
Systematizing Secure Computation for Research
and Decision Support

Jason Perry1, Debayan Gupta2, Joan Feigenbaum2

and Rebecca N. Wright1

1 Rutgers University, NJ, USA. {jason.perry|rebecca.wright}@rutgers.edu
2 Yale University, CT, USA. {debayan.gupta|joan.feigenbaum}@yale.edu

Abstract. We propose a framework for organizing and classifying re-
search results in the active field of secure multiparty computation (MPC).
Our systematization of secure computation consists of (1) a set of defi-
nitions circumscribing the MPC protocols to be considered; (2) a set of
quantitative axes for classifying and comparing MPC protocols; and (3)
a knowledge base of propositions specifying the known relations between
axis values. We have classified a large number of MPC protocols on these
axes and developed an interactive tool for exploring the problem space of
secure computation. We also give examples of how this systematization
can be put to use to foster new research and the adoption of MPC for
real-world problems.

1 Introduction

For more than 30 years, since the groundbreaking work of Yao [30,31] and Gol-
dreich et al. [18], hundreds of research papers on Secure Multiparty Computation
(MPC) have appeared, many of them proposing original protocols for carrying
out general secure computation under varying sets of assumptions. In this paper,
we systematically organize the main research results in this area, in order to:

– Help potential users of MPC learn which existing protocols and implementa-
tions best match the sensitive-data computations they would like to perform.
This may stimulate adoption of MPC in areas where it would be beneficial.

– Help new researchers get up to speed in a complex area by providing an
overview of the “lay of the land.”

– Help MPC researchers explore the problem space and discover remaining
openings for protocols with new combinations of requirements and security
features—or for new impossibility results that preclude the existence of such
protocols.

Most research papers in MPC include comparisons of their results to related
work, often with tables related to the most significant protocol features, in or-
der to provide context for understanding the paper’s contributions. However,
none has attempted to organize the larger problem space in order to meet the
goals listed above. There are a handful of introductory surveys and textbook-like



treatments of MPC [17,11,23,12]; these have (justifiably) focused on a narrower
region of the problem space or specific security model, in order to present the
material in a pedagogically clean way. In contrast, we do not limit ourselves to
one model or set of definitions but instead provide a framework for examining
their variations.

Our work shares some common goals with research meant to foster the real-
world adoption of secure MPC. Such papers include the MPC-in-the-field exper-
iments of Feigenbaum et al. and Bogetoft et al. [15,8] and the end-user survey
work of Kamm et al. [7].

Since an effort such as this can never comprehensively account for every piece
of research in a sprawling and active field, the framework has been deliberately
designed to be extensible; it can accommodate new results and refined definitions
without breaking.

In Section 2, we present the three major components that we believe are
needed to systematize the main body of MPC results: (1) a set of definitions de-
lineating the boundaries of the problem space; (2) a set of quantitative features
for describing protocols; and (3) a knowledge base of propositions specifying the
known relationships and dependencies among features. In Section 3, we describe
the construction of a systematization database of more than 60 significant MPC
protocols, and in Section 4 we present a user interface designed to aid the ex-
ploration of the database of systematized MPC protocols and show how our
systematization can be put to work to facilitate new research.

2 The Systematization

As a necessary prerequisite for this work, we have carried out an extensive liter-
ature survey producing an annotated bibliography of MPC research. It contains
over 180 papers from the MPC literature, as well as a sampling of important
papers for related problems, including secret sharing and oblivious transfer.

In addition to a written paragraph annotating each paper, the BibTeX source
of our Annotated Bibliography includes tags for each paper indicating which
aspects of MPC it treats, e.g., 2party for a paper with a specifically two-party
protocol, or uncond for a protocol with unconditional security. These tags make it
possible to write scripts to automatically generate a bibliography for any specific
sub-problem or aspect of MPC.

The bibliography continues to be updated on an ongoing basis. The most
recent version is available online [27].

2.1 Definitions

In this section, we provide definitions to delimit the scope of the secure com-
putation protocols that we are concerned with. These definitions are purposely
quite broad, so that a large range of work can potentially be captured by them.

Variables that determine the fundamental nature of an MPC protocol in-
clude: (1) whether the protocol is for a fixed number of parties (most commonly,



two) or is for any number n ≥ 2 of parties, (2) whether the protocol is for
computing one specific functionality (e.g., set intersection) or any of a class of
functionalities, and (3) whether the protocol treats exact computation only or
secure computation of approximations, which is a generalization of exact MPC
[14]. Our initial literature survey encompassed all of these, although not ex-
haustively. For the current systematization, we consider only protocols for exact
computation, and thus we have four definitions, one for each setting of the two
variables.

