
Privacy, Integrity, and Incentive
Compatibility in Computations with
Untrusted Parties

Sheng Zhong
Yale University

Dissertation Director: Joan Feigenbaum

Committee Members: James Aspnes,

Markus Jakobsson (RSA Labs),

Yang Richard Yang.

2

Thesis Statement

“Privacy, integrity, and incentive
compatibility, when properly formulated,
can often be achieved in new distributed-
computing scenarios.”

― Supported by studies of efficient mix, secure storage on untrusted
servers, privacy-preserving mining of association rules, secure mobile-
agent computation, and security in ad hoc networks.

― Privacy and integrity are party of the traditional study of secure
multiparty computation, but incentive compatibility is a relatively new
consideration.

3

Summary of Major Work: Privacy,
Integrity, and Incentive Compatibility

Component of Thesis Work Privacy Integrity Incentive
compatibility

Efficient Mix ([GZ+02],
ASIACRYPT’02)

Secure Storage on Untrusted
Servers ([AFYZ04], ESORICS’04)

Privacy-Preserving Data Mining
([Z04])

Security of Mobile Agents ([ZY03],
DIALM-POMC’03)

Security in Mobile Ad hoc
Networks ([ZCY03], INFOCOM’03)

4

Outline of Talk

Quick Summary of Frequently Used Techniques

(5 Components of Thesis:)
Efficient Mix
Secure Storage on Untrusted Servers
Privacy-Preserving Mining for Association
Rules
Security of Mobile Agents
Security in Mobile Ad Hoc Networks

5

Summary of Frequently Used
Techniques

Homomorphic Encryption (especially
ElGamal Encryption ― See next slide)
(A Variant of) Selective Disclosure
[AIR01]
Feldman’s Verifiable Secret Sharing
[Fel87]
Desmedt-Frankel Threshold Decryption
[DF89]

6

ElGamal Encryption
Probabilistic encryption of message m (in a
group where discrete log is hard):

),,(),(rr gmyGMC ==

where g is a generator, r is a random exponent, and
y=gx is the public key.

Decrypting a ciphertext “requires” knowledge
of private key x:

./ xGMm =

7

ElGamal Encryption (Cont’d)
Without knowledge of private key, one can
reencrypt (rerandomize) a ciphertext ― compute
another ciphertext having the same cleartext:

),()','(ss GgMyGM =

(M’,G’) is called an reencryption (rerandomization)
of (M,G).

8

Component 1: Efficient Mix [GZ+02]

A mix network (consisting of a group of
mix servers) is a construction for
anonymizing communications.
Security requirements:

Privacy: Infeasible to associate any input
with the corresponding output.
Verifiability: Can ensure that outputs are a
permutation of the decryptions
/reencryptions of inputs.

9

Global Picture: ElGamal-based
Decryption Mix

ElGamal Ciphertexts

Mix Server Rerandomize & Repermute

Mix Server
Rerandomize & Repermute

Rerandomize & RepermuteMix Server

Threshold-decryption Algorithm

10

Proof of Product with Checksum

Question: How do we ensure that each server
rerandomizes and repermutes messages
correctly?
Answer: Let the server prove

Product of Inputs = Product of Outputs
This is easy, because ElGamal is multiplicatively
homomorphic.
With an additional checksum, if any messages were
corrupted, cheating would be detected.

11

Double Encryption

Observation: If cheating is detected because
of an invalid checksum, then detection is
after decryption.

⇒ Problem: Privacy can be violated before
cheating is detected.
Solution: Additional layer of encryption.

Cheating is detected after outer-layer decryption
but still before inner-layer decryption.

12

Analysis

Efficiency: In normal cases (no cheating), our
mix is highly efficient. It is the only mix in
which reencryption & decryption (not proofs)
are the major overhead.
Privacy: With proper proofs of knowledge of
inputs, our mix net achieves privacy similar to
standard ElGamal-based mix nets.
Public Verifiability: The operations of our mix
net on the well-formed messages can be
verified.

13

Component 2: Secure Storage
with Untrusted Server [AFYZ04]

Question: Suppose you store your data on a
remote server. How do you ensure that it is
not corrupted by the server?
Answer: Have your data entangled with
some VIPs’ such that

corruption of your data ⇒ corruption of theirs.

14

Previous Work: Dagster

New
Document

⊕Encrypt

c randomly
chosen blocks

Analysis:

Deleting a typical document
⇒ loss of O(c) documents

Pool of blocks

15

Previous Work: Tangler

(0, New
Document)

2 randomly
chosen blocks

Analysis:
Deleting a typical document ⇒
loss of O(logn/n) documents

Interpolate degree-2 poly F()

(x1,F(x1))
(x2,F(x2))

Pool of n blocks

16

Our Model: Basic Framework

17

Our Model: Classification
Classification based on recovery algorithm:

All users use a standard-recovery algorithm provided
by the system designer.
All users use a public-recovery algorithm provided by
the adversary.
Each individual uses a private-recovery algorithm
provided by the adversary.

Classification based on corrupting algorithm:
Destructive adversary that reduces the entropy of the
data store
Arbitrary adversary

18

Our Definitions

Data dependency: di depends on dj if
with high probability

di is recovered ⇒ dj is recovered.
All-or-Nothing Integrity (AONI): Every
document depends on every other
document.

19

Possibility of AONI in
Standard-Recovery Model

When combining data, mark data store
using an unforgeable Message
Authentication Code (MAC).
Standard-recovery algorithm checks
MAC:

If MAC is valid, recover data.
If MAC is invalid, refuse to recover data.

