
Finding Highly Correlated Pairs Efficiently with Powerful
Pruning

Jian Zhang
∗

Computer Science Department
Stanford University
Stanford, CA 94305

jz@cs.stanford.edu

Joan Feigenbaum
†

Computer Science Department
Yale University

New Haven, CT 06520

jf@cs.yale.edu

ABSTRACT
We consider the problem of finding highly correlated pairs
in a large data set. That is, given a threshold not too small,
we wish to report all the pairs of items (or binary attributes)
whose (Pearson) correlation coefficients are greater than the
threshold. Correlation analysis is an important step in many
statistical and knowledge-discovery tasks. Normally, the
number of highly correlated pairs is quite small compared
to the total number of pairs. Identifying highly correlated
pairs in a naive way by computing the correlation coefficients
for all the pairs is wasteful. With massive data sets, where
the total number of pairs may exceed the main-memory ca-
pacity, the computational cost of the naive method is pro-
hibitive. In their KDD’04 paper [15], Hui Xiong et al. ad-
dress this problem by proposing the TAPER algorithm. The
algorithm goes through the data set in two passes. It uses
the first pass to generate a set of candidate pairs whose cor-
relation coefficients are then computed directly in the sec-
ond pass. The efficiency of the algorithm depends greatly on
the selectivity (pruning power) of its candidate-generating
stage.

In this work, we adopt the general framework of the TA-
PER algorithm but propose a different candidate-generation
method. For a pair of items, TAPER’s candidate-generation
method considers only the frequencies (supports) of individ-
ual items. Our method also considers the frequency (sup-
port) of the pair but does not explicitly count this frequency
(support). We give a simple randomized algorithm whose
false-negative probability is negligible. The space and time
complexities of generating the candidate set in our algorithm
are asymptotically the same as TAPER’s. We conduct ex-
periments on synthesized and real data. The results show

∗Supported by NSF grant 0331640.
†Supported in part by HSARPA grant ARO-1756303, ONR
grants N00014-01-1-0795 and N00014-04-1-0725, and NSF
grants 0331548, 0428422, and 0534052.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-433-2/06/0011 ...$5.00.

that our algorithm produces a greatly reduced candidate
set—one that can be several orders of magnitude smaller
than that generated by TAPER. Because of this, our algo-
rithm uses much less memory and can be faster. The former
is critical for dealing with massive data.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data mining

General Terms
Algorithms

Keywords
correlation, statistical computing, massive data set

1. INTRODUCTION
Finding highly correlated pairs in a large set of items is

an important basic operation in many knowledge-discovery
tasks. For example, in building Bayesian networks from
massive data sets, many algorithms [12, 8] consider the stron-
gly dependent (correlated) variables first to speed up the
search process. In this paper, we examine correlations in
market-basket-like data. Here “market basket” is an ab-
straction that can be used to model many data sets involving
two concepts: a set of items and a set of relations (baskets).
In statistical linguistics, one may view words as items and
sentences as relations (baskets) to establish the connections
among words. In time-series analysis, one may view events
as items and certain time windows as baskets to discover the
dependencies among events. Correlation analysis in market-
basket data is important in knowledge discovery.

Correlation has been well studied in statistics, but statis-
ticians focus mainly on measures of correlations. Efficient
computation is often of little concern. Computation does
not pose a problem when handling normal amounts of data.
However, with massive data sets, efficiency problems arise.
Consider a common query in correlation analysis: Given a
threshold, find all the pairs whose correlation coefficients are
above the threshold. The query can be answered in a naive
way: Compute the correlation coefficients of all the pairs,
and pick out the highly correlated ones. With massive data
sets, the number of items may be very large, and the total
number of pairs can be huge. (For a data set with a mil-
lion items, the total number of pairs is nearly a trillion.)

Computing correlation coefficients for such a huge number
of pairs can be prohibitively expensive. Moreover, in many
cases, there will not be enough main memory to hold all
the pairs. Although one can turn to external-memory com-
putations, the performance deteriorates to an unacceptable
level. Hence, in these situations, it is critical for the mem-
ory requirement of an algorithm to be much smaller than
the size of the input data set. This is possible because it is
often the case for real-world data that the number of highly
correlated pairs is much smaller than the total number of
possible pairs. Storing all the pairs and computing all the
correlation coefficients are wasteful.

To address the efficiency and the memory-shortage prob-
lem in finding correlated pairs, Hui Xiong et al. [15] proposed
the TAPER algorithm. The algorithm makes two passes
through the data set. In the first pass, it prunes many pairs
that are not highly correlated and generates a set of candi-
date pairs whose correlation coefficients may be above the
threshold. The correlation coefficients of these pairs in the
candidate set are computed in the second pass. The pairs
that are indeed highly correlated are then identified. The
size of the candidate set can be much smaller than the total
number of pairs. By paying a fairly small price (one more
pass through the data), the algorithm saves the computation
for the pruned pairs. Furthermore, the algorithm requires
less memory than the naive one, making it more suitable for
massive data.