Since the way that security is defined varies from protocol to protocol, and
indeed a primary purpose of our systematization is to examine such variations,
our definitions necessarily cannot give any fixed definition of security. What mat-
ters is that, in the literature, protocols are proven to meet rigorous definitions
of security and that our systematization indicates which definitions are actually
in use for a given protocol. Therefore, for an MPC protocol to be considered as
a candidate for systematization, in addition to fitting into one the definitions
listed below, it must be accompanied by rigorous definitions of security, includ-
ing privacy of inputs and correctness of outputs, that the protocol has been
proven to meet. The nature of these security definitions is elaborated in the next
subsection.

Definition 1. A protocol for Secure n-party Computation of a functionality f
is a specification of an interactive process by which a fixed number n of players,
each holding a private input xi, can compute a specific, possibly randomized,
functionality of those inputs f(x1, ..., xn) = (y1, ..., yn).

Definition 2. A protocol for Secure Multiparty Computation of a functionality
f is a specification of an interactive process by which any number n ≥ 2 of play-
ers, each holding a private input xi, can compute a specific, possibly randomized,
functionality of those inputs f(x1, ..., xn) = (y1, ..., yn).

Definition 3. A protocol for Secure n-party Computation of a class C of func-
tionalities allows a fixed number n of players, each holding a private input xi,
to compute an agreed-upon, possibly randomized, functionality of those inputs
f(x1, ..., xn) = (y1, ..., yn), where f is any member of the class C of functionali-
ties.

Definition 4. A protocol for Secure Multiparty Computation of a class C of
functionalities allows any number n ≥ 2 of players, each holding a private input
xi, to compute an agreed-upon, possibly randomized, functionality of those inputs
f(x1, ..., xn) = (y1, ..., yn), where f is any member of the class C of functionali-
ties.

The class C is typically used to refer to the model of computation in which
a protocol’s functionalities are represented, such as circuits or RAM programs.
A majority of the work in MPC has been concerned with universal (Turing-
complete) computation, but there has been work exploring secure computation
specifically for restricted computation classes, such as AC0 or NC1 circuits or
regular or context-free languages.



All of the protocols we surveyed for the systematization fall under one of
these definitions, with the majority coming under the most general definition
(Definition 4). Yao-like two-party computation protocols fall under Definition 3.

2.2 Linear axis representation of MPC protocol features

The main conceptual object in our systematization is a set of linear axes, where
each axis represents an ordering of values of a single feature of MPC protocols.
Every axis has at least two labeled values, at the endpoints. Some axes are
continuous and others discrete. MPC protocols can be scored on these axes,
allowing them to be compared quantitatively. This is the first attempt we are
aware of to factor research results in MPC into such a representation. The axes
were selected based on our literature survey, using two guiding principles:

1. The axes should be as orthogonal as possible, minimizing overlap (although
some logical dependencies between axes are unavoidable.)

2. The set of axes should be complete in the sense that they can express all dis-
tinctions of security and (asymptotic) efficiency between any two protocols.

For any discrete axis that is not inherently binary, the number of occupied
intermediate values on the axis is subject to change. The diagrams below show
intermediate values that are known to have been achieved by MPC protocols.
However, this should not be seen as finally determining the number of points on
the axis. Indeed, one of the objectives of the axis representation is to highlight
the possibility of future protocols with new intermediate values. This has already
happened for several axes over the history of MPC research. For example, the
appearance of protocols tailored for covert adversaries, such as those of Aumann
et al. and Goyal et al. [1,22], showed that there are intermediate values along
the “Maliciousness” axis (Axis 7), whereas previously only the passive/malicious
distinction had been considered.

We orient all the axes in the same direction, such that moving from left to
right on a given axis indicates an improved protocol—e.g., one that is more effi-
cient, has a stronger security guarantee, or requires a weaker setup or computational-
hardness assumption. In drawing the non-numeric axes, the points have been
placed with equal spacing; the relative distances between points on these axes
should not be considered significant.

Our axes do not include the model of computation in which a protocol is ex-
pressed. This is a categorical feature which is indicated by the definition (Section
2.1) under which the protocol falls. The model of computation for each protocol
is included in its entry in our MPC protocol database, described in Section 3.
We have not generated axes for proof techniques, because a proof technique is
not a function of the protocol; a protocol’s security may be proven in a number
of ways.

We now proceed to describe the axes and values in detail. The axes are
informally grouped into four categories, which serves to highlight the tradeoffs
inherent in achieving secure multiparty computation. The axes in categories I



and II, Environmental features and Assumptions, can be thought of as what one
“pays” to enable secure MPC, and categories III (Security) and IV (Efficiency)
can be seen as what one is “buying.” A similar tradeoff structure can also be seen
on a smaller scale among axes within the efficiency category. When it is helpful,
our description of an axis also cites particular MPC solutions that instantiate
points on the axis.

