some effective security measures, e.g., lawfully authorized
search and seizure, cause some loss of privacy does not imply that loss of privacy
per se causes or is even positively correlated with increased security.

2.2 Threats Posed by Personal-Data Collection on a Massive Scale

It is entirely possible that storage and mining of personal data on the scale
implied by the NSA’s collection posture is inherently insecure and destined to
cause the nation more harm than good.

One threat clearly posed by the mere existence of personal-data hoards of
unprecedented size is mission creep. Just as cloud-service providers’ treasure
troves of personal data proved too tempting for intelligence agencies to resist,
intelligence agencies’ troves are, in our opinion, likely to be used for purposes
other than intelligence. Indeed, there have already been reports of diverse or-
ganizations’ requesting access to NSA data in order to thwart drug trafficking,
cyber attacks, money laundering, counterfeiting, and copyright infringement [3];
as of August 2013, the NSA claimed to have turned down all of those requests,

but will it resist forever, no matter what it is offered in return? On a more banal
note, there have been reports of NSA employees’ abusing their access to surveil-
lance data in order to spy on their romantic partners and ex-partners [4]; the
practice is known as LOVEINT, by analogy with SIGINT (signals intelligence)
and HUMINT (human intelligence).

A second clear threat is infiltration and corruption of data hoards. Given
that the NSA has itself infiltrated data centers of Google and Yahoo! [5], the
agency would be foolish to assume that no one could infiltrate its data centers.
Infiltrators need not act dramatically and quickly, e.g., by appropriating large
amount of money using stolen banking credentials (although that would be de-
structive enough). They could, for example, alter data in critical but subtle ways
that are hard to detect, particularly since most of the data in these hoards will
be accessed rarely if ever.

Although dragnet collection of sensitive data poses substantial threats, whe-
ther it provides substantial value remains unclear. A presidential review group
convened to study the NSA controversy found no evidence that universal collec-
tion of cell-phone metadata contributed useful information that could not have
been obtained using conventional intelligence-gathering techniques [6]. Even sen-
sible uses of cell-phone calling records by intelligence agencies are apparently car-
ried out in a more privacy-invasive manner than they need be. For example, the
NSA’s “co-traveler” program [7] finds unknown associates of known (presumably
legitimate) surveillance targets by first intersecting cell-tower dumps from times
and locations at which a particular known target appeared and then interpreting
the intersection as the set of cell-phone numbers of people who may be “travel-
ing with” the known target. By using privacy-preserving set intersection, a well
studied cryptographic problem for which there are efficient solutions [8–10], the
agency could arrive at the same (small) set of co-travelers’ phone numbers with-
out learning the phone numbers of the (large) set of innocent people who happen
to have used one of the same cell towers at a relevant time. No doubt there are
other well understood protocols in the vast cryptographic literature that could
be used to find truly useful intelligence without revealing massive amounts of
private information about ordinary citizens.

The claim that dragnet surveillance is acceptable when “metadata,” rather
than “data,” are all that is gathered is highly dubious. Technically, there is
simply no well defined distinction between metadata and data: One program’s
metadata are another program’s data; for example, from an email client’s point of
view, sender’s and receiver’s IP addresses may be metadata, but, from a router’s
point of view, they are data. Socially, the claim that “who, when, where, and
for how long” information about a person’s cell-phone calls (aka metadata) is
less revealing or less deserving of privacy protection than the content of his calls
(aka data) does not pass the laugh test. Clearly, there are situations in which
all of the metadata are pretty well known to the authorities anyway, and the
interesting question is what the people on the phones are saying; there are just
as many situations, however, in which the questions of interest are precisely
“with whom, when, where, and for how long is this person communicating?”

Government agencies should not obtain answers to any of these questions without
particularized suspicion.

The claim that communications have only been “intercepted” or that data
have only been “seized” when a human being hears, reads, or otherwise consumes
them ignores the reality of the Big-Data era we live in. The shift from human-
mediated to computer-mediated surveillance does not make mass surveillance
less objectionable. It may even make it more so, because imperfect, probabilistic
algorithms now interpret people’s words and activities on behalf of government
agencies with enormous power (not just on behalf of companies that want to
target ads).

2.3 Security Sabotage

Recall that we use the term “security sabotage” to refer to government agencies’
covert and deliberate weakening of crypto and security standards and products
through interference in the work of standards bodies or companies. Sabotage
is one, but by no means the only, approach taken in the NSA’s Bullrun pro-
gram [11], the goal of which is to “defeat the encryption used in specific network
communication technologies.”

