Representing Network Trust and Using It to
Improve Anonymous Communication*

Aaron D. Jaggard!, Aaron Johnson', Paul Syverson', and Joan Feigenbaum?

1 U.S. Naval Research Laboratory
{aaron. jaggard,aaron.m. johnson,paul.syverson}@nrl.navy.mil
2 Yale University joan.feigenbaum@yale.edu

Abstract. Motivated by the effectiveness of correlation attacks against
Tor, the censorship arms race, and observations of malicious relays in
Tor, we propose that Tor users capture their trust in network elements
using probability distributions over the sets of elements observed by net-
work adversaries. We present a modular system that allows users to
efficiently and conveniently create such distributions and use them to
improve their security. The major components of this system are (i) an
ontology of network-element types that represents the main threats to
and vulnerabilities of anonymous communication over Tor, (ii) a for-
mal language that allows users to naturally express trust beliefs about
network elements, and (744) a conversion procedure that takes the ontol-
ogy, public information about the network, and user beliefs written in the
trust language and produce a Bayesian Belief Network that represents the
probability distribution in a way that is concise and easily sampleable.
We also present preliminary experimental results that show the distri-
bution produced by our system can improve security when employed by
users; further improvement is seen when the system is employed by both
users and services.
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1 Introduction

Tor and its users currently face serious security risks from adversaries positioned
to observe traffic into and out of the Tor network. Large-scale deanonymization
has recently been shown feasible [14] for a patient adversary that controls some
network infrastructure or Tor relays. Such adversaries are a real and growing
threat, as demonstrated by the ongoing censorship arms race [9] and recent
observations of malicious Tor relays [20]. In light of these and other threats,
we propose an approach to representing and using trust in order to improve
anonymous communication in Tor. Trust information can be used to inform
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path selection by Tor users and the location of services that will be accessed
through Tor, in both cases strengthening the protection provided by Tor. A
better understanding of trust-related issues will also inform the future evolution
of Tor, both the protocol itself and its network infrastructure.

Attacks on Tor users and services include first-last correlation [18], in which
an adversary correlates traffic patterns between the client and a guard with
traffic patterns between a Tor exit and a network destination in order to link
the client to her destination. They also include more recently identified attacks
on a single end of a path such as fingerprinting users [3] or services [2]. With
trust information, users could choose trusted paths through the Tor network
and services could choose server locations with trusted paths into the network
in order to reduce the chance of these attacks. Other work [12,13] has considered
the use of trust to improve security in Tor. The work presented here is novel in
that (i) it considers trust in network elements generally and not just Tor relays
and (i7) it considers more general adversary distributions than in previous work.

The system we describe here is designed to produce a distribution on the sets
of network locations that might be compromised by a single adversary. In the case
of multiple, non-colluding adversaries, multiple distributions could be produced.
These distribution can then be used, e.g., as part of a user’s path-selection
algorithm in Tor. In constructing our preliminary experiments, we suggest how
our distributions may be used in this way. Here, we capture these distributions
using Bayesian Belief Networks (BBNs; see, e.g., [10]).

The contribution of this work is the proposal of a modular system that
(i) allows users to express beliefs about the structure and trustworthiness of
the network, (i¢) uses information about the network, modified according to the
user-provided structural information, to produce a “world” that captures how
compromise is propagated through the network, and (74) combines this world
with the user’s trust beliefs to produce a BBN representing a distribution on
the sets of network elements that an adversary might compromise. As part of
our contribution, we present results of proof-of-concept experiments. These show
that users can employ our system to reduce their risk of first—last correlation;
this risk is reduced even further when our system also informs the locations that
services choose for their servers.

The body of this paper provides a high-level view of our system, starting with
an overview of its operation. In addition to describing what the system provides
and how it is combined with user beliefs to produce a BBN, we discuss some
issues related to users’ trust beliefs. We then present our experimental results
and sketch ongoing and future work. As noted throughout, additional details
and examples are provided in the appendices.

2 System Overview

We survey our system, which is largely modular. This allows it to be extended as
new types of trust information are identified as important, etc. The system comes
with an ontology that describes types of network elements (e.g., Autonomous



System (AS) and relay-operator types), the relationships between them that
capture correlated compromise by an adversary, and attributes of these things.
Using the ontology and various published data about the network, the system
creates a preliminary “world” populated by real-world instances of the ontology
types (e.g., specific ASes and relay operators). The world also includes relation-
ship instances that reflect which particular type instances are related in ways
suggested by the ontology. User-provided information may include revisions to
this system-generated world, including the addition of types not included in
the provided ontology and instances of both ontology-provided and user-added
types. The user may also enrich the information about the effects of compromise
(adding, e.g., budget constraints or some correlations). The user also provides
beliefs about her trust in particular network elements and how her trust in
network elements is affected by different attributes of those elements. This user-
provided information is used, together with the edited world, to create a Bayesian
Belief Network (BBN) that encodes the probability distribution on the adver-
sary’s location arising from the user’s trust beliefs. The BBN can, for example,
provide samples from the distribution of the Tor relays and Tor “virtual links”
(transport-layer connections with Tor relays) that are observed by the adversary.
Appendix A provides an expanded survey of the system’s architecture.

3 Ontology and World

Figure 1 shows the elements of our ontology. Rounded rectangles are types, and
ovals are output types. Cylinders are attributes; with the exception of Relay
Software and Physical Location, which the user may modify, these are provided
by the user. The user may also provide new attributes. Directed edges show
expected relationships between types. For example, the edge from the “AS”
type to the “Router/switch” type indicates that we expect that the compromise
of an AS will likely contribute to the compromise of one or more routers and
switches.

Other ontologies may modularly replace the one described here if they satisfy
the assumptions described in App. B. That appendix also provides details about
the elements of the ontology we use here.

