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Thesis Statement

“Privacy, integrity, and incentive 
compatibility, when properly formulated, 
can often be achieved in new distributed-
computing scenarios.”

― Supported by studies of efficient mix, secure storage on untrusted
servers, privacy-preserving mining of association rules, secure mobile-
agent computation, and security in ad hoc networks.

― Privacy and integrity are party of the traditional study of secure 
multiparty computation, but incentive compatibility is a relatively new 
consideration.
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Summary of Major Work: Privacy, 
Integrity, and Incentive Compatibility

Component of Thesis Work Privacy Integrity Incentive 
compatibility

Efficient Mix ([GZ+02], 
ASIACRYPT’02)

Secure Storage on Untrusted
Servers ([AFYZ04], ESORICS’04)

Privacy-Preserving Data Mining 
([Z04])

Security of Mobile Agents ([ZY03], 
DIALM-POMC’03)

Security in Mobile Ad hoc 
Networks ([ZCY03], INFOCOM’03)
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Outline of Talk

Quick Summary of Frequently Used Techniques

(5 Components of Thesis:)
Efficient Mix
Secure Storage on Untrusted Servers
Privacy-Preserving Mining for Association 
Rules
Security of Mobile Agents
Security in Mobile Ad Hoc Networks
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Summary of Frequently Used 
Techniques

Homomorphic Encryption (especially 
ElGamal Encryption ― See next slide) 
(A Variant of) Selective Disclosure 
[AIR01]
Feldman’s Verifiable Secret Sharing 
[Fel87]
Desmedt-Frankel Threshold Decryption 
[DF89]
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ElGamal Encryption
Probabilistic encryption of message m (in a 
group where discrete log is hard):

),,(),( rr gmyGMC ==

where g is a generator, r is a random exponent, and 
y=gx is the public key.

Decrypting a ciphertext “requires” knowledge 
of private key x:  

./ xGMm =
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ElGamal Encryption (Cont’d)
Without knowledge of private key, one can 
reencrypt (rerandomize) a ciphertext ― compute 
another ciphertext having the same cleartext: 

),()','( ss GgMyGM =

(M’,G’) is called an reencryption (rerandomization) 
of (M,G).
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Component 1: Efficient Mix [GZ+02]

A mix network (consisting of a group of 
mix servers) is a construction for 
anonymizing communications.
Security requirements:

Privacy: Infeasible to associate any input 
with the corresponding output.
Verifiability: Can ensure that outputs are a 
permutation of the decryptions 
/reencryptions of inputs.   
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Global Picture: ElGamal-based 
Decryption Mix

ElGamal Ciphertexts

Mix Server Rerandomize & Repermute

Mix Server
Rerandomize & Repermute

Rerandomize & RepermuteMix Server

Threshold-decryption Algorithm
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Proof of Product with Checksum

Question: How do we ensure that each server 
rerandomizes and repermutes messages 
correctly?
Answer: Let the server prove 

Product of Inputs = Product of Outputs
This is easy, because ElGamal is multiplicatively 
homomorphic.
With an additional checksum, if any messages were 
corrupted,  cheating would be detected.
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Double Encryption

Observation: If cheating is detected because 
of an invalid checksum, then detection is 
after decryption.

⇒ Problem: Privacy can be violated before 
cheating is detected.
Solution: Additional layer of encryption.

Cheating is detected after outer-layer decryption 
but still before inner-layer decryption.



12

Analysis

Efficiency: In normal cases (no cheating), our 
mix is highly efficient. It is the only mix in 
which reencryption & decryption (not proofs) 
are the major overhead.
Privacy: With proper proofs of knowledge of 
inputs, our mix net achieves privacy similar to 
standard ElGamal-based mix nets.
Public Verifiability: The operations of our mix 
net on the well-formed messages can be 
verified.  
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Component 2: Secure Storage 
with Untrusted Server [AFYZ04]

Question: Suppose you store your data on a 
remote server. How do you ensure that it is 
not corrupted by the server?
Answer: Have your data entangled with 
some VIPs’ such that 

corruption of your data ⇒ corruption of theirs.
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Previous Work: Dagster

New 
Document

⊕Encrypt

c randomly 
chosen blocks

Analysis:

Deleting a typical document 
⇒ loss of O(c) documents

Pool of blocks
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Previous Work: Tangler

(0, New 
Document)

2 randomly 
chosen blocks

Analysis:
Deleting a typical document ⇒
loss of O(logn/n) documents

Interpolate degree-2 poly F()

(x1,F(x1))
(x2,F(x2))

Pool of n blocks
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Our Model: Basic Framework
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Our Model: Classification
Classification based on recovery algorithm: 

All users use a standard-recovery algorithm provided 
by the system designer.
All users use a public-recovery algorithm provided by 
the adversary. 
Each individual uses a private-recovery algorithm
provided by the adversary.

Classification based on corrupting algorithm:
Destructive adversary that reduces the entropy of the 
data store
Arbitrary adversary
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Our Definitions

Data dependency: di depends on dj if 
with high probability

di is recovered ⇒ dj is recovered.
All-or-Nothing Integrity (AONI): Every 
document depends on every other 
document.
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Possibility of AONI in 
Standard-Recovery Model

When combining data, mark data store 
using an unforgeable Message 
Authentication Code (MAC).
Standard-recovery algorithm checks 
MAC:

If MAC is valid, recover data.
If MAC is invalid, refuse to recover data. 
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Impossibility of AONI in Public-
and Private-Recovery Models

Recovery algorithm can flip a coin to 
decide whether to recover data or not.
With high probability, not all coin flips 
will have same result.