For security sabotage to be effective as a tool of intelligence and law en-
forcement, the weaknesses inserted into standards and products must be usable
by intelligence and law-enforcement agents but not by the very terrorists and
criminals that they are intended to defeat. There is no reason to believe that this
is the case. On the contrary, security sabotage has backfired before, e.g., in the
case of the mobile-phone system built by Vodafone Greece [12]. The system was
intended for use by members of the Greek government and senior civil servants;
it contained “built-in wiretapping facilities” for official use. Hackers subverted
these facilities and managed to eavesdrop on the Prime Minister, the Mayor of
Athens, and many other high-level officials.

Crypto and security researchers have worked for decades, often at taxpayer
expense, to create the mathematical and technological foundation for a secure
information environment. Security sabotage is tantamount to betrayal of those
researchers and the taxpayers who support them and to vandalism of that foun-
dation. It is not only unethical and heavy-handed but potentially economically
destructive; to remain dominant, the US tech industry will require customers’
trust, and that trust has been violated.

Finally, we believe that security sabotage invites bad product design and im-
plementation. If inventors and developers believe that standard cryptographic
protocols are likely to have hidden features that enable government eavesdrop-
ping, they may opt to use nonstandard, inadequately vetted protocols or even
attempt to design their own. Cryptography and security are difficult, highly
specialized areas in which expert evaluation and standardization processes have
developed over decades (and are still developing). This painstaking and expensive
development effort will have been wasted if the resulting processes are perceived
to have been corrupted by government surveillance agencies.

2.4 The US Business Community

As described by Schneier [13], pervasive use of cloud computing has given rise
to a regime of Internet use that is reminiscent of feudalism. By entrusting all of
our personal data and the records of all of our online activity to one (or a very
small number of) for-profit cloud-service providers (Google, Facebook, Yahoo!,
etc.), users play the role of feudal peasants; we are dependent on these providers
and must be loyal to them or endure significant switching costs. Similarly, the
providers play the role of feudal lords in that they command our loyalty and
profit from it, but they are to some extent obligated to treat us decently, be-
cause we could abandon one of them for another, and the most talented and
entrepreneurial of us could even rise up and overtake them. Other technology
critics have explored the feudal metaphor, most notably Lanier [14], who calls
the providers “Lords of the Cloud” and argues that their business models are
destroying the world economy.

Unsurprisingly, the Lords of the Cloud are unhappy about NSA’s surveilling
their users, breaking into their data centers, implying to journalists that they
have willingly cooperated with NSA’s data-collection programs, and refusing to
allow them to clarify the extent to which they actually have cooperated (in the
sense that they have responded to subpoenas and National Security Letters,
details of which are usually classified). Their CEOs have met with President
Obama to express their unhappiness, and eight major firms have issued a joint
objection to the current surveillance regime, together with five principles that
could inform a better regime [15].

We applaud the Lords for this action and think that their proposed principles
are reasonable. Moreover, we recognize that business lobbies can have enormous
influence on US electoral politics and congressional legislation; tech-industry
support for anti-surveillance candidates and legislative efforts would be welcome.
Unfortunately, we see at least two reasons that such efforts cannot be expected
to lead to significant change in the near future. Although the tech industry is
rich and powerful, it is not nearly as powerful in Washington DC as the military
and intelligence communities. Furthermore, the Lords of the Cloud have limited
credibility in opposing surveillance. At the core of their business models is the
exploitation of personal information for the purpose of targeting ads, and, as
explained in Section 2.1, their collection of that personal information is a key
component of the surveillance morass.

Of course, tech is not the only business sector in the US, and corporations in
general probably do not like the extent to which they and their customers are
beholden to the Lords of the Cloud. Perhaps they will lend their support to the
vision outlined in Section 4 below, just as they lent their support 15 years ago
to open-source development of webservers and other Web 1.0 components.

3 The Still Somewhat Decentralized Internet

As explained in Section 2.1, one major enabler of mass surveillance is the pop-
ularity of ad-supported cloud services. A crucial feature of these services is that

they are centralized. We use this term to describe a service or system that is
controlled by one principal; note that centralized services may be distributed,
i.e., they may be executed on multiple machines. By contrast, decentralized ser-
vices or systems are not only executed on multiple machines but controlled by
multiple principals that may have little or no trust in each other. In this section,
we identify some of the factors underlying this trend toward centralization.