The system constructs a preliminary world including instances of Tor re-
lays, relay families, ASes, Internet Exchange Points (IXPs), AS and IXP or-
ganizations, virtual links between every AS and Tor relay, and countries (as
legal jurisdictions). The system assigns to relevant instances the relay-software
(from Tor descriptors [8]) and physical-location (from, e.g., the MaxMind GeolP
database [16]) attributes. The system also creates relationships from families to
their relays, countries to the relays and IXPs they contain, AS and IXP orga-
nizations to their members, and ASes and IXPs to the virtual links on which
they appear (determined by an AS-level routing map [14]). A fuller description
of this part of the process is given in App. B.3.
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Fig. 1. Graphical depiction of the system’s ontology

4 Beliefs and BBNs

The user may provide various data to inform the operation of the system. How-
ever, many users may not wish to do this, and the system includes a default belief
set designed to provide good security for average users. In Sect. 6 we describe
a possible default belief set motivated by the discussion of trust in Sect. 5. For
simplicity, we refer to beliefs as being provided by the user, but wherever they
are not, the defaults are used instead.

The user provides structural information that is used to revise the system-
generated world. This may include new types (e.g., law-enforcement treaties)
and the addition or removal of type instances and relationships between them
(e.g., adding relay operators known to the user). The user may also define new
attributes, change the system-provided attributes, or provide values for empty
attributes (e.g., labeling countries by their larger geographic region).

The user’s beliefs may incorporate boolean predicates that are evaluated on
instances in the revised world. For example, the user may have increased trust
in ASes above a certain size. We sketch a suitable language for this in App. C.3,
but this can be replaced with another if desired.

Finally, the user provides beliefs of four types that are used in constructing
the BBN from the revised world. The first two concern the propagation of com-
promise. Budget beliefs allow the user to say that an instance I in the edited
world has the resources (monetary or otherwise) to compromise k of its children
that satisfy some predicate P. Enforcing this as a hard bound appears to be
computationally harder than we are willing to use in the BBN, so we do this
in expectation. Compromise-effectiveness (CE) beliefs allow the user to express



some correlations between the compromises of nodes by saying that, if an in-
stance I is compromised, then, with probability p, all of I’s children satisfying
a predicate P are compromised. For example, this captures the possibility that
a compromised AS compromises all of its routers except those of a particular
model, for which the AS has made an error in their (common) configuration file.

The other two belief types concern the likelihood of compromise. Relative
beliefs allow the user to say that instances satisfying a given predicate (e.g.,
relays running a buggy OS, network links that traverse a submarine cable, or
ASes that are small as determined by their number of routers) have a certain
probability of compromise. (In particular, it specifies the probability that they
remain uncompromised if they are otherwise uncompromised.) Absolute beliefs
allow the user to say that instances satisfying a given predicate (e.g., the node is
an AS and the AS number is 7007) are compromised with a certain probability,
regardless of other factors.

The BBN construction from the edited world is described in detail in App. C.5.
In brief, the nodes from the edited world are copied to the BBN. Compromise-
effectiveness beliefs add nodes to guarantee the correlations (these new nodes are
compromised with some probability; if one is compromised, then all of its chil-
dren are compromised with probability 1). Other than accounting for these new
nodes, the directed edges in the BBN are those from the edited world. Budget
beliefs may further change the probability that compromise is propagated along
a directed edge. The values associated with the relative beliefs that apply to a
node are associated with that node. Unless there is an absolute belief that ap-
plies to the node (and would determine the node’s compromise probability), the

node’s probability of compromise is 1 — (Hpes(1 —p)) (quR
S is the (multi)set of compromise-propagation values associated with the edges

from the node’s compromised parents and R is the (multi)set of values from the
relative beliefs that apply to the node.

(1- q)), where

5 Trust

We now discuss where trust judgments come from by sketching, as a simple
example, the trust rationale behind a Tor trust policy that might be distributed
with client software as a default. Such a policy would be designed not to offer
the best protection to particular classes of users but to adequately protect most
Tor users regardless of where they are connecting to the network or what their
destinations and behaviors are.

The most useful information about Tor relays for setting a default level of
trust is probably relay longevity. Running a relay in order to observe traffic at
some future time or for persistent observation of all traffic requires a significant
investment of money and possibly official authorization approval. This is all the
more true if the relay contributes significant persistent capacity to the network.
Further, operators of such relays are typically more experienced in many senses
and thus somewhat less open to external compromise via hacking. The amount of
relay trust is thus usefully tied to the length of presence in the network consensus,



uptime, and bandwidth. This approach does not resist a large-budget, nation-
state-scale adversary with authority to monitor relays persistently, but it will
help limit attacks to adversaries with such persistent capabilities.

There is no general reason to trust one AS, IXP, etc., more than another, but
one should not presume that they are all completely safe. It thus is reasonable
to assume the same moderate risk of compromise for all elements forming the
links to the Tor network and between the relays of the network when creating a
default trust policy.

An example of an important non-default case is connecting users to sensitive
destinations that they especially do not want linked to their location or possibly
to their other Tor behaviors. For example, some users need to connect to sensitive
employer hosts, and dissident bloggers could be physically at risk if seen posting
to controversial sites. These users may have rich trust beliefs (either of their own
or supplied by their organizations) about particular relays, ASes, etc., based on
who runs the relay, hardware, location, etc.

Note that the average client using a default trust policy may be subject to
errors because the average client will rarely be exactly at the client average, and
all clients may be subject to errors in judgments underlying a trust policy.

6 Experimental Results

As a proof of concept, we constructed a trust belief that models a pervasive
adversary and ran some experiments to examine how trust might improve secu-
rity in Tor. In particular, we considered how trust might be used to prevent the
first—last correlation attack when accessing a given online chat service. These
experiments just show the potential for improvement from using trust; they do
not take into account other attacks or how to maintain good performance.

We suppose that users are trying to avoid a powerful adversary called “The
Man.” This adversary might compromise relay families and AS or IXP organi-
zations, where a family or organization is a group controlled by the same entity.
Each family is compromised by the adversary independently with probability
between 0.001 and 0.1, where the probability increases as the family’s longevity
in Tor decreases. Each AS and IXP organization is compromised independently
with probability 0.1.