Clearly, the efficiency and the memory requirement of the
algorithm depend strongly on the effectiveness of the prun-
ing method used in the candidate-generation stage. To de-
cide whether a pair (a, b) should be pruned, the TAPER
algorithm uses a rule that considers only the frequencies of
individual items a and b (or, from an association-rule-mining
point of view, the supports of a and b). Computational sim-
plicity is the advantage of this pruning rule. One needs to
count only the supports of the individual items. The disad-
vantage is that a relatively large group of uncorrelated pairs
is missed by the pruning rule. Intuitively, the pruning rule
used in TAPER can be viewed as the following: We prune
the pair (a, b) if the support of a and the support of b differ
a lot. Consider a data set with items’ support distribution
shown in Fig. 1. (The x axis is the value of the supports,
and the y axis is the number of items with that support
value.) Consider two areas L and S. Items that fall in L
have large supports, and items that fall in S have small sup-
ports. TAPER’s pruning rule removes pairs that consist of
one item from L and the other from S. The pairs that draw
both items from S (or L) are selected by TAPER as candi-
dates. However, two items a and b of similar small supports
are often not correlated because the item pair (a, b) has ex-
tremely small support. There can be many such pairs. In
particular, in a large database, most of the items have sim-
ilar small supports, but many are not correlated. Because
TAPER’s pruning rule includes these pairs in the candidate
set, the candidate set is relatively large. We observe that
TAPER’s pruning can be further improved by considering
the supports of the pairs.

However, there is a basic obstacle to making such improve-
ment. At first glance, it seems the new pruning process re-
quires that we get the supports of all the pairs. On the other
hand, the goal of the pruning is exactly to avoid doing so. A
pruning process is meaningless if it needs to get the statis-
tics of all the pairs. That is the crux of the challenge we

Figure 1: Distribution of Items’ Support

address here: We want to consider the supports of the pairs
in a pruning rule without actually counting these supports.
In this paper, we show that this can be done. We propose a
pruning rule that involves the supports of the pairs. Mean-
while, we give a pruning method for this rule that does not
require explicitly counting these supports.

Our pruning method is based on min-hash functions [7,
11]. In [11], min-hash functions are used to identify associa-
tion rules with high confidence. Though related, confidence
for association rules and correlation coefficients are two dif-
ferent quantities. In particular, the fact that the correlation
coefficient of a pair is above a certain threshold does not
mean that the confidence of the corresponding association
rule is above that threshold. Thus we cannot use the al-
gorithms in [11] to identify all the highly correlated pairs.
Another alternative is to use the min-hash to estimate the
supports of the pairs. One can go through all the possible
pairs, use the estimation to compute the coefficient corre-
lations for all the pairs, and identify the highly correlated
ones. However, this approach still needs to consider all the
possible pairs and hence is not efficient. We use the min-
hash function in a different way. For two items a and b,
we consider the Jaccard distance between the set of baskets
containing a and the set of baskets containing b. (The Jac-
card distance between two sets is defined to be one minus
the ratio of the size of the intersection over the size of the
union.) We show a strong connection between this distance
and the correlation coefficient of the pair (a, b). In particu-
lar, we observe that, if the pair (a, b) has a large correlation
coefficient, then its Jaccard distance must be small. We use
min-hash to estimate the Jaccard distance and only select
pairs within small distance to the candidate set. Note that
the Jaccard distance is a relative value of a pair’s support.
Hence, our pruning process utilizes the information about
the support of the pairs and removes unwanted pairs that
are missed in TAPER’s pruning phase.

Finally, we remark that our pruning process is a random-
ized algorithm. The pruning process may produce false neg-
atives, i.e., pairs with high correlations might get pruned.
However, the false-negative probability can be controlled in
our algorithm and can be set arbitrarily small.

We conduct experiments on real and synthesized data.
The results show that, by adding information about pairs’
supports, our pruning removes more unwanted pairs than
TAPER and produces a greatly reduced candidate set—one
that can be several orders of magnitude smaller than that
generated by TAPER. Because it produces a smaller can-
didate set, our algorithm is faster. More importantly, as
we discussed earlier, with massive data sets that exceed the

memory capacity of computers, an algorithm’s efficiency and
applicability strongly depend on its memory requirement.
We did not use extremely large data sets in the experiment.
Instead, we closely examined the memory requirements of
the algorithms being compared. The experiments showed
that our algorithm has a much smaller (several orders of
magnitude smaller) memory requirement than other algo-
rithms. Hence, it is much more usable and efficient in deal-
ing with massive data sets.

1.1 Related Work
“Market basket” is a powerful abstraction used for mod-

eling data. The market-basket abstraction is particularly
useful for identifying association (correlation) patterns in
the data. Mining association rules [1] is an often encoun-
tered problem in many data-mining tasks. There are many
algorithms [2, 3, 4, 9] that exploit different constraints for
efficient mining of association rules. Two measures are often
considered when judging the significance of an association
rule: its support and its confidence. Other quantities that
measure the interestingness of association rules are studied
in [6, 13, 14].

Identifying associations (correlations) according to statis-
tical measures is also an important problem. It has been
considered in statistics, but not primarily from an algo-
rithmic point of view. The computations in the statistics
literature are often done by brute-force algorithms. Previ-
ously, Xiong et al. [15] considered the problem of identify-
ing strongly correlated pairs, using Pearson coefficients as
the measure of correlation. In this paper, we propose an
algorithm that adopts the general framework of the TAPER
algorithm in [15] but uses a different method for pruning
weakly correlated pairs.

1.2 Overview of the Paper
The rest of this paper is organized as follows: In sec-

tion 2, we introduce a rule for generating a candidate set
and give an efficient candidate-generation method. In sec-
tion 3, we present the whole algorithm and analyze the time
and space complexity of our candidate-generation method.
In section 4, we provide experimental results. The results
show that our algorithm generates a much smaller candi-
date set and is faster than TAPER. Section 5 summarizes
the paper and discusses some future work.

2. A PRUNING METHOD BASED ON
SUPPORTS OF PAIRS

Our pruning process is based on the following observation:
For a pair (a, b), if the correlation coefficient of the pair is
above a threshold θ, the Jaccard distance between the set of
baskets containing a and the set of baskets containing b must
be smaller than f(θ), for a function f that we will specify
later. With this observation, to generate candidates is to
select pairs of items that are close in the Jaccard space. We
use min-hash to estimate the Jaccard distances. A second
hash is used to group together the pairs that are close to each
other in the Jaccard space. The candidate set then consists
of the pairs in such groups. In this way, we use the supports
of the pairs in the pruning process without having to count
these supports. The process does not need to consider all
the possible pairs.

