
Abstract

Massive Data Streams in Graph Theory and Computational Geometry

Jian Zhang

2005

Streaming is an important paradigm for handling data sets that are too large to fit

in main memory. In the streaming computational model, algorithms are restricted

to using much less space than they would need to store the input. The massive data

set is accessed in a sequential fashion and, therefore, can be viewed as a stream of

data elements. The order of the data elements in the stream is not controlled by the

algorithm. There are three important resources considered in the streaming model:

the size of the workspace, the number of passes that the algorithm makes over the

stream, and the time to process each data element in the stream.

In this thesis, we study computational-geometry problems and graph problems in

the streaming model. We design algorithms for computing diameter in the streaming

and the sliding-window models and prove some corresponding lower bounds. The

sliding-window model is a variation of the streaming model in which only more recent

data elements in the stream are considered. Previously, work in the streaming model

has focused on algorithms that use polylog space. For graph problems, this restriction

is too strong. We investigate the computational power of the model with different

space restrictions. For a graph of n vertices, our lower bounds show that not many

interesting computations can be done when the space restriction is o(n). We also

show that, by using n · polylog(n) space, one can design algorithms that provide

approximations to some basic problems, e.g., the all-pairs, shortest-path distance

problem. We present two main algorithms that approximate these distances. We

also exhibit tradeoffs between the accuracy of the results and the resources used by

the algorithms.

Massive Data Streams in Graph Theory

and Computational Geometry

A Dissertation
Presented to the Faculty of the Graduate School

of

Yale University
in Candidacy for the Degree of

Doctor of Philosophy

by

Jian Zhang

Dissertation Director: Joan Feigenbaum

Dec. 2005

Copyright c© 2005 by Jian Zhang

All rights reserved.

ii

Contents

Table of Contents i

List of Figures iii

Acknowledgments iv

1 Introduction 1

2 Preliminaries 12

2.1 Computational Model . 12

2.1.1 Massive Data Streams . 12

2.1.2 Streaming Computational Model 14

2.2 Algorithm Design Approaches and Analysis Tools 16

2.2.1 Synopses and Sketches . 17

2.2.2 Probability Bounds . 19

2.3 Streaming and Communication Complexity 20

2.4 Streaming Annotation . 23

3 Massive Data Streams in Computational Geometry 28

3.1 Introduction . 28

3.2 Sector-Based Diameter Approximation in the Streaming Model 31

i

3.3 Maintaining the Diameter in the Sliding-Window Model 35

3.4 Lower Bounds . 49

3.5 Closest Pair and K-Promised Convex Hull 54

3.6 Conclusions . 56

4 Massive Data Streams in Graph Theory 58

4.1 Massive Graphs and Streaming . 58

4.2 The Shortest-Path-Distance Problem and Graph Spanners 62

4.3 Distance Approximation in Multiple Passes 68

4.3.1 Graph Spanners and Distributed Computing 68

4.3.2 Streaming Spanner Construction 71

4.3.3 Fast Distributed Spanner Construction 72

4.3.4 Analysis of Time and Message Complexity 81

4.3.5 Parallel Implementation . 85

4.3.6 Adaptation to the Streaming Model 86

4.3.7 Conclusion . 90

4.4 Distance Approximation in One Pass 92

4.4.1 Cluster Structures for Distance Approximation 93

4.4.2 One-Pass Spanner Construction 97

4.4.3 Analysis . 99

5 Conclusion and Future Work 106

5.1 Conclusion . 106

5.2 Open Problems . 107

5.3 Future Work: From Theory to Applications 108

Bibliography 115

ii

List of Figures

3.1 Two examples of sectors . 32

3.2 Rounding points in each interval . 36

3.3 Clusters built for the first window . 40

3.4 A point may be moved in each rounding, but all the displacements are

in the same direction. 44

3.5 Reduction from DISJ to diameter . 50

3.6 Convex hull using only one point on the circles 56

4.1 The distance between x and y is 6 if there is no common neighborhood

of x and y. Otherwise (if the dash-dotted edge exists), the distance is 2. 61

4.2 Example of clusters in covers. 79

iii

Acknowledgments

Above all the people who have helped me to make it through the graduate school,

I would like to thank my adviser, Joan Feigenbaum. Her insightful suggestions

and constant encouragement were essential for this dissertation to become possible.

Moreover, she is a mentor to me in many ways. She taught me not only how to

conduct research in computer science, but also how to further develop my scholarly

career.

I am grateful to my co-adviser Sampath Kannan. I benefited greatly from many

discussions with him. His ideas and advice helped me to find solutions to research

problems as well as the path to become a researcher. I am also thankful to S. Muthu

Muthukrishnan and Jennifer Rexford for their helpful advice.

While working on this dissertation, I was very fortunate to collaborate with such

brilliant people as Michael Elkin, Andrew McGregor, and Sid Suri. It has been a

great pleasure to work with them and they are my friends as well as my collaborators.

I am thankful for many enjoyable hours spent brainstorming with them on difficult

theorems.

I am also thankful to my friends and fellow students in the department, who have

made my time at Yale colorful.

Support for my PhD study was provided primarily by the National Science Foun-

dation through grants 0105337 and 0331548. Travel support was provided by the

Office of Naval Research through grant N00014-01-1-0795.

Finally, I must thank my parents. Their love helped me to get through many

difficulties. Without their support, none of this would be possible.

iv

Chapter 1

Introduction

In recent years, massive data sets have emerged in many applications. In particular,

applications that monitor the operations of large systems produce huge amounts of

data. For example, sale records are collected every day in supermarkets. Phone

companies keep track of calling records. Some network routers, such as the Cisco

router with the NetFlow feature [22], are capable of producing network traffic reports

continuously.

New challenges arise when computing with massive data sets. First, one may

need to redefine what is an efficient computation. The time complexity of a compu-

tation is the amount of time required to complete that computation. It is a function

f(n) of the input’s size n. Traditionally, an algorithm is considered to be efficient

when f(n) is a polynomial of n. In practice, this works fine with fairly large input

sizes. However, with extremely large input sizes, an algorithm with polynomial time

complexity whose polynomial contains terms of high orders becomes prohibitively

inefficient. It is reasonable to expect that computer performance will be improved

greatly in the future. It is also reasonable to expect that the “massive” data sets in

the future will be much more “massive” than the ones we encounter now, especially

1

given the trends in the expansion of information systems and the development of

sophisticated automatic data-collecting tools. The computation challenge may re-

main. In fact, the massive data sets in data-warehouse mining and Web searching

we see today were not encountered a decade ago. Another example is provided by

the Internet. The Internet has grown so fast that many problems that were not

foreseen in the original design have arisen. Measurements of different aspects of the

Internet are considered invaluable for troubleshooting the system and for improving

the design of the system. In this case, the amount of measurement data is enormous.

The networking community has seen an emerging problem: although a large amount

of data is collected, it is of little use in providing needed information. The reason is

simply that the current data analysis methods, particularly those that incorporate

certain levels of sophistication, do not work well with massive data sets because of

their high time complexity. One is left with trivial analyses, which apparently does

not reveal much useful information. There are increasing demands for near-linear or

sublinear data-analysis algorithms.

The second challenge comes from storage devices used for massive data sets. In-

expensive devices can provide large storage capacity. However, such a large capacity

comes with a price: random accesses on these devices are very slow. The storage

devices in a computer system are diversifying in two directions: one that is fast but

has relatively small capacity and the other that is slow but has extremely large ca-

pacity. The memory hierarchy of a computer reflects such a difference. At the top

of the hierarchy is the main memory (RAM), which is the primary storage device in

a computer. The main memory is very fast but its capacity is rather small. Below

the main memory are the secondary storage devices, such as hard disks. The sec-

ondary storage devices have medium capacity and a medium access speed. At the

bottom of the hierarchy are massive storage devices such as CDs and tapes, which

2

have tremendous capacity but an extremely slow access speed. (See, e.g., [73] for a

detailed description.)

The differences between storage devices are not considered in the traditional com-

putational model. In such a model, a computer consists of two major components,

the control and the memory space. The traditional model treats all storage devices

indifferently and abstracts (the union of) them as a single memory space. All the

memory cells in this space are viewed equally—that is, all the basic operations on this

memory space, such as access to a random location, take an equal (constant) amount

of time. Because of the diversification of the memory, computational complexities

derived from the traditional model in many cases do not reflect the complexity of

the real computation on a real machine.

To consider the difference between memory types, the external memory model [77]

was proposed. This model is similar to the traditional computational model except

that memory is now divided into two types: internal (main memory) and external

(disks). Despite the fact that access to the external memory is slow, the computation

can still use the whole memory space (external + internal). That is, the computation

can make unlimited random access to the external memory as well as to the internal

memory. The fast but small internal memory is often used as a cache for data on

the external memory, and localities in these data are often exploited to minimize the

number of accesses to the external memory.

The external memory in this model often refers to the secondary storage devices.

When dealing with even larger data sets, one may need to go further down the

memory hierarchy and use massive storage devices like tapes. At this point, unlimited

random access to the data becomes prohibitively inefficient. Also, in some cases, it

may be impossible to store the data at all. For example, in the Internet routing

system, the routers forward packets at such a high speed that there may not be

3

enough time for them to dump the detailed information of the packets into slow

storage devices.

Therefore, we need computational models that divide the memory space of the

traditional model into two types: workspace and storage space. The workspace is

the memory where the computation performs frequent random accesses. The storage

space is the memory where the inputs to the computation are kept. The computa-

tion uses a comparably small workspace and needs only a few random accesses to the

storage space. In the extreme, the computation accesses the storage space in a com-

pletely sequential fashion. Furthermore, we may also require that in these models,

the computation be done in at most near-linear time.

Towards this goal, two types of models have been intensively studied: sampling

and streaming. Both types of models use a workspace that is much smaller than the

input size. The difference between them is that they allow different types of access

to the storage space. In the sampling model, the computation is allowed to perform

only a few random accesses to the inputs. With these accesses, it takes samples from

the input and then computes on these samples. The main limitation of this model

is that the computation does not see the whole input. Therefore, in some cases, it

needs to take a rather large sample or can provide only rather relaxed approximate

results. In the streaming model, the computation is allowed to access the storage

space only in a sequential fashion. On the other hand, access to the whole storage

space in such a fashion is granted. Therefore, the computation can see the whole

input. Note that a non-adaptive sampling algorithm can be trivially transformed

into a streaming algorithm. However, an adaptive sampling algorithm that takes

advantage of the random access allowed by the sampling model cannot be directly

adapted into the streaming model.

The streaming model was formally proposed in [52]. However, before [52], there

4

were studies [54, 43] that considered similar models, without using the term stream-

ing. Since [52], there has been a large body of work on algorithms and complexity

in this model [6, 39, 55, 50, 48, 68, 57]. The majority of the work on streaming

algorithms considered problems that fall into a small number of categories, such as

computing statistics, norms, and histograms. To further the understanding of the

streaming model, in this dissertation we explore new directions and problems that

are of significance for streaming computation in general. In particular, we study

streaming problems in two main directions: computational-geometry problems and

graph-theoretic problems.

Geometric data streams arise naturally in applications that involve monitoring or

tracking entities carrying geographic information. For example, Korn et al. [60] dis-

cuss applications such as decision-support systems for wireless-telephony access. The

customers using the service generate streams of data about their locations, and the

cell-phone company may want to process and query the streams for various decision-

support purposes. Data streams generated by sensor nets and other observatory

facilities provide another example [27]. In these applications, the data streams con-

sist of the records of geographically dispersed events, and computing extent measures

(such as the diameter) is an important component of monitoring the spatial extent

of these events.

In joint work with Joan Feigenbaum and Sampath Kannan, I studied the diameter

problem in both the streaming model and one of its variations: the sliding-window

model [28]. In the sliding-window model, the data stream is infinite but the compu-

tation is concerned only with recent data. A sliding window that includes the most

recent data items is imposed on the stream, and the computation is done on data

within this window. (We give a detailed introduction to the sliding-window model

in Chapter 2.) We investigate the two-dimensional diameter problem in these two

5

models. Given a set of points P , the diameter is the maximum, over all pairs x, y

in P , of the distance between x and y. There are efficient algorithms to compute

the exact diameter [23, 71] or to approximate the diameter [2, 3, 12, 18] in the tra-

ditional computational models. However, at the time of our work, little was known

on computing diameters in the streaming model.

In this work, we show that computing the exact diameter for a set of n points

in the streaming model or maintaining it in the sliding-window model (with window

width n) requires Ω(n) bits of space. However, when approximation is allowed, we

present a simple ε-approximation algorithm in the streaming model that uses O(1/ε)

space and processes each point in O(log(1/ε)) time. In the sliding-window model,

we also present an ε-approximation algorithm to maintain the diameter in 2-d using

O(1
ε3/2 log3 n(log R + log log n + log 1

ε
)) bits of space, where R is the maximum, over

all windows, of the ratio of the diameter to the minimum nonzero distance between

any two points in the window. Both of our algorithms make only one-sided errors.

That is, the output D̂ of our algorithms ε-approximates the true diameter D in that

D ≥ D̂ ≥ (1 − ε)D. We also give streaming-space lower bounds to the closest-pair

problem and the k-promised convex hull problem.

Our work initiated the study of computational geometry in the streaming and

sliding-window models. We also provided a useful approach for the design of geom-

etry algorithms in the streaming model. That is, instead of building data structures

for the points, the algorithm can divide the space into sectors/grids, therefore trans-

forming the geometry problems into counting problems in these sectors/grids. This

approach was further extended by [27, 19].

The second direction of study in this dissertation is graph-theoretic problems in

the streaming model. Massive graphs arise naturally in many real-world scenarios.

Two examples are the call graph, where nodes correspond to telephone numbers

6

and edges to calls between numbers that call each other during some time interval,

and the Web graph, where nodes are web pages, and the edges are links between

pages. Massive dense graphs also appear in applications such as structured data

mining, where the relationships among the data items in the data set are modeled

as graphs. Because many application problems can be modeled as graph problems,

it is important to study massive graphs in the streaming model.

In joint work with Joan Feigenbaum, Sampath Kannan, Andrew McGregor, and

Sid Suri, I studied graph problems in the streaming model, where a graph is presented

as a stream of edges. In particular, we considered graph-distance problems such as

the graph-diameter problem and the all-pairs, shortest-path-distance problem.

In this work, we examine graph problems with a more general view of the stream-

ing model. The two salient features of the streaming model are that the workspace

used by the computation is much smaller than the input size and that the input

data are accessed in sequential order. These two features give rise to two complexity

measures of the streaming model—namely, the amount of workspace and the num-

ber of passes through the input data. Most previous work on the streaming model

focused on the problems that can be solved in one pass using polylogarithmic space.

These studies explored a restricted streaming model. To fully understand the com-

putational power of the model, it is necessary to consider problems that may require

multiple passes and/or a larger workspace. Graph problems are of this type. A sim-

ple graph problem, such as determining whether the distance between two vertices

x and y is 2, if computed in a constant number of passes, requires a workspace as

much as the number of vertices in the input graph [16]. To better understand graph-

theoretic problems in the streaming model, we need to consider a full spectrum of

the workspace size and the number of passes.

Consider the spectrum of the workspace size among the algorithms that make

7

sequential (one-way) access to the input data. At one extreme of the spectrum, we

have dynamic algorithms [36]. These algorithms can use memory large enough to hold

the whole input. At the other extreme, we have the type of streaming algorithms that

use only polylogarithmic space. It has been suggested by Muthukrishnan [68] that the

middle ground, where, for a graph with n vertices, the algorithms use n · polylog(n)

bits of space, is an interesting open area. This is the main area that we explore in

this work. To our best knowledge, our work is the first study on massive graphs in

this area of the streaming model. Note that our algorithms can store the vertex set,

but not the edge set. (For a dense graph, this amount of space is sublinear in the

input size.) In [1], the authors studied graph problems in a semi-external model,

in which the vertex set of the graph can be stored in the main memory, but the

edge set cannot. The difference between their model and ours is that their model is

based on the external memory model. In their model, random access to the edges,

although expensive, is still allowed. As argued in [61], this is a major drawback when

computing on massive graphs. Our algorithm does not have this problem.

In the spectrum of the number of passes, we considered computations that allow

multiple passes through the input stream. Clearly, too many passes will be pro-

hibitively inefficient in this model. Therefore, we restrict our consideration only to

computations that use a constant number of passes. Very few studies [30, 16] have

explored this area of the streaming model.

We consider graph-distance computation with different combinations of the two

parameters. Intuitively, computing graph distances is difficult in the streaming model

because many such computations employ construction of BFS (breadth first search)

trees or similar subroutines. In order to achieve accurate distance computation or

approximation, the depth of the BFS trees is quite large. Clearly, BFS-tree con-

struction is not suitable for streaming. The growth of one layer of the tree, in the

8

worst-case scenario, may need one pass through the stream. Hence, to construct a

tree with depth more than a constant number requires too many passes through the

stream. In this work, we show that despite the seemingly stringent restrictions of

the streaming model, graph distances can be approximated using sublinear space in

one or a constant number of passes.

For a graph with n vertices, we first provide a simple one-pass algorithm [37] that

gives (log n/ log log n)-approximations for diameter and all-pairs, shortest-path dis-

tances in unweighted graphs. The algorithm uses n ·polylog(n) space and constructs

a (log n/ log log n)-spanner for the input graph. A k-spanner H of a graph G is an

edge subgraph of G such that for any pair of vertices their shortest-path distance in

H is at most k times their shortest-path distance in G. Therefore, the distances in

the input graph can be approximated by the spanner.

The drawback of this algorithm is that, in the worst case, it needs O(n) time to

process each edge in the input stream. Such a per-edge processing time is prohibitive

in the streaming model. In [38], we devise a better algorithm that improves the per-

edge processing time. We show a randomized streaming algorithm that constructs a

(2t + 1)-spanner for an unweighted, undirected graph in one pass. With probability

1− 1
nΩ(1) , the algorithm uses O(t ·n1+1/t log2 n) bits of space and processes each edge

in the stream in O(t2 · n1/t log n) time. Using this spanner, the diameter as well

as the all-pairs distances in the graph can be (2t + 1)-approximated. Note that for

t = log n/ log log n, the algorithm uses n ·polylog(n) bits of space and processes each

edge in polylog(n) time. This algorithm can be extended to construct ((1+ε)·(2t+1))-

spanners for weighted, undirected graphs. A complementary result is given in [38]

that shows, with O(n1+1/t) space, we cannot approximate the distance between u

and v better than by a factor t even if we know the vertices u and v. Therefore, our

algorithm is quite close to optimal.

9

To explore the area of the streaming model in which multiple passes through the

stream are allowed, I studied, in a joint work with Michael Elkin, spanner construc-

tions using multiple passes. We give a streaming algorithm for constructing (1+ε, β)-

spanners using only a constant number of passes through the input. The algo-

rithm uses O(n1+1/κ · log n) bits of space, and O(nρ) processing time-per-edge, where

κ = 1, 2, . . . , 0 < ε < 1, and 0 < ρ < 1 are control parameters. β is a function of ε

and κ. For a graph G(V, E) and two vertices x, y ∈ V , let dG(x, y) be the shortest-

path distance between x and y in the graph G. A subgraph H = (V, E ′) is a (ε, β)-

spanner of G if, for any vertices x, y ∈ V , dG(x, y) ≤ dH(x, y) ≤ (1+ ε) · dG(x, y)+β.

(Hence, H is also called an “additive spanner.”) Again, our streaming construc-

tion of the additive spanner leads directly to a streaming algorithm with the same

complexity parameters (number of passes and space) that approximates all-pairs,

shortest-path distances. Note that for large distances, an additive spanner provides

a better approximation. Hence, while this algorithm uses more passes (though still

a constant number) than the above algorithm, it provides far shorter paths and dis-

tance estimates. This demonstrates a certain tradeoff between the accuracy of the

approximation and the number of passes.

Our work initiates the study of graph problems, particularly the graph-distance

problems in a more general streaming model. By considering algorithms using mul-

tiple passes and larger than polylogarithmic, but still sublinear, space, we extended

the understanding of streaming computations. Our algorithms are the first streaming

constructions of spanners. Because our one-pass algorithm provides novel spanner

construction that avoids BFS-like explorations. it can also be applied to incremental

computations

The joint work with Joan Feigenbaum and Sampath Kannan on computing di-

ameter in the streaming and sliding-window models first appeared in [41]. The joint

10

work with Joan Feigenbaum, Sampath Kannan, Andrew McGregor, and Sid Suri on

massive graphs first appeared in [37] and [38]. The joint work with Michael Elkin on

approximating graph distances using additive spanners first appeared in [35].

11

Chapter 2

Preliminaries

2.1 Computational Model

2.1.1 Massive Data Streams

A data stream is a sequence of data elements a1, a2, . . . , an from a finite set M . The

semantics of the data element σi may be different from application to application.

This leads to different models of data streams. In the most common case, the input

to the computation consists of a set, e.g., a set of points, a set of numbers. With

such an input, the data stream is simply a sequence of the elements in the input set.

But the order in which the elements appear in the sequence can be arbitrary. For

example, if the input to the computation is a set of points, an arbitrary sequence of

these points then forms the input data stream. Sometimes the input itself is already

a sequence. For example, many data streams are also time series where the i-th entry

in the sequence is some measurement at time i. In this dissertation, when referring

to streams, we mean a data stream like the above ones.

There is another type of data stream [68], in which an implicit array A of size n

is involved. The data elements in the stream may take the form (i, k) where i ∈ [n]

12

and k ∈ Z. The semantics of such an element state that A[i] = A′[i] + k, where

A[i] is the value of the i-th entry of A after seeing this data element and A′[i] is

the value of that entry before seeing the element. These semantics lead to models

of data streams such as the cash-register model and the turnstile-model [68]. The

difference between the two models is that, in the cash-register model k ≥ 0, while

in the turnstile model, k could be negative. Because the data elements in this type

of streams stand for updates, one can view problems in these models as dynamic

problems, where the input is a sequence of updates to an implicit set or array and

the goal of the computation is to compute some function over the current values of

the set or array.

Most streaming problems considered in this dissertation can be viewed as partial

dynamic problems, i.e., data elements are added to the current set, but not deleted.

The only model we considered that has the full dynamic property is the sliding-

window model. The sliding-window model was introduced in [28]. In this model,

the data stream a1, a2, . . . may be infinite, and one is interested only in the n most

recent data elements. Suppose ai is the current data element. A sliding window of

size n then consists of elements {ai−n+1, ai−n+2, . . . , ai}. When new elements arrive,

old elements at the end of the window expire. If we view the data stream as an

infinite string, the window is a substring of the stream.

In the turnstile model, to delete a data element, i.e., to set the entry A[i] to be

zero, (i,−A[i]) is explicitly added in the stream. In the sliding-window model, the

oldest data element is implicitly deleted when the window slides forward. Because a

sliding-window algorithm is not given enough space to store all the data elements in

the window, this implicit deletion raises a challenge for algorithm design.

13

2.1.2 Streaming Computational Model

Having defined data streams, we are now ready to give the definition of our streaming

computational model. Besides the streaming model given in [52], there are several

other streaming or streaming-like models [51, 30]. We try to capture the common

features of these models and give a more general definition. The other streaming

models can be viewed as restricted versions of our model.

A streaming algorithm is an algorithm that computes some function over a data

stream and has the following properties:

1. The input to the streaming algorithm is a data stream as defined in the pre-

vious section. Note that in this dissertation, we mainly consider two models

of streams. One is the data stream that is an arbitrary sequence of the input

data set. The other is the sliding-window model. In both cases, we denote by

n the length of the stream or the size of the window.

2. The streaming algorithm accesses the data elements in the stream in sequential

order. The order of the data elements in the stream is not controlled by the

algorithm.