Against The Man, we examine both how users can choose more-secure paths
through Tor and how the service can choose server locations to make them
more securely accessible via Tor. The algorithm we consider for trust-aware path
selection begins by choosing as its guards (i.e., relays used by a client to start
all connections into Tor) the three guard relays with the smallest probabilities
that the adversary observes the path from the client to the guard or the guard
itself. Then for a given destination, the algorithm chooses one of these guards
and an ezit (i.e., a relay that will initiate connections outside the Tor network)
to minimize the probability of a first—last correlation attack. The algorithm for
choosing server location considers only those ASes containing an exit, which
minimizes the chance for the adversary to observe traffic between the exit and



destination. The algorithm greedily locates each server for the greatest reduction
in the probability that users in the most common locations (and using the given
trust-aware path-selection algorithm) are open to a first—last correlation attack.
Probabilities are estimated by repeated sampling.

For our experiments, we used Web chat server webirc.oftc.net as the des-
tination service. This IRC service is run by the Open and Free Technology Com-
munity and is popular with Tor developers. We considered users coming from 58
of the top ASes as measured by Juen [15], which in their observations included
the client location for over 95% of Tor client packets.

Our results are shown in Table 1. The first row shows a first—last compromise
probability of over 0.1 for a client using Tor’s default path-selection algorithms
to connect to the current chat server location. We can see that by using trust to
choose guard and exit relays, clients can reduce the compromise probability by a
factor of over 2.8 on average. When in addition the service changes the location
of its server, that probability drops again by a factor of over 2.7 and approaches
the minimum possible of (0.1)? = 0.01. It appears that adding additional server
locations does not add significantly to user security. Note that each probability
is estimated with 100,000 samples, which can explain why some probabilities are
slightly below 0.01 and why the probabilities sometimes increase slightly when
a server is added. See App. F for further experiment details.

Table 1. First-last correlation probabilities against The Man for 58 client locations

Mean|Median| Min | Max
Tor default path selection 0.132| 0.127 |0.108/|0.164
Clients use trust 0.046| 0.049 |0.026|0.091
Clients & service use trust, 1 server [0.017| 0.018 |0.009/0.033
Clients & service use trust, 2 servers|0.017| 0.017 [0.009|0.034
Clients & service use trust, 3 servers|0.017| 0.017 [0.009|0.033

7 Ongoing and Future Work

Ongoing and future work includes the further development and investigation of
Tor path-selection algorithms that use trust as formalized here, the further de-
velopment and analysis of methods to express trust that are natural and usable,
and the continued analysis of possible trust errors and their effects. Two par-
ticularly important tasks are the development of collections of trust beliefs that
capture important use cases and the study of how users can use different trust
beliefs without being identified by that behavior.
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A Full System Overview

The system comes with an ontology that describes types of network elements
(e.g., AS, link, and relay-operator types), the relationships between them that
capture the effects of compromise by an adversary, and attributes of these things.
While we provide an ontology, this may be replaced by another ontology as
other types of threats are identified. Appendix B describes the requirements for
replacement ontologies. Roughly speaking, the ontology identifies the types of
entities for which the system can automatically handle user beliefs when con-
structing the Bayesian Belief Network (BBN) for the user. A user may express
beliefs about other types of entities, but she would need to provide additional
information about how those entities relate to entities whose types are in the
ontology. The ontology is provided to the user in order to facilitate this.

In general, we expect that the system will provide information about network
relationships, such as which ASes and IXPs are on a certain virtual link or which
Tor relays are in a given relay family. We generally expect the user to provide
information about human—network relationships such as which individual runs
a particular relay. Note that this means the user might need to provide this
type of information in order to make some of her beliefs usable; if she has a
belief about the trustworthiness of a relay operator, she would need to tell the
system which relays that operator runs in order for the trustworthiness belief to
be incorporated into the BBN.

Using the ontology and various published information about the network, the
system creates a preliminary “world” populated by real-world instances of the
ontology types (e.g., specific ASes and network links). The world also includes
relationship instances that reflect which particular type instances are related in
ways suggested by the ontology. User-provided information may include revisions
to this system-generated world, including the addition of types not included in
the provided ontology and instances of both ontology-provided and user-added
types. The user may also enrich the information about the effects of compromise
(adding, e.g., budget constraints or some correlations).

The user expresses beliefs about the potential for compromise of various net-
work entities; these beliefs may refer to specific network entities or to entities
that satisfy some condition, even if the user may not be able to effectively deter-
mine which entities satisfy the condition. This user-provided information is used,
together with the edited world, to create a Bayesian Belief Network (BBN) that
captures the implications of the user’s trust beliefs. A user may express a belief
that refers to an entity or class of entities whose type is in the given ontology. For
such beliefs, the system will be able to automatically incorporate those beliefs
into the BBN that the system constructs. A user may also express beliefs about
entities whose types are not included in the ontology. If she does so, she would
need to provide the system with information about how those entities should be
put into the BBN that the system constructs.

The system and the user need to agree on the language(s) in which she
will express her beliefs. Different users (or, more likely, different organizations
that want to provide collections of beliefs) may find different languages most



natural for expressing beliefs. The language specification(s) must describe not
only the syntax for the user but also (7) how her structural beliefs will be used in
modifying the system-generated world and (i) how her other beliefs will be used
to translate the edited world into a BBN. The user’s beliefs may include boolean
predicates evaluated on elements in the world. We sketch a default language for
these predicates, but this could be replaced by any other language on which the
user and system agree.

The BBN may be sampled to obtain probabilities of compromise for relays
and (virtual) links in the Tor network.

A.1 Construction sequence

An overview of the system’s actions is below. The procedure to produce the BBN
is treated as a black box. In reality, it involves many steps, but these depend
on the belief language used. The procedure for the belief language described in
App. C.4 is presented in App. C.5.

1. World generation from ontology: r W1

— As described in App. B.3, the system generates a preliminary view of the
world based on the ontology and its data sources. We denote the result
by RWZI"

— This should include system attributes

2. Augmenting the types with the user’s types: gW4,

— The user may provide additional types (as a prelude to adding instances
of those types to the world). We use gk W1, to denote the augmentation
of RW% by adding the user’s types.

3. Adding user-specified instances of types (ontology and user-provided): RW%Z

— The user may add instances of any of the types in gW1,. We use RW%:
to denote the augmentation of xkW£, by adding these new instances and
removing any that the user wishes to omit.