By managing Internet services for a large number of users, the Lords of the
Cloud are able to realize huge economies of scale and provide services that are
“free” in that end users are not charged directly. Because their revenue model
revolves around the exploitation of user data, their incentive is to centralize those
data on their servers. The costs associated with this centralization, namely the
loss of privacy and the ease of mass surveillance, are borne mainly by society as
a whole rather than by individual users of the Lords’ services. They are treated
by cloud-service providers as externalities.

We argue that the utility provided by the Lords of the Cloud resides primarily
in their production of a particular kind of software. We look to the open-source
movement for an alternative regime for the production of this software that can
better account for the overall public interest.

3.1 The Internet’s Decentralized Roots

The core infrastructure of the Internet was built to support a decent amount
of decentralization. The Domain Name System (DNS) provides a decentralized
global namespace in which administration of subtrees can be delegated. Other
services can then take advantage of this infrastructure: Domain names can be
embedded in the names of protocol-specific resources and used to resolve the
hosts that provide the corresponding services.

For instance, in order to deliver an email message, a Mail Transport Agent
(MTA) first extracts the domain part of the recipient’s address. The MTA then
performs a DNS request and obtains the Mail Exchanger (MX) records associ-
ated with the domain. These records specify a set of servers capable of receiving
email for the domain, as well as associated priorities. The MTA can then try
to contact these servers in order of priority until mail delivery succeeds. Be-
cause many other Internet services follow similar patterns, the procedure has
been generalized across protocols and unified in the DNS Service (SRV) resource
records [16],

Email and web are the most popular Internet applications built in this
way, but many others exist. For example, the Andrew File System (AFS) is
a distributed file system commonly used in large infrastructures. It relies on
the Kerberos authentication protocol, which is often used in conjunction with
user-account data published using the Lightweight Directory Access Protocol
(LDAP). These protocols include a notion of independent administrative realms
that are able to interoperate without prior trust. They can all function as global
protocols by using DNS to record the servers associated with a realm.

Many of these decentralized technologies have been available since the 1980s,
and some of them have been widely adopted in the context of information sys-

tems for medium-sized and large businesses. Indeed, LDAP and Kerberos form
the basis of Active Directory, the service used on Microsoft Windows for sharing
account information and authentication over the network. Nevertheless, despite
great potential, none of them has become ubiquitous as an Internet protocol to
the same extent that email and web protocols have, and Internet users tend to
rely on centralized solutions instead.

3.2 The Lords’ Economies of Scale

That a small number of companies dominate mass-market cloud services is unsur-
prising given the massive economies of scale that centralization enables. From the
point of view of an isolated user, the services provided by the Lords of the Cloud
are essentially free, because the Lords’ marginal costs are essentially nonexistent.
Alternatives are cost-prohibitive: Even for open, decentralized services such as
email, small-scale providers incur significant costs per user, e.g., for hardware
and labor.

Large service providers maintain infrastructures in which every part of the
administration process is automated. At very large scale, system administration
is essentially software development, where the “machine” that runs the software
in question is the whole infrastructure rather than a single computer. As in all
software development, there are huge initial costs, and a highly skilled workforce
is required; however, the marginal cost per user is essentially zero.

Like traditional proprietary-software companies, the Lords of the Cloud de-
velop infrastructure software that addresses users’ needs only as a secondary
objective, to the extent that such development efforts enhance the companies’
profits. As a consequence, infrastructure-software development is focused on cen-
tralized solutions in which users’ data are collected by the service provider, rather
than remaining under users’ control. Although it has been pointed out repeatedly
that these solutions come at the expense of users’ privacy, they are sustainable:
Many of us do not suffer directly from loss of privacy to a faceless corporation or
even to the surveillance state; more importantly, one person’s choice of provider
has very little impact even on his own vulnerability, much less on prevailing
forms of cloud-service architecture.

Rather, centralization has problematic consequences primarily in the aggre-
gate, when a large percentage of the world’s email transits through a few com-
panies’ servers, and most electronic communications on the planet are made
available to at least one country’s espionage agencies and their associates. These
consequences do not factor into the economic calculations of a service provider,
its users, or its paying customers (most of whom are advertisers).

3.3 Open-Source Software as a Model

A development regime for infrastructure software that prioritized users’ interests
would look very different. To an extent, such a regime can be found in the open-
source community, where users of the software, among them many corporations,

pool their resources and collaborate directly on its development (instead of pool-
ing their resources indirectly by paying the developer of a proprietary product).
Because the developers are a subset of the intended users, open-source software
is constructed with a very different agenda.