Now we describe the pruning process in detail. First, we
need some notation. Data in a market-basket model can be

viewed as a table T with entries “0” or “1.” The columns
of the table represent the items, and the rows represent the
baskets. If basket i contains item j, T (i, j) = 1; otherwise,
T (i, j) = 0. We denote by n the number of items and m
the number of baskets. We also use [m] to represent the
set {1, 2, . . . , m}. For an item a, we define R(a) to be the
set {r ∈ [m]|T (r, a) = 1}. That is, R(a) is the set of rows
(baskets) that contain item a. For two items a and b, we de-
note by sp(a) the support of item a (i.e., sp(a) = |R(a)|/m),
sp(b) the support of item b, and sp(ab) the support of the
pair (a, b). Our task is to find pairs of items whose correla-
tion coefficients are above a threshold θ. Table 1 summarizes
the notations that we will use throughout the paper.

T A table of “0”s and “1”s, representing the
market-basket data. The columns of the ta-
ble represent the items, and the rows repre-
sent the baskets. Basket i contains item j
when T (i, j) = 1.

n The number of items

m The number of baskets

R(a) {r ∈ [m]|T (r, a) = 1}, i.e., the set of rows
(baskets) that contain item a

sp(a) The support of item a, i.e., |R(a)|/m

θ The threshold that determines whether a pair
is highly correlated

Table 1: Notations

For a pair of items a and b, the Pearson correlation coef-
ficient (also called the φ correlation coefficient) can be ex-
pressed in terms of the supports:

φ(a,b) =
sp(ab)− sp(a)sp(b)

p

sp(a)sp(b)(1− sp(a)) · (1− sp(b))
.

We are looking for pairs (a, b) such that φ(a,b) ≥ θ. Intu-
itively, we know that, if a and b are highly correlated, the set
R(a) ∩ R(b) should not be too small, compared to R(a) or
R(b). We now establish this relationship formally. Without
loss of generality, we assume that sp(b) ≥ sp(a) (equiva-
lently |R(b)| ≥ |R(a)|). Assume that a and b are highly
correlated:

sp(ab)− sp(a)sp(b)
p

sp(a)sp(b)(1− sp(a)) · (1− sp(b))
≥ θ. (1)

Because sp(a) ≥ sp(ab), we can replace sp(ab) with sp(a) in
Inequality 1 to obtain

s

sp(a) · (1− sp(b))

sp(b) · (1− sp(a))
≥ θ. (2)

This is also the pruning rule used in the TAPER algorithm.

Let S =
q

sp(a)·(1−sp(b))
sp(b)·(1−sp(a))

. By Inequality 2, S ≥ θ. By the as-

sumption that sp(a) ≤ sp(b), S ≤ 1. Now, from Inequality 1

and the fact that sp(ab) = |R(a)∩R(b)|
m

, we have

|R(a) ∩R(b)|
|R(b)| ≥ θ ·

s

sp(a) · (1− sp(b))

sp(b) · (1− sp(a))
· (1− sp(a)) + sp(a)

≥ θ · S · (1− sp(a)) + sp(a)

= θ · S + (1− θ · S)sp(a)

≥ θ · S.

The last inequality comes from the fact that θ, S ≤ 1. Sim-
ilarly,

|R(a) ∩R(b)|
|R(a)| ≥ θ ·

s

sp(b) · (1− sp(a))

sp(a) · (1− sp(b))
· (1− sp(b)) + sp(b)

≥ θ

S
· (1− sp(b)) + sp(b)

=
θ

S
+ (1− θ

S
)sp(b)

≥ θ

S
.

Here the last inequality comes from the fact that S ≥ θ.

Now consider the ratio |R(a)∩R(b)|
|R(a)∪R(b)|

. We have

|R(a) ∩ R(b)|
|R(a) ∪ R(b)| =

|R(a) ∩R(b)|
|R(a)|+ |R(b)| − |R(a) ∩ R(b)|

=
1

|R(a)|
|R(a)∩R(b)|

+ |R(b)|
|R(a)∩R(b)|

− 1

≥ 1

S/θ + 1/(θ · S)− 1

=
θ

S + 1/S − θ

Given 1 ≥ S ≥ θ, this ratio achieves its minimum value of θ2

when S = θ. Our rule is thus to prune when |R(a)∩R(b)|
|R(a)∪R(b)|

< θ2.

Candidate-Generation Rule: We put the pair (a, b)

into the candidate set only when |R(a)∩R(b)|
|R(a)∪R(b)|

≥ θ2. That is,

(a, b) is selected if the Jaccard distance between R(a) and
R(b) is smaller than 1− θ2.