4. Adding user-specified relationships (between instances in RW%/,): R/ W%//
— The user may specify additional parent/child relationships beyond those
included in qu{’,_ In particular, any new instances that she added in
the previous step will not be related to any other instances in the world
unless she explicitly adds such relationships in this step. We use g wa;
to denote the augmentation of RW%/, by adding these new relationships
and by removing any that the user wishes to omit.
Edit system-provided attributes (not budgets or compromise effectiveness)
Add new user-provided attributes
Add budgets
Add compromise effectiveness (this will default to something, perhaps spec-
ified in the ontology, if values aren’t given; for relationships of types not
given in the ontology, we will use a default value unless the user specifies
something when providing the relationship instance)
9. Produce BBN

— The translation process is described in Sec. C.5.

®© N oo



B  Full Ontology

Before presenting the ontology that we use in this work, we describe our general
requirements for ontologies in this framework. This allows our ontology to be
replaced with an updated version satisfying these requirements. For example,
mutual legal assistance treaties (MLATS) are a topic of current interest. There
is presently no suitable source of information about MLATSs for our system to
use [7]. If a database of these is developed that can be reliably used to determine
automatically the effects of MLLATSs on the power of state-level adversaries, it
would be natural to update the ontology to reflect the system’s ability to do
this.

B.1 General requirements for ontologies
We assume that the any ontology used in our system has the following properties:

— It has a collection T of types. We use the ontology to describe relationships
between the types in the ontology.

— A collection £ of (directed) edges between types (with € N'T = ). The
edges are used to specify relationships; if there is an edge from T; to 75 in
the ontology, then the compromise of a network element of type 77 has the
potential to affect the compromise of a network element of type T%.

— Viewed as a directed graph, (7,&) is a DAG.

— A distinguished set of T called the output types. This is for convenience;
these are the types of instances that we expect will be sampled for further
use. We generally expect the output types to be exactly the types in the
ontology that have no outgoing edges.

— Each element of 7 U £ has a label that is either “system” or “user.” For

an edge e from type T; to type T3, if either T} or T has the label “user,”
then e must also have the label “user.” These labels will be used to indicate
the default source of instances of each type. (However, the user may always
override system-provided information.)
Types or edges with the label “user” might be natural to include in an
ontology when the type/edge is something about which the system cannot
reliably obtain information but the ontology designer is able to account for
instances of the edge/type in the BBN-construction procedure.

— A collection A of attributes. Each attribute includes a name, a data type, a
source (either “system” or “user”). Each element of 7 U € may be assigned
multiple boolean combinations of attributes; each combination is labeled
with either “required” or “optional.”?

3 In the rest of this document, we assume that each combination is just a single
“optional” attribute without any connectives. The semantics of individual attributes
depend on the translation procedure that produces the BBN. We expect that a
boolean combination of attributes will be interpreted as possible combinations of
attributes that the translation procedure can handle; for example, it might be able



B.2 Our ontology

Figure 1 depicts the ontology used in our system. The two ovals at the bottom
are the output types: Tor relays and Tor (virtual) links, which include the links
between clients and guards and between exits and destinations. The rounded
rectangles correspond to types in the ontology; instances of these will be factor
variables in the BBN. Attributes are depicted as cylinders; the interpretation of
these will be described below. Filled-in types and solid edges indicate elements
and attributes whose label is “system.” Unfilled types/attributes and dotted
edges indicate elements whose label is “user.” As noted above, all attributes in
the ontology we present here have the label “optional.”

User-provided types The types and relationships that are provided by the
system in constructing the preliminary world are described in App. B.3. We
describe the others here; instances of these are added by the user in ways specified
below.

Hosting Service (and incident edges) Hosting services that might be used
to host Tor relays. If a service hosts a particular relay, there would be a
relationship instance from the service to the relay. If a service is known to be
under control of a particular legal jurisdiction or company, the appropriate
incoming relationship instance can be added.

Corporation (and incident edges) Corporate control of various network el-
ements may be known. A corporation that is known may be added as an
instance of this type. If the corporation is known to be subject to a partic-
ular legal jurisdiction, then a relationship edge from that jurisdiction to the
corporation can be added. Similarly, hosting services, ASes, and IXPs that
a corporation controls may be so indicate via the appropriate relationship
instances.

Router/switch/ete. This corresponds to a physical router or switch. We do
not attempt to identify these automatically, but ones known to the user (or
a source to which the user has access) may be added as instances of this
type.

Physical connection Particular physical connections, such as a specific cable
or wireless link, may be known and of interest.

(Physical connection, Virtual link) If a virtual link is known to use a spe-
cific physical connection, then that can be reflected in a relationship between
the two.

Attributes The attributes in our ontology are depicted by cylinders in Fig. 1.
The two at the box in the top right can be applied to all non-output type
instances, so we do not explicitly show all of the types to which they can be
applied.

to process either a pair of integers or a single real value. Richer applications of the
“optional” and “required” labels might be allowed as well, although we do not need
them here.



System-generated attributes These include relay-software type and physical
location. Users may edit these, e.g., to provide additional information.

Connection type This is an attribute of physical-connection instances. It is
represented as a string that describes the type of connection (e.g., "submarine
cable", "buried cable", or "wireless comnection"). A user would ex-
press beliefs about connection types; if the type of a connection is covered
by the user’s beliefs, then the probability of compromise would be affected
in a way determined by the belief in question.

Budget This attribute, which is supplied by the user at her option, may be
applied to any non-output type instance. There are two variants. Both are
represented as an integer k and another value. In the first variant, the other
value is a type; in the second variant, the other value is the string "all".
Multiple instances of this attribute may be applied to a single type instance
as long as they have distinct second values; if one of these is the second
variant, then all others will be ignored. This allows the user to express the
belief that, if the type instance is compromised, then its resources allow
it to compromise k of its children. In the first variant of this attribute, the
instance may compromise k of its children of the specified type (and perhaps
k' of its children of a different type, if so specified). In the second variant
of this attribute, the instance may compromise k of its children across all
types.4
As discussed below, we must approximate the effects of resource constraints
so that the BBN can be efficiently sampled.