20

Impossibility of AONI in Public-
and Private-Recovery Models

Recovery algorithm can flip a coin to
decide whether to recover data or not.
With high probability, not all coin flips
will have same result.

⇒ With high probability, some data are
recovered while others are not.

⇒ Cannot guarantee AONI.

21

Possibility of AONI for
Destructive Adversaries

When combining data, interpolate a
polynomial using points (key, data item).
Store = polynomial.
AONI is achieved if sufficient entropy is
removed.

Many stores are mapped to single corrupted store.
⇒ With high probability, no data item can be

recovered.

22

Component 3: Privacy-Preserving
Mining for Association Rules [Z04]

Trans# Bread Milk Egg Apple Cereal

1001

1002

1003

1004

Association Rule: Milk ⇒ Cereal.
{Milk, Cereal} is frequent (i.e., #{Milk, Cereal} is large).
#{Milk, Cereal}/#{Milk} is close to 1.

The key technical problem in association-rule mining
is to find frequent itemsets.

23

Privacy in Distributed Mining

Distributed Mining:
Two (or more) miners.
Each miner holds a portion of a database.
Goal: Jointly mine the entire database.

Privacy: Each miner learns nothing
about others’ data, except the output.

24

Vertical Partition: Weakly
Privacy-Preserving Algorithm

Vertical Partition ― Each miner holds a
subset of the columns.
Algorithm provides weak privacy ― only
support count (# of appearances of candidate
itemset) is revealed.
Computational Overhead: Linear in # of
transactions.

Previous solution has a quadratic overhead.

25

Vertical Partition: Strongly
Privacy-Preserving Algorithm

Algorithm provides strong privacy ― no
information (except the output) is
revealed.
Computational Overhead: Also linear in
of transactions.

Slightly more expensive than weakly
privacy-preserving algorithm.

26

Horizontal Partition

Horizontal Partition ― Each miner holds
a subset of rows.
Computational Overhead: Still linear in
of transactions.
Works for two or more parties.

Previous solution only works for three or
more parties.

27

Component 4: Secure Mobile-
Agent Computation [ZY03]

Mobile Agent: a piece of software moving around
the network, performing a specific task
Example: an agent searching for airline tickets

agent
Internet

28

Problem Formulation (Cont’d)

Originator

fun()

{… …

}

input output

29

Security Requirements

Agent Originator’s Privacy: Originator’s
private information (e.g., a buy-it-now price
in airline-ticket-agent example), even if
stored in the agent, is not revealed to hosts.
Host’s Privacy: Each host’s private input (e.g.,
the ask price) and output (e.g., whether to
make a reservation) to the agent is not
revealed to other hosts or to the originator.

30

Solution Framework [ACCK01]

Garbled Agent

Input
Translation

Output
Translation

Private
Input

Garbled
Input

Private
Output

Garbled
Output

Arrive Leave

31

Need for a Crypto Primitive

Question: How to enable each host to
translate I/O?

Output: Easy ─ Agent supplies translation
table to host.
Input: Tricky ─ Must guarantee that only
one value of input is translated. Don’t want
host to “test” the agent with many possible
inputs.

32

Verifiable Distributed Oblivious
Transfer (VDOT)

Introduce a group of proxy servers.
For each input bit: proxy servers hold
garbled input for 0/1: G(0)/G(1).

Input bit = b → transfer G(b) to host.
No information about G(1-b) is revealed to host.
No information about b is revealed to proxy servers.
Proxy servers cannot cheat host with incorrect G(b).

33

Analysis of VDOT Security
Requirements

1-out-of-2
Oblivious Transfer
(OT)

Input bit = b →
transfer G(b) to host
No information about
G(1-b) is revealed to
host
No information about
b is revealed to proxy
servers

Proxy servers
can’t cheat
host with
incorrect G(b)

Detection of Cheating

34

VDOT Design

Choose a distributed variant of Bellare-
Micali OT [BM89] as basis of design.
Add detection of cheating by employing
the special algebraic structure of keys in
Feldman VSS [Fel87].

35

Performance:
Overhead of Garbled Circuits

36

Component 5: Mobile Ad Hoc
Network [ZCY03]

Wireless multi-hop networks are formed by mobile
nodes, with no pre-existing infrastructure.
Nodes depend on other nodes to relay packets.
A node may have no incentive to forward others’
packets.

packet

37

Sprite: System Architecture

Credit-Clearance System

Internet

Wide-area wireless network

38

Big Picture: Saving Receipts

Credit-Clearance System

Internet

Wide-area wireless network

A

receipt receipt

packet

B C

D

(protected by digital signature)

39

Big Picture: Getting Payment

Credit-Clearance System

receipt Internet

C

A
D

B

40

We Design a Cheat-Proof
Payment Scheme

Cheating cannot increase a player’s
welfare.
In case of collusion, cheating cannot
increase the sum of colluding players’
welfares.

41

Evaluation: Overhead
Signing

Alg.
Send
(ms)

Forward
(ms)

Header
(bytes)

Receipt
(bytes)

RSA
1024

10.4 0.3 128 180

ECNR
168

7.3 13.2 42 94

ECNR
168 w/

precomp

3.7 6.1 42 94

42

Effects of Battery on
Performance

43

Dynamics of
Message-Success Rate

44

Summary of Our Results on
Mobile Ad Hoc Networks

We designed a simple scheme to
stimulate cooperation.
Our system is provably secure against
(colluding) cheating behaviors.
Evaluations have shown that the system
has good performance.

THANK YOU