Note that this bound is tight. That is, if we prune a pair

(a, b) when |R(a)∩R(b)|
|R(a)∪R(b)|

is slightly larger than θ2, we may

remove a pair whose correlation coefficient is slightly above
θ. To see this, consider two items a and b with R(a)∩R(b) =
R(a). Also, assume sp(a) and sp(b) are very small. In this
case, (1− sp(a))→ 1, and (1− sp(b))→ 1. The correlation

coefficient reduces to
q

sp(a)
sp(b)

, i.e., φ(a,b) ≈
q

sp(a)
sp(b)

. Because
|R(a)∩R(b)|
|R(a)∪R(b)|

= sp(a)
sp(b)

= θ2, φ(a,b) ≈ θ. Furthermore, φ(a,b)

increases with |R(a)∩R(b)|
|R(a)∪R(b)|

. Hence, if we prune a pair when
|R(a)∩R(b)|
|R(a)∪R(b)|

is above θ2, we may have removed a pair whose

correlation coefficient is above θ.
Next, we describe a method that can efficiently prune (or

generate candidates) according to our rule. The candidate-
generation method uses min hashing, which was introduced
in [7, 11]. A min-hash function hmin maps an item in the
data set to a number and has the following property: Given
two items a and b,

Pr(hmin(a) = hmin(b)) =
|R(a) ∩ R(b)|
|R(a) ∪ R(b)|

The following is a simple min-hash function from [11]: Let

h be a general hash function that maps a number in [m] to
a random number in [m2]. (The domain of the hash values
is made much larger than the domain of the keys so that the
probability of collision is small.) Then

hmin(a) = minr∈R(a){h(r)}

Example 1. Here is an example of min-hash. Assume
that there are 10 rows (baskets) in total and that we choose
the following values of h:

r 0 1 2 3 4 5 6 7 8 9
h(r) 17 21 9 44 5 16 1 20 37 8

Also assume that item 3 appears in baskets 2, 5, and 8.

hmin(3) = min{h(2) = 9, h(5) = 16, h(8) = 37} = 9.

With min hashing, the larger the ratio |R(a)∩R(b)|
|R(a)∪R(b)|

, the

more likely it is that the two items a and b will be hashed to
the same value. This suggests a simple candidate-generation
method: We can put every pair of items that have the same
min-hash value in the candidate set. In this way, the pairs

that satisfy our rule (|R(a)∩R(b)|
|R(a)∪R(b)|

≥ θ2) will be placed into

the candidate set with high probability and the pairs that

do not satisfy our rule (|R(a)∩R(b)|
|R(a)∪R(b)|

< θ2) will be selected

with low probability.
However, the gap between the two probabilities is not wide

enough to result in powerful pruning while maintaining a
small false-negative probability. We use another technique
from [11, 10] to widen the gap. We use k independent min-
hash functions and define an equivalence relation “≃.” For
two items a and b, a ≃ b if and only if a and b have the same
min-hash values for all the k hash functions. The equiva-
lence relation can be used to partition the items into equiv-
alence classes. If, with one min-hash function P(a ≃ b) = x,
then, with k independent functions, P(a ≃ b) = xk << x.
We repeat the whole process t times, each time with a differ-
ent set of k min-hash functions. (A total of k · t independent
min-hash functions is required.) The probability that a and
b belong to the same equivalence class in at least one of the
trials is 1− (1− xk)t. We put into the candidate set all the
pairs whose two items belong to the same equivalence class.

Example 2. We give an example that shows how can-
didates are generated after we obtain the min-hash values.
Assume k = 2 and t = 3. Consider the items and their min-
hash values in Table 2. Each item has 6 min-hash values.
The hash values are grouped into 3 vectors, v1, v2 and v3,
each of size 2. The candidate-generation process takes t = 3

item Min-Hash Values
v1 v2 v3

3 3, 8 12, 7 4, 8
9 1, 7 9, 20 17, 6
17 3, 8 10, 22 17, 6
19 5, 7 7, 22 6, 4

rounds. In round 1, vector v1 is considered. v1 of item 3 is
equal to v1 of item 17. Hence 3 and 17 are in an equivalence
class and the pair (3, 17) is put in the candidate set. In the
second round, vector v2 is considered. This time, no two
vectors are equal. No candidate is generated. In the third
round, v3 of item 9 is equal to v3 of item 17. Hence (9,17)

is put in the candidate set. The process then stops. Note
that the pair (3, 9) is not in the candidate set. This agrees
with the fact that there is no vector of item 3 that is equal
to a corresponding vector of item 9.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

1−
(1

−x
k)t

k=5, t=7
k=3, t=24
k=2, t=30

Figure 2: Shape of the Function f(x) = 1− (1− xk)t

Fig. 2 shows the function f(x) = 1− (1− xk)t for several
values of k and t. f(x) has an “s” shape and approximates
a threshold function, i.e., a function g(x) that takes the
value 1 when x is larger than the threshold and 0 when x
is smaller than the threshold. f(x) is an approximation of
such a threshold function. We observe that k determines
the sharpness of the transition from 0 to 1. t works with
k to determine where the transition happens. For an ideal
pruning result, we want the transition to be sharp, i.e., f to
behave more like g. By choosing values for k and t properly,
we can place into the candidate set the pairs that satisfy

our rule (|R(a)∩R(b)|
|R(a)∪R(b)|

≥ θ2) with probability close to one and

pairs that do not satisfy our rule (|R(a)∩R(b)|
|R(a)∪R(b)|

< θ2) with

probability close to zero.

3. FINDING ALL PAIRS OF HIGHLY
CORRELATED ITEMS

We describe our full algorithm in this section. Our al-
gorithm adopts the general framework of TAPER. To find
the highly correlated pairs, it makes two passes through the
data set. After the first pass, we generate a set of candidates.
In the second pass, the correlation coefficients of the candi-
dates are computed, and the pairs that are truly correlated
are identified.

In the first pass, our algorithm performs min hashing for
each item. The min-hash value of an item a is simply the
minimum of the set {h(r)|r ∈ R(a)}. It is easy to see that
this computation can be performed in one pass through the
data. When using multiple min-hash functions, all hashes
of an item can be computed at the same time—there is no
need for multiple passes. Recall that we use a total of k ·t in-
dependent hash functions. The parameters k and t are used
to control the pruning and the probability of false negatives.
k controls the effectiveness of the pruning. By using a large
k, we can prune more pairs that do not satisfy our rule. In
general, k can be determined by the limits on the available
computational resources. t controls the probability of false
negatives. The larger the t, the smaller the probability that
we drop a pair satisfying our rule.