3. The algorithm uses a workspace much smaller than the input size. It can per-

form unrestricted random access in the workspace. The amount of workspace

required by the streaming algorithm is an important complexity measure of the

algorithm.

4. As the input data stream by, the algorithm needs to process each data element

quickly. The time needed by the algorithm to process each data element in the

stream is another important complexity measure of the algorithm.

14

5. The algorithms are restricted to access the input stream in a sequential fashion.

However, they may go through the stream in multiple, but a small number,

of passes. (Clearly this does not apply to the sliding-window model.) The

third important complexity measure of the algorithm is the number of passes

required.

Note that these properties characterize the algorithm’s behavior during the time

when it goes through the input data stream. Before this time, the algorithm may

perform certain pre-processing on the workspace (but not on the input stream). After

going through the data stream, the algorithm may undertake some post-processing

on the workspace. During these two periods, the algorithm needs access only to the

workspace. Hence the processing is essentially computation in the traditional model.

We do not impose any restriction on it except that the time complexity should be at

most near-linear.

There are three important complexity measures in our streaming model: the

workspace size, the per-element processing time, and the number of passes that the

algorithm needs to go through the stream. In this dissertation, we consider streaming

algorithms whose complexity measures fall into the following range: the workspace

size is bounded by O(nε). The per-element processing time is O(nδ), and polylog(n)

is preferred. (Here ε and δ are two small constants.) The number of passes is O(1)

and a one-pass algorithm is preferred.

15

2.2 Algorithm Design Approaches and Analysis

Tools

Previous work on streaming-algorithm design has focused on computing statistics

over the stream. There are streaming algorithms for estimating the number of dis-

tinct elements in a stream [44] and for approximating frequency moments [6]. Work

has been done on approximating Lp differences or Lp norms of data streams [39, 45,

55].

The statistics computed are normally a numerical value. The essence of many

such algorithms lies in the construction of a random variable such that the numerical

value can be approximated by this random variable. For example, the algorithm

in [55] approximates the Lp difference and Lp norm of data streams. It uses a sum

of a sequence of random variables. The random variables in the sequence follow a

stable distribution. That is, they are random variables X1, X2, . . . , Xn with an i.i.d.

(independent identical distribution) D called a p-stable distribution. A p-stable

distribution has the following feature: For n real numbers a1, a2, . . . , an, the random

variable
∑

i aiXi has the same distribution as the variable (
∑

i |ai|p)1/pX where X is

also a random variable with distribution D . Therefore, by constructing
∑

i aiXi, the

algorithm can give an estimation on (
∑

i |ai|p)1/p that is the Lp norm of the numbers

a1, a2, . . . , an.

The construction of such random variables has been under intensive study [39,

45, 55]. However, the types of problems that can be solved by this approach are

limited. There are also other approaches in the design of streaming algorithms. One

of the important approaches is the synopsis/sketch approach.

16

2.2.1 Synopses and Sketches

The concept of synopsis data structures was introduced in [47].

Definition 2.1 (Synopsis Data Structure[47]). An f(n)-synopsis data structure

for a class Q of queries is a data structure for providing (exact or approximate)

answers to queries from Q that uses O(f(n)) space for a data set of size n, where

f(n) = o(nε) for some constant ε < 1.

The concept of sketches is similar to the synopsis data structures. In [15], the au-

thors used sketches to compare the similarity between two documents. [39] provides

a formal definition of the sketch. Let X be a set. A function f : Xn ×Xn → Z can

be computed using sketches if there exists a set S, a (randomized) sketch function

h : Xn → S and a (randomized) reconstruction function ρ : S × S → Z such that,

for all x1, x2 ∈ Xn, with high probability, |ρ(h(x1), h(x2))− f(x1, x2)| < εf(x1, x2).

We observe that, in both cases, the computations of the functions (the queries

and the function f : Xn×Xn → Z) are performed in two stages. At the first stage, a

sketch/synopsis data structure is constructed. At the second stage, the functions are

evaluated using the sketch/synopsis data structure. This evaluation does not require

access to the original input data. If the construction of the sketch/synopsis data

structure can be done in a streaming fashion, such a construction leads directly to

a streaming algorithm that computes the same function. We now tweak the sketch

definition in [39] and give a definition more relevant to streaming computation. This

definition is also a generalization of the concept in [68].

Definition 2.2 (Streaming Sketch). Let X, S be two sets and f : Xn → Z be a

function. Let h : Xn → S be a (randomized) sketch function and ρ : S → Z be a

(randomized) evaluation function, such that, for all x ∈ Xn, with high probability,

17

|ρ(h(x))− f(x)| < εf(x). We call h(x) ∈ S a sketch of x ∈ Xn for the function f if

the following holds:

1. There exists a (randomized) streaming algorithm that computes h.

2. The size of h(x) is bounded by O(nε) for a small constant 0 < ε < 1.

3. The space complexity of computing ρ is at most linear to the size of h(x).

In the following chapters, we will use the term sketch instead of streaming sketch,

as we always use the sketch concept in the streaming context.

The synopsis data structures have roots in database systems, where a summary

of the data in the database is often kept. The summary can provide inaccurate

but reasonable answers to queries. (Such answers are different from approximation

because the errors are often not bounded.) It can also be used in query optimiza-

tions and other system-tuning tasks. Both the summary data structures in database

systems and our sketches are small-space representations of the data. However, the

sketch defined above differs from summary data structures in two aspects: first, when

the function is evaluated using the sketch instead of the original data, the error is

bounded even in the worst case. Second, our sketch is constructed in a streaming

fashion. We emphasize the streaming construction here because in some cases, the

target function f itself may not be easy to compute in the streaming model while

there is a streaming algorithm for computing the sketch.

Clearly, a sketch will not retain all the information in the input data stream. For

different functions, there will be different kinds of sketches. The simplest sketch is

a random sample of the input data. For many problems, such a sample is not good

enough. Several other types of sketches have been used in solving problems such as

wavelet transformations [49] and histogram constructions [50, 48]. The exponential

histogram [28] is a sketch for maintaining the sum of the data elements in a sliding

18

window. The geometry algorithms in [57] use a sketch that employs a set of shifted,

nested square grids over the geometric space. One important problem in the study of

the streaming model is to devise sketches for different functions. In this dissertation,

we provide sketches for some geometric and graph problems.

2.2.2 Probability Bounds

In this section, we review two probability bounds that are often used in our proofs.

We refer the readers to standard textbooks like [72] for a detailed introduction to

probability theory.

The first bound we review is the Chernoff bound. For a sequence of indepen-

dent random variables, it bounds the tail of the sum of the sequence. A commonly

considered type of random variables is the indicator random variable. Let {xi}
i = 1, 2, . . . , n be a sequence of such random variables. The random variable xi takes

the value 1 with probability pi and the value 0 with probability 1 − pi. All the xis

are independent. Let X =
∑n

i=1 xi be the random variable representing the sum and

let µ = E(X) =
∑

pi be the expectation of X. Let 0 < δ ≤ 1 be a constant. The

Chernoff bound bounds the probability of both the lower tail and the upper tail. For

the lower tail, it states:

Pr[X < (1− δ)µ] ≤ exp(−µδ2/2) (2.1)

For the upper tail, it states:

Pr[X > (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ

(2.2)

The second bound we often use is the union bound. It derives directly from the

inclusion-exclusion principle and states that the probability of the union of a set of

19

events is at most the sum of the probabilities of the events. Let E1, E2, . . . , En be an

arbitrary set of events, the bound says:

Pr[∪n
i=1Ei] =

∑
i

Pr[Ei]−
∑
i<j

Pr[Ei ∩ Ej] + · · · ≤
∑

i

Pr[Ei] (2.3)

An important feature of the union bound is that there is no other condition on

the events for the bound to hold. In particular, when the events are not independent,

the bound still holds. This is different from the above Chernoff bound and is quite

useful in places where independence among random variables cannot be achieved.

2.3 Streaming and Communication Complexity

Streaming-space complexity is closely related to communication complexity. Com-

munication complexity studies the amount of communications required among two

or more parties to compute certain function. The book by Kushilevitz and Nisan [62]

provides detailed descriptions on the models and excellent surveys of the problems

that are studied in communication complexity. To help the reader understand the

relationship between streaming and communication complexity, here we give a short

introduction to the basic communication model and some of the problems that are

frequently used in proving streaming-space lower bounds.

The communication model we describe here is the two-parties communication

model proposed by Yao [80]. In this model, there are two players (two parties). We

often name them Alice (player A) and Bob (player B). Let X, Y , and Z be arbitrary

finite sets and f : X × Y → Z be an arbitrary function. Alice and Bob want to

evaluate the function f . Alice knows only x ∈ X and Bob knows only y ∈ Y . A

communication protocol P is used by Alice and Bob to compute the function f . The

communication complexity of the protocol P is the number of bits that Alice and

20

Bob must exchange in order to evaluate the function f [62].

There is a straightforward way to transform a streaming algorithm with space

complexity S(n) into a communication protocol with communication complexity

S(n). If a streaming algorithm exists for a problem, Alice can simulate the streaming

algorithm on her input and then transmit her memory contents to Bob. Bob can

continue the streaming algorithm on his input. The amount of communication in

this scheme is exactly the amount of memory used by the streaming algorithm. Thus

communication-complexity lower bounds for a particular problem are also space lower

bounds for the same problem in the streaming model. There are several problems that

are well studied in the communication model. Their streaming-space lower bounds

thus come automatically from their communication-complexity lower bounds. Fur-

thermore, reductions are often made from these problems to show space lower bounds

for other streaming problems. Among these well-studied communication problems,

the two most often used problems in these reductions are the set-disjointness problem

and the index problem.

Note that reductions used in the streaming context have more restrictions than

the ones used in proving NP-completeness results. As polynomial-time reductions

are required for proving NP-completeness results, here we need reductions that can

be computed in a streaming fashion. That is, the reduction itself should be a stream-

ing algorithm. Given an input data stream, it produces another stream [11].

The set-disjointness problem asks if two subsets of a set are disjoint, i.e., if the

intersection of the two subsets is empty. More formally, the set-disjointness problem

is defined as the following:

Definition 2.3 (Set Disjointness). Given a set U of size n and two subsets x ⊆ U

and y ⊆ U , the set-disjointness function disj(x, y) is defined to have the value “1”

when x ∩ y = φ and “0” otherwise.

21

In the communication model, the input to player Alice is x and the input to player

Bob is y. The two players then start a communication and output the function value

of disj(x, y). In the streaming model, the input stream consists of the concatenation

of the subset x with the subset y. In what follows, we will refer to the set-disjointness

problem by “DISJ.”

The index problem asks to tell the bit value of an entry in a bit string. More

formally,

Definition 2.4 (Index). Given a bit string S of length n and a number i ≤ n, the

index function ind(S, i) is defined to be S(i), i.e., the value of the i-th bits of S.

In the communication model, we consider one-round communication protocols for

the index problem. Alice has the string S and Bob has the number i. There is only

one round of communication between Alice and Bob—that is, Alice sends a message

to Bob and Bob must send back the one-bit answer. In the streaming model, the

input stream consists of the string S concatenated by the number i. The difficulty

of the index problem lies in that the bit string S goes before the index number i in

the stream.

The following communication-complexity lower bounds hold for these problems:

Theorem 2.1. [59] The communication complexity of DISJ is Θ(n).

Theorem 2.2. [62] The one-round communication complexity of the index problem

is Θ(n).

From our discussion about the relationship between streaming-space complexity

and communication complexity, the above bounds translate directly into one-pass

streaming-space lower bounds for the corresponding streaming problems.

We now show that, in the streaming model, the linear-space lower bound holds

for DISJ even if a constant number of passes is allowed.

22

Theorem 2.3. DISJ requires linear space in the streaming model, even if O(1) passes

are allowed.

Proof. The lower bound for one-pass stream algorithms can be derived by showing

that if we have a stream algorithm for DISJ that requires at most a certain amount

of memory, then we are guaranteed to have a communication protocol requiring at

most the same amount of communication.

Now, if we allow multiple passes, the above argument still works, except that

the communication will be twice the amount of memory required by the stream

algorithm multiplied by the number of passes. Assume Alice and Bob possess inputs

x and y respectively. In the middle of each pass, Alice sends her memory contents

to Bob, and, at the end of each pass, Bob sends back his memory contents: two

communications per pass. Thus the total communication will be twice the amount

of memory required by the streaming algorithm multiplied by the number of passes.

Given the linear communication complexity of DISJ, it is not possible to have a

sublinear-space streaming algorithm that makes a constant number of passes.

2.4 Streaming Annotation

We end this chapter by showing that streaming-space requirements can be reduced if

extra information is added to the input stream. We use the set-disjointness problem

as an example.

Intuitively, the entity that generates the data stream may provide this extra infor-

mation and help to reduce the resource requirements of the streaming algorithm. We

model this situation with a stream proof system, in which we have both a streaming

verifier and a prover. The prover has unlimited computing power and adds a proof

23

(or annotation) to the stream. The verifier is a streaming algorithm that checks the

proof.

The streaming verifier for a language L can be viewed as a probabilistic oracle

machine M that obeys the streaming restriction and satisfies:

• completeness : For every stream x ∈ L, there exists a proof πx:

Pr[Mπx(x) = 1] ≥ 2

3

• soundness: For every stream x 	∈ L and all proofs π:

Pr[Mπ(x) = 1] ≤ 1

3

We measure the complexity of this oracle machine both by the space requirement

of the verifier and by the size of the proof.

We now show a stream proof system for DISJ.

Recall that we are trying to compute the function disj(x, y) of two subsets x ⊆ U

and y ⊆ U such that the function has value “1” when x ∩ y = φ and “0” otherwise.

Once x and y are chosen, each element i in the universe U will belong to one of the

following four categories:

C1 i ∈ x and i ∈ y;

C2 i ∈ x and i 	∈ y;

C3 i 	∈ x and i ∈ y;

C4 i 	∈ x and i 	∈ y;

24

Algorithm 2.1. Prover

The prover indicates, for each element in U , which of the above four cate-
gories it belongs to. This gives a bit vector p. It then appends p to the end
of the input stream.

Because there are only four categories, a bit vector of size O(|U |) can be con-

structed to show the categories of all of the elements in U .

The input to the verifier is a stream of the form xyp. Because p indicates the

category for each of the elements in U , the verifier can reconstruct two subsets x′

and y′ from p. That is, x′ = {i ∈ U |i ∈ C1 or i ∈ C2 according to the proof p} and

y′ = {i ∈ U |i ∈ C1 or i ∈ C3 according to the proof p}. The verifier needs to check

that x = x′ and y = y′. For this, it can use Lipton’s set-fingerprinting technique [66].

Given a multi-set s = {a1, . . . an}, where each ai is an m-bits number, the finger-

print of this multi-set is computed by evaluating the following polynomial at some

random location r.

Fs(x) =

n∏
i=1

(ai + x)

The additions and multiplications are carried out in the field Fq where q is a prime

selected randomly from the interval [(nm)2, 2(nm)2].

Theorem 2.4. [66] The probability that two sets s1 = {a1 . . . ak} and s2 = {a1 . . . al}
are unequal but have the same fingerprints is at most

O(
log n + log m

nm
+

1

nm2
),

where all elements in s1 and s2 are m-bit numbers, and n = max(k, l).

Note that for a set s = {a1 . . . an}, the fingerprint can be computed in one pass,

25

Algorithm 2.2. Verifier

The stream verifier checks the following:

1. There is no element of U in category C1. This can be checked trivially
in one pass through p.

2. x = x′ and y = y′. This can be checked by randomly choosing r in Fq

and checking that Fx(r) = Fx′(r) and Fy(r) = Fy′(r).

The verifier accepts if and only if (1) and (2) both hold.

using O(log n) space.

Lemma 2.1. The proof system given by Algorithm 2.1 and Algorithm 2.2 satisfies

the “completeness” and “soundness” requirements.

Proof. It is clear that, if x∩y = φ, a truthful proof will make the verifier accept. On

the other hand, if x∩y 	= φ, the prover can cheat with a proof p claiming that elements

in category C1 are in other categories. However, in this case, the resulting x′ or y′

will not be equal to the x or y in the original input. Such a discrepancy can be caught

with high probability, according to Theorem 2.4, by comparing fingerprints.

Note that to determine the sets x′ and y′, the prover does not need to know the

elements in category C4. Therefore, it is not necessary to include these elements

in the proof. We did so because when the size of x and y is the same order of the

universe U , excluding the elements in C4 from the proof does not save much. On

the other hand, if U is much larger than x and y, we can still have a linear size proof

by dropping the elements in C4.

Theorem 2.5. DISJ can be verified in O(log n) space if a linear-size annotation is

provided.

26

Proof. The proof has size O(n), because it needs only to encode the category for

each element in U . The only verification that requires workspace is the check that

x′ = x and y′ = y. Because the fingerprint technique needs only O(log n) space [66],

the whole verifier needs only O(log n) space.

27

Chapter 3

Massive Data Streams in

Computational Geometry

3.1 Introduction

Massive data streams for computational-geometry problems arise naturally in appli-

cations that involve monitoring or tracking entities carrying geographic information.

They are also encountered as problems in such areas as information retrieval and pat-

tern recognition, modeled as computational-geometry problems by means of embed-

ding. It is important to study stream algorithms for basic problems in computational

geometry.

At the time of our work, aside from the stream-clustering algorithm in [51]1 and

the study of the reverse-nearest-neighbor problem in [60], little was known about

computational-geometry problems in the streaming or sliding-window models.

Note that a streaming or sliding-window version of a computational-geometry

problem is a dynamic problem, i.e., the set of geometric objects under considera-

1Note that the stream-clustering algorithm can be applied in any metric space, not just in the
Euclidean space.

28

tion may change. There are additions and deletions to the current set of geometric

objects as the computation proceeds. The problems in the streaming model can be

viewed as incremental problems while the problems in the sliding-window model can

be viewed as a particular type of dynamic problem. However, streaming/sliding-

window computations are different from the settings for incremental/dynamic prob-

lems. In the streaming/sliding-window model, the algorithm has only limited space

and cannot store all the geometric objects in its memory while algorithms for incre-

mental/dynamic problems do not have such a space restriction. Many dynamic algo-

rithms use space that is large enough to hold all the geometry objects. The focus of

these algorithms is more on devising data structures that can provide efficient updates

and query-answering than on minimizing the amount of space used. This is particu-

larly the case with dynamic problems. Thus, most dynamic computational-geometry

algorithms cannot be applied directly in the streaming/sliding-window model. The

study of stream algorithms for basic problems in computational geometry is an in-

teresting new research area.

In this work, we initiate the study of computational-geometry problems in the

streaming and sliding-window models. In particular, we study the diameter problem

in these models. Given a set of points P , the diameter is the maximum, over all

pairs x, y in P , of the distance between x and y. In many applications, the data

streams consist of the records of geographically dispersed events. Computing extent

measures (such as the diameter) is an important component of monitoring the spatial

extent of these events. Furthermore, diameter is a basic property of many geometry

objects. The diameter information is often used in computations such as clustering.

This motivates us to investigate the diameter problem as a step towards better

understanding of massive data streams in computational geometry.

At a high-level, our algorithms employ the sketch approach, i.e., they construct

29

a small space sketch for the input stream, from which the diameter of the whole set

of points can be approximated. Note that this sketch is not necessarily a subset of

the input points. It also differs from random sampling in that the construction of

the sketch depends on the information derived from the part of the stream seen so

far. Our algorithms show that for a set of points in two dimensional space, there

is a sketch of size O(1/ε) that can be constructed in the streaming fashion. Using

this sketch, the diameter of the whole set can be ε-approximated. (Denote by A the

output of an algorithm and by T the value of the function that the algorithm wants

to compute. We say A ε-approximates T if 1 > ε > 0 and (1 + ε)T ≥ A ≥ (1− ε)T .)

In the streaming construction of this sketch, our algorithm processes each point in

O(log(1/ε)) time.

Agarwal et al. [2] presented an algorithm that maintains approximate extent

measures of moving points. Among these extent measures is the diameter of the

set of the points. In [2], this algorithm is not presented as a streaming algorithm.

However, it can be simply adapted to compute the diameter in the streaming model.

Our sketch is different from their data structure. We reduce the amount of time

required to process each point while using slightly more space.

In the sliding-window model, for a set of points in two dimensional space, we

show that we can construct a sketch of size O(1
ε3/2 log3 n(log R + log log n + log 1

ε
))

bits, where R is the maximum, over all windows, of the ratio of the diameter to the

minimum nonzero distance between any two points in the window. The diameter

of the points in the window can be ε-approximated using this sketch. Note that

the moving-points model and the sliding-window model are different and thus that

the results for maintaining the diameter in the moving-points model in [2] are not

directly comparable to our results in the sliding-window model.

The sketches trade the accuracy of the computation for the savings on the space.

30

The results computed using the sketches have bounded error. Our algorithms in

this chapter make only one-sided error. That is, the output D̂ of our algorithms

ε-approximates the true diameter D in that D ≥ D̂ ≥ (1 − ε)D. On the other

hand, we show that exact computation requires more space. Our lower bounds state

that computing the exact diameter for a set of n points in the streaming model or

maintaining it in the sliding-window model (with window width n) requires Ω(n)

bits of space.

Since our work in [40, 41], more has been done on geometric problems in the

streaming model. In [53], Hershberger et al. provide a streaming algorithm that

ε-approximates the diameter using O(1√
ε
) space and O(log(1

ε
)) time per point, thus

improving the space upper bound given by our approximation. The heart of their

algorithm is the computation of the convex hull of the adaptively sampled extrema.

The same convex hull is also used in [53] to approximate other properties, such as

enclosure and linear separation, of a stream of points. Using a technique similar to

ours, Cormode et al. [27] devised the radial histogram to estimate the diameter,

furthest neighbor, and convex hull of a stream of points. Furthermore, spatial joints

and spatial aggregation such as reverse-nearest neighbors can be estimated using

multiple radial histograms.

3.2 Sector-Based Diameter Approximation in the

Streaming Model

In this section, we provide a streaming algorithm for approximating the diameter of

a set of points in the plane.

A simple streaming adaptation of the algorithm of [2] gives an ε-approximation

of the diameter using O(1/
√

ε) space and time. Let l be a line and p, q ∈ P be two

31

points that realize the diameter. Denote by πl(p), πl(q) the projection of p, q on l.

Clearly, if the angle θ between l and the line pq is smaller than
√

2ε, |πl(p)πl(q)| ≥
|pq| cos θ ≥ (1 − θ2

2
)|pq| ≥ (1 − ε)|pq|. By using a set of lines such that the angle

between pq and one of the lines is smaller than
√

2ε, the algorithm can approximate

the diameter with bounded error. The adaptation can go through the input in one

pass, project the points onto each line, and maintain the extreme points for the lines.

Thus, it is a streaming algorithm.

However, the time taken per point by this algorithm is proportional to the number

of lines used, which is Ω(1/
√

ε). We now present an almost equally simple algorithm

that reduces the running time to O(log(1/ε)). Our basic idea is to divide the plane

into sectors and compute the diameter of P using the information in each sector.

Sectors are constructed by designating a point x0 as the center and dividing the

plane using an angle of θ. We show two sectors in Figure 3.1.

a’

a

b

b’

X 0

Sector
 j

Sector
i

θ

Figure 3.1: Two examples of sectors

The sectors have outer boundaries (the arcs aa′ and bb′ in the figure) that are

determined by the distance between the center and the farthest point from the center

32

Algorithm 3.1. Streaming Diameter

1. Take the first point of the stream as the center, and divide the plane
into sectors according to an angle θ = ε

2(1−ε)
, where ε is the error

bound. Let S be the set of sectors.