⇒ With high probability, some data are 
recovered while others are not.

⇒ Cannot guarantee AONI.
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Possibility of AONI for 
Destructive Adversaries

When combining data, interpolate a 
polynomial using points (key, data item).
Store = polynomial.
AONI is achieved if sufficient entropy is 
removed.

Many stores are mapped to single corrupted store.
⇒ With high probability, no data item can be 

recovered.
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Component 3: Privacy-Preserving 
Mining for Association Rules [Z04]

Trans# Bread Milk Egg Apple Cereal

1001

1002

1003

1004

Association Rule: Milk ⇒ Cereal. 
{Milk, Cereal} is frequent (i.e., #{Milk, Cereal} is large).
#{Milk, Cereal}/#{Milk} is close to 1.

The key technical problem in association-rule mining 
is to find frequent itemsets.
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Privacy in Distributed Mining

Distributed Mining: 
Two (or more) miners.
Each miner holds a portion of a database.
Goal: Jointly mine the entire database. 

Privacy: Each miner learns nothing 
about others’ data, except the output.
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Vertical Partition: Weakly 
Privacy-Preserving Algorithm 

Vertical Partition ― Each miner holds a 
subset of the columns.
Algorithm provides weak privacy ― only 
support count (# of appearances of candidate 
itemset) is revealed.
Computational Overhead: Linear in # of 
transactions.

Previous solution has a quadratic overhead.
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Vertical Partition: Strongly 
Privacy-Preserving Algorithm

Algorithm provides strong privacy ― no 
information (except the output) is 
revealed.
Computational Overhead: Also linear in 
# of transactions.

Slightly more expensive than weakly 
privacy-preserving algorithm.
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Horizontal Partition

Horizontal Partition ― Each miner holds 
a subset of rows.
Computational Overhead: Still linear in 
# of transactions.
Works for two or more parties.

Previous solution only works for three or 
more parties.
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Component 4: Secure Mobile-
Agent Computation [ZY03]

Mobile Agent: a piece of software moving around 
the network, performing a specific task
Example: an agent searching for airline tickets  

agent
Internet
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Problem Formulation (Cont’d)

Originator

fun()

{… …

}

input output
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Security Requirements

Agent Originator’s Privacy: Originator’s 
private information (e.g., a buy-it-now price 
in airline-ticket-agent example), even if 
stored in the agent, is not revealed to hosts.
Host’s Privacy: Each host’s private input (e.g., 
the ask price) and output (e.g., whether to 
make a reservation) to the agent is not 
revealed to other hosts or to the originator.
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Solution Framework [ACCK01]

Garbled Agent

Input 
Translation

Output 
Translation

Private 
Input

Garbled 
Input

Private 
Output

Garbled 
Output

Arrive Leave
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Need for a Crypto Primitive

Question: How to enable each host to 
translate I/O?

Output: Easy ─ Agent supplies translation 
table to host.
Input: Tricky ─ Must guarantee that only 
one value of input is translated. Don’t want 
host to “test” the agent with many possible 
inputs. 
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Verifiable Distributed Oblivious 
Transfer (VDOT)

Introduce a group of proxy servers.
For each input bit: proxy servers hold 
garbled input for 0/1: G(0)/G(1).

Input bit = b → transfer G(b) to host.
No information about G(1-b) is revealed to host.
No information about b is revealed to proxy servers.
Proxy servers cannot cheat host with incorrect G(b).
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Analysis of VDOT Security 
Requirements

1-out-of-2 
Oblivious Transfer 
(OT)

Input bit = b →
transfer G(b) to host
No information about 
G(1-b) is revealed to 
host
No information about 
b is revealed to proxy 
servers

Proxy servers 
can’t cheat 
host with 
incorrect G(b)

Detection of Cheating
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VDOT Design

Choose a distributed variant of Bellare-
Micali OT [BM89] as basis of design.
Add detection of cheating by employing 
the special algebraic structure of keys in 
Feldman VSS [Fel87].
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Performance: 
Overhead of Garbled Circuits
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Component 5: Mobile Ad Hoc 
Network [ZCY03]

Wireless multi-hop networks are formed by mobile 
nodes, with no pre-existing infrastructure.
Nodes depend on other nodes to relay packets.
A node may have no incentive to forward others’
packets.

packet
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Sprite: System Architecture

Credit-Clearance System

Internet

Wide-area wireless network
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Big Picture: Saving Receipts

Credit-Clearance System

Internet

Wide-area wireless network

A

receipt receipt

packet

B C

D

(protected by digital signature)
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Big Picture: Getting Payment

Credit-Clearance System

receipt Internet

C

A
D

B
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We Design a Cheat-Proof 
Payment Scheme

Cheating cannot increase a player’s 
welfare.
In case of collusion, cheating cannot 
increase the sum of colluding players’
welfares.
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Evaluation: Overhead
Signing 

Alg.
Send 
(ms)

Forward 
(ms)

Header 
(bytes)

Receipt 
(bytes)

RSA 
1024

10.4 0.3 128 180

ECNR 
168

7.3 13.2 42 94

ECNR
168 w/ 

precomp

3.7 6.1 42 94
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Effects of Battery on 
Performance
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Dynamics of 
Message-Success Rate



44

Summary of Our Results on 
Mobile Ad Hoc Networks

We designed a simple scheme to 
stimulate cooperation.
Our system is provably secure against 
(colluding) cheating behaviors.
Evaluations have shown that the system 
has good performance.
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