Once we have a value for k, we choose t according to
the threshold θ and false-negative tolerance τ . We first dis-

Algorithm 1 Finding Correlated Pairs

We use k ·t hash functions h0, h1 . . . , kk·t−1 and a hash table

HT . HT uses a hash function ĥ that maps a vector of k
integers (the key) to one of its buckets.

C: The set of highly correlated pairs
S: The candidate set
H : H [i] is a vector that stores the k ∗ t min-hash values
of item i. We also use H [i][u : v] to mean the vector
(H [i][u], H [i][u + 1], . . . , H [i][v]).

Compute Min-Hash:

for each item i and u from 0 to k ∗ t− 1 do

H [i][u]← m
end for

In one pass through the data set:
for each item i in row j do

for u from 0 to k ∗ t− 1 do

if H [i][u] > hu(j) then

H [i][u]← hu(j)
end if

end for

end for

Generate Candidate Pairs:

for i from 0 to t− 1 do

set all buckets of HT to φ
for each item j do

v ← H [j][i ∗ k : (i + 1) ∗ k − 1]

HT [ĥ(v)]← HT [ĥ(v)] ∪ j
end for

for all bucket HT [u] do

if HT [u] has more than one item then

for every pair p of items in HT [u] do

S ← S ∪ p
end for

end if

end for

end for

Identify Truly Correlated Pairs:

In one pass through the data set:
for each pair (a, b) in S do

Get sp(ab)

φ(a,b) ← sp(ab)−sp(a)sp(b)√
sp(a)sp(b)(1−sp(a))·(1−sp(b))

if φ(a,b) > θ then

C ← C ∪ (a, b).
end if

end for

Output C.

cuss the meaning of τ and then describe how we choose its
value. Note that, when we fix the values of both k and t,
the stronger a pair’s correlation is, the more likely it is that
this pair will be placed in the candidate set. This is deter-
mined by the probability function in Fig. 2. A pair (a, b) has
probability 1 − (1 − xk)t to be in the candidate set, where

x = |R(a)∩R(b)|
|R(a)∪R(b)|

. The stronger the pair’s correlation is, the

larger |R(a)∩R(b)|
|R(a)∪R(b)|

, and therefore the pair is more likely to be

in the candidate set. In other words, our candidate genera-
tion favors strongly correlated pairs. We choose t such that,

for a pair (a, b), |R(a)∩R(b)|
|R(a)∪R(b)|

= θ2, the probability of omitting

this pair from the candidate set is below τ . (This is why
we call τ the “false-negative tolerance.”) Note this does
not mean that our candidate generator misses every highly
correlated pair with a probability τ . Only the pairs (a, b)

that are at the border (|R(a)∩R(b)|
|R(a)∪R(b)|

= θ2) (with relative low

correlation) have probability of τ being left out. The other
pairs with stronger correlation have false-negative proba-
bility smaller than τ . The formula for choosing t is then
t = log(1−θ2k)τ .

After going through the data set, we have k · t hash values
for each item. They are grouped into t vectors each of size
k. Using the equivalence relation ≃ defined in the previous
section, we partition the items into equivalence classes. We
can do so with the help of a hash table. The hash table
takes a vector of size k as a key and hashes the item into
one of its buckets. The items in the same bucket form an
equivalence class, and we add to the candidate set the pairs
formed by two items in the same class. Note that each item
has t vectors and thus t keys. Therefore, this process is
repeated t times, each time using a different key. Once we
have the candidate set, the second pass is straightforward.
The whole algorithm is presented in Algorithm 1.

We now analyze the space and time complexity of our
candidate-generation method. We first consider the memory
requirement. For each item, we store k · t min-hash val-
ues. Because k and t are two constants determined only by
the threshold θ and the false-negative tolerance τ , the to-
tal memory required by our candidate-generation method is
O(k · t · n) = O(n).

Now we consider the time complexity. While going through
the data set, for each item i contained in basket (row) j, the
row number j is hashed, and the hash value is compared to
the currently stored minimum value. The current minimum
is replaced if necessary. Clearly, this process requires time
only necessary to go through the input. After going through
the data set, we partition the set of items into equivalence
classes according to the equivalence relation. Using a hash
table, this can be done in O(n) time. Since we repeat the
partition process t times, the total time requirement is again
O(t · n) = O(n).

In summary, the time and space complexity of our candidate-
generation method are asymptotically the same as that of
TAPER’s candidate-generation process.

4. EXPERIMENT RESULTS
In this section, we report the results of testing our algo-

rithm on several data sets. The experimental results show
that our candidate-generation method prunes the unwanted
pairs effectively, producing a small candidate set, and there-
fore achieves small overall running time. We first show, in

Section 4.1, the execution time of our algorithm, compar-
ing it with that of the TAPER algorithm. We then discuss
the effectiveness of our pruning method in Section 4.2. In
Section 4.3, we investigate how much we can gain by com-
bining our pruning rule with TAPER’s rule. In Section 4.4
we test the scalability of our algorithm. Finally, in Sec-
tion 4.5, we investigate the tradeoff between running time
and false-negative rate. (The false-negative rate is the ratio
of the truly correlated pairs removed by our algorithm to
the total number of truly correlated pairs.)

Before presenting the results, we first describe the data
sets used in the experiments. We used both real and syn-
thesized data. The real data were taken from several ap-
plication domains. Table 2 summarizes the characteristics
of these data sets. “pumsb” is a binarized census data set.