2. While going through the stream, for each sector record the point in
that sector that is the furthest from the center. Also keep track of the
maximum distance, Rc, between the center and any other point in P .

3. Let |ab| be the distance between points a and b. Define Dij
max = max |uv|

for u ∈ boundary arc of sector i and v ∈ boundary arc of sector j,
and define Dij

min = min |uv| for u ∈ boundary arc of sector i and
v ∈ boundary arc of sector j. Output max{Rc, maxi,j∈S Dij

min} as the
diameter of the point set P .

in that sector. The algorithm records the farthest point for each sector while it

goes through the input stream. The full description of the algorithm is given in

Algorithm 3.1. The algorithm’s space complexity is determined by the sector angle

θ.

Claim 1. The distance between any two points in sector i and sector j is no larger

than max{Rc, Dij
max}. (Here i could be equal to j.)

Proof. Consider sectors in Figure 3.1. Let u be a point in sector i and v be a point

in sector j. Extend x0u until it reaches the arc aa′. Denote the intersection point u′.

Also extend x0v until it reaches the arc bb′. Denote the intersection point v′. Then

we have |uv| ≤ max{|x0v|, |vu′|} ≤ max{Rc, |x0u
′|, |u′v′|} ≤ max{Rc, D

ij
max}. (In

the two inequalities above we have [twice] used the fact that if a, b, c occur in that

order on a line and d is some point, then |db| ≤ max(|da|, |dc|).

Claim 2. With notation as in Figure 3.1 and in the description of the algorithm,

Dij
max ≤ Dij

min + length(aa′) + length(bb′) ≤ Dij
min + 2Rc · θ.

33

Proof. Consider sectors in Figure 3.1. Let |uv| = Dij
max and |u′v′| = Dij

min. Because

u, u′ ∈ arc aa′ and v, v′ ∈ arc bb′, there is a path from u to v, namely u ∼ u′ ∼ v′ ∼ v.

Therefore Dij
max ≤ |uu′|+ Dij

min + |vv′| ≤ Dij
min + 2Rc · θ.

Assume that the true diameter diamtrue is the distance between a point in sector i

and another point in sector j. Let diam be the diameter computed by our algorithm.

We observe the following:

max{Rc, Dij
min} ≤ max{Rc, max

m,n∈S
Dmn

min} = diam ≤ diamtrue ≤ max{Rc, Dij
max}

Depending on the relationship between Rc and Dij
min, we consider two cases: In the

case where Rc ≥ Dij
min, we want Rc ≥ (1− ε)Dij

max in order to bound the error. This

leads to θ ≤ ε
2(1−ε)

. In the case where Rc < Dij
min, we want Dij

min ≥ (1 − ε)Dij
max.

Again, this leads to θ ≤ ε
2(1−ε)

. We will have O(1
ε
) sectors. Given the center and

another point, it takes O(log(1/ε)) time to identify the sector where the point is

located. We then have the following theorem:

Theorem 3.1. There is an algorithm that ε-approximates the 2-d diameter in the

streaming model using storage for O(1
ε
) points. In order to process each point, it

takes O(log(1/ε)) time.

The above algorithm does not work in the sliding-window model. In the streaming

model, the boundaries of sectors only expand. This nice property allows us to keep

only the extreme points. However, in the sliding-window model, the diameter may

decrease with different windows. One may need more information in order to report

the diameter for each window.

34

3.3 Maintaining the Diameter in the Sliding-Window

Model

In this section, we present a sliding-window algorithm that maintains the diameter

of a set of points in the plane. Note that by applying the projection technique

used in the diameter algorithm of [2], we can transform the problem of maintaining

the diameter in two-dimensional Euclidean space to the problem of maintaining the

diameter in one-dimensional space. Hence, we first consider the problem on a line.

In the sliding-window model, each point has an age indicating its location in the

current window. We call the recently arrived points new points and the expiring

points old points. We denote by |ab| the distance between point a and point b. We

also say that the distance r = |ab| is realized by points a and b. We may further say

that r is realized by a when it is not necessary to mention b or when b is clear in

context. In particular, we denote by diama the largest distance realized by a.

We first show that given a static window, the set of points in the window can be

compressed. In our main algorithm, we employ a subroutine for this purpose. We

call this subroutine the rounding subroutine. When invoked on a set of points, the

rounding subroutine produces a space-efficient representation for the set. We call

this representation a cluster. Once the cluster is constructed, the diameter of the set

of points can be approximated by computing the diameter of this cluster. We now

describe the rounding subroutine in detail. (Note that, for simplicity, we describe

here the rounding subroutine invoked on one set of points. In our main algorithm

that maintains the diameter in the sliding-window model, the rounding subroutine

will be invoked on different subsets of points in the window, as well as on the clusters,

which essentially are also sets of points.)

Given three points a, b, c and an approximation error of ε̂, if we treat point

35

c as a center (the coordinate zero), we can “round” point b to point a if |ac| ≤
|bc| ≤ (1 + ε̂)|ac| and a, b lie on the same side of c. For a set of points, we can

pick some point in the set as the center and round the other points in the same

manner. Let c be the point in the set picked as the center. Let d be the minimum

distance between c and any other point in the set. Consider the distance intervals

[c, t0), [t0, t1), [t1, t2), . . . , [tk−1, tk], such that |cti| = (1 + ε̂)id. The rounding subrou-

tine rounds down (moves) each point in the interval [ti, ti+1) to the location ti (Figure

3.2).

same on this side

......

Center
t0 t1 t2 t3 t4c

Figure 3.2: Rounding points in each interval

If multiple points are rounded to the same location, the subroutine keeps only

the newest one. There is at most one point in each of these intervals. The cluster

for this set of points consists of the center c and the points that are kept by the

subroutine after rounding them. Note that the points in a cluster are different from

the points in the original set. We say a point a in the cluster represents a point b

in the original set if b is rounded to the location of a by the rounding subroutine,

regardless of whether b is discarded. (We call the point a the representative point of

the original point b.) Note that a point a in the cluster may represent several points

in the original set that are rounded to its location. The location of the representative

point in the cluster may not be the same as the location of the point in the original

set.

The volume of a cluster is the number of points in the original set that are

represented by the cluster. We say a cluster is at level
 if the volume of the cluster

36

is 2�. The size of a cluster is the number of points in the cluster. Let D be the

diameter of a set of points. The size of the cluster constructed by invoking the

rounding subroutine on this set is at most:

k ≤ 2 log1+ε̂

D

d
= 2

log D/d

log e ln(1 + ε̂)
≤ 4

ε̂ log e
log

D

d

Hence, given a set of points with diameter D and an arbitary point c in the set, if

the nonzero minimal distance between c and any other point in the set is d and if the

approximation allows an error of ε̂, the rounding subroutine constructs a cluster. The

diameter of the set of points can be approximated by the diameter of this cluster.

The size of the cluster is upper bounded by 4
ε̂ log e

log D
d
. Also, we observe that there

may be a displacement between an original point in the set and its representative

point in the cluster. In this case, the representative point is always closer to the

center than the original point. Thus, we say that the point in the original set is

rounded (moved) “toward the center.”

Claim 3. When invoked on a set of points, the rounding subroutine constructs a

cluster that can be used to approximate the diameter of the set of points. If there is

a displacement between a point in the set and its representative point in the cluster,

the point will only be rounded (moved) toward the center of the cluster.

We now proceed to describe our main algorithm that maintains the diameter in

the sliding-window model. Recall that when the window slides forward, there are

new points added to the window as well as old points retiring from the window.

A cluster constructed for a set of points in a static window will not be useful for

approximating the current diameter if, after the construction of the cluster, some of

the points in the set have been deleted and some new points have been added. We

now analyze several problems that come from such additions and deletions and see

37

how they affect our main algorithm.

For a static set of points, by constructing the cluster we are able to represent a

point, say b, by another point, say a, because there is some distance (for example

|bc|) realized by b that promises a lower bound for any diameter that may be realized

by b, and the displacement (if any) because of rounding is at most ε̂|bc|. In the

sliding-window model, such a promise provided by the point c may be broken when

c expires. We observe that in the construction of a cluster, the distance from a point

to the center is used as the promised lower bound. To avoid the aforementioned

problem, when constructing clusters, we always use the newest point in the set as

the center.

Such clusters can successfully approximate the diameter if no additional points

are added to the window. The situation changes when a new point p is added. Note

that p is now the newest one in the current window. We cannot round p using

the original center of the cluster, which is older than p. Doing so will cause the

aforementioned problem. To maintain the property that the center of a cluster is the

newest point in the set represented by the cluster, we need to make p a new center.

The following is a straightforward way to do this: Essentially, a cluster is also a

set of points. Assume we have a cluster that represents all the points in the previous

window. Now the window slides forward and a new point arrives. We can delete the

expired point from the cluster and view the newly added point and the remaining

points in the cluster as a new set of points. We take the newly added point as the

center and invoke the rounding subroutine on this set. This then gives a new cluster.

However, this method is troublesome. Note that each time we do rounding, we

may introduce a certain displacement between a point and its representative point

in the cluster. The cluster approximates the diameter because such a displacement

is bounded by ε of a lower bound on the diameter that can be realized by the

38

point. If we update the center whenever we see a new point, we need to perform the

rounding process using the new center as well. Hence, each new point may cause

some displacement to each point. Although the amount of a single displacement is

bounded, the displacements will add up and cause large errors, i.e., the displacement

between the representative point and the original point becomes so large that the

error in the diameter estimation using the representative points is no longer bounded.

Because of these difficulties, we use multiple clusters in our main algorithm. The

multiple clusters serve two purposes: first, with multiple clusters, we can ensure that

the center of each cluster is the newest point in the set of points represented by that

cluster. More important, we use only a small number of clusters such that during

the time a point is in the window, the point and its representative points are only

subject to the rounding subroutine for a small number of times. Therefore, the total

displacement caused by invocations of the rounding subroutine can be controlled.

In the main algorithm, we maintain multiple clusters with the following proper-

ties:

1. A cluster represents an interval of points in the window (a contiguous subse-

quence of points within a time interval of the window). The newest point in

the interval is picked to be the center. The rounding subroutine is invoked on

this interval of points, and the resulting cluster represents these points in the

window interval.

2. The clusters are at levels 1, 2, . . . , �log n
.

3. We allow at most two clusters at each level.

4. When the number of clusters at level i exceeds 2, the oldest two clusters (where

the age of a cluster is determined by the age of its center) at that level are

merged to form a cluster at level i + 1.

39

Imagine a tree built on the original input points in a window. The points are

the leaves. Two consecutive points can form a node (a cluster) at level 1. Two

consecutive level-1 clusters can merge to form a node (a cluster) of level 2. This can

be repeated until we reach the top level. In this structure, the original input points

represented by a cluster are the leaves of the subtree rooted at the node corresponding

to that cluster. Note that at each level, we only keep at most two nodes (clusters).

The clusters form a cover of the window—that is, each original input point in the

window is represented by some cluster. The whole window can be represented by

O(log n) clusters. Figure 3.3 shows an example of the clusters built on a window.

level 3

level 2

level 1

level 0

level 4

cluster 3

cluster 2

cluster 1

cluster 4

Age

cluster 5,6

32 1

Current Window

Figure 3.3: Clusters built for the first window

When the window slides forward, new points are added to the window, and new

clusters are formed. To maintain the required number of clusters at each level,

clusters are merged whenever there are too many clusters at some level. Once a

cluster reaches the top level, it stays at that level. Points in this cluster will ultimately

be aged out until the whole cluster is gone.

In order to merge clusters c1 centered at Ctr1 and c2 centered at Ctr2 to form

cluster c3, we go through the following steps (we can assume w.l.o.g. c2 is newer than

40

c1):

1. Use Ctr2 as the center of newly formed cluster c3.

2. Discard the points in c1 that are located between the centers of c1 and c2.

3. After step (2), if any point p in c1 satisfies |pCtr2| < |pCtr1| ≤ (1+ε̂)|Ctr1Ctr2|,
discard p.

4. Let Pmerge consist of the remaining points of c1 and the points in c2. Invoke

the rounding subroutine on Pmerge with Ctr2 as the center. Note that the new

value of d is the nonzero minimal distance from Ctr2 to any other point in

Pmerge. It may be different from the one used in building the cluster c2. The

rounding subroutine may round down the points in cluster c2 too.

From step (4), we know that the new value of d is the nonzero minimal distance

between Ctr2 and any other point in Pmerge. Let pmin be this minimal distance

point. If pmin belongs to cluster c1, the distance |Ctr2pmin| may be much smaller

than the distance between the point Ctr2 and the original point(s) represented by

pmin. This happens because when the points are rounded to form the cluster c1, the

rounding is based on the distance between these points and the center Ctr1, not the

point Ctr2. Thus we can’t lower bound the value of d for the new cluster c3 by the

minimal distance between its center and any other original point whose representative

point is in the cluster. However, steps (2) and (3) assure that |Ctr2pmin| is at least

ε̂ · |Ctr1Ctr2|. Otherwise, pmin will be discarded. We know that the two points

Ctr1 and Ctr2 are at their original locations. Thus, d is bounded by ε̂ times the

minimal distance between the cluster center and any other original points whose

representative points are in the cluster. The lower bound for the whole window will

then be the minimum over all the clusters.

41

In both the rounding subroutine and the merging process, we may discard points.

We now show that if any of the discarded points has the potential of realizing the

diameter, it is represented by some representative point in the resulting cluster.

Lemma 3.1. In the rounding subroutine or in the merging process, if a point is

discarded, either it will not realize any diameter or it is represented (by some repre-

sentative point) in the cluster resulting from the rounding subroutine or the merging

process.

Proof. The case with the rounding subroutine is clear because a point b is discarded

only if there is already a representative point a in the cluster for b and the age of a

is smaller than that of b.

In the merging process, we discard two types of points. For two clusters c1 and

c2 with centers Ctr1 and Ctr2, the first type of points we discard are the points in c1

that are located between Ctr1 and Ctr2. Let p0 be such a point. Note that for any

distance realized by p0 and some other points p, there is a point p′ ∈ {Ctr1, Ctr2}
such that |pp′| > |pp0|. Hence, the first type of points we discard will not realize any

diameter. The second type of points we discard are the set of points S = {p : p ∈
c1 and |pCtr2| < |pCtr1| ≤ (1 + ε̂)|Ctr1Ctr2|}. For the points in S, Ctr2 is their

representative point in the new cluster resulting from the merging process.

Define a boundary point in a cluster to be an extreme point. (Because here the

points are on a line, the extreme point is the point having the largest [smallest]

coordinate.) We keep track of the boundary points for each cluster as well as the

boundary points for the whole window. Points may expire from the oldest cluster,

and this may require updating the boundary points of this cluster. The whole process

is summarized in Algorithm “sliding-window diameter.”

42

Algorithm 3.2. Sliding-Window Diameter

Update: When a new point arrives:

1. Check the age of the boundary points of the oldest cluster. If one of
them has expired, remove it and update the boundary point.

2. Make the newly arrived point a cluster of size 1. Go through the clus-
ters from the most recent to the oldest and merge clusters whenever
necessary according to the rules stated above. Update the boundary
points of the clusters resulting from merges.

3. Update the boundary points of the window if necessary.

Query Answer: Report the distance between the boundary points of the
window as the window diameter.

Call the time during which an original point is within some sliding window the

lifetime of that point. Let’s trace a point p through its lifetime. For simplicity, in

what follows, instead of saying that the original point p is represented by some point

in some cluster, we will just say that p is contained or included in that cluster. When

clusters merge, if the new representative point of p is located at a different location,

we will just say p has been rounded (“moved”) to a new location and there is a

displacement between the new and the old locations of p.

Let p0 be the original location of the point p and Ctr0 be the center of the first

cluster that includes the point p. When this cluster and some other cluster merge, p

could be rounded to a new location p1. Let Ctr1 be the center of the newly formed

cluster. If we continue this process, before p expires or is no longer represented by

any representative point in the window, we will have a sequence of p’s locations

p0, p1, . . . and corresponding sequence of centers Ctr0, Ctr1, Assume that at a

certain time t, p realizes the distance diamp. Let p0, p1, . . . , pt be the sequence of

p’s locations up to the time t and Ctr0, Ctr1, . . . Ctrt the corresponding sequence of

43

centers. We have the following claim:

p
0

p
1

p
3

p
2

p
4 Ctr1

Ctr2Ctr3

Ctr4

Figure 3.4: A point may be moved in each rounding, but all the displacements are
in the same direction.

Claim 4. If a point is rounded multiple times during its lifetime, all the displacements

because of rounding are in the same direction (Figure 3.4). That is, for all the

locations pi and all the corresponding centers Ctri, |p0Ctri| ≥ |piCtri|. Furthermore,

if a point realizes the diameter at a certain time, the distance between the original

point and any of its cluster centers up to that time is at most the distance of this

diameter. That is, for i = 1, 2, . . . , t, |p0Ctri| ≤ diamp.

Proof. Suppose that the first time p is rounded, it is rounded to the right. If now

p is rounded to the left for the first time on step i, then by Claim 3, Ctri−1 lies to

the right of p while Ctri lies to the left. Furthermore, p belonged to the cluster of

Ctri−1 before the merge. Hence, by our rules it would have been discarded, because

it lies between the two centers, and it belongs to the older cluster. Furthermore, as

shown in the proof of Lemma 3.1, such a point p will not realize the diameter and

would no longer be represented by any point in the clusters in the window.

Note that diamp is the true diameter realized by the point p. p0 is the original

location of p and for i = 1, 2, . . . , t, the center Ctri is also at its original location.

Furthermore, these centers are no older than the point p in the window. Hence, for

i = 1, 2, . . . , t, the diameter realized by p is at least the distance |p0Ctri|.

We bound the error in the rounding process by showing that for all i, |p0pi| is at

most an ε fraction of the diameter realized by p.

44

Each time we round a point, we may introduce some displacement or error. Let

erri+1 = |pipi+1| be the displacement introduced in the i + 1th merging. We have

the following lemma:

Lemma 3.2. The total rounding error of a point p, before it expires or is no longer

represented by any representative point in the window, is at most ε̂ log n · diamp.

Proof. We examine the two cases where there may be a displacement between pi

and pi+1. In the rounding case, we maintain |piCtri+1| ≤ (1 + ε̂)|pi+1Ctri+1|.
Hence, erri+1 = |pipi+1| ≤ ε̂|pi+1Ctri+1| ≤ ε̂|p0Ctri+1|, where the last inequality

is by Claim 4. The second case is step (3) of the merging process. If pi satisfies

the condition, it will be discarded. As stated in the proof of Lemma 3.1, in this

case, Ctri+1 becomes the new representative point of p. Hence, pi+1 is Ctri+1 and

erri+1 = |pipi+1| ≤ ε̂|CtriCtri+1| ≤ ε̂|piCtri|. By Claim 4, erri+1 ≤ ε̂|p0Ctri|.
A point may participate in at most log n merges. The total amount of displace-

ment is then at most
∑

i erri ≤ ε̂ log n · maxi |p0Ctri|. By Claim 4, we also have

diamp ≥ maxi |p0Ctri|. The lemma follows.

To bound the error by 1
2
ε, we make ε̂ ≤ ε

2 log n
. The number of points in a

cluster after rounding will then be O(1
ε
log n log D

d
). Note that for each cluster, d

is bounded by ε̂ times the minimal distance between the center of the cluster and

any other original point whose representative point is in the cluster. Denote by

R the maximum, over all windows, of the ratio of the diameter to the minimum

nonzero distance between any two original points in that window. Then log D
d
≤

log R + log 1
ε̂

= O(log R + log log n + log 1
ε
). The number of points in a cluster can

then be bounded by O(1
ε
log n(log R + log log n + log 1

ε
)).

Theorem 3.2. There is an ε-approximation algorithm for maintaining diameter in

one dimension in a sliding window of size n, using O(1
ε
log3 n(log R + log log n +

45

log 1
ε
)) bits of space, where R is the maximum, over all windows, of the ratio of the

diameter to the minimum nonzero distance between any two points in that window.

The algorithm answers the diameter query in O(1) time. Each time the window slides

forward, the algorithm needs a worst-case time of O(1
ε
log2 n(log R+log log n+log 1

ε
))

to process the incoming point. With a slight modification, the algorithm can process

incoming points with O(log n) amortized time using O(1
ε
log2 n(log n + log log R +

log 1
ε
)(log R + log log n + log 1

ε
)) bits of space.

Proof. By Lemma 3.1, any point that may realize the diameter for some window

has a representative point in one of the clusters we maintain. We now calculate the

error in reporting the diameter using these representative points. Set ε̂ ≤ ε
2 log n

. By

Lemma 3.2, for a point p and the diameter diamp realized by p, the displacement

between the original location of p and the location of its representative points is

at most ε̂ log n · diamp ≤ ε
2
diamp. Because our algorithm reports the diameter

realized by the representative points, such a displacement causes error in our diameter

approximation. Note that each of the two representative points that realize the

reported diameter may introduce an error at most ε
2

of the true diameter. Hence,

the diameter reported by our algorithm is at least (1− ε) of the true diameter. Also

note that the reported diameter is at most the true diameter. Otherwise, let p and

p′ be the two original points whose representative points R(p) and R(p′) realize the

diameter reported by our algorithm. Then |pp′| < |R(p)R(p′)|. By Claim 3, the

displacement between the location of p (or p′) and the location of R(p) (or R(p′)) is

caused by rounding (multiple times) p (or p′) toward some center(s). Hence, there

exists at least one center c such that |R(p)c| or |R(p′)c| is larger than |R(p)R(p′)|.
This contradicts the fact that |R(p)R(p′)| is the diameter reported by our algorithm.

We now analyze the time and space requirement of our algorithm. For each

cluster, we maintain the following information:

46

1. The exact location of the center and the exact location of the point closest to

(but not located at) the center.

2. The age of all the points.

3. The relative positions of all the points other than the center.

The relative positions of all the points in a cluster can be encoded by a bit vector.

We may need log n bits of space to record the age in the current window for each

point. Thus, we need O(log n) bits for each cluster point except the center. There

are at most O(1
ε
log n(log R + log log n + log 1

ε
)) points in each cluster. The space

requirement for storing the information in items (2) and (3) for the whole cluster

is then O(1
ε
log2 n(log R + log log n + log 1

ε
)). Because we assumed that this space is

much larger than the space required to store two points, we can neglect the latter

(the space for information in item (1)). Given that there are O(log n) clusters, the

total space requirement will be O(1
ε
log3 n(log R + log log n + log 1

ε
)) to maintain the

diameter.

In order to report the diameter at any time, we maintain the two boundary points

for the window while we maintain the clusters. For each cluster, we need only to

look at its boundary points, and thus the process of updating the sliding window’s

boundary points will only cost O(logn) time.

However, while updating the clusters, we may face a sequence of cascading merges.

In the worst case, we may need to merge O(log n) clusters with O(1
ε
log n(log R +

log log n + log 1
ε
)) points in each. This requires time O(1

ε
log2 n(log R + log log n +

log 1
ε
)).

If a bit vector is used to specify the relative locations of the points in a clus-

ter, when we process the cluster during merging we may need to go through the

zero entries in the vector. This could be a waste of time if the vector is sparse.

47

We can directly specify the relative location of a point instead. Because there

are O(1
ε
log n(log R + log log n + log 1

ε
)) different locations, we need an additional

O(log 1
ε

+ log log n + log log R) bits, besides the O(log n) bits stated above, for each

point in a cluster. The space requirement for each point in a cluster will then be

O(log n + log log R + log 1
ε
). With this modification, when merging two clusters, we

are free of overhead other than processing the points in the clusters. During a point’s

lifetime, it will take part in at most log n merges. Thus, a simple analysis can show

that the amortized cost for updating is now only O(logn).