I. Environmental Features Axes
This is the category of features assumed to be provided by the execution
environment. The right endpoint of these axes indicates that the feature is
not required in any form.

1. Trusted setup

Common
Reference String PKI

No trusted
setup

Protocols achieving the highest composable security levels require some
type of trusted data to be shared by all the parties prior to the protocol
execution. The middle point, PKI, is occupied by protocols such as that
of Barak et al. [2], who showed how to use public-key-like assumptions
instead of a polynomial-length common reference string in any case where
computational security suffices.

2. Broadcast

Broadcast channel No broadcast

The broadcast-channel assumption means that each party has the abil-
ity to send a message to all other parties simultaneously, and that all
parties receiving the broadcast have assurance that the same message
was received by all parties.

3. Private channels

Private channels No private channels

The private channel assumption is only significant for unconditionally se-
cure protocols, because cryptography using basic computational-hardness
assumptions can be used to emulate private and authenticated commu-
nication channels.

4. Synchronization

Synchronous
communication Limited Synchronization

Asynchronous
model

A basic assumption of the early MPC protocols is that they operate on
a synchronous network, in which all sent messages arrive on time and
in order. The asynchronous case was first considered in Ben-Or et al.
[4], where messages may be arbitrarily delayed and arrive in any order.
Note that, in such a case, it is impossible to know whether a corrupted
party has failed to send a message or, rather, the message is simply
delayed. Later works, such as that of Damg̊ard et al. [13], have staked



out intermediate points on this axis by giving protocols that require a
smaller number of synchronization points (typically a single one).

II. Assumption Axes

5. Assumption level

Enhanced TDP/LWE/other

Trapdoor Permutations

One-way Functions

None

A total (linear) ordering for cryptographic assumptions is not known,
and the separation of assumptions cannot currently be unconditionally
proven. We therefore use broader categories of assumption type, because
these are usually sufficient to distinguish protocols. If a protocol makes
no such assumptions, it is said to have unconditional security (see Axis
10). Some work specifies protocols in a hybrid model, with no concrete
computational assumptions, but in which some high-level cryptographic
operation (such as oblivious transfer) is assumed to exist as a black box.
See Section 3 for a discussion of how such protocols are treated in this
systematization.

6. Specific or general assumption

Specific Assumption General Assumption Class

Some more efficient protocols have been designed by making use of spe-
cific number-theoretic assumptions. This axis indicates whether the pro-
tocol requires such assumptions or whether it is stated so as to use any
assumption from a given class, e.g., trapdoor permutations.

III. Security Axes
7. Adversary maliciousness

Passive (HBC)

Fail-stop

Covert

Malicious

A passive, or honest-but-curious, adversary is one that follows the pro-
tocol but may use the data of corrupted parties to attempt to break the
protocol’s privacy. A fail-stop adversary follows the protocol except for
the possibility of aborting. A malicious adversary is one whose behavior
is arbitrary, and a covert adversary is like a malicious one, except that it
only deviates from the protocol if the probability of being caught is low.
Not present on the axis is the value “rational,” since the class of rational
adversaries is in fact a generalization that can encompass the entire
axis, except for fully malicious, because malicious behavior can be truly
arbitrary. The position of a rational adversary on the axis is determined
by its utility function.

8. Adversary mobility

Static

Adaptive

Mobile



A static adversary must choose which parties to corrupt before the pro-
tocol begins. An adaptive adversary can choose which parties to corrupt,
up to the security threshold (see Axis 9), over the course of the computa-
tion, after observing the state of previously corrupted parties. A mobile
adversary is able to move corruptions from one party to another in the
course of the computation.

9. Number of corrupted parties tolerated

none < n/4

< n/3

< n/2

< n

This is the maximum number of corrupted parties for which the (strongest)
security guarantees of the protocol hold. The values shown are chosen
merely to be representative of the most well known protocols; any value
along the axis is possible.
Some protocols tolerate additional corrupted parties at a lower level of
maliciousness; see axes 13 and 14.

10. Security type

Computational

Statistical

Perfect

Both statistical and perfect security are unconditional, that is, not based
on computational hardness assumptions. Note that true unconditional
security typically cannot be achieved through the internet, even if an
unconditionally-secure protocol is used, since all unconditionally secure
protocols require the assumption of either private or broadcast channels,
which on the internet must be emulated by cryptography.

11. Fairness guarantee

No agreement

No fairness

Partial Fairness

Complete Fairness

Guaranteed output

A protocol is fair if all honest parties receive the output if any party
does. Agreement means that either all honest parties receive the output
or none of them do. Protocols without agreement were introduced by
Goldwasser et al. [20]. Some authors use the term “with abort” to refer
to the no-fairness situation, in which dishonest parties can abort after
receiving the correct output.