Data Set # Items # Records
pumsb 2113 49046
pumsb* 2089 49046
retail 16470 88162

Table 2: Characteristics of Real Data Sets

“pumsb*” is “pumsb” with items whose support is larger
than 80% removed. “retail” contains market-basket data
from an anonymous retail store [5]. We took these data sets
from the FIMI website.1

Synthesized data were also used in the experiments. These
data sets were produced using a generator included in the
software package published by the ILLIMINE group.2 It is
essentially the same as the generator from the IBM Almaden
Quest research group. Table 3 lists the characteristics of the
three synthesized data sets that we used.

Data Set # Items # Records
SD1 15306 49240
SD2 29354 49181
SD3 42414 49233

Table 3: Characteristics of Synthesized Data Sets

In all experiments except the one in which we investigated
the tradeoff between the running time and the false-negative
rate, we set the false-negative tolerance τ to be smaller than
0.005. The experiments showed that the false-negative rate
was indeed below 0.005. Furthermore, when the number
of truly correlated pairs was small, our algorithm produced
no false negatives using such a tolerance. Table 4 lists the
values of k and t for different coefficient threshold θ.

θ k t
0.9 4 10
0.7 2 18
0.5 2 47
0.3 2 370

Table 4: Parameters of the Algorithm Used in the

Experiments

We tested our algorithm on a Linux system, with an Intel
Xeon CPU, 3.2GHz, and 2G memory.

1http://fimi.cs.helsinki.fi/data/
2http://illimine.cs.uiuc.edu/

0.3 0.5 0.7 0.9
0

50

100

150

200

Theta

E
xe

cu
tio

n
T

im
e

(s
ec

)

Retail

Taper
Ours

0.3 0.5 0.7 0.9
0

500

1000

1500

2000

Theta

E
xe

cu
tio

n
T

im
e

(s
ec

)

SD2

Taper
Ours

0.3 0.5 0.7 0.9
0

50

100

150

200

Theta

E
xe

cu
tio

n
T

im
e

(s
ec

)

SD1

Taper
Ours

Figure 3: Overall Execution Time

0.3 0.5 0.7 0.9
0

20

40

60

80

Theta

E
xe

cu
tio

n
T

im
e

(s
ec

)

Retail

Taper
Ours

0.3 0.5 0.7 0.9
0

20

40

60

80

100

Theta

E
xe

cu
tio

n
T

im
e

(s
ec

)

SD2

Taper
Ours

0.3 0.5 0.7 0.9
0

10

20

30

40

50

Theta

E
xe

cu
tio

n
T

im
e

(s
ec

)

SD1

Taper
Ours

Figure 4: Candidate-Generation Time

4.1 Running Time
We measured two types of running times. One is the

overall running time of the program. The other is the run-
ning time of the candidate-generation phase. In Fig. 3 and
Fig. 4, we plot the overall and the candidate-generation run-
ning times of our algorithm, respectively, and compare them
with those of the TAPER algorithm.

Our algorithm achieves smaller overall running time in
these test cases. This is mainly due to the very small candi-
date set generated by the algorithm. In most cases, because
the candidate set is so small, the second pass of our algo-
rithm takes only a few seconds.

The comparison of the running times for candidate gen-
eration is interesting. In some cases (e.g., θ = 0.3 for the
“retail” data set), our candidate-generation process takes
much longer than TAPER’s candidate-generation process,
while in some other cases (e.g., θ = 0.5, 0.7 for the “retail”
data set), our candidate-generation process takes less time.

In both algorithms, there are two steps in the candidate-
generation process. First, they need to go through the input
data in one pass. Second, they generate the candidate set.
When TAPER goes through the input data, it counts the
frequencies of the items. In our algorithm, we need to com-
pute the min-hash values for the items. For each item, we
may compute several min-hash values. Therefore, in the
first step, our algorithm takes more time than TAPER, par-
ticularly when θ is small and we compute many min-hash
values. In the second step, for each pair generated as a

candidate, TAPER needs to look up the frequencies of its
items. On the other hand, our algorithm simply puts the
pairs of items that have the same hash value into the candi-
date set. Hence, in the second step, our algorithm requires
less time. In summary, with small θ, our algorithm requires
many min-hash values and spends more time to compute
them. With large θ, although computing hash values still
takes more time than counting the frequency, it can be com-
pensated for by the savings in the second step, resulting in
a candidate-generation process of the same or slightly faster
speed.

4.2 Effectiveness of the Pruning
A small candidate set provides several advantages, par-

ticularly with massive data sets that have large numbers of
items. A small candidate set reduces the number of pairs
one needs to go through in order to identify the correlations.
This improves efficiency. Second, one needs to store only a
small number of pairs instead of all the pairs. This lowers the
memory requirement. A memory requirement much smaller
than the size of the data is critical if the algorithm is to work
on massive data. It enables us to carry out computation in
main memory, whereas external memory computations can
be many orders of magnitude slower. Furthermore, if data
are distributed among many machines, a small candidate set
means small communications. Therefore, we will closely ex-
amine the size of the candidate sets, aka the pruning powers,
of the algorithms.

To quantify pruning power, we define two measurements.