To extend the algorithm to 2-d, we can apply the projection technique. We use a

set of lines and project the points in the plane onto the lines. We guarantee that for

any pair of points, they will project to a line with angle θ such that 1 − cos θ ≤ ε
2
.

This will require O(1√
ε
) lines. We then use our diameter-maintenance algorithm on

lines to maintain the diameter in the 2-d case.

As pointed out by [19], one problem we need to take care of here is that the

distance between two points in the two-dimensional space, when projected onto some

line, can be made arbitrarily small. Therefore, the R value is not controlled. To avoid

this, we keep the exact locations of the two newest points in the current window. Let

the distance between them be d. Recall that in step 3 of the merging process, the

distance between the two centers of the clusters to be merged, |Ctr1Ctr2|, is used in

deciding whether a point should be discarded. Here, when we extend the algorithm

to the two-dimensional space, we use d in place of |Ctr1Ctr2| in the merging process.

The second change we make to step 3 of the merging process is that we consider

the points on both sides of the center Ctr2 in terms of whether they should be

discarded. Therefore, the condition for discarding a point p in the one-dimensional

case, |pCtr2| < |pCtr1| ≤ (1 + ε̂)|Ctr1Ctr2|, becomes |pCtr2| ≤ ε̂d in the two-

dimensional case. With this modification, the R value is preserved because d is

48

always a true value of the distance between some points in the window.

Theorem 3.3. There is an ε-approximation algorithm for maintaining diameter in

2-d in a sliding window of size n using O(1
ε3/2 log3 n(log R + log log n + log 1

ε
)) bits

of space, where R is the maximum, over all windows, of the ratio of the diameter to

the minimum nonzero distance between any two points in that window.

3.4 Lower Bounds

It is well known that the set-disjointness problem has linear communication complex-

ity [59] and thus a linear-space lower bound in the streaming model. (These lower

bounds apply to randomized protocols and algorithms as well.) One can map the set

elements to points on a circle such that the diameter of the circle will be realized if

and only if the corresponding element is presented in both sets. This reduction gives

the following theorem:

Theorem 3.4. Any streaming algorithm that computes the exact diameter of n

points, even if each point can be encoded using at most O(log n) bits, requires Ω(n)

bits of space.

Proof. We reduce the set-disjointness problem to a diameter problem. Recall that

the set-disjointness problem is defined as follows: Given a set U of size n and two

subsets x ⊆ U and y ⊆ U , the function disj(x, y) is defined to be “1” when x∩y = φ

and “0” otherwise. The corresponding language DISJ is the set {(x, y)|x ⊆ U, y ⊆
U, x ∩ y = φ}.

The set-disjointness problem has a linear communication-complexity lower bound.

Because a streaming algorithm can be easily transferred into a one-round commu-

nication protocol, the linear communication-complexity lower bound gives a linear

space lower bound for the set-disjointness problem in the streaming model.

49

Consider points on a circle in the plane. For a given point pi, there is exactly one

other point on the circle such that the distance between it and pi is exactly equal

to the diameter of the circle. Denote this antipodal point p′i. The distance between

pi and all other points on the circle is smaller than the distance between pi and p′i.

We map each element i ∈ U onto one such antipodal pair. We further make the

appearance of one point in the pair correspond to the appearance of the element i

in subset x and the appearance of the other point correspond to the element i in y.

We will have both points pi and p′i only if the element i is in both subsets x and y.

Given an instance (x, y) of DISJ, we construct an instance of the diameter problem

according to the above principle. We give an example in Figure 3.5.

P

P

P

P’1

3

4

R
epresents x=

1011

R
ep

re
se

nt
s

y=
11

00

y

x

P’

1

2

Figure 3.5: Reduction from DISJ to diameter

The solid squares in the figure are the points we put into the diameter instance.

The DISJ instance in Figure 3.5 is x, y, where x = 1011 and y = 1100. The diameter

instance contains p1, p3, p4, because x = 1011, and p′1, p′2, because y = 1100. The

dashed circles in the figure show the location for p2, p
′
3, p

′
4. Because x2 = 0 and

y3 = y4 = 0, these points are not presented in the stream.

50

In the example, element 1 is in both x and y. The diameter of the point set

constructed is |p1p
′
1| and is exactly the diameter of the circle. On the other hand, if

x∩ y = φ, the diameter of the point set will be strictly smaller than the diameter of

the circle. Thus, an exact algorithm for the diameter problem could be used to solve

the set-disjointness problem.

We remark that in the above construction, each point in the input stream may be

encoded using at most O(log n) bits. Hence, Theorem 3.4 gives a space lower bound

of Ω(n) bits for a stream of length O(n log n) bits.

For a positive number ε ≤ 1
π2 , consider the same construction with a set of at

most 1√
ε

points. Let xε and yε be the two sets represented by these points and let

the diameter of the circle used in the construction be 1. If xε ∩ yε 	= φ, the diameter

of the set of points is 1 while if xε∩yε = φ, the diameter would be at most cos(π
√

ε).

Because 1 − cos(x) ≥ 1
2
x2 − 1

24
x4 ≥ 11

24
x2, 1 − cos(π

√
ε) ≥ 11π2

24
ε ≥ 3ε, a streaming

algorithm that can (1± ε)-approximate the diameter will be able to distinguish the

two cases and thus solve the set-disjointness problem on the two sets xε and yε. Such

a streaming algorithm requires Ω(1√
ε
) bits of space.

In the sliding-window case, we have a similar bound even for points on a line.

Obviously the lower bound holds for higher dimensions as well.

Theorem 3.5. To maintain, in a sliding window of size n, the exact diameter of a

set of points on a line, even if each point in the set can be encoded using O(log n)

bits, requires Ω(n) bits of space.

Proof. Consider a family F of point sequences of length 2n−2. Let {a1, a2, . . . , a2n−2}
be a sequence in F . Because ai is a point in one dimension, we denote by ai the

point as well as the coordinate (a real number) of the point. The sequences in the

family F have the following properties:

51

1. For i = n, n + 1, . . . , 2n − 2, ai is located at coordinate zero, i.e., ai = 0.

Furthermore, an−1 = 1.

2. |a1an| ≥ |a2an+1| ≥ |a3an+2| ≥ . . . ≥ |an−1a2n−2|, i.e., a1 ≥ a2 ≥ a3 ≥ . . . ≥
an−1.

3. The coordinates of the points aj, for j = 1, 2, . . . , n − 2, are picked from the

set {2, 3, . . . , n}.

For a window that ends at point as, the diameter is exactly the distance |asas+n−1|.
Any two members of the family will have different diameters for a window that ends

at as, for some s ∈ {1, 2, . . . , n − 2}, where the coordinates of as differ in the two

sequences. Thus, an algorithm that maintains the diameter exactly has to distinguish

any two sequences in F .

We need to assign values for the n − 2 coordinates a1 ≥ a2 ≥ . . . ≥ an−2. By

Property (3), we have n−1 possible values to choose. (We may assign the same value

to multiple coordinates.) The number of such assignments (and thus the number of

sequences in F) is
(

n−2+n−2
n−2

) ≥ 2n/2. Hence, the algorithm needs log |F | = Ω(n)

space.

We remark that in this family F , the nonzero minimal distance between any two

points in a sequence is at least 1. For each sequence, the ratio of the diameter over

the nonzero minimal distance between any two points is at most n. Hence, the lower

bound holds without the requirement of an extremely large R.

If we change the form of the coordinates of aj for j = 1, 2, . . . , n− 2 to (1 + ε)3k

while respecting the Property (2) above, a similar family of point sequences can be

constructed for ε-approximation algorithms. We have the following lower bounds for

approximation from this modified family of point sequences.

52

Theorem 3.6. Let R be the maximum, over all windows, of the ratio of the diameter

to the minimum nonzero distance between any two points in that window. To ε-

approximately maintain the diameter of points on a line in a sliding window of size

n requires Ω(1
ε
log R log n) bits of space if log R ≤ 3 log e

2
ε · n1−δ, for some constant

δ < 1. The approximation requires Ω(n) bits of space if log R ≥ 3 log e
2

ε · n.

Proof. Once again consider the family of point sequences in the proof of Theorem 3.5.

We make the following change: The coordinates of the points aj for j = 1, 2, . . . , n−2,

have the form (1+ε)3k, for some k ∈ {1, 2, . . . , �1
3
log(1+ε) R
 = m}. These coordinates

are chosen so as to respect Property (2) in the proof of Theorem 3.5. Note that

2
3 log e·ε log R ≥ m ≥ 1

3 log e·ε log R, for ε sufficiently small, because ε/2 ≤ ln(1 + ε) ≤ ε.

Depending on the value of log R, we consider two cases:

1. log R ≤ 3 log e
2

ε · n1−δ for some constant δ < 1. By a similar argument to the

one given in the proof of Theorem 3.5, the space requirement will now be lower

bounded by:

log

(
m− 1 + n− 2

m− 1

)
= Ω(m log

n

m
) = Ω(

1

ε
log R(δ log n))

= Ω(
1

ε
log R log n)

2. log R ≥ 3 log e
2

ε · n. In this case, m ≥ n
2
. We can always choose from n

2
different

values for the coordinates of the points a1, . . . , an−2. (Same value can be chosen

for multiple coordinates.) The space requirement will be lower bounded by

log

(
n/2− 1 + n− 2

n/2− 1

)
= Ω(

n

2
· log 2) = Ω(n)

53

3.5 Closest Pair and K-Promised Convex Hull

In this section, we consider two problems that are related to the diameter problem.

The first problem we consider is the closest-pair problem. The diameter problem

finds the maximum of the pairwise distance. The closest-pair problem finds the

minimum.

Definition 3.1. The Closest Pair is the pair of points in the input stream the

distance between which is the minimum among all pairwise distances in the stream.

Theorem 3.7. Any exact streaming algorithm for the closest pair requires Ω(n)

memory bits.

Proof. Again, we reduce from set disjointness. Consider points in one-dimensional

space. Construct a stream of this type of points from the disjointness instance. Given

(x, y) as an instance of disjointness, if the ith bit of x is “1,” add to the stream the

point with coordinate i. If it is “0,” add nothing. For the subset y, if the ith bit of

y is “1,” the point i− ε is added, and, if it is “0,” nothing is added.

If x ∩ y = φ, the minimal pairwise distance will be 1 − ε. On the other hand,

if x ∩ y 	= φ, the minimal distance will be ε. By solving the closest-pair problem

exactly, we could thus solve the set-disjointness problem.

Unlike the diameter problem, constant-factor approximation of the closest-pair

problem is not easy. If there were an algorithm that approximated the minimum

distance within some factor ε′, one could always manipulate the ε in the stream con-

struction described above such that a proper ε could always be chosen to guarantee

that the approximation would allow us to distinguish the case of x∩ y 	= φ from the

case of x ∩ y = φ.

54

Definition 3.2. The Convex Hull of a set of points is the smallest convex set

containing the points.

Definition 3.3. The K-promised convex-hull problem is a convex-hull problem

in which the input point set is guaranteed to admit a convex hull with at most K

sides.

We use a reduction from the index problem to show that the space requirement

for K-promised convex hull is Ω(n).

Theorem 3.8. One-pass streaming algorithms for K-promised convex hull require

Ω(n) space.

Proof. Given a bit vector S of length n, an algorithm that solves the index problem

must return the bit Si for some specified index i. Consider the points on two con-

centric circles, one of radius r and the other of radius r − ε. For a point ai on the

inner circle, there is a point a′
i on the outer circle such that the center of the two

circles lies on the line aia
′
i. Call the pair (ai, a

′
i) a “unit.” We map the bits in S

to the units. Namely, if Si = 1, we put the point a′
i into the stream. Otherwise, ai

is added. We do this for all the bits in S. Note that different bits are mapped to

different units that are distributed evenly along the circles. The result of this is a

stream of points. At the end of the input, the index i is revealed. We add another

k− 1 free points (i.e., points that can be placed anywhere besides the circles) to the

stream. The purpose of the k − 1 points is to build a convex set that includes the

circles and uses exactly one point on one of the circles.

Figure 3.6 gives us an example of such a construction. Again, the solid squares are

the points we add to the stream. The example input bit vector is S = 0001110011.

The index i = 0 and four free points p1, p2, p3, and p4 are placed such that the

55

0001110011S=

PP 23

a

P1P4

0

a

a

a1

2

3

5

6a’

a’a’4

. .
 .

. .
 .

Figure 3.6: Convex hull using only one point on the circles

convex hull of the point set will be p1, p2, p3, p4 and a0 or a′
0. In the example, the

hull consists of {p1, p2, p3, p4, a0}.
There will be only one point on the hull that is not in the set {p1, p2, p3, p4}.

Once the convex hull is found, we can locate this point and deduce the bit value of

Si by calculating the distance from this point to the center of the circles.

Thus an algorithm that solved the k-promised convex-hull problem could be used

to solve the index problem as well.

3.6 Conclusions

The study of stream algorithms for basic problems in computational geometry is im-

portant for better understanding the computational power of the streaming model.

We initiate the study of computational-geometry problems in the streaming and

sliding-window models. In particular, we study the diameter problem in the stream-

ing and the sliding-window models. We show that exact computation cannot be

achieved using o(n) bits of space. We also devise approximation algorithms that give

results with bounded error but use much smaller space.

56

Subsequent to our work in [40, 41], more computational-geometry problems have

been studied and algorithms and lower bounds provided in [53, 27, 56]. On the other

hand, there are several problems that are still open. For example, we use a sliding-

window model that has a fixed window size. In some applications, it is desirable

that the window size vary or be approximated, as in the work on elastic windows

by Shasha and Zhu [83]. In general, we believe that it would be interesting to study

computational-geometry problems in models with variable window size.

57

Chapter 4

Massive Data Streams in Graph

Theory

4.1 Massive Graphs and Streaming

Many real world networks, e.g., telecommunications networks and the World Wide

Web, can be modeled as massive graphs. Also in applications such as structured data

mining, the relationships among the data items in the data set are represented as

graphs. Many application problems can be modeled as graph problems. It is impor-

tant to investigate graph-theoretic problems in order to understand the streaming

computational model.

We consider undirected graphs in this chapter. The graphs can be weighted—

i.e., there can be a weight function w : E → R
+ that assigns a non-negative weight

to each edge. Unless stated otherwise, in this chapter, we denote by G(V, E) an

undirected, unweighted graph G with vertex set V = {v1, v2, . . . , vn} and edge set

E = {e1, e2, . . . , em}. Note that n is the number of vertices and m the number of

edges.

58

Definition 4.1 (Graph Stream). A graph stream is a sequence of edges ei1 , ei2 , . . . , eim,

where eij ∈ E and i1, i2, . . . , im is an arbitrary permutation of [m] = {1, 2, . . . , m}.

While an algorithm goes through the stream, the graph is revealed one edge at a

time. This definition generalizes the streams of graphs in which the adjacency matrix

or the adjacency list is presented as a stream. In a stream in the adjacency-matrix

or adjacency-list model, the edges incident to each vertex are grouped together. Our

model of graph streams is more general and can account for graphs such as call

graphs where the edges might be generated in any order.

Recall that the salient features of a streaming algorithm are:

1. sequential access to the data stream;

2. small workspace compared to the length of the stream;

3. fast per-element processing time;

4. a small number of passes through the stream.

We remark that while previous streaming algorithms share these features, the quan-

tities that define “small” in features (2) and (4) vary from algorithm to algorithm.

For example, most streaming algorithms use polylogn space on a stream of length

n. The streaming-clustering algorithm in [51], however, uses O(nε) space. Also, the

“streaming”1 algorithm in [30] uses space O(
√

n). Most streaming algorithms access

the input stream in one pass, but there are also multiple-pass algorithms [67].

Therefore, we give a more general definition of the streaming model in Chapter

2. Recall that there are three important complexity measures in our definition:

the workspace size, the per-element processing time, and the number of passes that

the algorithm needs to go through the stream. We consider the following ranges

1Instead of “streaming,” the authors of [30] use the term pass-efficient algorithms.

59

for these complexity measures: the workspace size is bounded by O(nε). The per-

element processing time is O(nδ), and polylog(n) is preferred. (ε and δ are two small

constants.) The number of passes is O(1), and a one-pass algorithm is preferred.

We view the three measures as three parameters of the streaming model. We

now demonstrate that for massive graphs, it is necessary to examine the streaming

model with respect to different values of the parameters. In particular, the polylog-

space streaming model is too limited for graph problems and we need more space.

To see this, consider the following simple problem. Given a graph, determining

whether there is a length-2 path between two vertices, x and y, is equivalent to de-

ciding whether two vertex sets, the neighborhood of x and the neighborhood of y,

have a nonempty intersection. Because set disjointness has linear-space communi-

cation complexity [59], the length-2 path problem is impossible in the polylog-space

streaming model. See [16] for a more comprehensive treatment of finding common

neighborhoods in the streaming model. Here we extend the above length-2 path

problem to show the following:

Theorem 4.1. For all 1 ≤ k(n) = o(n), any streaming algorithm that k(n)-approximates

the distance between a fixed pair of vertices in a constant number of passes must use

Ω(n) bits of space.

Proof. Consider an n-vertex graph and two fixed vertices x and y of the graph. The

graph also includes a path (x, p1), (p1, p2), . . . , (pt, y), and another set of vertices U ,

where t = Θ(n) and |U | = Θ(n). There are edges between x and some of the vertices

in U . Let Ux denote the set of neighbors of x in U . There are also edges between

y and some of the vertices in U . Let Uy denote the set of neighbors of y in U .

(See Figure 4.1 for an example.) Note that any streaming algorithm that can k(n)-

approximate the distance between x and y is also able to decide whether the two

60

P5

P4

P3

P2

U

P1

yx Uy
Ux

Figure 4.1: The distance between x and y is 6 if there is no common neighborhood
of x and y. Otherwise (if the dash-dotted edge exists), the distance is 2.

sets Ux and Uy are disjoint, i.e., whether there is a common neighborhood of x and

y. Due to Buchsbaum et al. [16], the problem of deciding whether a pair of vertices

in a graph has a common neighbor, in the streaming model using a constant number

of passes, has space complexity Ω(n).

We remark that our streaming model with the parameters taking a broader range

of values is also a generalization of the semi-streaming model [68, 37], in which the

space restriction is O(n · polylogn), and the pass-efficient model [30], in which the

algorithms can go through the data stream multiple times. In [1], the authors also

introduce the semi-external model for computations on massive graphs, i.e., one in

which the vertex set can be stored in memory, but the edge set cannot. However,

their work addresses the problems in an external memory model in which random

access to the edges, although expensive, is allowed. The authors of [61] argue that

one of the major drawbacks of such algorithms, when applied to massive Web graphs,

is their need to have random access to the edge set. Furthermore, in situations where

the graph is revealed in a streaming fashion, such as a Web crawler exploring the

Web graph, the streaming model is more suitable.

61

4.2 The Shortest-Path-Distance Problem and Graph

Spanners

A path from x to y in an undirected graph G = (V, E) is a sequence of edges

e1, e2, . . . , ek such that e1 = (x, v1), e2 = (v1, v2), e3 = (v2, v3) . . . , ek = (vk−1, y). For

such a path P , we say P connects the vertices x and y. If G is an unweighted graph,

the length of the path P is the number of edges on the path. If G is a weighted

graph with weight function w, the length of the path is the sum of the weights of the

edges on the path, i.e.,
∑

e∈P w(e). The shortest-path distance between x and y is

the length of the shortest path that connects x and y. Note that there may be more

than one such shortest path. Because the shortest-path distance is the only distance

considered in this chapter, in many places, we will omit the phrase “shortest path”

and simply call it the distance between x and y.

The shortest-path problem is a fundamental problem in graph theory. It has been

intensively studied and there are many variations of the problem. For example, the

single-source, shortest-paths problem (SSSP) asks to find the shortest paths from

a particular vertex to all other vertices in the graph. The all-pairs, shortest-paths

problem (APSP) asks to find the shortest paths between all pairs of vertices. The

associated shortest-path-distance problems ask to find those distances. It is not

required, in these problems, to compute the paths.

There are two major approaches for computing shortest-path distances. One

approach involves matrix computation. The graphs are represented as adjacency

matrices, and the distances are computed using matrix multiplications. It is difficult

to adapt such an approach to the streaming model. This is so because it is difficult to

perform exact matrix computation in a streaming fashion. Moreover, although there

are approximate matrix computations in the streaming model, they do not guarantee

62

that all the entries in the approximation matrix are within the error bound. That is,

the computations ensure that the norm of the approximation matrix is close to the

norm of the true result. However, an individual entry in the approximation matrix

can be quite far away from the true value. Clearly, such an approximation is not

suitable for computing graph distances.

The second approach is combinatorial. Although there are many algorithms that

fall into this category, most of them share one common feature: that is, they employ

subroutines that resemble breadth first search (BFS). For an unweighted, undirected

graph, a BFS may start from a given vertex. It first finds all the vertices that are one

hop, i.e., one edge, away from this vertex. Then it continues to find all the vertices

that are two hops away, then all the vertices that are three hops away, etc. During

this process, it also builds a BFS tree for the graph. The BFS tree is rooted at the

starting vertex. The vertices at depth i in the tree, i.e., at distance i from the root

of the tree, are also the vertices that are at distance i from the starting vertex in the

original graph. If we view the vertices at the same distance from the given vertex as

a layer, the BFS explores the graph in a layer-by-layer fashion. The (i + 1)-st layer

is discovered after the i-th layer has been discovered.

Consider the algorithms for computing single-source, shortest-path distances, for

example Djkstra’s algorithm and the Bellman-Ford algorithm. Although technically

more involved, they bear a certain similarity to BFS. These algorithms modify the

search such that they can deal with other properties of the graphs, such as weighted

edges, negatively weighted edges, etc. If we follow the algorithms in their processes

of finding the shortest paths, we observe that the vertices are explored in a BFS-

like fashion. That is, the vertices closer to the starting vertex are explored (settled)

before the vertices that are farther from the starting vertex. In addition to exact

computations, BFS-like explorations are commonly seen in algorithms that compute

63

the approximations of the all-pairs, shortest-path distances. For example, the algo-

rithms in [76, 4] all use BFS-like subroutines.

Intuitively, BFS does not fit well with streaming. In the worst case, one may need

to go through the whole stream of edges to grow one layer of the BFS tree. This

happens when the edges that lead to the vertices on the next layer are scattered along

the stream. The complete discovery of a whole layer then requires the algorithm to

examine the whole stream. Because the algorithm does not have enough space to

store all the edges, a depth-k BFS tree, in the worst-case scenario, will cost k passes

through the stream. This is a basic difference between graph-distance computations

in the traditional model and in the streaming model. This makes it difficult to adapt

the traditional algorithms to the streaming model.

On the other hand, we observe that there is a structure called a graph spanner

that is used widely in approximations of graph distances. An undirected graph

G = (V, E) induces a metric space U in which the vertex set V serves as the set of

points, and the shortest-path distances serve as the distances between the points.

The graph spanner G′ = (V, H), H ⊆ E, is a sparse skeleton of the graph G whose

induced metric space U ′ is a close approximation of the metric space U of the graph

G. That is, the distance between two vertices in G′ is not far from the distance

between the same two vertices in G. For example, a subgraph G′ = (V, H), H ⊆ E

is a (multiplicative) t-spanner of the graph G, if for every pair of vertices u, v ∈ V ,

distG′(u, v) ≤ t · distG(u, v) (where distG(u, v) stands for the distance between the

vertices u and v in the graph G). The stretch factor of a spanner is the parameter(s)

that determines how close the spanner approximates the distances in the original

graph, e.g., in the case of a t-spanner, the parameter t.