12. Composability

Stand-alone

Parallel composable

Concurrent composable

Universally composable

The composability guarantees of a protocol indicate whether that proto-
col remains secure when executed in an environment where other proto-
cols may be executed sequentially or in parallel. The strongest guarantee,
universal composability (UC), implies that the security properties of a
protocol hold regardless of the environment in which it is executed.



13. Bound for additional passively corrupted parties tolerated

none

< n/3

< n/2

< 2n/3

< n

This axis applies to protocols achieving “mixed adversary” security. A
protocol that tolerates a certain proportion of maliciously/covertly cor-
rupted parties may also tolerate an additional number of passively cor-
rupted parties, up to a certain threshold. The values on this axis rep-
resent that upper threshold. This and the following axis relate to MPC
protocols with “graceful degradation”, which is surveyed in Hirt et al.
[24].

14. Corrupted parties tolerated with weakened security

none

< n/3

< n/2

< 2n/3

n− 1

This axis applies to protocols with “hybrid security” results. A protocol
that tolerates a certain proportion of corrupted parties (Axis 9) may in
fact tolerate a larger number of corruptions, but with a weaker security
type, e.g., computational vs. unconditional security.

15. Leakage Security

Not leakage-secure

Input leakage-secure

State leakage-secure

Leakage security is an additional guarantee that an adversary cannot
gain an advantage even if it can force all honest players to “leak” some
bits of information about their state in the course of the computation.
See definitions in Bitansky et al. [6].

16. Auditability

Not auditable Auditable

This axis indicates whether the protocol includes computations that al-
low for examining the transcript of computation after it is finished, to
prove that the parties have correctly followed the protocol. This may be
the most recent axis to come into existence, starting with the work of
Baum et al. [3]

IV. Efficiency Axes
Our efficiency axes are concerned primarily with the asymptotic efficiency
of the protocol in question.

17. Online computational overhead

Superlinear Computation Linear

Historically, the main efficiency concern in MPC has been with commu-
nication rather than computational complexity; thus the lack of elabo-
ration of this axis. More recently, Ishai et al. have notably shown how to



achieve MPC with constant computational overhead [25], and the RAM-
model results of Gordon et. al [21] have shown the possibility, in the
RAM model, of MPC with amortized computation that is sublinear in
the input size.

18. Online communication complexity (rounds)

polynomial rounds

logarithmic (O(d)) rounds

O(1) rounds

3 rounds

2 rounds

Here, d is the depth of the circuit representing the functionality. Mini-
mizing the number of rounds of computation, independently of the total
amount of bytes communicated, is crucial for efficiency in a high-latency
or asynchronous network environment. Fully general MPC was shown to
require at least three rounds in Gennaro et al. [16], although for some
functionalities a 2-round protocol is possible.

19. Online communication complexity (per-gate)

Ω(n3)

O(n2)

O(n)

This is the most significant measure of efficiency for MPC protocols. It
can represent either bits or field elements of communication. The orig-
inal BGW protocol has a communication complexity of O(n6) bits per
multiplication gate in the worst case. Anything cubic or worse occupies
the lowest position on our axis, as finer distinctions at that level would
have little value for distinguishing current, more practical protocols.

20. Preprocessing Communication complexity

Ω(n2)

Linear

Sublinear

No preprocessing

Many recent protocols achieve improved online communication efficiency
by means of a preprocessing phase. In the case where the functionality is
represented as an arithmetic circuit, the preprocessing phase is typically
a simulation of a trusted dealer that distributes multiplication triples,
which allow local evaluation of multiplication gates in the online phase.
Sublinear preprocessing typically indicates that the preprocessing con-
sists only of exchange of public keys, which is also indicated as a setup
assumption (Axis 1).

21. Preprocessing Dependency

Input-dependent

Function-dependent

Independent or
no preprocessing

In some protocols, the preprocessing phase depends on the specific func-
tionality to be computed, while in others it only depends on the upper
bound of the size of the circuit. In all cases, the preprocessing is inde-
pendent of the parties’ inputs.



22. Preprocessing Reuse

Not Reusable Reusable

This indicates whether the information computed in the preprocessing
stage, of whatever type or amount, can be reused for multiple computa-
tions. Data of the nature of a public key typically can be reused, while
e.g., garbled circuits traditionally cannot be reused without breaking
security. But see recent work of Goldwasser et al. [19].

As mentioned above, we have endeavored to make this selection of axes as
complete as possible. The value of completeness in a systematization can be
illustrated as follows: Suppose there are two MPC protocols whose scores along
the axes are identical for every axis except one. If the set of axes is complete,
then we can be confident that the protocol with the higher value on that axis is
strictly better.