Region This is an attribute of legal jurisdiction. It is represented as a boolean
predicate on geographic coordinates.

Compromise effectiveness This attribute is syntactically similar to the bud-

get attribute. It is supplied by the user at her option for instances of any
non-output type, and there are effectively two variants. This is represented
as a probability p € [0,1] and a boolean predicate on type instances; we
distinguish non-trivial predicates from the always-true predicate T. Multi-
ple instances of this attribute may be applied to a single type instance as
long as no two non-T predicates evaluate to True on the same input. Only
one instance of this attribute with T may be present; if it is, then all other
instances of the attribute for the type instance are ignored.
This attribute allows the user to express beliefs about the effect of compro-
mise of one type instance on its children, either uniformly or according to
type. For example, a compromised AS might attempt to compromise all of
its routers, but make a mistake in in the configuration file that it copies to
each router of a certain hardware model. This might happen with probability
p = 107%. Absent budget restrictions, either all or none of the routers of this
model will be compromised due to this action by the AS. This is in contrast
to the effects of budgets.

4 The resources needed to compromise instances of different types may vary widely.
However, we include the second variant so that a budget that covers all of an in-
stance’s children can be modeled in some fashion.



Router/Switch Kind This is an attribute of routers/switches and is repre-
sented as a set of strings. We expect the user to use this to describe aspects
of routers/switches that she might know about and want to use in her trust
beliefs, e.g., the model number or firmware version of specific routers and
switches.

Relay Hardware This is an attribute of relays and is represented in the same
way as the router /switch kind. Also analogously to that attribute, we expect
that the user would use this to describe aspects of relay hardware that she
might know about and potentially use in her trust beliefs.

B.3 System-generated world

The system provides users with a world consisting of type instances and rela-
tionship instances that are consistent with the types and relationships specified
in the ontology. Formally, a world is a DAG in which each vertex is a type in-
stance, each edge is a relationship instance, and an attribute function assigns
each vertex a vector of attributes. A type instance represents a real-world object
of the specified type. For example, “AS3356” is a type instance of the AS type,
and “Level 3 Communications” is a type instance of the AS Organization type.
A relationship instance will only relate two instances of types that are related
in the ontology. For example, (Level 3 Communications, AS3356) is an instance
of the (AS Organization, AS) relationship type and indicates that AS3356 is a
member of Level 3 Communications. The attributes of a type instance provide
information that users can incorporate into their trust beliefs, such as the loca-
tion of a given Tor relay. The world can be modified by users in ways provided
by the trust language. We assume that each instance has a unique identifier and
an indication of the type of which it is an instance.
The system generates a world as follows:

1. The current Tor consensus and the server descriptors it references are used
to create the following instances and attributes, which concern relays:

— Tor Relay: An instance is created for each relay in the consensus.

— Relay Family: An instance is created for connected component of re-
lays, where two relays are connected if they mutually reference each other
in their descriptors [8].

— (Relay Family, Tor Relay): An instance of this relationship is created
for each relay belonging to a given family.

— Relay Software Type: This attribute is added to each relay based on
the operating system reported in the relay’s descriptor.

2. Standard techniques [14] are used to construct an AS-level Internet routing
map. Data that can be used to create such a map includes the CAIDA
internet topology [6], the CAIDA AS relationships [5], and RouteViews [17].
This map is then used to create the following instances:

— Virtual Link: An instance is created representing the path between
each Autonomous System and entry guard as well as between each Au-
tonomous System and exit relay. An entry guard is a Tor relay that



satisfies the requirements to serve as the relay that a Tor client directly
connects to. An exit relay is any relay that can be used as the relay that
connects directly to a client destination. Entry guards and exit relays are
determined from the Tor consensus. A virtual link instance represents
both directed paths between the Autonomous System and relay, which
may differ due to Internet route asymmetries [11].

— AS: An instance is created for each AS observed in the RouteViews data.

— (AS, Virtual Link): An instance of this relationship is created for each
AS that appears on the path in either direction between the virtual link’s
AS and its relay, as determined by the Internet routing map.

3. Internet Exchange Points (IXPs) are added to paths in the AS-level Internet
map based on data from the IXP Mapping Project [1]. These additions are
are used to create the following instances:

— IXP: An instance is created for each IXP that appears on at least one
path in the Internet map.

— (IXP, Virtual Link): An instance of this relationship is created for
each IXP that appears on the path in either direction between the virtual
link’s AS and its relay, as determined by the Internet routing map.

4. ASes are clustered into organizations using the results of Cai et al. [4], and
IXPs are clustered into organizations using the results of Johnson et al. [14].
Each cluster represents a single legal entity that controls multiple ASes or
IXPs, such as a company. The clusters are used to create the following in-
stances:

— AS Organization: An instance is created for each AS cluster.

— IXP Organization: An instance is created for each IXP cluster.

— (AS Organization, AS): An instance of this relationship is created for
each AS in a given AS cluster.

— (IXP Organization, IXP): An instance of this relationship is created
for each IXP in a given IXP cluster.

5. The system provides physical locations and legal jurisdictions for several
of the ontology types. IP location information, such as from the MaxMind
GeolIP database [16], provides location information for entities with IP ad-
dresses. The location of IXPs is frequently available on the Web as well [1].
These data are used to create the following instances and attributes:

— Legal jurisdiction: An instance of this type is created for each country.

— (Legal jurisdiction, Relay): An instance of this relationship is created
for each relay in a given country, as determined by the relay’s IP address
and the IP location information.

— (Legal jurisdiction, IXP): An instance of this relationship is created
for each IXP in a given country, as determined by the IP addresses of
the IXP or other public IXP information.

— Physical location: This attribute is added to each relay with its geo-
graphic coordinates (i.e., latitude and longitude), as determined from its
IP address. This attribute is also added to each IXP with its geographic
coordinates, based on its IP addresses or other public IXP information.