In the computation of graph distances, because a graph spanner is a sparse skele-

ton, a straightforward algorithm that runs on the spanner can be more efficient than

64

a sophisticated algorithm that runs on the original graph. Therefore, an efficient

spanner construction often leads to efficient graph-distance approximations: One can

construct a graph spanner first and, using the spanner, compute the approximate dis-

tances in a straightforward way. We observe that a similar approach can be applied

in the streaming model if there is a streaming algorithm that constructs the spanner.

In this case, a spanner is a sketch in the streaming model. A streaming algorithm

constructs the sketch (the spanner) first, then computes the distance approximation

using this sketch. As we discussed in Chapter 2, a streaming algorithm may per-

form pre- or post-processing. During such processing the algorithm has access to

the workspace but not to the input stream. These are essentially computations in

the traditional model. Therefore, the algorithm can use BFS-like subroutines during

the post-processing, when it approximates the graph distances using the sketch (the

spanner). In other words, the streaming distance approximation first constructs a

spanner, then computes the distances in a straightforward way on the spanner. This

approach still needs BFS-like subroutines. However, the BFS is performed on the

sketch in the workspace, not on the graph in the stream.

Unfortunately, many algorithms for spanner construction also require multiple

BFS-like explorations on the graph [24, 32]. In these spanner constructions, the

algorithms often need distance information about some part of the graph. And

BFS-like explorations are used to compute such distance information. This situation

happens in many algorithms and we will encounter it repeatedly in this chapter when

we compare our constructions to others. Because BFS is difficult in the streaming

model, the sketch-based approach works only if there are novel spanner construc-

tion methods that either constrain the depth of the BFS exploration to be constant

or totally avoid BFS. We present such constructions in this chapter. This is the

heart of our work and is our main contribution to the knowledge of graph-distance

65

computations in the streaming model.

Before presenting our two main algorithms, we first show a simple streaming

algorithm that constructs a particular spanner. The algorithm is an adaptation

of the construction in [7]. It displays a certain connection between the girth of a

graph and the spanner. (The girth of a graph is the length of the shortest cycle

in the graph.) However, we remark that the algorithm needs more than O(n) time

to process an edge. Such a processing time is prohibitively high for the streaming

model.

For an unweighted graph, a (log n/ log log n)-spanner S can be constructed in one

pass in the streaming model: Because a graph whose girth is larger than k have at

most �n1+2/(k−2)� edges [14, 31, 5], the algorithm constructs S by adding an edges in

the stream to S if the edge does not cause a cycle of length less than log n/ log log n in

the spanner S constructed so far. Note that if we discard an edge, we do so because

it causes a cycle of length less than log n/ log log n. That is, in S, there is a path P

of length at most log n/ log log n that connects the two endpoints of this edge. Any

shortest path in the original graph that uses this edge can be replaced by a path in

S that uses P . Therefore, S is a log n/ log log n spanner of the original graph. For a

weighted graph, however, the construction in [7] requires sorting the edges according

to their weights, which is difficult in the streaming model. Instead of sorting, we use

a geometric grouping technique to extend the spanner construction for unweighted

graphs to a construction for weighted graphs. This technique is similar to the one

used in [25]. Let ωmin be the minimum weight and let ωmax be the maximum weight.

We divide the range [ωmin, ωmax] into intervals of the form [(1+ε)iωmin, (1+ε)i+1ωmin)

and round all the weights in the interval [(1 + ε)iωmin, (1 + ε)i+1ωmin) down to (1 +

ε)iωmin. For each induced graph Gi = (V, Ei), where Ei is the set of edges in E whose

weight is in the interval [(1 + ε)iωmin, (1 + ε)i+1ωmin), a spanner can be constructed

66

in parallel using the above construction for unweighted graphs. The union of the

spanners for all the Gi, i ∈ {0, 1, . . . , log(1+ε)
ωmax

ωmin
−1}, forms a spanner for the graph

G. Note that this can be done without prior knowledge of ωmin and ωmax. Our goal

is to break the range [ωmin, ωmax] into a small number of intervals. Given any value

ω ∈ [ωmin, ωmax], we can use the set of intervals of the form [(1 + ε)iω, (1 + ε)i+1ω)

and [ω
(1+ε)i+1 ,

ω
(1+ε)i). Therefore, we can determine the intervals without the prior

knowledge of ωmin and ωmax.

Theorem 4.2. For ε > 0, and a weighted, undirected graph on n vertices, whose

maximum edge weight, ωmax, and minimum edge weight, ωmin, there is a streaming

algorithm that constructs a (1 + ε) log n-spanner of the graph in one pass. The al-

gorithm uses O(log1+ε
ωmax

ωmin
· n log n) bits of space and the worst-case processing time

for each edge is O(n).

Once we have the spanner, the distance between any pair of vertices can be

approximated by computing their distance in the spanner. The diameter of the

graph can be approximated by the spanner diameter too. Note that if the girth

of an unweighted graph is larger than k, it can be determined exactly in a k-

spanner of the graph. The construction of the log n/ log log n-spanner thus provides

a log n/ log log n-approximation for the girth.

67

4.3 Distance Approximation in Multiple Passes

4.3.1 Graph Spanners and Distributed Computing

Spanners are found particularly useful in the following (henceforth called distributed)

model of computation. In this model every vertex of an n-vertex graph G = (V, E)

hosts a processor with unbounded computational power but only limited knowledge.

Specifically, it is assumed that in the beginning of the computation every processor

v knows only the identities of its neighbors. The communication is synchronous and

proceeds in discrete pulses called rounds. In each round each processor is allowed to

send short (possibly different) messages to all its neighbors. The (worst-case) running

time of a distributed algorithm is the (worst-case) number of rounds required for the

algorithm to complete its execution. Spanners serve as an important tool in the

design of distributed algorithms, and particularly, they are used for routing [70, 24],

for constructing synchronizers [70, 10], and for computing almost-shortest paths [32].

For all these applications it is crucially important that the spanner be part of the

original network so that the processors can communicate over its links. In particular,

the processors can execute over the links of a spanner any protocol that was designed

for arbitrary networks. Also, since a spanner approximates the distances in the origi-

nal network, the execution of a protocol on a spanner is almost as time-efficient as its

execution on the original network (spanned by the spanner). However, since spanners

are typically much sparser than the networks they span, an execution of a protocol

on a spanner is typically much more communication-efficient than the correspond-

ing execution on the original network. These properties make spanners extremely

valuable in the design of distributed protocols, and raise the problem of designing

efficient distributed protocols for constructing spanners with good parameters.

In the 1990s most research on spanners and their applications focused on span-

68

ners whose metric space distorts the original metric space by at most a constant

multiplicative factor, i.e., multiplicative spanners. A fundamental theorem concern-

ing multiplicative κ-spanners, that was proven by Peleg and Schäffer [69], says that

for every n-vertex graph G = (V, E) and a positive integer κ = 1, 2, . . ., there exists

a κ-spanner with n1+O(1
κ
) edges, and that this is the best possible, in terms of the

number of the edges, up to the constant hidden by the O-notation.

More recently, Elkin and Peleg [34] studied a more general notion of (α, β)-

spanner: a subgraph G′ = (V, H) of the graph G = (V, E) is an (α, β)-spanner of the

graph G if for every pair of vertices u, v ∈ V , distG′(u, v) ≤ α · distG(u, v) + β. (We

also call an (α, β)-spanner an additive spanner.) They have shown that for every

n-vertex graph G = (V, E), there exists a (1 + ε, β)-spanner G′ = (V, H) of G with

O(n1+1/κ) edges, where κ = 1, 2, . . . , 0 < ε < 1 and β is a function of κ and ε. This

result shows that the tradeoff of Peleg and Schäffer [69] can be drastically improved

if one is concerned only with approximating the distances that are large.

While the proof of Elkin and Peleg [34] is not known to translate to an efficient

distributed algorithm, Elkin in [32] gave an alternative proof of this theorem, which,

though providing somewhat inferior constants, translates directly into efficient al-

gorithms. The latter algorithms enabled [32] to use (1 + ε, β)-spanners for efficient

algorithms for computing almost-shortest paths from s sources.

It was shown in [32] that for every n-vertex graph G = (V, E), positive integer

κ = 1, 2, . . ., and positive numbers ε, ρ > 0, there exists a distributed algorithm that

constructs (1 + ε, β)-spanners with O(n1+1/κ) edges in time O(n1+ρ) with message

complexity O(|E| · nρ). Note that while the message complexity of this result is

near-optimal, its running time is prohibitively large. In this work [35], we drastically

improves this running time and devises a randomized distributed algorithm that

constructs (1+ ε, β)-spanners with O(n1+1/κ) edges in time O(nρ), and with message

69

complexity O(|E| · nρ). Note that the message complexity of our algorithm is no

worse than the message complexity of the algorithm of [32], and the parameters

of the constructed spanners are also essentially the same as in the result of [32].

This result directly translates to an improved distributed algorithm for computing

almost-shortest paths from s sources.

We remark that both our algorithm and the algorithm of [32] can be adapted

to the asynchronous model of distributed computation in a rather straightforward

way by using the synchronizers of [9]. The parameters of the obtained asynchronous

algorithms are essentially the same as the parameters of the synchronous algorithms.

Furthermore, our algorithm can also be easily extended to a parallel implementation

that runs in O(log n+(|E| ·nρ log n)/p) time using p processors in the EREW PRAM

model. In particular, when the number of processors, p, is at least |E| · nρ, the

running time of the algorithm is O(log n). This is the first known parallel algorithm

for constructing sparse (1 + ε, β)-spanners.

Our distributed algorithm for constructing (1 + ε, β)-spanners builds upon the

previous work of [32]. The algorithm of [32], like our algorithm, uses extensively a

subroutine for constructing neighborhood covers [8, 24, 32] (see Section 4.3.3 for its

definition). In fact, both algorithms invoke this subroutine on many subgraphs of the

original graph. The best distributed algorithm for constructing neighborhood covers

that was available when the work of [32] was done is the algorithm of Awerbuch et

al. [8]. Recently a significantly more efficient subroutine for computing neighbor-

hood covers was devised in [33]. However, plugging the subroutine of [33] into the

algorithm of [32] does not result in a sublinear algorithm for constructing (1 + ε, β)-

spanners, because the recursive invocations of the subroutine for constructing covers

are implemented almost sequentially in the algorithm of [32]. The main technical dif-

ficulty that we had to overcome in this work is the parallelization of these recursive

70

invocations. The latter task requires far more elaborate analysis of the algorithm,

because we have to show that no edge is simultaneously employed by more than a

certain number of different subroutines.

4.3.2 Streaming Spanner Construction

Our distributed spanner construction can be adapted to a streaming algorithm for

constructing (1+ ε, β)-spanners. The streaming algorithm uses a constant number of

passes and O(n1+1/κ · log n) bits of space, and it has O(nρ) processing time per edge.

(ρ > 0 is an arbitrarily small control parameter. It affects the number of passes of the

algorithm and the additive term of the constructed spanner.) This result, in turn,

directly gives rise to a streaming algorithm with the same complexity parameters

(number of passes and space) that given an input graph computes almost-shortest-

path distances between all pairs of vertices of the graph. Note that storing the results

of the computation — i.e., the all-pairs, shortest paths and the all-pairs, shortest

distances — may require space much larger than that required to store the spanner.

On the other hand, the algorithm can output each path/distance in the result once

it has the spanner. Hence, the algorithm need not store the results, and the total

memory space required is no larger than the space taken by the spanner. (This also

applies to our one-pass streaming algorithm in the next section.)

Note that the space complexity O(n1+1/κ · log n) of this streaming algorithm

is not far from the optimal one, since we have shown in Section 4.1 that for all

1 ≤ k(n) = o(n), any streaming algorithm that k(n)-approximates the distance

between a fixed pair of vertices in a constant number of passes must use Ω(n) bits

of space.

We remark that our adaptation of the algorithm of [33] for constructing neighbor-

hood covers for the streaming model is one of the first existing streaming algorithms

71

for clustering in graphs. Despite the fact that the clustering problem is extremely well

studied in different disciplines, we are aware of only a very few previous streaming

algorithms [51, 21] for clustering metric spaces. However, to the best of our knowl-

edge, these algorithms are not applicable to the problem of clustering in graphs, and

hence our result is incomparable with those of [51, 21].

Because the streaming algorithm is an adaptation from our distributed algorithm

that constructs the same (1 + ε, β)-spanner, we will introduce and analyze the dis-

tributed version of our algorithm first and then adapt it to the streaming model.

4.3.3 Fast Distributed Spanner Construction

First, we introduce some notation. Let G = (V, E) be an unweighted undirected

graph. Denote by distG(u, w) the distance between two vertices u and w in the

graph G, that is, the length of the shortest path between them. For two subsets

of vertices V ′, V ′′ ⊂ V , the distance in G between V ′ and V ′′, distG(V ′, V ′′), is the

shortest distance between a vertex in V ′ and a vertex in V ′′, i.e., distG(V ′, V ′′) =

min{distG(u, w) | u ∈ V ′, w ∈ V ′′}. Let diam(G) denote the diameter of the graph

G, i.e., diam(G) = maxu,v∈V distG(u, v).

Given a subset V ′ ⊆ V , denote by EG(V ′) the set of edges in G induced by V ′, i.e.,

EG(V ′) = {(u, w) | (u, w) ∈ E and u, w ∈ V ′}. Let G(V ′) = (V ′, EG(V ′)). Denote

by Γk(v, V ′) the k-neighborhood of vertex v in the graph G(V ′), i.e., Γk(v, V ′) =

{u | u ∈ V ′ and dist(V ′,EG(V ′))(u, v) ≤ k}. The diameter of a subset V ′ ⊆ V , denoted

by diam(V ′), is the maximum pairwise distance in G between a pair of vertices

from V ′. For a collection F of subsets V ′ ⊆ V , let diam(F) = maxV ′∈F{diam(V ′)}.
Finally, unless specified explicitly, we say that an event happens with high probability

if the probability is at least 1− 1
nΩ(1) .

Our spanner construction utilizes graph covers. For a graph G = (V, E) and

72

two integers κ, W > 0, a (κ, W)-cover [8, 24, 32] C is a collection of not necessar-

ily disjoint subsets (or clusters) C ⊆ V that satisfy the following conditions. (1)⋃
C∈C C = V . (2) diam(C) = O(κW). (3) The size of the cover s(C) =

∑
C∈C |C|

is O(n1+1/κ), and furthermore, every vertex belongs to polylog(n) · n1/κ clusters. (4)

For every pair of vertices u, v ∈ V that are at distance at most W from one another,

there exists a cluster C ∈ C that contains both vertices, along with the shortest

path between them. Note that many constructions of (κ, W)-cover will also build

one BFS tree for each cluster in the cover as a by-product. The BFS tree spans the

whole cluster and is rooted at one vertex in the cluster.

Quite a number of spanner-constructing algorithms use covers (e.g., [8, 24, 32]).

In fact, for an unweighted graph, the union of the BFS-spanning trees of a (κ, 1)-

cover is a κ-spanner. Moreover, it was demonstrated in [32] that covers can serve

as a basis for (1 + ε, β)-spanners as well, but in this case they are combined with

other tools such as the shortest paths connecting some of the clusters in the covers.

Currently it is not known whether (1 + ε, β)-spanners can be built using a hierarchy

of covers alone.

The algorithm in [32] (Algorithm 4.1) has a recursive structure. It first constructs

a cover on the whole graph. The cover contains clusters of different sizes. The

algorithm divides the clusters into two groups according to their sizes (the size of a

cluster is the number of vertices in that cluster): a group C H of large clusters and a

group C L of small clusters. The algorithm will be recursively invoked on the clusters

that belong to the small-cluster group C L. We can assume that after the recursion

returns, a spanner (with smaller estimation error) for each subgraph induced by a

cluster in this group will be constructed. What remains then is to deal with the

large clusters in the group C H . For these clusters, the algorithm finds the shortest

path between pairs of clusters that are not far away from each other. These paths,

73

Algorithm 4.1. Recur-Spanner

The input to the algorithm is a graph G = (V, E) and four parameters κ, ν, D,
and ∆, where κ, D, and ∆ are positive integers and 0 < ν < 1.

1.
← �log1/(1−ν) log∆ |V |�.
2. Construct a (κ, D�)-cover C for G. Include the edges of the BFS-

spanning trees of all the clusters in the spanner. Set C H ← {C ∈
C | |C| ≥ |V |1−ν}, C L ← C \ C H . (We call the clusters from C H

“large clusters,” and the clusters from C L “small clusters.”)

3. Interconnecting subroutine: For all pairs of clusters C1, C2 ∈ C H

s.t. distG(C1, C2) ≤ D�+1, compute one of the shortest paths between
C1 and C2 in G. Include this path in the spanner.

4. For all clusters C ∈ C L, invoke Recur-Spanner with parameters: G′ =
(C, EG(C)), κ, ν, D, ∆.

together with the BSF trees of the clusters and the spanners for the subgraphs, form

the spanner of the whole graph.

We cite from [32] the following theorem on the the size and the stretch factors,

i.e., the parameters ε and β, of the constructed spanner:

Theorem 4.3. [32] Let G=(V,E) be an n-vertex graph, κ = 1, 2, . . . , 0 < ν ≤
1/2 − 1/κ, D = 2, 3, . . . , ∆ = 1, 2, let
 = �log1/(1−ν) log∆ n�. Let H be the

spanner constructed by Algorithm 4.1 invoked on the five-tuple (G, κ, ν, D, ∆). Then

H is a (1 + O(κ�
D

), O(κD�))-spanner, and the size of H is O((∆ + D�+1)n1+ 1
κν).

A detailed proof of the theorem is presented in [32]. To help the readers un-

derstand the connection between the covers and the constructed spanner, we give a

short proof sketch here.

Proof. We consider the stretch factor of the spanner H first. Consider a pair of

vertices and a shortest path between them in the original graph. We divide the

74

path into segments of length at most D�+1. We argue that if the spanner can give

a (1 + ε′, β)-estimate of the lengths of the segments, it can also provide a (1 + ε, β)-

estimate for the whole path, where ε = ε′ + β
D�+1 . To see this, let distG be the

distance between the two vertices in the original graph and distG = a ·D�+1 + b for

some integer a and b. Let distH be the distance between the same pair of vertices in

the spanner H . For each segment, the spanner provides a (1 + ε′, β)-approximation.

Hence,

distH ≤ a(D�+1(1 + ε′) + β) + b(1 + ε′) + β

= a ·D�+1(1 + ε′ +
β

D�+1
) + b(1 + ε′) + β

≤ (a ·D�+1 + b)(1 + ε′ +
β

D�+1
) + β

= distG(1 + ε) + β

Thus, we need to focus only on how the spanner estimates distances up to D�+1.

(This is also the reason that in step 3 of Algorithm 4.1, only pairs of large clusters

that are close to each other are connected.) For two vertices u, w that are at most

distance D�+1 from each other, we consider again some shortest path Puw between

them. We can view this path as going from left to right. Let u′ (w′) be the leftmost

(rightmost) vertex on Puw that is contained in a large cluster. Note that the parts of

the path Puw going from u to u′ and from w′ to w are contained in subgraphs induced

by some small clusters. In step 4 of Algorithm 4.1, after the recursion returns, we

have a spanner (with smaller estimation error) for these subgraphs and we can use

it to estimate the length of these two parts. What is left now is the part between u′

and w′. Note that both u′ and w′ are contained in large cluster(s). Their distance

can then be approximated by the shortest distance between the two clusters plus the

75

diameters of the two clusters. The possible overestimation caused by the diameters

of the large cluster contributes to the additive part of the approximation.

Now we consider the size of the spanner. The spanner consists of the BFS trees

of the clusters and the paths connecting the large clusters. Because the size of the

cover is small, so is the number of edges in the union of the BFS trees of the clusters.

Furthermore, the algorithm connects only large clusters that are close to one another.

As there are not many large clusters (otherwise, the size of the cover would be too

large), the number of edges added by the interconnecting paths is not too big. The

size of the spanner is controlled by the parameters that determine the size of the

cover, the number of the large clusters, and the maximum length of the inter-cluster

paths.

We observe that within each cluster, the cover construction and the interconnect-

ing subroutine are local to the cluster. That is, these processes in one cluster are

independent of the analogous processes in other clusters of the same level. Further-

more, the process of interconnecting the clusters of C H is independent of the cover

constructions within clusters of C L. Thus they can, in principle, be carried out in

parallel.

Our distributed implementation of the algorithm for constructing (1 + ε, β)-

spanners is different from that of [32] in two ways. First, the algorithm of [32]

traverses a spanning tree of the entire graph, and performs the local subroutines

for constructing neighborhood covers and interconnecting large clusters sequentially.

Our algorithm avoids the traversal of the entire graph and performs these local sub-

routines in parallel. Additionally, the algorithm of [32] uses the algorithm of [8] to

construct neighborhood covers, and this algorithm by itself requires superlinear time.

Our algorithm instead uses a far more efficient algorithm due to [33] for constructing

neighborhood covers. The latter algorithm has running time O(nρ) for an arbitrarily

76

Algorithm 4.2. Cover

The input to the algorithm is a graph G = (V, E) and two positive integer
parameters κ and W .

1. U1 ← V .

2. In phase i = 1, 2, . . . , κ:

(a) Include each vertex v ∈ Ui independently at random with proba-

bility pi = min{1, ni/κ

n
· log n} in the set Si of phase i.

(b) Each vertex s ∈ Si constructs a cluster by growing a BFS tree of
depth di−1 = 2((κ− i) + 1)W in the graph (U, E(U)). We call s
the center of the cluster and the set Γ2(κ−i)W (s, U) the core set of
the cluster Γ2((κ−i)+1)W (s, U).

(c) Let Ri be the union of the core sets of the clusters constructed in
step (b). Set Ui+1 ← Ui \Ri.

small ρ > 0. These two modifications enable us to provide a drastically improved

distributed algorithm for constructing (1 + ε, β)-spanners. We note that while re-

placing the subroutine of [8] for constructing neighborhood covers by an analogous

subroutine from [33] is done in a straightforward way, the parallel execution of dif-

ferent local subroutines is technically much more involved, because we have to show

that no edge is simultaneously employed by more than a certain number of different

subroutines.

We next give the construction [24, 33] of (κ, W)-covers in Algorithm 4.2. We

use this construction as a subroutine in our algorithm. This construction builds a

(κ, W)-cover in κ phases. A vertex v in graph G is called covered if there is a cluster

C ∈ C such that ΓW (v, V) ⊆ C. Let Ui be the set of uncovered vertices at phase

i. At the beginning, U1 = V . At each phase i, a subset of vertices is covered and

removed from Ui.

Theorem 4.4. [33] Given an unweighted, undirected n-vertex graph, Algorithm 4.2

77

constructs a (κ, W)-cover such that, with high probability, every vertex is included in

O(κn1/κ · log n) clusters of the cover. The construction requires O(κ2n1/κW · log n)

rounds of distributed computation.

We now present our distributed algorithm for constructing spanners that uses

the above cover construction as a subroutine. Given a cluster C, let C (C) be the

cover constructed for the graph (C, EG(C)). For a cluster C ′ ∈ C (C), we define

Parent(C ′) = C.

An execution of the algorithm can be divided into
 stages (levels). The original

graph is viewed as a cluster on level 0. The algorithm starts level 1 by constructing a

cover for this cluster. Recall that a cover is also a collection of clusters. The clusters

of ∪C (C), where the union is over all the clusters C on level 0, are called clusters

on level 1, and we denote the set of those clusters by C1. If a cluster C ∈ C1 satisfies

|C| ≥ |Parent(C)|1−ν , we say that C is a large cluster on level 1. Otherwise, we say

that C is a small cluster on level 1. We denote by C H
1 the set of large clusters on

level 1 and C L
1 the set of small clusters on level 1. Note that the cover-construction

subroutine (Algorithm 4.2) builds a BFS-spanning tree for each cluster in the cover.