It is not entirely clear how the open-source regime of collaborative devel-
opment can be applied to infrastructure software. However, one thing is quite
clear: Decentralization becomes a requirement; participants can trust the code
that they exchange, because of the transparency and traceability of the devel-
opment process, but that does not mean that they can trust each other to share
administrative privileges over a common Internet infrastructure. Fortunately, as
discussed in Section 3.1, there are many protocols for decentralized systems that
could be used as components, including some Internet protocols that are already
widely deployed.

As costs of both hardware and bandwidth have continued to decline, self
hosting has become more and more affordable. In the US and other wealthy
countries, always-on Internet connections are very common. One can purchase
small plug computers the size of a home router for $50 – $100. Alternatively,
one can rent a virtual machine in a data center for a few dollars per month.
Still, the skills and time required to operate servers of any kind remain obstacles
to widespread use of self hosting. This has prompted several groups to develop
home-server operating systems targeting plug computers with enhanced privacy
and control as a stated goal.

In 2010, Eben Moglen gave a series of talks in which he invited the open-
source community to create the Freedom Box : a plug computer packed with
ready-to-use privacy-enhancing software [17]. More recently, the arkOS project
[18] has focused on self hosting of email and web content. In both of those cases,
the model is that of a home-network appliance: a small box with a limited pur-
pose and few parameters that can be tuned using a convenient web interface.
Here “infrastructure as software” applies literally: A general-purpose operating
system is pre-configured to fulfill a certain specialized role; very little configura-
tion remains to be done by the end-user, and project proponents hope that this
will facilitate deployment.

Projects of this kind are interesting, and appliance-style servers may have an
important role to play in a shift towards decentralized cloud services. However,
the network-appliance paradigm by itself cannot provide service comparable to
that provided by the Lords of the Cloud; the Lords’ level of availability and
reliability can only be achieved through redundancy, and one needs a mechanism
by which plug servers can cooperate to provide it. Furthermore, Freedom Box
and arkOS target only very small institutions, e.g., households and perhaps
small businesses; in order to replace the Feudal Internet with a more open and
democratic Renaissance Internet, we will need to enlist the participation of many
sorts of institutions, including large ones.

We believe that decentralized configuration management can address these
limitations by bridging the gap between decentralized, but low-level, Internet

protocols and well established, but centralized, system-administration methods
that are typically used for large infrastructures.

4 Decentralized Configuration Management

While many Internet protocols are designed to operate in a decentralized manner,
the methods and software currently used by the participants to deploy them
typically assume centralized control over the infrastructure. By relaxing this
assumption, we can build an open-source framework that would allow groups of
people to cooperate on the provision of the same kinds of services that are now
provided by the Lords of the Cloud in a centralized, albeit distributed, fashion.

4.1 Configuration-Management Systems

The theme of “system administration as software development” is of course
not exclusive to the very large-scale infrastructures of cloud-service providers;
it can be useful for smaller deployments as well. Systems for centralizing the
configuration and administration of medium-sized and large infrastructures are
usually known as configuration-management systems.

Typically, the configuration for the whole infrastructure is stored as code in
a central repository. The configuration is usually placed under revision control
(as is done for more typical software-development tasks). The configuration-
management system provides mechanisms to propagate the configuration from
the central repository to each client machine in a reliable and repeatable way.

In principle, because a configuration-management system captures the state
of an infrastructure as code, it should be possible to use it for collaborative
system administration. Indeed, in a typical enterprise setup, a team of adminis-
trators shares access to the configuration repository, perhaps following a process
similar to those used by teams of programmers. In a hypothetical collaborative
cloud service, participants would pool their resources and set up their machines
to use a common configuration repository, collaborating and “contributing” to
this shared configuration so as to accommodate their common needs in a mutu-
ally agreeable fashion.

Unfortunately, this model cannot scale. In this arrangement, the participants
must trust each other. In most cases, granting a set of participants access to
the configuration repository is tantamount to giving them full privileges on each
others’ machines. Although it is sometimes possible to set up fine-grained control
of access to the configuration repository, every configuration-management system
that we are aware of relies on a centralized database in which the configuration
of the whole infrastructure is stored. The integrity of this database has to be
trusted by all participants in an all-or-nothing fashion.