2.3 Dependencies Between Axes

Since many MPC protocols involve essential tradeoffs in order to achieve security
or efficiency, a systematization of secure computation also needs to model what
is known about how features of protocols interact. In this section, we present the
second major aspect of our systematization: a list of each of the theorems known
to imply constraints among the axes’ values, each accompanied by a statement of
the constraint. References are given to the paper in which the theorem implying
the constraint was proven.

Theorem 1 ([5]). If statistical or perfect security is obtained, then either a
broadcast channel or private channels must be assumed. Axis constraint: If
Axis 10’s value is to the right of “Computational,” then either Axis 3’s value is
“Private channel” or Axis 2’s value is “Broadcast channel”.

Theorem 2 ([29]). No protocol with security against malicious adversaries can
tolerate more than n/2 corrupted parties without losing the complete fairness
property. Axis constraint: If Axis 7’s value is “Malicious” and Axis 9’s value
is to the right of n/2, then Axis 11’s value must be to the left of “Complete
fairness”.

Theorem 3 ([10]). No protocol unconditionally secure against malicious adver-
saries can guarantee output delivery with n/3 or more corrupted parties. Axis
constraint: If Axis 7’s value is “Malicious,” Axis 10’s value is to the right of
“Computational,” and Axis 9’s value is to the right of “n/3,” then Axis 11’s
value must be to the left of “Guaranteed output”.

Theorem 4 ([5]). No protocol can have perfect security against more than n/3
maliciously corrupted adversaries. Axis constraint: If Axis 7’s value is “Mali-
cious” and Axis 9’s value is to the right of n/3, then Axis 10’s value must be to
the left of “Perfect”.



Theorem 5 ([16]). Any general MPC protocol with complete fairness against a
malicious adversary must have at least three rounds. Axis constraint: If Axis
7’s value is “Malicious” and Axis 11’s value is at or to the right of “complete
fairness”, then Axis 18’s value must be to the left of “2 rounds”.

Theorem 6 ([5]). For unconditional security against t maliciously corrupted
players, n/3 ≤ t < n/2, a broadcast channel is required. Axis constraint: If
Axis 10’s value is to the right of “Computational” and Axis 7’s value is “Ma-
licious” and Axis 9’s value is to the right of n/3, then Axis 2’s value must be
“Broadcast channel”.

Theorem 7 ([18]). For (even cryptographic) security against ≥ n/3 maliciously
corrupted players, either a trusted key setup or a broadcast channel is required.
Axis constraint: If axis 7’s value is “Malicious” and Axis 9’s value is to the
right of n/3, then either Axis 2’s value must be “Broadcast channel,” or else
Axis 1’s value is to the left of “No trusted setup.”

Theorem 8 ([5]). There can be no unconditionally secure protocol against an
adversary controlling a majority of parties. Axis constraint: Axis 10’s value
can be to the right of “Computational” only if Axis 9’s value is at or to the left
of n/2.

Theorem 9 ([9]). There is no protocol with UC security against a dishonest
majority without setup assumptions. Axis constraint: If Axis 9’s value is to
the right of n/2 and Axis 12’s value is “Universally composable,” then axis 1’s
value must be to the left of “No trusted setup”.

Theorem 10 ([4]). In an asynchronous environment, there is no protocol with
guaranteed output secure against a fail-stop adversary corrupting n/3 or more
parties. Axis constraint: If Axis 4’s value is “Asynchronous,” Axis 7’s value is
at or to the right of “Fail-stop,” and Axis 11’s value is at “Guaranteed output,”
then Axis 9’s value must be at or to the left of n/3.

Theorem 11 ([4]). In an asynchronous environment, there is no protocol with
guaranteed output secure against a malicious adversary corrupting n/4 or more
parties. Axis constraint: If Axis 4’s value is “Asynchronous,” Axis 7’s value is
“Malicious,” and Axis 11’s value is at “Guaranteed output,” then Axis 9’s value
must be at or to the left of n/4.

One validation of our choice of axes is that these theorems are directly and
compactly expressible in terms of them, thus giving a unified representation
of the central body of knowledge of MPC. The axis constraints can easily be
represented in a programming or knowledge representation language, as Section
4 shows.

3 An Extensible Protocol Database

We scored more than 60 of the most significant protocols in secure multiparty
computation on our axes, integrating information from our annotated bibliogra-
phy, resulting in an extensible MPC protocol database.



Many papers in the area include multiple protocols. We give each protocol a
separate entry in the database, which is labeled by adding a suffix to the usual
“alpha”-style reference. For instance, “[GMW87]-mal” refers to the protocol of
[18] that is secure against a malicious adversary. The database also indicates
whether an implementation of the protocol is known to exist.