Our algorithm includes all the BFS-spanning trees in the spanner and then goes on

to make interconnections between all pairs of clusters in C H
1 that are close to each

other. After these interconnections are completed, the algorithm enters level 2. For

each cluster in C L
1 , it constructs a cover. We call the clusters in each of these covers

the clusters on level 2. The union of all the level-2 clusters is denoted by C2. If a

cluster C ∈ C2 satisfies |C| ≥ |Parent(C)|1−ν , we say that C is a large cluster on

level 2. Otherwise, we say that C is a small cluster on level 2. Again, we denote

by C H
2 the set of large clusters on level 2 and C L

2 the set of small clusters on level

2. The BFS-spanning trees of all the clusters in C2 are included into the spanner

and all the close pairs of clusters in C H
2 get interconnected by the algorithm. The

78

C

C

C

C

C

C

C

C
C

C

4

5

7
6

8

9

10

3

1

2

Figure 4.2: Example of clusters in covers.

algorithm proceeds in a similar fashion at levels 3 and above. That is, at level i, the

algorithm constructs covers for each small cluster in C L
i−1, and interconnects all the

close pairs of large clusters in C H
i . Similarly, we denote by Ci the collection of all

the clusters in the covers constructed at level i, by C H
i the set of large clusters of

Ci, and C L
i the set of small clusters of Ci. After level
, each of the small clusters

of level
 contains very few vertices and the algorithm can include in the spanner all

the edges induced by these clusters. A formal description of the detailed algorithm

is given below (Algorithm 4.3).

See Figure 4.2 for an example of covers and clusters constructed by the algorithm.

The circles in the figure represent the clusters. C1 = {C1, C2, C3}, C H
1 = {C1} and

C L
1 = {C2, C3}. Note that for each cluster in C L

1 , a cover is constructed. The union

of the clusters in these covers forms C2, i.e., C2 = {C4, C5, C6, C7, C8, C9, C10}. The

large clusters in C2 form C H
2 = {C4, C5, C8, C9} and the small clusters in C2 form

C L
2 = {C6, C7, C10}. Also note that a pair of close, large clusters C8 and C9 is

interconnected by a shortest path between them.

Note that the above algorithm is a synchronous protocol. By constructing and

using a synchronizer [9], this protocol can be converted to an asynchronous protocol.

79

Algorithm 4.3. Spanner

The input to the algorithm is a graph G = (V, E) on n vertices and four
parameters κ, ν, D, and ∆, where κ, D, and ∆ are positive integers and 0 <
ν < 1.

1. C L
0 ← {V }, C H

0 = φ.

2. For level i = 1, 2, . . . ,
 = �log1/(1−ν) log∆ n� do

(a) Cover Construction: For all clusters C ∈ C L
i−1, in parallel,

construct (κ, D�)-covers using Algorithm 4.2. (Invoking Algo-
rithm 4.2 with parameters κ and W = D�.) Include the edges
of the BFS-spanning trees of all the clusters in the spanner. Set
Ci ←

⋃
C∈C L

i−1
C (C), C H

i ← {C ∈ Ci | |C| ≥ |Parent(C)|(1−ν)},
C L

i ← Ci \ C H
i .

(b) Interconnection: For all clusters C ′ ∈ C H
i , in parallel, con-

struct BFS trees in G(C), where C = Parent(C ′). For each
cluster C ′, the BFS tree is rooted at the center of the clus-
ter, and the depth of the BFS tree is 2Dh + Dh+1, where h =
�log1/(1−ν) log∆ |Parent(C ′)|�. For all the clusters C ′′ whose cen-

ter vertex is in the BFS tree, if C ′′ ∈ C H
i and Parent(C ′′) =

Parent(C ′), add to the spanner the shortest path between the cen-
ter of C ′ and the center of C ′′.

3. Add to the spanner all the edges of the set
⋃

C∈C�+1
EG(C).

80

4.3.4 Analysis of Time and Message Complexity

In this section, we analyze the time and message complexity of Algorithm 4.3. In the

distributed model, carrying out the cover constructions in parallel for all clusters of a

certain family (as it is done in step (2a) of Algorithm 4.3) does not necessarily mean

that the running time is equal to the running time of constructing one single cover. If

all the cover constructions utilize the same edges, the running time of step (2a) may

be no better than the time required for constructing these covers sequentially because

of congestion. We show that this is not the case in our algorithm. Specifically, we

show that each edge is utilized by only a small number of subroutines that construct

covers. This is also true regarding the interconnecting subroutines in step (2b).

Given a cover C , let MS(C) = maxC∈C {|C|}. The number of levels in the

algorithm is
 = �log1/(1−ν) log∆ n�. Throughout the analysis, assume that κ, ν,
 are

constant, i.e., independent of n.

Lemma 4.1. For a vertex v and an index i = 1, 2, . . . ,
, with high probability, the

number of clusters C ∈ Ci that contain v is O(n
1

κν).

Proof. By Theorem 4.4, with high probability, in a cover constructed for a cluster C,

a vertex is contained in at most O(log |C|·|C|1/κ) clusters. Also note that MS(C L
i) ≤

n(1−ν)i
.

Let Mi(v) = {C ∈ Ci | v ∈ C}. We have:

|Mi+1(v)| =
∑

C∈Mi(v)

O(log |C| · |C|1/κ)

= O(|Mi(v)| · log(MS(C L
i)) ·MS(C L

i)1/κ)

= O(|Mi(v)| · log n(1−ν)i · n (1−ν)i

κ).

81

Given that the number of levels is
 = O(1), |Mi(v)| = O(logO(1) n ·n 1
κ

1−(1−ν)i

ν) =

O(n
1

κν).

Lemma 4.2. With high probability, all the subroutines for constructing covers require

altogether O(n
1

κν ·D�+1) time and O(|E| · n 1
κν) communication.

Proof. By Lemma 4.1, for a fixed vertex v, and index i = 1, 2, . . . ,
, the vertex

is contained in O(n
1

κν) clusters on level i. Hence, at level i the vertex is explored

O(n
1

κν) times, and for a fixed edge e, the edge is explored O(n
1

κν) times at level i.

At level i, each BFS exploration for constructing a cover has depth at most

2κ ·Dlog1/(1−ν) log∆ MS(C L
i−1) ≤ 2κ ·Dlog1/(1−ν) log∆ n(1−ν)i−1

= 2κ ·D�+1−i.

Because each cover construction consists of κ = O(1) phases, the overall time required

for constructing all the covers on level i is O(n
1

κν ·D�+1−i). Hence, the overall time

is:
∑�

i=1 O(n
1

κν ·D�+1−i) = O(n
1

κν ·D�+1).

Because each edge is explored O(n
1

κν) times, and because there are κ = O(1)

phases and
 = O(1) levels, the overall number of messages that are sent for con-

structing all the covers is O(|E| · n 1
κν).

Lemma 4.3. With high probability, for each level i = 1, 2, . . . ,
, each vertex v ∈ V

is explored by O(n
1

κν
+ν) BFS explorations that are initiated by the interconnecting

subroutines.

Proof. Consider a cluster C ∈Mi−1(v)∩C L
i−1. The size of the cover constructed for

the cluster C is O(log |C| · |C|1+1/κ). The large clusters in this cover have size at least

|C|(1−ν). Hence, the number of such clusters in the cover for C is O(log |C|·|C|1+1/κ

|C|(1−ν)) =

O(log |C| · |C| 1κ+ν). In each cluster C ∈ Mi−1(v) ∩ C L
i−1 on level (i − 1), each of

the O(log |C| · |C| 1κ+ν) large clusters on level i may explore the vertex v. Hence, the

82

overall number of BFS explorations that may visit the vertex v is at most

∑
C∈Mi−1(v)

O(log |C| · |C| 1κ+ν)

= O(|Mi−1(v)| · log MS(C L
i−1) ·MS(C L

i−1)
1
κ
+ν)

= O(logO(1) n · n 1
κ

1−(1−ν)i−1

ν · n(1
κ
+ν)·(1−ν)i−1

)

= O(n
1

κν
+ν).

For the last inequality, note that n
(1−ν)i−1

κν
− (1−ν)i−1

κ = n
(1−ν)i

κν ≥ logc n for all constants

c, all sufficiently large n, all constants κ = 1, 2, . . ., and ν < 1. (How large n must

be depends on the other parameters.)

Lemma 4.4. With high probability, for an index i = 1, 2, . . . ,
, the overall time and

communication complexities of all the interconnecting subroutines are O(D�+2·n 1
κν

+ν)

and O(|E| · n 1
κν

+ν), respectively.

Proof. At level i, the depth of the BFS explorations that are required for intercon-

necting the large clusters is at most

3Dlog1/(1−ν) log∆ MS(C L
i−1)+1 ≤ 3Dlog1/(1−ν) log∆ n(1−ν)i−1

+1 = 3D�+2−i.

By Lemma 4.3, a vertex participates in O(n
1

κν
+ν) interconnecting processes. Hence,

the overall running time of all the interconnecting subroutines on level i is O(n
1

κν
+ν ·

D�+2−i). Adding up the
 levels, we have
∑�

i=1 O(n
1

κν
+ν ·D�+2−i) = O(D�+2 ·n 1

κν
+ν).

For an upper bound on the communication complexity at level i, note that each

cluster C in C H
i initiates a BFS exploration in the cluster Parent(C) ∈ C L

i−1.

Following the analysis in Lemma 4.3, the number of large clusters in the cover

C (Parent(C)) is O(log |Parent(C)| · |Parent(C)| 1κ+ν). Because for every index i =

83

1, 2, . . . ,
, |Mi(v)| = O
(
logO(1) n · n 1

κ
1−(1−ν)i

ν

)
, it follows that e(Ci) =

∑
C∈Ci
|EG(C)|

is O
(
|E| · logO(1) n · n 1

κ
1−(1−ν)i

ν

)
.

To summarize,

∑
C∈C L

i−1

O(log |C| · |C| 1κ+ν · e(C))

= O


log(MS(C L

i−1)) ·MS(C L
i−1)

1
κ
+ν ·

∑
C∈C L

i−1

e(C)




= O
(
logO(1) n · n(1

κ
+ν)(1−ν)i−1 · e(Ci−1)

)
= O(|E| · n 1

κν
+ν).

Because there are
 levels, the overall communication complexity is O(
·|E|·n 1
κν

+ν) =

O(|E| · n 1
κν

+ν).

Now we are ready to prove the main result of this section.

Theorem 4.5. Given an unweighted, undirected graph on n vertices and constants

0 < ρ, δ, ε < 1, such that δ/2 + 1/3 > ρ > δ/2, there is a distributed algorithm

that, with high probability, constructs a (1 + ε, β)-spanner of size O(n1+δ) for the

graph, where β = β(ρ, δ, ε) = O(1). The running time and the communication of the

algorithm are O(nρ) and O(|E|nρ), respectively.

Proof. Set ∆ = nδ/2, 1
κν

= δ/2, 1
κν

+ ν = ρ. This gives ν = ρ − δ
2

> 0, ν = O(1),

κ = 2
(ρ−δ/2)δ

= O(1), and
 = log1/(1−ν) log∆ n = log1/(1−ν)
2
δ

= O(1), satisfying the

requirement that κ, ν, and
 are all constants.

Also set D = O(κ�
ε
). By Theorem 4.3, (1 + ε) is the multiplicative stretch factor

of the constructed spanner. This gives β = O(κD�) = O(1), which is the addi-

tive term of the spanner. By Theorems 4.4 and 4.3, the size of our spanner is

84

O
(
(∆ + D�+1)n1+ 1

κν

)
. For sufficiently large n, ∆ = nδ/2 > D�+1; hence the span-

ner size is O(n1+δ). By Lemmas 4.2 and 4.4, the running time of the algorithm is

O(D�+2 · n 1
κν

+ν) = O(nρ), and its communication complexity is O(|E| · nρ).

4.3.5 Parallel Implementation

Observe that the basic operation in both Algorithm 4.2 and Algorithm 4.3 is the

construction of constant-depth BFS trees on the unweighted graph. Hence, we can

use the straightforward parallelization of the BFS search for this operation [26, 24]

and implement Algorithm 4.3 in the parallel computing models. We now briefly

analyze the complexity of such an implementation in an EREW PRAM model.

The overall number of edges needed to be explored determines the amount of work

performed by the parallel implementation. Note that in both the cover construction

and the interconnection processes, an edge may be explored by multiple BFS-tree

constructions. The algorithm runs in
 = O(1) iterations (levels). It invokes cover

construction and interconnection at each level. For cover construction, by Lemma 4.1

and the fact that there are κ = O(1) phases in the construction, an edge may

be explored O(n
1

κν) times. For interconnection, by Lemma 4.3, an edge may be

explored O(n
1

κν
+ν) times. Hence, the overall number of edges being explored is

O(|E| · n 1
κν

+ν) = O(|E| · nρ).

For a graph G(V, E), recall that Γk(u, V) is the k-neighborhood of the vertex u,

i.e., the set of vertices of distance at most k from u. Also recall that EG(Γk(u, V))

is the set of edges induced by the set of vertices in the neighborhood Γk(u, V). The

following proposition is from [24]:

Proposition 4.1. [24] For a graph G(V, E), a set of integers k1, . . . , kr and a set

of vertices s1, . . . , sr, the computation of Γki
(si, V) for i = 1, . . . , r can be performed

85

using p processors in time

O

(
(max

i
ki log n) +

r∑
i=1

|EG(Γki
(si, V))|(log n)/p

)
.

Note that our parallel implementation runs in a constant number of iterations.

The number of phases in each cover construction is also constant and so is the

depth of each BFS exploration. Therefore, using the BFS search algorithm of [24],

the parallel implementation of Algorithm 4.3 requires O(log n + (|E| · nρ log n)/p)

running time using p processors in the EREW PRAM model. In particular, when

the number of processors, p, is at least |E| · nρ, the running time of the algorithm is

O(log n).

4.3.6 Adaptation to the Streaming Model

In this section we adapt Algorithm 4.3 to the streaming model and devise an algo-

rithm for computing all-pairs, almost-shortest paths in this model.

Leaving space limitations aside, it is easy to see that many distributed algo-

rithms with time complexity T translate directly into streaming algorithms that use

T passes. For example, a straightforward streaming adaptation of a synchronous

distributed algorithm for constructing a BFS tree would be the following: in each

pass over the input stream, the BFS tree grows one more level. An exploration of

d levels would result in d passes over the input stream. On the other hand, there

are cases in which the running time of a synchronous algorithm may not translate

directly to the number of passes of the streaming adaptation. In the example of the

BFS tree, if two BFS trees are being constructed in parallel, some edges may be ex-

plored by both constructions, resulting in congestion that may increase the running

time of the distributed algorithm. On the other hand, for a streaming algorithm,

86

both explorations of the same edge can be done using only one pass over the stream.

We adapt Algorithm 4.2 for constructing covers to the streaming model. The

streaming adaptation proceeds in κ phases. In each phase i, the algorithm passes

through the input stream di−1 times to build the BFS trees τ(v) of depth di−1 for

each selected vertex v ∈ Si. The cluster and its core set can be computed during the

construction of these BFS trees. Note that for any i, di−1 ≤ 2κW . Hence,

Lemma 4.5. With high probability, the streaming adaptation of Algorithm 4.2 con-

structs a (κ, W)-cover using 2κ2W passes over the input stream.

Now, we briefly describe the adaptation of Algorithm 4.3 to the streaming model.

The adapted algorithm is recursive, and the recursion has
 levels. At level i, a cover

is constructed for each of the small clusters in C L
i−1 using the streaming algorithm

for constructing covers described above. Because the processes of building BFS trees

for constructing covers are independent, they can be carried out in parallel. That

is, when the algorithm encounters an edge in the input stream, it examines its two

endpoints. For each of the clusters in C L
i−1 that contains both endpoints, for each of

the BFS-tree constructions in those clusters that has reached one of the endpoints,

the algorithm checks whether the edge would help to extend the BFS tree. If so,

the edge would be added to that BFS tree. After the construction of the covers

is completed, the algorithm makes interconnections between close, large clusters of

each cover. Again, the constructions of the BFS trees that are invoked by different

interconnection subroutines are independent and can be performed in parallel.

Lemma 4.6. With high probability, the streaming adaptation of Algorithm 4.3 re-

quires 2κ2D�+1 + 3D�+2 passes over the input stream.

87

Proof. Note that at level i, for cover construction, the value of W is bounded by

Dlog1/(1−ν) log∆ MS(C L
i−1) ≤ Dlog1/(1−ν) log∆ n(1−ν)i−1 ≤ D�+1−i.

By Lemma 4.5, the number of passes that are required for constructing a cover at

level i is at most 2κ2D�+1−i.

At level i, the algorithm also invokes interconnecting subroutines. The depth of

the BFS trees that are required for interconnection on recursion level i is at most

3Dlog1/(1−ν) log∆ MS(C L
i−1)+1 ≤ 3D�−i+2.

The overall number of passes is at most
∑�

i=1(2κ
2D�+1−i +3D�−i+2) ≤ 2κ2D�+1 +

3D�+2.

Lemma 4.7. The space complexity of the streaming adaptation of Algorithm 4.3 is

O
(
log n · (∆ + D�+1) · n1+ 1

κν

)
.

Proof. The algorithm needs storage space for the following: (1) The algorithm stores

the edges of the spanner. (2) The covers constructed by the algorithm are collections

of clusters. The algorithm includes a vertex in a cluster by labeling the vertex with

the ID of the cluster. Hence, for each vertex, the algorithm stores the IDs of the

clusters to which the vertex belongs. (3) On each level i, the large clusters of C H
i

construct BFS trees for interconnection. Each BFS tree is constructed by labeling

the vertices layer by layer using the ID of the initiating cluster. Hence, for each

vertex, the algorithm also stores the IDs of clusters C ∈ C H
i whose BFS exploration

has visited/explored the vertex.

By Theorem 4.3 and Lemma 4.1, items (1) and (2) require O((∆ + D�+1)n1+ 1
κν)

and O(n
1

κν) cells of memory, respectively. By Lemma 4.3, item (3) requires O(n
1

κν
+ν)

cells of memory for each level. We observe that once the interconnections are made,

the algorithm will no longer need the BFS trees constructed for the interconnections.

88

The space used to store these BFS trees on level i can be reused on level i+1. Hence,

the overall number of memory cells required by item (3) is O(n
1

κν
+ν). Note that all

the above quantities are given in terms of the number of edges and IDs. The space

in terms of the number of bits is greater by at most a factor of log n.

Hence, the overall space complexity is:

O
(
(∆ + D�+1)n1+ 1

κν · log n
)

+ O
(
n

1
κν · log n

)
+ O

(
n

1
κν

+ν · log n
)

= O
(
log n · (∆ + D�+1) · n1+ 1

κν

)
.

Lemma 4.8. With high probability, the streaming adaptation of Algorithm 4.3 pro-

cesses each edge using O(n
1

κν
+ν) time.

Proof. For a fixed index i = 1, 2, . . . ,
, on level i, during the construction of the

cover, the algorithm may need to examine the vertex v for each of the clusters on

level i that contain the vertex when it encounters the edge (u, v) in the stream. Let

Tcover(v) be the processing time for this purpose. By Lemma 4.1, Tcover(v) = O(n
1

κν).

During interconnection, the algorithm may also need to examine the vertex v

for each cluster C ∈ C H
i whose BFS exploration visits v. Let Tinterconnect(v) be this

processing time. By Lemma 4.3, Tinterconnect(v) = O(n
1

κν
+ν).

The overall time that is required to process the edge (u, v) is 2 · (Tcover(v) +

Tinterconnect(v)) = O(n
1

κν
+ν).

To summarize,

Theorem 4.6. Given an unweighted, undirected graph on n vertices, presented as a

stream of edges, and constants 0 < ρ, δ, ε < 1, such that δ/2 + 1/3 > ρ > δ/2, there

is a streaming algorithm that, with high probability, constructs a (1 + ε, β)-spanner

89

of size O(n1+δ). The algorithm accesses the stream sequentially in O(1) passes, uses

O(n1+δ · log n) bits of space, and processes each edge of the stream in O(nρ) time.

Note that once the spanner is computed, the algorithm is able to compute all-

pairs, almost-shortest paths and distances in the graph by computing the exactly

shortest paths and distances in the spanner using the same space. Observe that

for a pair of vertices, u, v ∈ V , the path Pu,v that is computed by the algorithm

satisfies the inequality |Pu,v| ≤ (1 + ε)dG(u, v) + β. Note also that this computation

of the shortest paths in the spanner requires no additional passes through the input,

and also, no additional space. (For the latter we assume that once computed, the

paths are immediately output by the algorithm and are not stored; obviously, any

algorithm that stores estimates of distances for all pairs of vertices requires Ω(n2)

space.) To summarize,

Corollary 1. Given an unweighted, undirected graph on n vertices, presented as a

stream of edges, and constants 0 < ρ, δ, ε < 1, such that δ/2+1/3 > ρ > δ/2, there is

a streaming algorithm that, with high probability, computes all-pairs, almost-shortest

paths in the graph with error terms of (1 + ε, β). The algorithm accesses the stream

sequentially in O(1) passes, uses O(n1+δ · log n) bits of space, and processes each edge

in the stream in O(nρ) time.

4.3.7 Conclusion

We devised a distributed randomized algorithm that improves the distributed al-

gorithm of [32]. Except for the need for randomization, our algorithm drastically

reduces the running time at no other cost. Applying our algorithm leads to more

efficient distance-approximation algorithms in the distributed setting. For example,

the running time of the distributed algorithm for the s-source almost-shortest-path

90

problems in [32] can be improved using our algorithm. The adaptation of our algo-

rithm to the streaming model provides a (1 + ε, β)-approximation for the all-pairs,

shortest-paths problem in this model. The algorithm uses only a constant number

of passes.

91

4.4 Distance Approximation in One Pass

Although the algorithm presented in the previous section uses only a constant number

of passes, it can be argued that the number of passes is still large. Most known

streaming algorithms use only a small number of passes (such as one or two). Because

it is expensive to take a pass through the input stream, and sometimes it is impossible

to store the data stream for a second pass, a one-pass algorithm is always preferred.

In this section, we present such an algorithm.

In particular, we devised a randomized streaming algorithm that constructs a

(2t + 1)-spanner for an unweighted, undirected graph in one pass. With high proba-

bility, the algorithm uses O(t · n1+1/t log2 n) bits of space and processes each edge in

the stream in O(t2 ·n1/t log n) time. Using this spanner, the all-pairs distances in the

graph can be (2t+1)-approximated. Note that for t = log n/ log log n, the algorithm

uses n · polylog(n) bits of space and processes each edge in polylog(n) time. We

show in [38] that, with O(n1+1/t) bits of space, we cannot approximate the distance

between u and v better than by a factor t even if we know the vertices u and v.

Therefore, our algorithm is close to optimal.

One major difference between the algorithm here and the algorithms in the pre-

vious section is that the algorithm here produces a multiplicative spanner while the

algorithm in the previous section gives an additive spanner. Recall that a subgraph

G′ = (V, H) is a (multiplicative) t-spanner of the graph G = (V, E) if for every pair

of vertices u, v ∈ V , distG′(u, v) ≤ t · distG(u, v) (where distG(u, v) stands for the

distance between the vertices u and v in the graph G). A subgraph G′ = (V, H) of

the graph G = (V, E) is an (additive) (α, β)-spanner of the graph G if for every pair

of vertices u, v ∈ V , distG′(u, v) ≤ α · distG(u, v) + β.