0.3 0.5 0.7 0.9
10

−4

10
−2

10
0

Theta

S
R

Pumsb

Taper
Ours

0.3 0.5 0.7 0.9
10

−4

10
−2

10
0

Theta

S
R

Pumsb*

Taper
Ours

0.3 0.5 0.7 0.9
10

−6

10
−4

10
−2

10
0

Theta

S
R

Retail

Taper
Ours

Figure 5: Shrink Ratio of the Candidate Sets

0.3 0.5 0.7 0.9
10

0

10
1

10
2

10
3

10
4

Theta

E
R

Pumsb

Taper
Ours

0.3 0.5 0.7 0.9
10

0

10
1

10
2

10
3

10
4

Theta

E
R

Pumsb*

Taper
Ours

0.3 0.5 0.7 0.9
10

0

10
2

10
4

10
6

Theta

E
R

Retail

Taper
Ours

Figure 6: Expand Ratio of the Candidate Sets

The first one measures how small the candidate set is, com-
pared to the set of all possible pairs. We call this quantity
the shrink ratio (SR) of the candidate set. It is defined to be
the ratio of the size of the candidate set to the total number
of pairs. Note that the measurement called “pruning ra-
tio” defined in [15] is exactly 1− SR. Our second quantity
measures how large the candidate set is, comparing to the
number of the truly correlated pairs. By truly correlated
pairs, we mean the pairs whose coefficients are above the
threshold. We call this measurement the expand ratio (ER)
of the candidate set. A good candidate set should have both
small ER and small SR. A small SR means we save a lot by
pruning many unwanted pairs. A small ER means that the
candidate set does not contain too many false positives. We
remark that the false negative rate of our candidate sets in
these experiments is below 0.005. That is, our candidate set
misses less than 5/1000 of the truly correlated pairs. Hence,
when our algorithm achieves a small ER (SR), it is indeed
a small ER (SR), not one made by removing a lot of truly
correlated pairs.

We first examine the shrink ratio of the candidate set
generated by our algorithm and compare it to TAPER’s
ratio. We plot the shrink ratios in Fig. 5. The values of
the ratios are represented by the heights of the bars. For
each threshold θ, we plot the candidate set’s SR from the
two algorithms side by side. Note that the Y axis is in log
scale. We make several observations here. First, the result
shows that our pruning rule is much more powerful for these

data sets than TAPER’s. The candidate sets generated by
our algorithm are often one order of magnitude smaller. For
large data sets and large θ values, our candidate set can
be several orders of magnitude smaller. For example, our
candidate set for the “retail” data set, when θ = 0.9, is about
10−5 of the number of all possible pairs. As we discussed
earlier, with massive data sets, the number of total pairs
can be huge and deep pruning is often sought, our pruning
approach can be useful in these situations. Second, as we
analyzed in the introduction, there is a group of uncorrelated
pairs that are elusive to TAPER’s pruning. These pairs
contain two items whose frequency values are close. But the
items in the pairs show up together in no or very few baskets.
The experiment results show that, in the tested data sets,
this type of pair is abundant. It also shows that our pruning
method is effective in removing many such pairs. In many
cases, pruning by our algorithm yields a candidate set whose
size is even smaller than the number of items.

We now consider the expand ratio ER of the candidate set
generated by both algorithms. We plot ER in Fig. 6. As in
Fig. 5, the values of the ratios are represented by the heights
of the bars. For each threshold θ, we plot the candidate set’s
ER from the two algorithms side by side. We see that our
candidate set has quite a small ER (in many cases, around
10). For the “retail” data set, for large θ values, the ER
of our candidate set is about 3. That is, the candidate set
contains a number of false-positive pairs that is only twice

the number of truly correlated pairs. This shows that our
algorithm has very strong pruning power.

4.3 Combine Two Pruning Rules
We investigate a pruning process that uses both rules.

Both our and TAPER’s pruning rules produce candidate
sets with false positives. We analyzed how a pair can escape
TAPER’s pruning. We gave an efficient pruning method to
catch these pairs. However, there are pairs that are elusive
to our rule as well. In particular, a pair’s passing our test
does not necessarily mean that it also satisfies TAPER’s
rule. It can be expected that pruning using both rules is
more effective. Note that applying the TAPER pruning rule
in our algorithm is simple. It can be done by adding a step in
our candidate-generation process. Namely, before putting a
pair into the candidate set, we check the two items against
TAPER’s rule. Only those that pass the test can be put
in the candidate set. We applied this double-rule pruning
on the “pumsb” data set. The result is plotted in Fig. 7.
For each threshold θ, we plot, side by side, the ER of the
candidate sets generated by our rule and by the combined
rules.

The result shows that the combination of the two rules
is powerful. The size of the candidate set generated by the
combined rule is of the same order as the number of truly
correlated pairs. For large θ values, the ER is less than 2.
This means that the number of false-positive pairs in the
candidate set is less than the number of truly correlated
pairs.

0.3 0.5 0.7 0.9
0

2

4

6

8

10

12

14

Theta

E
R

One Rule
Two Rules

Figure 7: ER of the Candidate Sets Generated by

Double Pruning and Our Pruning

4.4 Scalability of Our Algorithm
We used synthesized data sets listed in Table 3 to examine

the scalability of our algorithm. Fig. 8 plots the execution
time of the algorithm against the number of items in the
data set. It shows that the execution time increases linearly
with the number of items.

We also examine the scalability of the algorithm’s prun-
ing power. That is, we investigate whether the algorithm’s
effectiveness in pruning changes with the size of the data
set. In Fig. 9, we plot the expand ratio ER of the candidate
set against the number of items in the data set. We observe
that, when the threshold θ is large, the ER values stay es-
sentially the same for data sets with different numbers of
items. This means that, for these θ values, our algorithm’s
pruning power is independent of the number of items in the
data set. For small θ values, the candidate set’s ER in-

1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

20

40

60

80

100

120

140

of Items

E
xe

cu
tio

n
Ti

m
e

theta=0.3
theta=0.5
theta=0.7
theta=0.9

Figure 8: Scalability of the Algorithm

creases slightly. But the absolute value is still quite small.