The work of constructing the database motivated many revisions of our set
of axes and highlighted difficulties in systematizing MPC results, some of which
we discuss here.

Efficiency. As mentioned in the axis descriptions, our efficiency axes are
concerned primarily with asymptotic efficiency measurements. When we popu-
lated our database, we relied on evaluations in the literature, frequently from
the paper actually introducing the protocol.

The model of computation in which a protocol’s functionalities are expressed
can have a large impact on concrete efficiency. Historically, MPC functionali-
ties have been expressed as circuits. The original Yao model considers Boolean
circuits, while most of the current state-of-the-art MPC protocols are in the
arithmetic-circuit model. Implementing these requires performing field arith-
metic, and, although the size of the field elements is a constant in the security
parameter, the time taken to perform field operations can have a significant im-
pact on efficiency. Although this difference in concrete efficiency is not captured
by the axes, our protocol database notes the model of computation for each
protocol.

Even in the asymptotic case, comparing the efficiency of MPC protocols is
an extremely difficult problem because of multiple interacting aspects of effi-
ciency present in MPC. In selecting an actual implementation, a concrete anal-
ysis and/or empirical efficiency measurements should also be consulted.

Substitutability. One factor that makes it nontrivial to enumerate a list
of MPC protocols is that many protocols described in the literature make use
of subprotocols for cryptographic operations in a black-box fashion, making it
possible to substitute different protocols implementing that operation. This can
alter not only the performance characteristics but also the computational and
environmental assumptions and security and composability guarantees of the
resultant protocol. In some cases, a new and improved subprotocol can trivially
be used to improve an older MPC protocol, but no published work explicitly
presents the improvement; in other cases a protocol explicitly allows for black-
box substitution of subprotocols, in which case it is said to be stated in a hybrid
model. In the case of the OT-hybrid model, in which oblivious transfer is a black
box, recent work in OT extension has produced significant performance gains.

An extreme case of this “substitutability” factor is the IPS compiler of Ishai
et al. [26], which is not only in the OT-hybrid model but also allows any of a wide
of of honest-majority MPC protocols to be plugged in as an “outer protocol,”
with the resulting protocol inheriting some (but not all) of the security properties
of the outer protocol.

To address this complex issue, we have limited our systematization to rep-
resent only concrete instantiations of hybrid protocols. The axes are such that



a protocol in a hybrid model must first be “instantiated” with concrete sub-
protocols in order to be scored. In our database, we have sought to enumerate as
many such concrete protocols as possible that are based on well-known hybrid-
model protocols.

Two-party secure computation. Although much research has been done
specifically addressing two-party secure computation, starting from Yao’s orig-
inal garbled circuits idea, it can be considered as a special case of multiparty
computation, in which, if security against a malicious adversary is sought, no
honest majority can be assumed (Axis 9 at n − 1). Thus, two-party protocols
can at least theoretically be compared with multiparty results in this category.

In reality, however, vast improvements in efficiency have been made for the
two-party case. We note that these optimizations often come at the expense of
symmetry : The security guarantee against cheating by one of the two parties
may be weaker than for the other. For instance, one of the two parties may be
able to cheat with an inverse-polynomial probability, while the other may only
be able to cheat with negligible probability. Asymmetry is not included in our
axis definitions, and so two-party protocols are scored by the weaker of the two
sets of security guarantees. Of course, the database indicates which protocols
and implementations are strictly for two parties.

4 Putting the Systematization to Work

As mentioned in Section 1, the main theorems of secure multiparty computation
demonstrate essential tradeoffs involved in securely computing a functionality
among distrustful parties. To leverage the information that our systematization
captures about these tradeoffs and gain insight into the problem space, we ex-
perimented with visually plotting the protocol axis scores of the MPC database.
However, we found that the highly categorical nature of the data makes it diffi-
cult to gain insight from a static visualization. In this section, we describe an an
interactive tool we have developed for interacting with the systematization and
MPC protocol database, which provides a better way of coming to grips with
the multi-dimensional landscape of MPC protocols.

4.1 A prototype decision-making support tool

We have developed a prototype GUI tool, SysSC-UI, which reads in a protocol
database of axis values and enables the user to adjust a set of sliders and check-
boxes corresponding to our axes of systematization. For the tool’s interface, the
axes are oriented vertically rather than horizontally as in this paper, so a higher
position of a slider corresponds to a stronger result. A dynamically updated re-
sults window displays the protocols from the database that match the specified
axis values. See the screenshot in Figure 1. The source code for the desktop
version is available online https://code.google.com/p/syssc-ui/, as well as
a beta web-based version http://work.debayangupta.com/ssc/.

https://code.google.com/p/syssc-ui/
http://work.debayangupta.com/ssc/


Fig. 1. Screenshot of the SysSC-UI tool for interacting with the protocol database.