In [75], Thorup and Zwick provide a construction of distance oracles for ap-

92

proximating distances in graphs. Although all-pairs, shortest-path distances can be

approximated using this oracle, their oracle construction requires the computation

of shortest-path trees for certain vertices. That is, they need to compute the exact

distances between certain pairs of vertices in order to build a data structure from

which the all-pairs, shortest-path distances can be approximated. The exact dis-

tance computations are done by BFS-like subroutines, and the depth of the BFS

explorations are quite large. We explained at the beginning of this chapter that

BFS does not work well with streaming because it may take k passes through the

stream to construct a BFS tree of depth k. Hence, a straightforward adaptation of

the approaches in [75] will not work in the streaming model. Moreover, in a one-pass

algorithm, it is impossible even to perform BFS for constant depth. This leads to

the second major difference between the algorithm in this section and the one in

the previous section. The algorithm in the previous section still depends on BFS

explorations, although of only constant depth, to construct the basic structures of

the spanner, i.e., the covers and the connections between some clusters in the covers.

The algorithm in this section totally avoids BFS-like explorations and therefore only

needs to go through the stream in one pass.

In what follows, we first present the streaming algorithm that constructs a (2t +

1)-spanner for an unweighted undirected graph in one pass. We then extend this

algorithm to construct ((1 + ε) · (2t + 1))-spanners for weighted, undirected graphs,

using the geometric grouping technique.

4.4.1 Cluster Structures for Distance Approximation

In Section 4.3, graph covers are heavily used for the spanner construction. One of the

properties of a (κ, W)-cover is that if two vertices x and y are at distance at most W

from each other, they will be included in a cluster in the cover. Therefore, BFS-like

93

exploration may be necessary in building the clusters because one needs to make

sure that the vertices within a certain range are included in at least one cluster. In

this section, we use a more relaxed cluster structure for spanner construction. Our

clusters still cover the whole graph. However, it is no longer required that if two

vertices x and y are within a certain distance they be included in one cluster of the

cover.

The spanner is an edge subgraph of the original graph. We can view the con-

struction of a spanner as the following process: Initially, we have a subgraph with

all the vertices of the original graph but an empty edge set. We then select some of

the edges of the original graph to include in the subgraph. We continue this until

the subgraph becomes a spanner. As we have demonstrated in the simple spanner

construction in Section 4.2, to make the subgraph H a t-spanner of the original

graph G, for each edge that is not included, one needs to make sure that there is a

path of length at most t in H that connects the two endpoints of the removed edge.

This is also a goal of our algorithm in this section. As shown in the simple spanner

construction, the straightforward way to achieve this goal is very expensive. Using

the straightforward method, we need to check the existence of the length-t path each

time we encounter an edge. This is equivalent to computing the distance between

the two endpoints in the subgraph we have constructed so far, which has a rather

large time complexity.

In this section, we use a better approach to this problem. We do not need to

compute the distance between the two endpoints of an edge in order to decide whether

we should include it in the spanner. Instead, we maintain a certain cluster structure

on the graph. The cluster structure then assures the existence of the path of length

at most t where they are needed. To see how this works, first consider building

a 2t + 1 spanner for the following type of graphs. Imagine a graph that consists

94

of two clusters of vertices C1 and C2. Assume that the diameter of the subgraph

induced by each cluster is at most t. Further assume that after seeing some part

of the edge stream, we have constructed a spanning tree of small diameter for each

of the clusters. Now we need to decide for the coming edges whether they should

be included in H . The choice is clear: if an edge connects two vertices in the same

cluster (we call such an edge an intra-cluster edge), we discard it. We already have

a spanning tree of the cluster that provides the required path connecting the two

endpoints of the edge. We will keep the first edge that connects the two clusters,

i.e., an edge e = (u, v) such that u ∈ C1 and v ∈ C2. (We call such an edge an

inter-cluster edge.) After this, we can discard other inter-cluster edges. For such a

discarded edge (u′, v′), the path connecting u′ ∈ C1 and v′ ∈ C2 consists of the edge

e as well as the paths on the spanning trees of the two clusters that connect u′ to u

and v′ to v respectively. The length of the path connecting u′ to u is at most t and so

is the length of the path connecting v′ to v. The total length of the path connecting

the two endpoints of the discarded edge is then at most 2t + 1.

For a general graph, we do not have such a cluster structure at hand. One needs

to decompose the graph into clusters that maintain the above property, i.e., the di-

ameter of the subgraph induced by the vertices in each cluster must be small. This

can be done if we are not concerned about the number of clusters in the decompo-

sition. (After all, each vertex can form a cluster of its own, and the diameter of

the induced subgraph is zero.) However, we cannot afford to have too many clusters

in the decomposition for the following reason: in the process described above, it is

possible that for each pair of clusters, we need to keep an edge connecting the pair.

Hence, if we have too many clusters in the decomposition and we store the edges

between each pair of them, there will be too many edges in the spanner constructed.

We want to build a cluster structure on the graph with the following properties:

95

1. the number of clusters Ncls is not too large.

2. the diameter of the clusters Diamcls is not too large.

One can see that the two goals work against each other. It is easy to decompose

a graph into many clusters of small diameter, and it is easy to decompose a graph

into a few clusters of large diameter. The challenge lies in achieving these two goals

together. The problem, however, also comes from there. It is impossible to have

all combinations of Ncls and Diamcls for every graph. In particular, to construct a

(2t + 1) spanner of small size, we want Ncls to be at most
√

n and Diamcls to be at

most t. Clearly, a decomposition with these two parameters is not always possible.

Fortunately, we do not need such a decomposition for the whole graph. Intuitively,

if a graph is very dense, i.e., contains many edges, either the graph has a small

diameter or it contains a small number (compared to the number of vertices n)

of subgraphs that are of small diameter and the majority of the graph’s edges are

contained in these subgraphs. We call the union of these subgraphs the dense part

of the original graph. If we remove the dense part from the original graph, the

remaining graph, whose diameter may be large, will not have too many edges. We

call the remaining graph the sparse part of the original graph. Clearly, we can include

the whole sparse part in the spanner and we can use many clusters to cover the sparse

part because there are not many inter-cluster edges in the sparse part. Therefore, we

only need to control the number of clusters in the decomposition of the dense part.

Previously, similar cluster structures were used in spanner constructions [8, 32,

13]. However, in [8, 32, 13], the constructions of these structures all employ an

approach similar to BFS. For example, the cluster construction in [13] takes multiple

phases and the algorithm needs to go through the whole edge set in each phase.

Clearly, this would necessitate multiple passes over the input stream. Instead of

96

relying on BFS-like explorations, we have devised a randomized labeling scheme

for constructing the clusters. By bypassing the BFS, this randomized construction

enables our algorithm to run in one pass through the stream.

4.4.2 One-Pass Spanner Construction

Our algorithm labels the vertices of the graph while going through the stream of

edges. We now describe the generation of the labels in detail. A label l is a positive

integer. Given two parameters n and t, the set of labels L used by our algorithm is

generated in the following way. Initially, we have the labels 1, 2, . . . , n. We denote

by L0 this set of labels and call them the level 0 labels. Independently, and with

probability 1
n1/t , each label l ∈ L0 will be selected for membership in the set S0

and l will be marked as selected. From each label l in S0, we generate a new label

l′ = l + n. We denote by L1 the set of newly generated labels and call them level 1

labels. We then apply the above selection and new-label-generation procedure to L1

to get the set of level 2 labels L2. We continue this until the level � t
2

 labels L� t

2
�

are generated. If a level i + 1 label l is generated from a level i label l′, we call l

the successor of l′ and denote this by Succ(l′) = l. The set of labels we will use in

our algorithm is the union of labels of level 1, 2, . . . , � t
2

, i.e., L = ∪Li. Note that

L can be generated before the algorithm sees the edges in the stream. But, in order

to generate the labels in L, except in the case t = O(log n), the algorithm needs to

know n, the number of vertices in the graph, before seeing the edges in the input

stream. For t = O(log n), a simple modification of the above method can be used

to generate L without knowing n, because the probability of a label’s being selected

can be any constant smaller than 1
2
.

At first glance it might appear that our labeling scheme resembles the sequences

of sets initially constructed by the algorithm of Thorup and Zwick [75]. In our

97

construction the generation of the clusters of vertices depends on both the labels and

the edge set. Thorup and Zwick, however, generate their sequence of sets independent

of the edges. But this is just the first step in their algorithm. Subsequently, their

algorithm computes the exact distance between a fixed vertex and each of the sets

of vertices in the sequence. Such a step is very difficult in the streaming model. Our

label generation and labeling scheme do not have such a requirement.

While going through the stream, our algorithm labels each vertex with labels

chosen from L. Let C(l) be the collection of vertices that are labeled l. We call the

subgraph induced by the vertices in C(l) a cluster, and we say that the label of the

cluster is l. Note that each label defines a cluster. The top level labels determine the

clusters in the decomposition of the dense part of the graph. The clusters determined

by the lower level labels cover the sparse part of the graph.

The algorithm may label a vertex v with multiple labels; however, v will be

labeled by at most one label from Li, for i = 1, 2, . . . , � t
2

. Moreover, if v is labeled

by a label l, and l is selected, the algorithm also labels v with the label Succ(l).

Denote by li a label of level i, i.e., li ∈ Li. Let L(v) = {l0, lk1, lk2, . . . , lkj}, 0 <

k1 < k2 < . . . < kj < t/2 be the collection of labels that has been assigned to the

vertex v. Let Height(v) = max{j|lj ∈ L(v)} and Top(v) = lk ∈ L(v) s.t. k =

Height(v).

At the beginning of the algorithm, the set L(vi) contains only the label i ∈ L0.

The set C(l) = {vl} for l = 1, 2, . . . , n and is empty for other labels. L(v) and C(l)

grow while the algorithm goes through the stream and labels the vertices. For each

C(l), our algorithm stores a rooted spanning tree Tree(l), on the vertices of C(l).

For l ∈ Li, the depth of the spanning tree is at most i, i.e., the deepest leaf is at

distance i from the root.

We say an edge (u, v) connects C(l) and C(l′) if u is labeled with l and v is labeled

98

with l′. If there are edges connecting two clusters at level � t
2

, our algorithm stores

one such edge for this pair of clusters. We denote by H the set of these edges stored

by our algorithm.

To capture the inter-cluster edges in the sparse part of the graph, our algorithm

stores another small set of edges. We denote by M(v) the edges in this set that are

assigned to the vertex v by our algorithm. The spanner constructed by the algorithm

is the union of the spanning trees for all the clusters, M(v) for all the vertices, and

the set H . The detailed algorithm is given in Algorithm 4.4 and we proceed with its

analysis.

4.4.3 Analysis

We first show that with high probability, M(v) does not contain too many edges.

Lemma 4.9. At the end of the stream, for all v ∈ V , |M(v)| = O(t · n1/t log n) with

high probability.

Proof. Let M (i)(v) ⊆ M(v) be the set of edges added to M(v) during the period

when Height(v) = i. Let L(M(v)) =
⋃

(u,v)∈M(v) L(u) be the set of labels that have

been assigned to the vertices in M(v). An edge (u, v) is added to M(v) only in step

2(b)(ii). Note that in this case, � t
2

 ≥ Height(u) ≥ Height(v). Hence, the set Lv(u)

is not empty. Also by the condition in step 2(b)(ii), none of the labels in Lv(u)

appears in L(M(v)). Thus, by adding the edge (u, v) to M(v), we introduce at least

one new label to L(M(v)). M (i)(v) will then introduce a set B of distinct labels to

L(M(v)). Furthermore, the size of B is at least |M (i)(v)|. Note that the labels in B

are not marked as selected. Otherwise, the algorithm would have taken step 2(b)(i)

instead of step 2(b)(ii). Hence, the size of B follows a geometric distribution, i.e.,

Pr (|B| = k) ≤ (1 − 1
n1/t)

k. Thus, with high probability, |M (i)(v)| = O(n1/t log n).

99

Algorithm 4.4. Streaming Spanner

The input to the algorithm is an unweighted, undirected graph G = (V, E),

presented as a stream of edges, and two positive integer parameters n and t.

1. Set H ← φ. Generate the set L of labels as described. ∀ vi ∈ V ,

label vertex vi with label i ∈ L0. If i is selected, label vi with Succ(i).

Continue until we see a label that is not selected. Set M(vi)← φ.

2. Upon seeing an edge (u, v) in the stream, if L(v) ∩ L(u) 	= ∅, nothing

needs to be done. Otherwise, consider the following cases:

(a) If Height(v) = Height(u) = � t
2

, and there is no edge in H that

connects C(Top(v)) and C(Top(u)), set H ← H ∪ {(u, v)}.
(b) Otherwise, assume, without loss of generality, � t

2

 ≥ Height(u) ≥

Height(v). Consider the collection of labels Lv(u) =

{lk1 , lk2, . . . , lHeight(u)} ⊆ L(u), where k1 ≥ Height(v) and k1 <

k2 < . . . < Height(u). Let l = li ∈ Lv(u) such that li is marked

as selected and there is no lj ∈ Lv(u) with j < i that is marked

as selected.

i. If such a label l exists, label the vertex v with the successor

l′ = Succ(l) of l, i.e., L(v) ← L(v) ∪ {l′}. Incorporate the

edge in the spanning tree Tree(l′). If l′ is selected, label v with

l′′ = Succ(l′) and incorporate the edge in the tree Tree(l′′).

Continue this until we see a label that is not marked as se-

lected.

ii. If no such label l exists and there is no edge (u′, v) in M(v)

such that u, u′ are labeled with the same label l ∈ Lv(u), add

(u, v) to M(v), i.e., set M(v)←M(v) ∪ {(u, v)}.

3. After seeing all the edges in the stream, output the union of the span-

ning trees for all the labels, M(v) for all the vertices, and the set H as

the spanner.

100

Because i can take O(t) values, |M(v)| = ∑
i |M (i)(v)| is O(t · n1/t log n) with high

probability.

Alternatively, we can prove Lemma 4.9 in the following way. we can follow

a vertex v while Height(v) increases monotonically to � t
2

. Assume that v has

d neighbors, and the neighbors are revealed in the stream as u1, u2, . . . , ud. We

examine how the edges (v, u1), (v, u2), . . . , (v, ud) are considered for the set M(v) by

our algorithm.

An edge is considered for the set M(v) when Height(v) ≤ Height(ui). (If

Height(v) > Height(ui), we consider the edge for the set M(ui).) Therefore, to an-

alyze M(v), we can focus on the neighbors that, at the time when they are revealed,

are at heights (Height(ui)) higher than that of the vertex v. Let S = ui1 , ui2, . . . , uis

be the sequence of these neighbors.

First, if ui and v belong to the same cluster C(l) for some l, due to the condition

for step 2 of the algorithm, the edge (v, ui) is discarded. Second, a neighbor in S

may introduce an edge to M(v) only when its label is “new” to the current M(v),

i.e., the label is not in the set of labels used on the vertices in the set M(v) at that

time. Let S ′ be the longest subsequence of S with the property that when ui ∈ S ′ is

revealed, L(v) ∩ L(ui) = ∅ and all the labels in L(u) are also “new” to the current

M(v).

Due to step 2(b)(i), each time we see a neighbor in S ′ whose label is marked as

“selected,” v gets at least one new label and the value Height(v) increases by at

least one. Now consider the neighbors in S ′ after Height(v) reaches � t
2

. Let u be

such a neighbor. Note that Height(u) ≥ Height(v). Therefore, Height(u) = � t
2

. If

the edge (v, u) needs to be included, it is included in the set H due to step 2(a).

Hence, as far as M(v) is concerned, the sequence S ′ stops once there are � t
2

neighbors in the sequence, whose label set Lv(·) contains “selected” labels. The

101

size of M(v) is at most the length of the shortest prefix of S ′, which contains � t
2

such neighbors. In other words, we have a sequence of “0”s (unselected) and “1”s

(selected). Each element of the sequence takes the value “1” with probability 1
n1/t

and “0” with the probability 1 − 1
n1/t . The length of the shortest prefix containing

� t
2

 “1”s upper bounds the size of M(v). We consider how many “0”s there can be in

between the i-th and the (i+1)-th “1.” This number follows a geometric distribution.

We give an upper bound on this number that holds with high probability for all the

values of i up to � t
2

. We then multiply this number by � t

2

 to give an upper bound

on the size of M(v).

Now we analyze the number of edges stored by our algorithm.

Lemma 4.10. The algorithm stores O(t · n1+1/t log n) edges, with high probability.

Proof. The algorithm stores edges in the set H , in the spanning trees for each cluster

C(l), and in the sets M(v), ∀v ∈ V . By the Chernoff bound and the union bound,

with high probability, the number of clusters at level t/2 is O(
√

n) and the size of

the set H is O(n).

For each label l, the algorithm stores a spanning tree for the set of vertices C(l).

Note that for i = 1, 2, . . . , � t
2

, a vertex is labeled with at most one label in Li. Hence,⋃

l∈Li C(l) ⊆ V . Thus, the overall number of edges in the BFS trees is O(t · n).

By Lemma 4.9, with high probability, |M(v)| = O(t · n1/t log n). By the union

bound, with high probability
∑

v∈V |M(v)| = O(t · n1+1/t log n).

Theorem 4.7. For an unweighted, undirected graph of n vertices, presented as a

stream of edges, and a positive number t, there is a randomized streaming algorithm

that constructs a (2t+1)-spanner of the graph in one pass. With high probability, the

algorithm uses O(t · n1+1/t log2 n) bits of space and processes each edge in the stream

in O(t2 · n1/t log n) time.

102

Proof. Consider Algorithm 4.4. At the beginning of the algorithm, for all the labels

l ∈ L0, C(l) is a singleton set and the depth of the rooted spanning tree for C(l)

is zero. We now bound, for label li, where i > 0, the depth of the rooted spanning

tree T i on the vertices in C(li). A tree grows when an edge (u, v) is incorporated

into the tree in step 2(b)(i). Note that in this case, li is a successor of some label

li−1 of level i − 1. Assume that the depth dT i(v) of the vertex v in the tree is

one more than the depth dT i(u) of the vertex u. Then u ∈ C(li−1), and the depth

dT i−1(u) of u in the rooted spanning tree T i−1 of C(li−1) is the same as dT i(u). Hence,

dT i(v) = dT i−1(u) + 1 where T i is a tree of level i and T i−1 is a tree of level i − 1.

Given that dT 0(x) = 0 for all x ∈ V , the depth of the rooted spanning tree for C(l),

where l is a label of level i, is at most i.

We proceed to show that for any edge that the algorithm does not store, there

is a path of length at most 2t + 1 that connects the two endpoints of the edge. The

algorithm ignores three types of edges. Firstly, if L(u) ∩ L(v) 	= ∅, the edge (u, v) is

ignored. In this case, let l be one of the label(s) in L(u) ∩ L(v); u and v are both

on the spanning tree for C(l). Hence, there is a path of length at most t connecting

u and v. Secondly, (u, v) will be ignored if Height(v) = Height(u) = � t
2

 and there

is already an edge connecting C(Top(u)) and C(Top(v)). In this case, the path

connecting u and v has a length of at most 2t+1. Finally, in step 2(b)(ii), (u, v) will

be ignored if there is already another edge in M(v) that connects v to some u′ ∈ C(l)

where l ∈ L(u). Note that u and u′ are both on the spanning tree of C(l). Hence,

there is a path of length at most t + 1 connecting u and v.

Hence, the stretch factor of the spanner constructed by Algorithm 4.4 is 2t + 1.

By Lemma 4.10, with high probability, the algorithm stores O(t · n1+1/t log n) edges

and requires O(t · n1+1/t log2 n) bits of space. Also note that the bottleneck in the

processing of each edge lies on step 2(b)(ii), where for each label in Lv(u), we need

103

to examine the whole set of M(v). This takes O(t2 · n1/t log n) time.

Once the spanner is built, all-pairs, shortest distances of the graph can be com-

puted from the spanner. The computation does not need to access the input stream

and thus can be viewed as post-processing. Although Algorithm 4.4 constructs span-

ners for an unweighted, undirected graph, we can use it, along with the geometric

grouping technique introduced in Section 4.2, to construct spanners for weighted,

undirected graphs.

Theorem 4.8. For a weighted, undirected graph of n vertices, whose maximum edge

weight is ωmax, and whose minimum edge weight is ωmin, there is a randomized

streaming algorithm that constructs a ((1 + ε) · (2t + 1))-spanner of the graph in one

pass. With high probability, the algorithm uses O(log1+ε
ωmax

ωmin
· t ·n1+1/t log2 n) bits of

space and processes each edge in the stream in O(t2 · n1/t log n) time.

In the case where t = log n
log log n

, Algorithm 4.4 computes a (2 log n
log log n

+ 1)-spanner

in one pass. It uses O(n log4 n) bits of space and processes each edge in log4 n

time. Once we have the spanner, the all-pairs, shortest-path distances, as well as the

diameter of the graph, can be approximated. Also, it indirectly 2t+2
3

approximates

the girth of the graph. This is so because if the original graph has a girth larger or

equal to 2t + 2, the spanner will contain all the edges of the graph. i.e., the spanner

is the graph. Therefore, the girth can be computed exactly. On the other hand, if

the constructed spanner is a strict subgraph of G, we know the girth of G must have

been between 3 and 2t + 2.

Finally, we cite the following lower bound from [38]:

Theorem 4.9. [38] In one pass and using o(n1+γ) bits of space, it is impossible

to approximate the distance between two nodes s, t ∈ V better than by a 1−ε
γ

ratio.

104

Furthermore, this lower bound holds even if we are promised that dG(s, t) is equal to

the diameter of G.

Given this lower bound, our algorithm is not very far from the optimal.

105

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Streaming is an important model for processing massive data sets. Current research

on streaming computation has considered only a few types of problems. To fully un-

derstand the computational power of the streaming model, it is necessary to explore

more problems. In this dissertation, we have investigated computational-geometry

problems and graph-theoretic problems in the streaming model. We showed that, for

many geometry and graph problems, because of the space limit and the sequential-

access requirement of the streaming model, it is impossible to compute exact solu-

tions. We then turned our attention to approximate computations, where inaccurate

results with a bounded error can be accepted. We devised algorithms that approx-

imate diameters of sets of points in the streaming and sliding-window models. We

also devised algorithms that give approximations to the shortest-path distances in

a graph. In both cases, we also gave lower bounds on these problems. The lower

bounds state that, in terms of space, our algorithms are close to optimal.

For geometry and graph problems investigated in this dissertation, our results

106

show that there are small-space representations (sketches) of the massive data sets

that can be used to compute approximate results for the problems. Although similar

representations (sketches) may have been used in algorithm designs in the traditional

model, our results provide, for the first time, streaming constructions for these repre-

sentations. Clearly, due to space restrictions, a sketch is not a lossless compression of

the original data set. Therefore, a particular sketch may only be good for computing

a particular function. We believe that, for streaming computations, it is important to

understand which sketches can be constructed for a given problem. We also consider

the following two types of open problems to be important in the streaming model.

5.2 Open Problems

In this dissertation, we considered computational-geometry problems in low (con-

stant) dimensions. Geometry problems in high dimensions are also important. In

particular, there are many problems, such as those in information retrieval, that are

modeled as high-dimensional computational-geometry problems. A streaming algo-

rithm presented in [56] c-approximates the diameter (for c >
√

2) in a d-dimensional

space using O(dn1/c2−1) space. However, most high-dimensional geometric problems

remain open in the streaming model. It has been shown in [46] that, for a set of

points, there exists a small subset called a “coreset.” One can use the coreset to

compute an approximate clustering for the original input set. It can also be used in

solving (approximately) problems such as MaxCut, maximum matching. It would

be interesting to further explore coresets for other geometric problems in high di-

mensions.