1.5 2 2.5 3 3.5 4 4.5

x 10
4

1

2

3

4

5

6

of Items

E
R

theta=0.3
theta=0.5
theta=0.7
theta=0.9

Figure 9: Scalability of the Algorithm’s Pruning

Power

4.5 Tradeoff between Running Time and False-
Negative Rate

One difference between our pruning rule and TAPER’s
is that we produce false negatives, i.e., our pruning rule
may remove truly correlated pairs. Such false negatives can
be controlled in our algorithm by using multiple min-hash
values. We set parameters as shown in Table 4 to bound
the false-negative tolerance below 0.005. Our experimental
results show that the false-negative rates of our candidate
sets are indeed smaller than 0.005.

In some situations, such a small false-negative rate may
not be necessary. With a larger false-negative tolerance, we
can use fewer min-hashes. This in turn will speed up the
algorithm. Therefore, there is a tradeoff between how fast
the algorithm is and how many false negatives it produces.
To investigate this tradeoff, we fix θ and change the pa-
rameters k and t. For different sets of k and t values, we
measure the false-negative rate and the running time of our
algorithm. The false-negative rate is plotted against the run-
ning time in Fig. 10. We observe that the false-negative rate
decreases almost exponentially with the increase in running
time. Hence, we can achieve a certain false-negative rate
without increasing the running time too much.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

F
al

se
 N

eg
at

iv
e

R
at

e

Execution Time

Figure 10: Tradeoff between Running Time and

False Negative Rate

5. CONCLUSION AND FUTURE WORK
In this paper, we consider the problem of finding all pairs

of highly correlated items in a large data set. In many cases,
the number of highly correlated pairs is much smaller than
the total number of pairs. It is wasteful to compute the
coefficients of all the pairs in the process of identifying the
highly correlated ones. For massive data sets, the compu-
tational cost of the naive method is prohibitive. Xiong et
al. in [15] addressed this problem and proposed a two-step
algorithm: TAPER. During the first step, they prune many
of the unwanted pairs by simple computation. Only the co-
efficients of the remaining pairs are computed during the
second step.

We examine the pruning rule in TAPER and observe that
there is a relatively large group of uncorrelated pairs that
are elusive to TAPER’s pruning. To remove these pairs, a
rule needs to consider the support of the pair in addition to
the supports of individual items. A straightforward prun-
ing method using such a rule will require computing the
supports of all the pairs, which makes it meaningless. We
propose a pruning rule and a pruning method that avoid this
problem. Our experimental results show that our pruning
method yields a candidate set much smaller than the ones
produced by TAPER. Therefore, it achieves much larger sav-
ings of computational resources.

There are two directions for future work. First, we use
the function 1− (1− xk)t to approximate a threshold func-
tion. When the threshold is close to one, this approxima-
tion is efficient, in the sense that k and t can take reason-
ably small values. When the threshold is close to zero, we
need large k and t. If we had a more efficient approxima-
tion for small thresholds, our algorithm could be improved.
Also, there are several other quantities that measure associ-
ations/correlations. It will be interesting to see whether our
algorithm could be used for them.

6. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large databases.
In Proceedings of ACM SIGMOD International
Conference on Management of Data, 1993, pp. 207-216.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proceedings of the 20th International
Conference on Very Large Databases, 1994, pp. 487–499.

[3] R. Rayardo, R. Agrawal, and D. Gunopulos.

Constraint-based rule mining in large, dense databases.
Data Mining and Knowledge Discovery, 4(2-3):217-240,
2000.

[4] C. Bucila, J. Gehrke, D. Kifer, and W.M. White.
Dualminer: a dual-pruning algorithm for itemsets with
constraints. In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2002, pp. 241–272.

[5] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using
association rules for product assortment decisions: a case
study. In Proceedings of the 5th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 1999, pp. 254-260.

[6] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic
itemset counting and implication rules for market basket
data. In Proceedings of ACM SIGMOD International
Conference on Management of Data, 1997, pp. 255-264.

[7] E. Cohen. Size-estimation framework with applications to
transitive closure and reachability. Journal of Computer
and System Sciences, 55:441-453, 1997.

[8] N. Friedman, I. Nachman and D. Peer. Learning Bayesian
network structure from massive datasets: the Sparse
Candidate algorithm. In Proceedings of 15th Conference
on Uncertainty in Artificial Intelligence (UAI), 1999.

[9] G. Grahne, L.V. Lakshmanan, and X. Wang. Efficient
mining of constrained correlated sets. In Proceedings of
the 16th International Conference on Data Engineering,
2000, pp 512–521.

[10] P. Indyk and R. Motwani. Approximate nearest neighbor:
towards removing the curse of dimensionality. In
Proceedings of the 30th ACM Symposium on Theory of
Computing, 1998, pp. 604-613.

[11] R. Motwani, E. Cohen, M. Datar, S. Fujiware, A. Gionis,
P. Indyk, J. Ullman, and C. Yang. Finding interesting
associations without support pruning. IEEE Transactions
on Knowledge and Data Engineering (special issue),
13:64-78, 2001.

[12] Mehran Sahami. Learning limited dependence Bayesian
classifiers. In Proceedings of the 2nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 1996, pp. 335–338.

[13] C. Silverstein, S. Brin, and R. Motwani. Beyond market
baskets: generalizing association rules to dependence
rules. Data Mining and Knowledge Discovery 2(1):39-68,
1998.

[14] P. Tan, V. Kumar, and J. Srivastava. Selecting the right
interestingness measure for association patterns. In
Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2002, pp. 32–41.

[15] H. Xiong, S. Shekhar, P. Tan, and V. Kumar. Exploiting
a support-based upper bound of Pearson’s correlation
coefficient for efficiently identifying strongly correlated
pairs. In Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2004, pp 334–343.