C User Beliefs

C.1 Types of Beliefs

Broadly, users may have two types of beliefs: those about the structure of the
network, etc., and those about trust. Beliefs of the first type are used by the
system to edit the preliminary, system-generated world to produce an “edited
world.” (We expect that this should be done once, not on a per-adversary basis.)
Beliefs of the second type are given as input, together with the edited world, to
the procedure that produces the BBN. We call these two types of beliefs “struc-
tural beliefs” and “trust beliefs,” respectively. We now turn to the description of
structural and trust beliefs. We then describe an example language that a user
may use to express her beliefs, and then we describe how to translate beliefs
represented in this language into a BBN.

C.2 Structural beliefs

A user may have beliefs about instances of types and edges from the ontology.
For types, a user may believe that an instance of that type exists; her belief about
that instance must include a unique identifier for the instance and any required
attributes. This type instance is then added to the system-generated world.
The type of the instance may be system-generated, in which case this belief
represents an edit to the system-generated world, or it may be user-generated. If
the instance’s type is user-generated, then the user must describe to the system
how the instance should be translated to the BBN that the system produces
from the edited world.

For edges, a user may believe that one type instance is the parent of another
type instance. Her belief about such a relationship must include any required
attributes of the corresponding edge type in the ontology. This relationship in-
stance is then added to the system-generated world. If the edge type is not part
of the ontology, the user must describe how the edge affects the computation of
values in the BBN that the system produces.

C.3 Trust beliefs

A user may also have beliefs about the probability of compromise of any factor.
The BBN construction that we describe below supports two general types of trust
beliefs: absolute beliefs, which state an absolute probability of compromise, and
relative beliefs, which modify the computation of compromise probability.

If the system allows a user to provide trust beliefs about a class of network
elements or relationships, then she may also provide default beliefs that override
the system’s defaults for that class.

A language for predicates We expect that the user may want to express
some of her beliefs (trust and perhaps also structural) in terms of predicates,



even though she might not be able to effectively evaluate these herself. For
example, the user’s trust in ASes with very few routers might be different than
her trust in ASes with many routers (perhaps because she believes that larger
ASes are more likely to have processes, policies, and organizational experience
that prevent misconfiguration). She might capture this with a predicate that
expresses whether the number of routers in an AS (in the edited world) is at
least as great as a specified threshold.

The belief languages must thus incorporate a language for predicates that the
system can interpret. We treat the predicate language as a separate component,
and we sketch here one predicate language that will be used by all of our example
belief languages. This language includes:

Connectives and operators Basic logical connectives (including negation)

Typing Testing whether an instance or attribute is or is not of a specified type;
users may test for types not in the ontology (e.g., to check types that they
have added)

Sets Sets (explicitly enumerated or defined by some predicate) and set mem-
bership/non-membership

Membership A predicate may depend on a set and test whether a value is in
that set.

Tests of attribute values Tests must be appropriate to the data type used
in the attribute; equality and inequality tests are allowed unless specified
otherwise. Predicates may test user-defined attributes.® This may reference
user-defined attributes.

Tests of the world structure (in trust beliefs only) After the world is con-
structed and edited (i.e., when applying trust beliefs but not when applying
structural beliefs), we allow predicates in beliefs to refer to the structure of
the world.

C.4 Sample language

We now describe a sample language for users’ structural and trust beliefs. This
incorporates predicates, which might be expressed using the predicate language
just outlined. In general, we assume that there is a set V of values that the
user may use to express levels of trust. We illustrate this here by taking V
to be {SC,LC,U,LT,ST}; we think of these as “Surely Compromised,” “Likely
Compromised,” “Unknown,” “Likely Trustworthy,” and “Surely Trustworthy.”
Our examples will not rely on V having exactly five elements, but we think this
is one natural way that users might think about their trust in network elements.

5 We expect that user-defined attributes will only be tested by the user, e.g., through
predicates that she specifies on those attributes. As noted in the construction se-
quence in App. A.1, the system will not change the structure of the world based on
user-defined attributes.



Structural beliefs Let R be the set of relationship instances in the system-
created world. R’ will be R augmented with all of the user-specified relationships.

Novel types A user may define new types via expressions of the form ("ut”,
tname, structyeq, Structop), where "ut” is a string literal, tname is a string
(the name of the type) that must be distinct from all other tname values the
user specifies and from all elements of 7, and where struct,., and structopt
are both descriptions of data structures (these may be empty data structures,
which might be indicated by NULL).

We write 7" for the set containing the elements of 7 together with all of the
tname values provided by the user.

Type instances An ordered list of tuples (T, D,n, P,C), where T € T', D is a
data structure that is valid for T', and n is a unique identifier among these
tuples.b
We write Z’ for the set formed by augmenting Z with these new instances.

Relationship instances A set of pairs (p, ¢), where p and ¢ are type instances
from Z’.” We do not need to specify new relationship types, only the addi-
tional relationship instances.

Trust beliefs

Relative beliefs These are beliefs of the form (s, P, v), where s is a string other
than ”abs”, P is a predicate on factor variables, and v € V.
Note that, in our translation procedure below, relative beliefs affect the prob-
ability of compromise of a factor in the BBN that is not otherwise compro-
mised through the causal relationships captured in the world.

Absolute beliefs These are beliefs of the form (”abs”, P, v), where P is a pred-
icate on factor variables and v € V. A belief such as this says that the chance
a variable satisfying P is compromised is captured by v. Note that it is the
user’s responsibility to ensure that no two different absolute beliefs have
predicates that are simultaneously satisfied by a node if those beliefs have
different values for v. We do not specify what value is used if this assumption
is violated.®

Budget Expressed as either ("bul” I, T, k) or ("bu2”,1,”all” k), where "bul”
and "bul” are string literals, I is a type instance in the edited world, T'
is a type in the edited world, and k is an integer. The interpretation is
that, in expectation, compromise of the node with this attribute will lead to
compromise of k of its children (of type T in the first variant, or of all its
children in the second variant).

5 We assume that the system provides unique identifiers for the system-generated type
instances and that the values of n in the user’s list of tuples are distinct from those
identifiers.

7 We abuse notation and use p and ¢ in place of the unique identifiers associated with
each type instance in the edited world.