The second type of open problems are dynamic problems. In our introduction to

massive data streams in Section 2.1.1, we briefly mentioned models of streaming such

107

as the turnstile model. Problems in this model are dynamic problems, i.e., there is

an implicit set of data. The data elements in the stream, however, indicate changes

(additions and deletions) to the implicit set. A dynamic problem seeks to compute

certain functions on the current set, i.e., the implicit set after the modifications

indicated by the stream seen so far. The streaming problems considered in this

dissertation (except the problems in the sliding-window model) can be viewed as

partially dynamic problems. That is, the stream only adds data elements to the

implicit set but never removes elements. It would be interesting to investigate the

corresponding full dynamic problems.

5.3 Future Work: From Theory to Applications

We have focused on a theoretical approach to understanding the streaming compu-

tational model. We consider fundamental problems in computational geometry and

graph theory and study algorithms and complexity for these problems. On the other

hand, it is also important to explore real systems and applications where streaming

computation is an essential part of the system. We end this dissertation by describ-

ing such a system in our ongoing work. This work aims to bring theoretical work into

applications by applying streaming computations in networking monitoring systems.

A preliminary report on this work will appear in [81].

The stability of BGP affects the stability, availability, and efficiency of the In-

ternet. It is thus of great importance to understand the behavior of BGP. In recent

years, a lot of research has been done in analyzing BGP instability [17, 20, 42, 64, 78].

Some studies view any route change as a sign of instability. However, not all route

changes are “bad,” in that not all cause instability problems for the network. In

some cases, route updates may be normal responses by BGP to network changes. In

108

other cases, they may be the result of traffic-engineering efforts. These route changes

actually can help to improve the performance of the network. It is only “abnormal”

route changes (e.g., frequent updates due to flaky equipment, protocol oscillation,

route hijacking, etc.) that require the network operator’s attention.

Of course, the notion of “abnormal” route changes (or “abnormal” BGP updates)

is not well defined. One AS’s “abnormal” BGP updates may be another AS’s “nor-

mal” updates. The definition depends on different AS’s configurations and policies.

Although a general definition may be difficult to obtain, it is helpful to consider fea-

tures/attributes of BGP updates that may be used to identify “anomalies.” Ideally

one would also like to automatically learn the “normal” behaviors and use what has

been learned to distinguish the “abnormal” from the “normal.”

Previously, statistics-based anomaly detection [74, 82] has been studied towards

this goal. A statistics-based detection system [58] detects anomaly by comparing

the current behavior with the history of known behaviors. If the current behavior

deviates radically from the known history, it will be flagged as a possible anomaly.

In the statistics-based detection system, the behaviors of BGP updates are normally

measured and represented by simple aggregates such as the number of updates within

a certain period of time or the time it takes for a prefix to converge. The history

is made of a simple statistic (the mean and the variance) of these aggregates, and

traditional statistical tests can be used to see whether the current behavior deviates

significantly from the normal behavior.

The statistics-based approach is simple and thus may be easily deployed and run

with high efficiency. This makes it attractive in situations where huge amounts of

data need to be processed. However, the simplicity in its representation also makes

it unable to capture complex features that may be important for a better analysis

of BGP behavior. Furthermore, the representations in many such systems have the

109

“magic number” problem. That is, they use parameters, set either arbitrarily or

according to statistics, for controlling granuality of the analysis, or for the threshold

that determines when a burst of messages ends. For example, a prefix may be

determined to have converged to a stable route if there have been no updates for

that prefix for T minutes. Clearly, it is hard to set a good value for such a parameter

T .

These problems motivate our search for new representations and new frameworks

that are independent of “magic numbers” and more powerful in characterizing BGP

updates. At the same time, the framework should still be efficient and deployable.

Towards this direction, we propose a framework using an instance-based learning. An

instance-based learning is a nearest-neighbor learning where the label (say “normal”

or “abnormal”) of a behavior is determined by the label of the most similar behavior

in the knowledge base. Hence, at a high level, our learning-based anomaly detection

bears a resemblance to the statistics-based anomaly detection. Both approaches

detect abnormal behavior by comparing it to a history of known behaviors. At the

detailed level, however, the two approaches differ greatly in how the behaviors are

represented, how the history is compiled, and how the current behavior is tested

against the history.

In our framework, BGP update behaviors are represented by a vector of quan-

tified features. Such a representation maps a particular behavior to a point in a

multidimensional vector space. The set of normal behaviors maps to a set of points

whose neighborhood defines the domain of “good” behaviors. A behavior represented

by an outlier point that is far away from this domain would be suspicious and may

require the network operator’s attention. The domain of normal behaviors and the

outlier points can be discovered by clustering. Thus, in our framework, the clusters

of known behaviors form a knowledge base. To check the current behavior against

110

the history is to perform a nearest-neighbor query in the knowledge base. By ex-

tending the representation to a vector of quantified features, our framework is much

more expressive in its ability to characterize BGP-update behaviors.

In a preliminary study, we use the features of BGP-update dynamics to make

the representation vectors. That is, we look for features in temporal patterns of the

BGP-update dynamics, such as burst duration, inter-burst intervals, etc. We argue

that features in BGP-update dynamics are relevant to the detection of BGP-update

anomalies. As discovered in [63], different update types have different convergence

time and number of update messages. The convergence and update-message numbers

also differ from ISP to ISP. Hence, the configuration of the underlying network affects

the way the new paths are explored, which in turn can lead to different timing and

message numbers in different systems. In fact, the work in [29] used BGP-update

dynamics to infer the network’s topological information. If we assume that the

underlying network does not change configuration often, the temporal dynamics of

the updates should also be similar. Thus, unusual dynamics may indicate anomalous

updates, as the analysis of BGP updates during certain worm attacks have shown [65].

Indeed, several recent works [82, 79] have examined the BGP-update dynamics for

signs of anomaly.

To extract the features (temporal patterns) of BGP-update dynamics, we use

wavelet transformations. In signal processing, wavelet transformations map a raw

signal (a function of time) into a signal (or coefficients) of the time-frequency domain

(a function of both time and frequency). Note that if we treat a sequence of update

messages as a signal along time, i.e., a function f(t) whose value is the number of

updates (for a view or for a particular prefix) at time t, an update-message burst

within this signal can be viewed as a high-frequency signal (the individual updates)

modulated by a low-frequency signal (the burst). The wavelet transformation can

111

thus reveal the temporal structures in the update-message dynamics. Let Ψ(x−τ
δ

) be

the wavelet with translation τ and scale δ. The discretized transformation is defined

to be γ(δ, τ) =
∑

x S(x) · 1√
δ
Ψ∗(x−τ

δ
). The multiscale analysis employs a set of values

for τ and δ. The function value γ(δ, τ) then defines a surface, and we are interested

in the peak values, i.e., local maximum, of γ(δ, τ). This is because a burst of length

t will give a large value of γ(δ, τ) at the scale δ closest to t and at the time τ when

the burst happens. Our representation consists of several histograms. We construct

one histogram for the peak values of γ(δ, τ) for each value of δ. To include time

information about the bursts in our representation, we also use a histogram for the

time intervals between each pair of consecutive peaks. Note that these two types of

histograms are shift-invariant. Therefore, so is our representation.

Our representation has several advantages. First, it avoids the “magic number”’

problem by employing a multiscale transformation. Using a set of different frequen-

cies, the wavelet transformation provides a systematic, multigranuality view of the

structures and patterns of BGP updates. Note that we view the update dynamics

at different levels: 1 second, 2 seconds, . . . ,
max second. Ideally, when
max goes to

infinitely large, we will have a comprehensive view of the dynamics. However, such

a system also requires a huge amount of computing resources. An implementation

must decide on a realistic value for
max. Therefore, our system avoids the “magic

number” problem not by magically getting rid of all the parameters, but by system-

atically examining the interval in which the possible values of the parameters can be

taken.

Another advantage of our representation is its shift-invariant property. Our

anomaly-detection framework compares the current BGP-update dynamics with the

dynamics in the knowledge base. Two sequences of update dynamics may be very

alike, but they may not be well aligned in time. For example, if the normal behav-

112

ior of a particular prefix is to undergo a short burst of updates once in a while, it

shouldn’t matter if the updates happen at 12:00 or 12:30. However, a shift-intolerant

representation would view the two sequences of dynamics as quite different behav-

iors and misclassify them. Furthermore, update dynamics of different prefixes are

normally not well aligned by time. Even the updates of multiple prefixes caused by

a single event may shift in time because of rate limiting by protocol timers or by the

transmission protocol. Again, a shift-intolerant representation will characterize them

as very different behaviors. Classification according to such a representation will not

produce meaningful categories of BGP-update dynamics. Because our representation

is shift-invariant, it provides a metric space in which comparison and classification

don’t have these problems.

However, the above representation construction does not tell us what kind of fea-

ture indicates anomalies in the BGP update. This is done by the learning component

in our framework. We use clustering to discover the structures in the BGP update

dynamics. Clustering groups the points representing the dynamics into categories,

which can then be examined and labeled by network operators. Therefore, clustering

helps to learn the positions in our representation space that correspond to anomalies

in BGP updates. These positions can be used later in identifying anomalies in future

BGP updates.

We have experimented with a preliminary implementation of our framework,

investigating daily BGP update behaviors for six months. We cluster the update

dynamics of a single prefix as well as the update dynamics across prefixes over a

view. Focusing on each prefix in isolation, we show that, for most prefixes, update

dynamics are similar from day to day. Furthermore, on a single day, most prefixes

also display similar dynamics. Only a few prefixes exhibit behaviors that are quite

different from the majority. The small set of prefixes or daily behaviors can be

113

further examined for anomaly detection. In particular, we observe that most prefixes

whose update dynamics deviate from the majority are unstable prefixes with frequent

routing changes.

This preliminary implementation is far from a useful application that can be de-

ployed in a real network system. Such an application is our future work. Streaming

computation will play a central role in this application. The BGP updates form a

stream of messages. The construction of representations requires streaming compu-

tation of convolution, and the learning component requires streaming clustering. We

believe that such a system not only will provide a place for applications of theoretical

work in streaming computation but also will serve as an experiment from which new,

important streaming problems can be discovered.

114

Bibliography

[1] J. Abello, A. Buchsbaum, and J. Westbrook. A functional approach to external

graph algorithms. Algorithmica, 32(3):437–458, 2002.

[2] P. K. Agarwal and S. Har-Peled. Maintaining the approximate extent measures

of moving points. In Proc. 12th ACM-SIAM Symposium on Discrete Algorithms,

pages 148–157, 2001.

[3] P. K. Agarwal, J. Matousek, and S. Suri. Farthest neighbors, maximum spanning

trees and related problems in higher dimensions. Computational Geometry:

Theory and Applications, 1(4):189–201, 1992.

[4] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of di-

ameter and shortest paths (without matrix multiplication). SIAM Journal on

Computing, 28(4):1167–1181, 1999.

[5] N. Alon, S. Hoory, and N. Linial. The moore bound for irregular graphs. Graphs

and Combinatorics, 18(1):53–57, 2002.

[6] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the

frequency moments. Journal of Computer and System Sciences, 58(1):137–147,

1999.

115

[7] I. Althöfer, G. Das, D. Dobkin, and D. Joseph. Generating sparse spanners for

weighted graphs. In Proc. 2nd Scandinavian Workshop on Algorithm Theory,

LNCS 447, pages 26–37, 1990.

[8] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction

of sparse neighborhood covers. SIAM Journal on Computing, 28(1):263–277,

1998.

[9] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Saks. Adapting to asynchronous

dynamic networks. In Proc. 24th ACM Symposium on Theory of Computing,

pages 557–570, 1992.

[10] B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic over-

head. In Proc. 31st IEEE Symposium on Foundations of Computer Science,

pages 514–522, 1990.

[11] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algo-

rithms, with an application to counting triangles in graphs. In Proc. 13th ACM-

SIAM Symposium on Discrete Algorithms, pages 623–632, 2002.

[12] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume

bounding box of a point set in three dimensions. In Proc. 10th ACM-SIAM

Symposium on Discrete Algorithms, pages 82–91, 1999.

[13] S. Baswana and S. Sen. A simple linear time algorithm for computing a (2k−1)-

spanner of o(n1+1/k) size in weighted graphs. In Proc. 30th International Colloq.

on Automata, Languages and Computing, pages 284–296, 2003.

[14] B. Bollobás. Extremal Graph Theory. Academic Press, New York, 1978.

116

[15] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent

permutations. Journal of Computer System Science, 60:630–659, 2000.

[16] A. Buchsbaum, R. Giancarlo, and J. Westbrook. On finding common neigh-

borhoods in massive graphs. Theoretical Computer Science, 299(1-3):707–718,

2003.

[17] M. Caesar, L. Subramanian, and R. H. Katz. Towards localizing root causes of

bgp dynamics. Technical Report, CSD-3-1292, UC Berkeley, 2003.

[18] T. Chan. Approximating the diameter, width, smallest enclosing cylinder and

minimum-width annulus. In Proc. 16th ACM Symposium on Computational

Geometry, pages 300–309, 2000.

[19] T. M. Chan and B. S. Sadjad. Geometric optimization problems over sliding

windows. In Proc. 15th International Symposium on Algorithm and Computa-

tion, pages 246–258, 2004.

[20] D.-F. Chang, R. Govindan, and J. Heidemann. The temporal and topological

characteristics of BGP path changes. In Proc. 11th IEEE International Confer-

ence on Network Protocols, pages 190–199, 2003.

[21] M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming algorithms for

clustering problems. In Proc. 35th ACM Symposium on Theory of Computing,

pages 30–39, 2003.

[22] Cisco. Netflow, 1998.

[23] K. Clarkson and P. Shor. Applications of random sampling in computational

geometry II. Discrete Computational Geometry, 4:387–421, 1989.

117

[24] E. Cohen. Fast algorithms for t-spanners and stretch-t paths. In Proc. 34th

IEEE Symposium on Foundation of Computer Science, pages 648–658, 1993.

[25] E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t.

SIAM Journal on Computing, 28:210–236, 1998.

[26] R. Cole and U. Vishkin. Approximate parallel scheduling. Part I: The basic

technique with applications to optimal parallel list ranking in logarithmic time.

SIAM Journal on Computing, 17:128–142, 1988.

[27] G. Cormode and S. Muthukrishnan. Radial histograms for spatial streams.

DIMACS Technical Report 2003-11, 2003.

[28] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics

over sliding windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

[29] G. A. David, N. Feamster, S. Bauer, and H. Balakrishnan. Topology inference

from BGP routing dynamics. In Proc. Internet Measurement Workshop, 2002.

[30] P. Drineas and R. Kannan. Pass efficient algorithms for approximating large

matrices. In Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, pages

223–232, 2003.

[31] R. D. Dutton and R. C. Brigham. Edges in graphs with large girth. Graphs and

Combinatorics, 7(4):315–321, 1991.

[32] M. Elkin. Computing almost shortest paths. In Proc. 20th ACM Symposium on

Principles of Distributed Computing, pages 53–62, 2001.

[33] M. Elkin. A fast distributed protocol for constructing the minimum spanning

tree. In Proc. 15th ACM-SIAM Symposium on Discrete Algorithms, pages 352–

361, 2004.

118

[34] M. Elkin and D. Peleg. (1 + ε, β)-spanner constructions for general graphs. In

Proc. 33rd ACM Symposium on Theory of Computing, pages 173–182, 2001.

[35] M. Elkin and J. Zhang. Efficient algorithms for constructing (1 + ε, β)-spanners

in the distributed and streaming models. In Proc. 23rd ACM Symposium on

Principles of Distributed Computing, pages 160–168, 2004.

[36] D. Eppstein, Z. Galil, and G. Italiano. Dynamic graph algorithms. CRC Hand-

book of Algorithms and Theory of Computation, Chapter 8, CRC-Press 1998.

[37] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph

problems in a semi-streaming model. In Proc. 31st International Colloquium on

Automata, Languages and Programming, LNCS 3142, pages 531–543, 2004.

[38] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph dis-

tances in the streaming model: The value of space. In Proc. 16th ACM-SIAM

Symposium on Discrete Algorithms, pages 745–754, 2005.

[39] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate

L1 difference algorithm for massive data streams. SIAM Journal on Computing,

32(1):131–151, 2002.

[40] J. Feigenbaum, S. Kannan, and J. Zhang. Computing diameter in the

streaming and sliding-window models. Yale University Technical Report,

YALEU/DCS/TR-1245, Dec. 2002. Also partially presented at the Novem-

ber 6-9, 2001, and March 24-26, 2003, meetings of the DIMACS working group

on streaming data analysis.

[41] J. Feigenbaum, S. Kannan, and J. Zhang. Computing diameter in the streaming

and sliding-window models. Algorithmica, 41(1):25–41, 2005.

119

[42] A. Feldmann, O. Maennel, Z. Mao, A. Berger, and B. Maggs. Locating Internet

routing instabilities. In Proc. ACM SIGCOMM Conference, pages 205–218,

2004.

[43] P. Flajolet and G. Martin. Probabilistic counting. In Proc. 24th IEEE Sympo-

sium on Foundation of Computer Science, pages 76–82, 1983.

[44] P. Flajolet and G. Martin. Probabilistic counting algorithms for data base

applications. Journal of Computer and System Sciences, 31:182–209, 1985.

[45] J. H. Fong and M. Strauss. An approximate Lp-difference algorithm for mas-

sive data streams. Discrete Mathematics and Theoretical Computer Science,

4(2):301–322, 2001.

[46] G. Frahling and C. Sohler. Coresets in dynamic geometric data streams. In

Proc. 37th ACM Symposium on Theory of Computing, pages 209–217, 2005.

[47] P. Gibbons and Y. Matias. Synopsis data structures for massive data sets.

DIMACS Series in Discrete Mathematics and Theoretical Computer Science:

Special Issue on External Memory Algorithms and Visualization, A:39–70, 1999.

[48] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss.

Fast, small-space algorithms for approximate histogram maintenance. In Proc.

34th ACM Symposium on Theory of Computing, pages 389–398, 2002.

[49] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets

on streams: One-pass summaries for approximate aggregate queries. In Proc.

27th International Conference on Very Large Data Bases, pages 79–88, 2001.

[50] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. In Proc. 33rd

ACM Symposium on Theory of Computing, pages 471–475, 2001.

120

[51] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.

In Proc. 41st IEEE Symposium on Foundations of Computer Science, pages

359–366, 2000.

[52] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams.

Technical Report 1998-001, DEC Systems Research Center, 1998.

[53] J. Hershberger and S. Suri. Convex hulls and related problems in data streams.

In Proc. Workshop on Management and Processing of Data Streams, 2003.

[54] J. Hopcroft and J. Ullman. Some results on tape-bounded turing machines.

Journal of the ACM, 16:160–177, 1969.

[55] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data

stream computation. In Proc. 41st IEEE Symposium on Foundations of Com-

puter Science, pages 189–197, 2000.

[56] P. Indyk. Better algorithms for high-dimensional proximity problems via asy-

metric embeddings. In Proc. 14th ACM-SIAM Symposium on Discrete Algo-

rithms, pages 539–545, 2003.

[57] P. Indyk. Algorithms for dynamic geometric problems over data streams. In

Proc. 36th ACM Symposium on Theory of Computing, pages 373–380, 2004.

[58] H. Javitz and A. Valdes. The NIDES statistical components: Description and

justification. Technical report, SRI Network Information Center, 1993.

[59] B. Kalyanasundaram and G. Schnitger. The probabilistic communication com-

plexity of set intersection. SIAM Journal on Discrete Mathematics, 5:545–557,

1990.

121

[60] F. Korn, S. Muthukrishnan, and D. Srivastava. Reverse nearest neighbor aggre-

gates over data streams. In Proc. 28th International Conference on Very Large

Data Bases, pages 814–825, 2002.

[61] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Extracting large-

scale knowledge bases from the Web. In Proc. 25th International Conference on

Very Large Data Bases, pages 639–650, 1999.

[62] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University

Press, 1997.

[63] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed internet routing

convergence. IEEE/ACM Transactions on Networking, 9(3):293–306, 2001.

[64] M. Lad, A. Nanavati, D. Massey, and L. Zhang. An algorithmic approach to

identifying link failures. In Proc. 10th Pacific Rim International Symposium on

Dependable Computing, pages 25–34, 2004.

[65] M. Lad, X. Zhao, B. Zhang, D. Massey, and L. Zhang. Analysis of BGP update

surge during slammer worm attach. In Proc. 5th International Workshop on

Distributed Computing, LNCS 2918, pages 66–79, 2003.

[66] R. Lipton. Efficient checking of computations. In Proc. 7th Annual Symposium

on Theoretical Aspects of Computer Science, LNCS 415, pages 207–215, 1990.

[67] J. Munro and M. Paterson. Selection and sorting with limited storage. Theo-

retical Computer Science, 12:315–323, 1980.

[68] S. Muthukrishnan. Data streams: Algorithms and applications. 2003. Available

at http://athos.rutgers.edu/~muthu/stream-1-1.ps.

122

[69] D. Peleg and A. Schäffer. Graph spanners. Journal of Graph Theory, 13:99–116,

1989.

[70] D. Peleg and J. Ullman. An optimal synchronizer for the hypercube. SIAM

Journal on Computing, 18:740–747, 1989.

[71] E. Ramos. Deterministic algorithms for 3-d diameter and some 2-d lower en-

velopes. In Proc. 16th ACM Symposium on Computational Geometry, pages

290–299, 2000.

[72] A. Shiryayev. Probability. Springer-Verlag, New York, 1995.

[73] A. Silberschatz, P. Galvin, and G. Gagne. Applied operating system concepts.

John Wiley & Sons, New York, 2000.

[74] S. T. Teoh, K. Zhang, S.-M. Tseng, K.-L. Ma, and S. F. Wu. Combining visual

and automated data mining for near-real-time anomaly detection and analysis

in BGP. In Proc. ACM CCS Workshop on Visualization and Data Mining for

Computer Security, 2004.

[75] M. Thorup and U. Zwick. Approximate distance oracles. In Proc. 33rd ACM

Symposium on Theory of Computing, pages 183–192, 2001.

[76] J. Ullman and M. Yannakakis. High-probability parallel transitive-closure algo-

rithms. SIAM Journal on Computing, 20(1):100–125, 1991.

[77] J. S. Vitter. External memory algorithms and data structures: Dealing with

massive data. ACM Computing Surveys, 33(2):209–271, 2001.

[78] J. Wu, Z. M. Mao, J. Rexford, and J. Wang. Finding a needle in a haystack:

Pinpointing significant BGP routing changes in an IP network. In Proc. 2nd

Symposium on Networked Systems Design and Implementation, 2005.

123

[79] K. Xu, J. Chandrashekar, and Z.-L. Zhang. A first step toward understanding

inter-domain routing dynamics. In Proc. ACM SIGCOMM Workshop on Mining

Network Data, 2005.

[80] A. Yao. Some complexity questions related to distributive computing. In Proc.

11th ACM Symposium on Theory of Computing, pages 209–213, 1979.

[81] J. Zhang, J. Rexford, and J. Feigenbaum. Learning-based anomoly detection in

BGP updates. In Proc. ACM SIGCOMM Workshop on Mining Network Data,

2005.

[82] K. Zhang, A. Yen, X. Zhao, D. Massey, S. F. Wu, and L. Zhang. On detection

of anomalous routing dynamics in BGP. In Proc. 3rd International IFIP-TC6

Networking Conference, LNCS 3042, pages 259–270, 2004.

[83] Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In Proc.

9th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 336–345, 2003.

124