4.2 Decentralized Configuration Management

Truly decentralized configuration management would allow two or more indepen-
dent participants to express configuration policies in a repository that they alone

Fig. 1. Example scenario for the envisioned configuration-management framework.
Dotted lines denote the associations between servers and the services they provide,
solid lines denote references, and dashed lines show the flow of configuration informa-
tion.

control. Such policies may specify that some forms of collaboration are desired
or permissible. The host-configuration mechanism of a given machine could then
access the repositories of several participants in addition to that of its owner and
derive a configuration for that machine that satisfies all of the policies.

As a concrete example of such a system, consider the situation depicted
in Fig. 1. Alice and Bob own alice.example.com and bob.example.org. Be-
cause they control the contents of these DNS zones, they can designate LDAP
servers for the subtrees rooted at dc=alice, dc=example, dc=com and dc=bob,
dc=example, dc=org in the global Directory Information Tree (DIT). Therefore,
they also control the contents of these subtrees, which they use to hold their
configuration policies.

Alice’s machine server.alice.example.com hosts her DNS zone and the
corresponding DIT, as well as the AFS volume www, where the data files for her
website reside. Bob’s server plugserv.bob.example.org likewise hosts his DNS
zone and LDAP DIT. Now suppose that Alice and Bob are to cooperate on host-
ing the website http://alice.example.com; Bob’s machine is to serve the static
contents of Alice’s website, which it can find in /afs/alice.example.com/www.
For this to happen,

– Alice has to trust Bob to provide the service faithfully;
– Bob must to be willing to host Alice’s website on his server.

Fig. 2. Several possible components of the framework and their relationships

If these two conditions were met, Alice would modify her DNS zone in such a
manner that alice.example.com would point to Bob’s plugserv as the associ-
ated HTTP server, and Bob would configure that machine to serve the appro-
priate content.

Our goal is to automate this process so that Alice and Bob can express
their preferences in a common configuration repository in the form of service
requests and service offers. These requests and offers could then be matched to
one another so as to compute the configuration of each individual host.

4.3 Overall Structure

Figure 2 shows the overall structure of the system we envision. An LDAP di-
rectory is the obvious candidate to hold the configuration policy, because it
is possible to delegate maintenance and control of subtrees in the directory to
different administrative principals. Ultimately, such a system would provide a
user interface to assist the administrator in creating this configuration policy.
However, in the prototyping phase, a general purpose LDAP editor would be
enough. It could also serve as an escape hatch for advanced users who wish to
access parameters unavailable through user interfaces or to introduce their own.

Host-configuration software can then compute the configuration of each in-
dividual machine using data from different participants. Assuming the LDAP
schema has been carefully defined, it would be possible for different implemen-
tations of such host-configuration mechanisms to coexist. In Fig. 1, the ma-
chines server.alice.example.com and plugserv.bob.example.org might be
running completely different operating systems. The computed configuration can

include any DNS zones that have to be published. In the case of Fig. 1, bob.info
is served by both Alice’s server and Bob’s plugserv. In fact, the two servers
can independently compute the zone’s contents from the data in the repositories,
eliminating the need for DNS zone transfer.

Furthermore, these configuration mechanisms could use substantially differ-
ent approaches. At one end of the spectrum, a human adminstrator could inspect
the contents of the directory manually and carefully configure a given machine
to match its role in the infrastructure. While this approach would ultimately
defeat the purpose of automating configuration, it could be useful as a stop-gap
measure when prototyping new schema components. As an example of the other
extreme, the data from the directory could be used to specialize and compile a
complete operating system image, possibly of the kind proposed in [19]. Most
likely, the usual case would comprise some kind of automatic host-configuration
tool operating on a conventional operating system. This could be achieved by a
new tool, a preliminary version of which we have prototyped and are experiment-
ing with.2 Alternatively, one could set out to modify or specialize an existing
configuration-management system to integrate similar capabilities.

5 Conclusions and Future Directions

After exploring the surveillance morass from a computer-science perspective, we
have concluded that centralized cloud services play a crucial role in perpetuating
the current, objectionable state of affairs. We have proposed an alternative ap-
proach to the construction of global-scale cloud services, based on open-source,
decentralized configuration-management tools.

Research on the question of how simultaneously to provide scalable cloud
services, user privacy, and support for lawful surveillance is fairly new, and open
questions abound. We give just two of them here.