8 A natural approach is to allow the use to specify these in an ordered list and using
the last satisfied predicate.



Compromise effectiveness Expressed as either (“cel”, I, Pe,v) or ("ce2” I,

T,v), where "cel” and "ce2” are string literals, I is an instance of a non-
output type in the edited world, P is a on instances of a fixed type, T is a
distinguished symbol, and v € V. The interpretation is that, if instance I is
compromised, then it compromises its children satisfying Pce (or all children,
if T is given) with probability corresponding to v.
The likely range of compromise-effectiveness probabilities may differ from
the likely range of other compromise probabilities. In a language such as we
are describing here, the values ST, etc., might have different corresponding
probabilities for compromise-effectiveness than they do for absolute and rel-
ative beliefs. Another alternative is to allow users to specify a probability
p € [0,1] instead of a value v € V as the last element of these tuples.

C.5 Translations to BBNs

A translation procedure in general needs to take the edited world (reflecting the
structural beliefs and attribute values provided by the user) and the user’s trust
beliefs as input and produce a BBN as output. The output variables of the BBN
should match the nodes in the edited world that are instances of types designated
as output types in the ontology or the user’s structural beliefs. Here, we present
a translation procedure that fits with the rest of the system we describe (it
matches our particular ontology, etc.).

Our translation procedure Let W’ be the final world that appears in the
construction sequence described above.

— For each node (type instance) in W', the BBN contains a corresponding
variable. We refer to the BBN variable by the same name as the node in W'.

— For each compromise-effectiveness belief B = (s,n,P,v) about a node n,
there is a corresponding child vg of n in the BBN. The table for vg is such
that, if n is uncompromised, then vg is uncompromised; if n is compromised,
then v is compromised with probability p(v) and uncompromised otherwise.
(We use p(v) to denote the probability value that the system assigns to the
value v € V that is part of the user’s belief language.) The children of v in
the BBN are the nodes in the BBN that correspond to nodes in W’ that (1)
are children of n and (2) satisfy the predicate P from the belief B. Assign
these edges the weight set {1}.
If there are children of n in W’ that do not satisfy any of the predicates in
the compromise-effectiveness beliefs about n (including, e.g., when the user
has no compromise-effectiveness beliefs), then make these nodes children of
n in the BBN. Assign to each of these edges the singleton weight set whose
element is the appropriate default probability.”

9 We assume that there are default values—perhaps just a single, common one—for the
probability that the compromise of a node leads to the compromise of its children.
These values might naturally depend on the types involved. Here, we suggest 1 as a
common default value.



— For each budget belief B = (s, n, P, k) about a node n, let ¢,, p be the number
of children of n (in W) that satisfy P. For each of these children, in the BBN,
replace the single value in the edge’s weight set by that value multiplied by
k/Cn,P .

— Assign to each non-CE-belief node n a “risk set” R,, that is initially empty.
For each belief B = (s, P,v) that has not already been evaluated and whose
initial entry is not "abs”, if n satisfies P, then add v to R,, (retaining dupli-
cates, so that R, is a multiset).

— Construct the tables for each non-CE node in the BBN. (We have already
constructed the tables for the CE-belief nodes.) Let n be a non-CE node. For
each subset S of n’s parents, if S is the multiset of weights on the edges from
nodes in S to n, and if R is the multiset of risk weights associated with n,
then the probability that n is compromised given that its set of compromised
parents is exactly S is:
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Note that, if the user has no parents, then the first product will be empty
(taking a value of 1), and the probability of compromise will be determined
solely by the risk factors unless the user expresses beliefs that override these.

— If the user provides a belief B = (“abs”, P, v), then nodes satisfying P are
disconnected from their parents. Their compromise tables are then set so
that they are compromised with probability p(v) and uncompromised with
probability 1—p(v). This allows a user to express absolute beliefs about factor
variables in the BBN (hence “abs”). In particular, she may express beliefs
about input variables whose compromise would otherwise be determined by
their attributes.

Potential extensions We assume that adversaries are acting independently,
although this may not always be the case. One natural example of inter-adversary
dependence occurs with the compromise of resource-constrained instances in
the world. For example, an ISP’s resources may limit it to monitoring k of its
routers. If both the ISP and the country (or other legal jurisdiction) controlling
it are a user’s adversaries, then they should compromise the same set of the
ISP’s routers. (This is true whether we model this compromise probabilistically,
with k routers compromised in expectation, or through some other means.) This
might be modeled statically by changing the structure of the BBN, but dynamic
compromise and more general inter-adversary dependence may require other
approaches.

At this point, our system does not include instances in the world in constructs
that correspond to cities or states/provinces. These are most naturally viewed
as instances of legal jurisdictions, and the user may well have beliefs about the
corresponding laws or enforcement regimes. One way that we envision the user
may address these is by adding to the world instances of legal jurisdictions that



carry a “Boundary” attribute, effectively a predicate that can be evaluated on
the system-provided geolocation data. The system could then determine which
network entities are in which of these user-supplied jurisdictions. Physical loca-
tions might be handled this way as well, as long as the location is “large enough”
relative to the resolution of the geolocation process.

Mutual legal assistance treaties (MLATS) concern the exchange of informa-
tion between countries about possible violations of the laws of a participating
country. If a user has a state-level adversary, then an MLAT between the ad-
versary country and another country might effectively compromise the second
country. As noted above, it may be natural to add these to the ontology once
suitable related sources of information become available. The BBNs that we
presently construct could be extended to include MLATSs by adding two addi-
tional layers of variables. One would contain a variable for each MLAT known
to the system; the children of these variables would be the country variables (in
the presently constructed BBN) corresponding to countries that are obligated by
the respective MLATS to act as adversaries. The other added layer would con-
tain a new variable for each country; the children of any one of these variables
would be all of the ML ATs that obligate other countries to provide information
to the parent country. The inherent compromise of countries would be reflected
in the top layer; this would propagate through the MLAT layer to effectively
compromise other countries, and the rest of the BBN would behave as it does
presently.

C.6 Five-valued example

The following examples of beliefs illustrate how a user might express her beliefs in
our five-valued example language. We suggest that the compromise probabilities
corresponding to the values SC, LC, U, LT, and ST might be taken to be 0.999,
0.85, 0.5, 0.15, and 0.02, respectively.

