
Abstract

Accountability in Cloud Computing and Distributed Computer Systems

Hongda Xiao

2014

Traditionally, research in computer security has focused on preventive techniques such as passwords,

authentication protocols, and encryption. With the rise of internet technologies, especially cloud computing

and distributed computer systems, preventive measures have proven inadequate, and security researchers

have sought to complement them with accountability mechanisms. Despite widespread agreement on its

importance, “accountability is not yet a unified research area. This thesis advances the state of accountability

research by systematically comparing a significant amount of existing work in the area and designing practical

accountability mechanisms for realistic scenarios in cloud computing and distributed computer systems.

First, we propose a framework to categorize research on accountability mechanisms with respect to time,

goal, information, and action. Our systematization effort shows that more sparing use of the word “ac-

countability” is desirable, because it is currently used by different researchers to mean different things. Our

conception of the term dispels the mistaken notions that accountability precludes anonymity and privacy and

that it requires centralized authority.

Second, we present a privacy-preserving structural-reliability auditor (P-SRA) for cloud-computing sys-

tems. P-SRA enables evaluation of the reliability of cloud infrastructure without compromise of cloud-

infrastructure providers privacy. We present the privacy properties of P-SRA and evaluate a prototype im-

plementation built on the Sharemind SecreC platform [BK13]. P-SRA is not only a mechanism for holding

cloud-service providers accountable but also an interesting application of secure multi-party computation

(SMPC), an extensive body of privacy technology that has not often been used on graph problems, which are

inherent in structure-reliability auditing.

Third, we extend our study of the accountability of cloud-service providers to cloud-service users; rather

than focusing only on reliability, we consider general properties of cloud infrastructure. We develop the

2

notion of cloud user infrastructure attestation, which enables a cloud-service provider to attest to a cloud-

service user that the infrastructure as a whole has the properties that the cloud-service user has requested.

Here, “infrastructure including both the computing nodes on which the users virtual machines run and the

interconnection of these virtual machines. We propose a novel type of secure-hardware component called

a Network TPM to guarantee the integrity of the cloud infrastructure information, and we design attestation

protocols that leverage existing verifiable-computation techniques. Our protocols protect the privacy of the

cloud-service provider, who does not need to reveal the physical infrastructure and its details to the cloud-

service user or to any third parties.

Finally, we study accountability in the operation of cloud-scale data centers — specifically on the actions

that should be taken when violations of system policies or other abnormal events are detected. We focus on

rapid reallocation of virtual machines in response to threat detection. We formally define virtual-machine

reallocation as an optimization problem and explain how it differs from the general virtual-machine alloca-

tion problem. Virtual-machine reallocation is NP-hard, but we provide an efficient, two-layered, heuristic

algorithm that decomposes the problem and then applies optimization techniques to much smaller problem

instances. Our approach incurs only small optimality losses and may be applicable to other aspects of data-

center and cloud security.

Accountability in Cloud Computing and Distributed Computer Systems

A Dissertation

Presented to the Faculty of the Graduate School

of

Yale University

in Candidacy for the Degree of

Doctor of Philosophy

by

Hongda Xiao

Dissertation Director: Professor Joan Feigenbaum

Dec 2014

c©2014 by HONGDA XIAO.

All rights reserved.

Acknowledgements

First, I would like to thank my advisor, Professor Joan Feigenbaum, for guiding me into the research field

of computer security, sharing with me her enthusiasm and insights, supporting me when I was in the most

difficult time during my PHD studies, teaching me how to write good papers, helping me edit my papers and

presentation slides, encouraging me to fight for my dreams, and so many other things that I dont have space

for here. Because of her, my PHD studies become an exciting and rewarding journey.