As we have argued in Section 2.2, collection and storage of massive numbers of
phone-call records and other communications “metadata” are potentially harm-
ful and may not even be necessary for effective pursuit of criminals and terrorists.
In at least some realistic use cases, well studied cryptographic techniques, such
as privacy-preserving set intersection, can be used to identify and track suspects
while not identifying or tracking innocent bystanders or any other non-suspects.
There may, however, be inherent limitations to this approach. In order to use
most of the relevant techniques in the literature, one must start with a well
defined function that one wants to compute and then design and implement a
protocol that computes it in a privacy-preserving manner. An intelligence agency,
however, may not know in advance exactly what it wants to compute. For ex-
ample, it may uncover information that appears relevant to an investigation and
suggests other sources of potentially relevant information but does not by itself
suggest a well defined function to compute in a privacy-preserving manner; in-
deed, it may be precisely by collecting and examining more sensitive information

2 https://github.com/jeremie-koenig/ldapmin

from the suggested sources that the investigators figure out what they need to
compute.

Clearly, the technical approach put forth in Section 4 must be fully fleshed
out before it can seriously challenge the centralized cloud-service regime that
prevails today. Because a successful challenge would require the buy-in of large
organizations, probably including for-profit corporations, analysis of incentives
and other economic aspects of our proposal is necessary along with technical
development.

References

1. Greenwald, G.: No Place to Hide: Edward Snowden, the NSA, and the U. S. Surveil-
lance State, Metropolitan Books, New York (2014)

2. Goldfarb, A., Tucker, C.E.: Online Advertising, Behavioral Targeting, and Privacy.
Communications of the ACM. 54(5), 25–27 (2011)

3. Lichtblau, E., Schmidt, M.S.: Other Agencies Clamor for Data NSA Compiles. The
New York Times (Aug. 3, 2013)

4. Gorman, S.: NSA Officers Spy on Love Interests. The Wall Street Journal (Aug. 23,
2013)

5. Gellman, B., Soltani, A.: NSA Infiltrates Links to Yahoo, Google Data Centers
Worldwide, Snowden Documents Say. The Washington Post (Oct. 30, 2013)

6. Clarke, R.A., Morell, M.J., Stone, G.R., Sunstein, C.R., Swire, P.: Liberty
and Security in a Changing World, http://www.scribd.com/doc/192387819/

NSA-review-board-s-report (Dec. 12, 2013)

7. Soltani, A., Gellman, B.: New Documents Show How the NSA Infers Relationships
Based on Mobile Location Data. The Washington Post (Dec. 10, 2013)

8. Freedman, M. J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set In-
tersection. In: Cachin, C., Camenisch, J. (eds.) Eurocrypt 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004)

9. Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.):
Crypto 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

10. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to as-
sociation rule mining. Journal of Computer Security. 13(4), 593–622 (2005)

11. The Guardian: Project Bullrun – classification guide to the NSA’s decryp-
tion program, http://www.theguardian.com/world/interactive/2013/sep/05/

nsa-project-bullrun-classification-guide (Sept. 5, 2013)

12. Prevelakis, V., Spinellis, D.: The Athens Affair. IEEE Spectrum. 44(7), 26–33
(2007)

13. Schneier, B.: When It Comes to Security, We’re Back to Feudalism, https://www.
schneier.com/essay-406.html (Nov. 26, 2012)

14. Lanier, J.: Who Owns the Future?. Simon and Schuster, New York (2013)

15. AOL, Apple, Dropbox, Facebook, Google, LinkedIn, Microsoft,
Twitter, Yahoo!: Global Government Surveillance Reform, http:

//reformgovernmentsurveillance.com (2013)

16. Gulbrandsen, A., Vixie, P., Esibov, L.: A DNS RR for specifying the location of
services (DNS SRV). RFC 2782 (Proposed Standard), http://www.ietf.org/rfc/
rfc2782.txt (Feb. 2000). Updated in RFC 6335

17. Vaughan-Nichols, S.J.: Freedom box: Freeing the Internet one Server at a time,
http://www.zdnet.com/blog/networking/freedom-box-freeing-the-

internet-one-server-at-a-time/698 (Feb. 16, 2011)
18. Henderson, N.: Open Source Project arkOS Brings Simplicity to Self-Hosting,

http://www.thewhir.com/web-hosting-news/open-source-project-arkos-

brings-simplicity-to-self-hosting (Nov. 12, 2013)
19. Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B., Gazagnaire, T.,

Smith, S., Hand, S., Crowcroft, J.: Unikernels: Library Operating Systems for
the Cloud. In: 18th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 461–472. ACM Press, New York
(2013)