Countries in set 57 are likely trustworthy
Countries in set Sy are likely compromised
Countries in set S3 are surely compromised
AMS-IX points are likely trustworthy
MSK-IX points are of unknown trustworthiness
Relay family F; is likely compromised
Relay family F5 is surely uncompromised
Relay operator O; is surely uncompromised
9. Relay operator O is likely uncompromised
10. Hosting company H; is surely trustworthy
11. Submarine cables are of unknown level of trustworthiness
12. Wireless connections are likely compromised
13. Relays running Windows are of uncertain trustworthiness (system gets this
from relay descriptors)
14. If an AS is compromised, then it is expected to be able to compromise 4 of
the links that it is on
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D BBNs

Bayesian Belief Networks have both strengths and weaknesses as a component of
our system. Their general strengths of being concise, being efficiently sampleable,
and allowing computation of other properties of the distribution (e.g., marginal
probabilities and maximum likelihood values) are beneficial in our system. BBNs
are especially well-suited to our approach here because of the close structural
similarity between our revised worlds and the BBNs we construct from these.

As a disadvantage, BBNs do not represent hard resource constraints effi-
ciently; we can only approximate those here by constraining resources in ex-
pectation. More generally, other negative correlations may be difficult at best
to capture, but it is possible that users will hold beliefs that imply negative
correlations between compromise probabilities.

The purpose of this system is to produce an efficiently sampleable represen-
tation of compromise probabilities. Other representations of distributions could
also be used, but they might be most naturally generated from trust beliefs in
different ways. A detailed discussion of such approaches is beyond the scope of
this work.

E Obtaining Trust Beliefs

We propose that a collection of default beliefs be distributed with this system.
As noted in Sect. 5, this collection would be designed to provide adequate protec-
tion for general users. Users with particular concerns might use other collections
of beliefs; these could be provided by, e.g., government entities, privacy orga-
nizations, political groups, journalism-focused organizations, or organizations
defending abuse victims.

F Experimental Results

F.1 Constructing The Man

To construct The Man adversary, we must create a routing map of the Internet
that includes ASes, IXPs, and Tor relays. We must also group ASes and IXPs into
organizations, identify relay families, and evaluate the longevity of Tor relays.
We do so using the techniques and data sources described in Appendix B.3.

To build the routing map, we used CAIDA topology and link data from 12/14
and RouteViews data from 12/1/14. The resulting map included 46,368 ASes,
279,841 links between ASes, and 240,442 relationship labels. To group ASes by
the organization that controls them, we used the results of Cai et al. [4]. These
included data about 33,824 of the ASes in our map, and they resulted in 3,064
organizations that included more than one AS with a maximum size of 81 and
a median size of 2. We used the results of Augustin et al. [1] to identify IXPs
and their locations between pairs of ASes. These results show 359 IXPs and
43,337 AS-pairs between which at least one IXP exists. We then used the results



of Johnson et al. [14] to group IXPs into organizations. These produce 19 IXP
organizations with more than one IXP, for which the maximum size is 26 and
the median size is 2.

We add relays to the routing map using Tor consensuses and descriptors from
Tor Metrics [19]. We used the Tor consensus of 12/1/14 at 00:00. The network at
this time included 1,235 relays that were guards only, 670 relays that were exits
only, and 493 relays that were both guards and exits. The consensus grouped
relays into 152 families of size greater than one, of which the maximum size was
25 and the median size was 2. Family uptime was computed as the number of
assignments of the Running flag to family members, averaged over the family
members and the consensuses of 12/2014. We mapped the Tor guards and exits
to ASes using Routeviews prefix tables from 12/1/14, 12/2/14, and 11/30/14,
applied in that order, which was sufficient to obtain an AS number for all guards
and exits. Note that we observed one exit relay that mapped to an AS that didn’t
appear in our map, and so we added that additional AS. There were 699 unique
ASes among the guards and exits.

We created paths from each AS in our map to each guard and exit AS. The
median number of paths that we could infer to a guard or exit AS was 46,052
(out of the 46,369 possible). The maximum AS path length was 12, and the
median AS path length was 4. The maximum number of IXPs on a path was 18,
and the median number was 0.

The resulting BBN for The Man thus included 2398 relay variables (one for
each guard and exit) and 32,411,931 virtual links (one from each AS to each
guard or exit AS). For any path missing from our routing map, we simply took
the path to include only the source AS and destination AS. The probability of
compromise for a family f with uptime u; was set to be (0.1 — (0.1 —0.001))uy.

F.2 Experiment algorithms

For all of our experiments, we considered security from 58 of the 60 most common
client ASes as measured by Juen [15] (AS8404 and AS20542 did not appear in our
map). Juen reports that these 58 ASes covered 0.951 of client packets observed.
In addition, for all of our experiments, the compromise probability (i.e., the
probability of a first—last correlation attack by The Man) was estimated by
sampling from The Man BBN (and from Tor’s relay selection distribution in the
default case) 100,000 times and using the fraction of compromised samples as
the probability.
The experiments were conducted as follows:

— Tor default path selection: For each of our 58 client locations, we choose
an exit and guard using Tor’s path-selection algorithm as implemented in
TorPS [14]. Note that (among other considerations) this does ensure that the
guard and exit don’t share the same family or /16 subnet. Then we sample
The Man BBN to determine if the resulting circuit to the server is vulnerable
to a first-last correlation attack.



— Clients use trust: Guards are chosen for each client location to be the
three relays with the smallest probabilities that the adversary compromises
the guard or an AS or IXP on the path to the guard. To compute the
compromise probability of a connection from a given client location to a
given destination, we consider using each of the client location’s three guards
with each Tor exit relay, estimate the compromise probability, and choose
the lowest resulting probability.

— Service uses trust: We consider each AS containing an exit relay as a
possible location for the server. For each server location, we compute the
probability of compromise for each client location. This is estimated for
a given client location by considering each of its guards, considering each
exit sharing the server location, estimating the compromise probability, and
using the minimum of these probabilities. We choose the server location
with the minimum average compromise over all client locations. For each
additional server, we repeat the same process except that we only update
the compromise probability for a client location if it decreases when using
the new potential server location.