Next, I would like to thank my wife Grace, who always believes in me unconditionally and will bring

me an amazing gift from God our son Jason. I would like to thank my parents, Tianlong Xiao and Bing

He, who always support me no matter what happens and have given me everything that they have to help

me pursue my dreams. I would like to thank my grandfather, Wenbing He, for appreciating the progress I

have made, and to wish him rest and peace in Heaven. I would like to thank my grandmothers, Shuqing

Wang and Yuchan Liu, who are always proud of me. And I thank my parents-in-law, Hao Guo and Xuenong

Kang, Uncle Tianya Xiao, Uncle Tianzhi Xiao, Uncle Tianbao Xiao, Uncle Pei Guo, Uncle Xuejun Kang,

Aunt Xiuqin Wang, Aunt Dandan He, Aunt Jun He, Aunt Lichun He, Aunt Lihua He, Cousin Hongyu Xiao,

Cousin Chong Zheng, and Cousin Yinggang Li for giving me so many wonderful moments in my life.

I would also like to thank my co-authors and collaborators for their enthusiasm in research and for all of

their hard work: Professors Bryan Ford and Joan Feigenbaum for guiding me and helping me to finish the

work of Chapter 3; Professors Jakub Szefer and Joan Feigenbaum for proposing the interesting problem of

cloud user infrastructure attestation in Chapter 4; Professor Jakub Szefer for all of his efforts on the work

of Chapter 5; Professors Aaron Jaggard and Rebecca Wright for collaborating on the work in Chapter 2;

Ennan Zhai, David Wolinskey, Hongqiang Liu, Xueyuan Su, and Professor Bryan Ford for our joint work on

the SRA system [ZWX+]; and fellow PhD students Debayan Gupta and Aaron Segal for helpful discussions

about SMPC.

Finally, I acknowledge the National Science Foundation for supporting my research with grant CNS

1016875.