For a given setting of the sliders and checkboxes, the results window shows
all papers whose axis values are at the same level or higher than the settings.
Thus, the tool presents all protocols that are at least as good as the specified
settings. When the tool is started, the sliders and checkboxes are all set to the
least constraining position, such that every protocol in the database is displayed
in the results window. There is also a button to reset the tool to this state. An-
other button sets the sliders to the exact values of the protocol in the currently
highlighted protocol, allowing the precise achievements of a protocol to be ex-
amined. This has the side effect of changing the output to the results window,
so that only protocols that are at least as good as the selected one are displayed.

Double-clicking on a reference in the results window will display a pop-up
window giving the authors’ full names and the description of the paper containing
the protocol from the annotated bibliography. The GUI also indicates when the
positioning of the sliders is such that a secure computation protocol is known to
be impossible, by means of an encoding of the theorems in Section 2.3.

The axes and values displayed by SysSC-UI are a subset of those in the full
systematization. This was done in order to simplify the interaction and avoid
confusion from the visual display of too much information at once. For example,
for the composability axis, there is only a single checkbox, to indicate whether
the protocol is proven universally composable or not.

We now present sample use cases highlighting the features of SysSC-UI.

4.2 Sample use cases for SysSC-UI

Finding the best protocol for a known problem. Consider a scenario in
which a technology consultant is hired by a company to find a way to compute
some function of a distributed set of sensitive data residing on servers owned by
different divisions of the company. We show how she can use the SysSC-UI tool
to find an appropriate MPC protocol for achieving this secure computation.



In the initial state of the UI tool, all four environmental assumption boxes are
checked, and all sliders are in the lowest position, so that every protocol in the
database is displayed in the results window. To begin, our consultant unchecks
“Private Channels”, knowing that the computation will be carried out over an
ordinary internet connection, which should always be assumed to be tapped. She
wishes to protect against adversaries that are covertly malicious, so she moves
the leftmost Adversary Type slider up to “Covert”. The consultant is suspicious
of protocols that use a weaker model to prove security, so she moves the first
Security slider up to “Computational.” Furthermore, she suspects that universal
composability is necessary to guarantee security in a heterogenous environment,
so she checks the “UC” box. The protocols resulting from these selections can
be seen in the results window in Figure 2.

Fig. 2. Results shown by the SysSC-UI tool after selections have been made.

The consultant wishes to determine the most efficient protocol that meets
these requirements, so next she moves the “Online Comm Complexity” slider
up to the highest level for which the results box is not empty. We would like to
achieve this online complexity with the minimum preprocessing complexity, so
she tries sliding the “Preprocessing comm” slider up. If it is moved up too far,
the results window becomes empty. So she readjusts both this and the Online
slider to find an agreeable tradeoff between online and preprocessing complexity.
The results of this exploration are shown in Figure 2.

Exposing directions for cryptographic research. In using the tool, one
invariably stumbles upon a setting of the sliders / boxes that is not in the “known
impossible” range, and yet has no papers with a matching protocol listed. Of
course, one reason for this could simply be the incompleteness of the protocol
database. Another possible reason is that the combination of features is not desir-
able from a security or efficiency standpoint. However, a third possibility exists,
which is that a genuine opening for new research has been revealed. Two kinds
of such “holes” may reveal new research directions: (1) Gaps between achieved



and proven impossible security levels, and (2) settings in which a weakening of
security parameters may allow greater efficiency. An example of the second type
of advance is the case of positing composable security definitions weaker than
universal composability, as in [28].

5 Ongoing Work

As it is unlikely that the authors will permanently be able to stay abreast of
the growing MPC literature, we have developed a web-based survey that allows
researchers to submit descriptions of new protocols and their features on the
axes so that they can be integrated into the protocol database and SysSC-UI.
The survey is available at http://goo.gl/T4ORzr. Author participation is vital
to the continuing usefulness of this effort.

The set of theorems in Section 2.3 should also be expanded as knowledge
of secure computation increases. This work has highlighted several remaining
unknowns in characterizing the possibility of secure computation; for example,
perhaps some of the malicious impossibility results hold for the covert case as
well. A longer-term goal is to characterize the efficiency of the protocols more
precisely, in terms of the number of elementary operations, to make the efficiency
of all protocols directly comparable.

Systematizations of knowledge are especially needed in research fields where a
large body of results have been generated in a short time, and secure multiparty
computation is undoubtedly such a field. Without an effort to systematically
organize results, there may be unnecessary duplication of research efforts, the
barriers to entry for new researchers may be needlessly high, and results may
not see useful applications as early as they could. Our systematization of secure
computation is a tool that can significantly ease the task of coming to grips with
this sprawling body of results, and potentially speed its adoption in fields where
it would be useful.

Acknowledgments

This material is based on research sponsored by DARPA under agreement num-
ber FA8750-13-2-0058. The U.S. government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions herein are those of the authors
and should not be interpreted as necessarily representing the office policies or
endorsements, either expressed or implied, of DARPA or the U.S. Government.

References

1. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for
realistic adversaries. In: Theory of Cryptography – TCC 2007. pp. 137–156 (2007)

http://goo.gl/T4ORzr


2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: Proceedings of the 45th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2004). pp. 186–195. IEEE
(2004)

3. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party compu-
tation. Cryptology ePrint Archive, Report 2014/075 (2014), http://eprint.iacr.
org/

4. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC
’93). pp. 52–61 (1993)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing
(STOC ’88). pp. 1–10 (1988)

6. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Theory of Cryptography – TCC 2012. pp. 266–284 (2012)

7. Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P.: Secure multi-party
data analysis: end user validation and practical experiments. Cryptology ePrint
Archive, Report 2013/826 (2013), http://eprint.iacr.org/2013/826

8. Bogetoft, P., Christensen, D., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J., Nielsen, J., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.:
Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) Fi-
nancial Cryptography and Data Security, Lecture Notes in Computer Science, vol.
5628, pp. 325–343. Springer Berlin Heidelberg (2009)

9. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally compos-
able two-party computation without set-up assumptions. In: Advances in Cryptol-
ogy – EUROCRYPT 2003, pp. 68–86. Springer (2003)

10. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: STOC. pp. 364–369 (1986)

11. Cramer, R., Damg̊ard, I.: Multiparty computation, an introduction. In: Contem-
porary cryptology, pp. 41–87. Springer (2005)

12. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing: An Information Theoretic Approach. Self-published manuscript (2013),
https://users-cs.au.dk/jbn/mpc-book.pdf

13. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: Theory and implementation. In: Public Key Cryptography. pp. 160–
179 (2009)

14. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.: Se-
cure multiparty computation of approximations. ACM Transactions on Algorithms
2(3), 435–472 (2006)

15. Feigenbaum, J., Pinkas, B., Ryger, R., Saint-Jean, F.: Secure computation of sur-
veys. In: EU Workshop on Secure Multiparty Protocols. Citeseer (2004)

16. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) Advances in Cryptology – CRYPTO 2002, Lecture
Notes in Computer Science, vol. 2442, pp. 178–193. Springer Berlin Heidelberg
(2002)

17. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press (2004)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the Nine-

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2013/826
https://users-cs.au.dk/jbn/mpc-book.pdf


teenth Annual ACM Symposium on Theory of Computing (STOC ’87). pp. 218–229
(1987)

19. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Proceedings of
the 45th Annual ACM Symposium on Theory of Computing (STOC ’13). pp. 555–
564 (2013)

20. Goldwasser, S., Lindell, Y.: Secure computation without agreement. In: Proceed-
ings of the 16th Int’l Symposium on DIStributed Computing (DISC). pp. 17–32
(2002)

21. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: ACM Confer-
ence on Computer and Communications Security (ACM CCS 2012). pp. 513–524
(2012)

22. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation
against covert adversaries. In: Advances in Cryptology – EUROCRYPT 2008. pp.
289–306 (2008)

23. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols – Techniques and
Constructions. Information Security and Cryptography, Springer (2010)

24. Hirt, M., Lucas, C., Maurer, U., Raub, D.: Graceful degradation in multi-party
computation (extended abstract). In: 5th International Conference on Information
Theoretic Security (ICITS 2011). pp. 163–180 (2011)

25. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC ’08). pp. 433–442. ACM, New York, NY, USA (2008)

26. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Advances in Cryptology – CRYPTO 2008. pp. 572–591 (2008)

27. Perry, J., Gupta, D., Feigenbaum, J., Wright, R.N.: The secure computation an-
notated bibliography (2014), http://paul.rutgers.edu/~jasperry/ssc-annbib.
pdf

28. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC ’04). pp. 242–251 (2004)

29. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: Proceedings of the 21st Annual ACM
Symposium on Theory of Computing (STOC ’89). pp. 73–85 (1989)

30. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: Proceed-
ings of the 23rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS 1982). pp. 160–164 (1982)

31. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: Pro-
ceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 1986). pp. 162–167 (1986)

http://paul.rutgers.edu/~jasperry/ssc-annbib.pdf
http://paul.rutgers.edu/~jasperry/ssc-annbib.pdf

	Systematizing Secure Computation for Research and Decision Support