Contents

1 Introduction 7

2 Systematizing Accountability in Computer Science 10

2.1 Introduction . 10

2.2 Related work . 12

2.3 Aspects of Accountability . 13

2.3.1 Time/Goals . 13

2.3.2 Information . 14

2.3.3 Action . 14

2.3.4 Applicability of this framework . 15

2.4 Survey of Approaches . 15

2.4.1 Accountability solutions . 16

2.4.2 Formalizations of accountability . 23

3 Structural Cloud Audits that Protect Private Information 30

3.1 Introduction . 30

3.2 Related Work . 31

3.2.1 Secure Multi-Party Computation . 31

3.2.2 Cloud Reliability . 33

3.2.3 Fault Trees . 33

3.3 Problem Formulation . 34

3.4 System Design . 36

3.4.1 System Overview . 36

3.4.2 Privacy-preserving Data Acquisition . 38

1

CONTENTS 2

3.4.3 Subgraph Abstraction . 39

3.4.4 SMPC and Local Computation . 40

3.4.5 Privacy-preserving Output Delivery . 45

3.5 Implementation . 47

3.5.1 P-SRA Prototype . 47

3.5.2 Case Study . 49

3.5.3 Large-Scale Simulation . 50

4 Cloud User Infrastructure Attestation 54

4.1 Introduction . 54

4.2 Related Work . 55

4.3 Cloud User Infrastructure . 57

4.4 Cloud User Infrastructure Attestation . 59

4.4.1 Threat Model . 59

4.4.2 Attestation of Server Architecture . 60

4.4.3 Attestation of Topology Infrastructure . 60

4.5 Implementation . 71

4.5.1 Prototype of Topology Infrastructure Attestation 71

4.5.2 Case Study . 72

4.5.3 Large Scale Simulation . 74

5 On Virtual-Machine Reallocation in Cloud-scale Data Centers 78

5.1 Introduction . 78

5.1.1 VM Allocation vs. Reallocation . 79

5.1.2 Random Selection and Hot Spares . 79

5.2 Cloud-scale Data Centers . 80

5.3 The VM-Reallocation Problem . 82

5.3.1 Threat Model . 83

5.3.2 Threat Examples . 83

5.3.3 Problem Formulation . 84

5.3.4 Computational Complexity . 85

5.4 An Efficient, Decomposed, Two-Layer Approach . 88

CONTENTS 3

5.4.1 Overview of the Two-Layer Approach . 88

5.4.2 First-Layer Optimization Problem . 89

5.4.3 Second-Layer Optimization Problem . 90

5.4.4 How to Partition the Problem . 92

5.5 Experimental Evaluation of the Two-Layer Approach . 92

5.5.1 Efficiency of the Two-Layer Approach . 92

5.5.2 Accuracy vs. Improved Performance . 93

5.6 Related Work . 95

6 Conclusion and Open Problems 97

6.1 Systematizing Accountability in Computer Science . 97

6.2 Structural Cloud Audits that Protect Private Information . 99

6.3 Cloud User Infrastructure Attestation . 99

6.4 On Virtual-Machine Reallocation in Cloud-scale Data Centers 100

List of Figures

3.1 System Overview . 37

3.2 Full Dependency Graph of C1 . 41

3.3 Abstracted Dependency Graph, suitable for SMPC . 41

3.4 Fault Tree Based on Dependency Graph in Figure 3.3 . 42

3.5 Topology-path Form of Dependency Graph in Figure 3.3. 43

3.6 Implementation in Sharemind SecreC . 48

3.7 Multi-level Structure of Cloud Service . 50

3.8 Components in Data Center DC1: Core, Agg, and ToR represent core router, aggregation

switch, and top-of-rack switch. 51

3.9 Performance of algorithms. On the X axis, “Common” represents the common-dependency

finder, 2 through 4 represent the failure-sampling algorithm with sampling rounds at various

powers of 10, and “Min” represents the minimal-FS algorithm. 52

4.1 User infrastructure example with multiple VMs and links among them 57

4.2 Cloud infrastructure example. 58

4.3 Cloud user infrastructure example, showing mapping of the user infrastructure, Figure 4.1,

onto the cloud infrastructure, Figure 4.2. 59

4.4 Network TPM Design . 62

4.5 Virtual and Physical Networks . 63

4.6 Physical Topology Discovery Protocol Data Unit . 66

4.7 Property-based Attestation Protocol of Topology Infrastructure 70

4.8 Prototype of Topology Infrastructure . 72

4.9 Example 1 of Topology Infrastructure . 73

4.10 Example 2 of Topology Infrastructure . 74

4

LIST OF FIGURES 5

4.11 Example 3 of Topology Infrastructure . 74

4.12 Running Time of Topology Measurement Protocols . 76

4.13 Running Time of Topology Attestation Protocols . 76

4.14 Memory Usage Comparison of Topology Attestation Protocols 77

5.1 Logical architecture of a data center, modeled after OpenStack “Grizzly” logical architecture

[Gri]. The highlighted elements would be modified to integrate our reallocation code into

OpenStack. The modified parts fall into one of the seven core components; nova-guard is

a new, optional part that we propose. The blue dashed boxes logically group parts of each

of the seven core components. The solid lines represent API calls from outside of the core

components; they are routed on the public network. The dashed lines represent API calls

between the core components; they are routed on the management network. 81

5.2 Typical data center network, modeled after [GHJ+09]. 82

5.3 Overview of the two-layer approach . 89

5.4 Comparison of the performance of different approaches. 93

5.5 Comparison of the accuracy of different approaches. 94

List of Tables

2.1 Overview of accountability approaches. 16

3.1 Configuration of Test Data Sets . 52

3.2 Performance of the LEU of a P-SRA client . 53

4.1 Simulation Cases of Cloud User Topology Infrastructure 75

5.1 Results of binary programming using CVXOPT . 86

5.2 Results of binary programming using Gurobi . 86

5.3 Results of linear programming using CVXOPT . 87

5.4 Results of linear programming using Gurobi . 88

5.5 Results of two-layer linear programming using CVXOPT 93

6

Chapter 1

Introduction

Traditionally, computer-security research has focused on preventive approaches to security and privacy. Al-

though preventive techniques, such as passwords and authentication protocols, are still indispensable in com-

puter systems, purely preventive approaches have proven to be inadequate in the internet era. As more and

more daily activity moves online, users in different administrative domains must exchange information and

transact business without the benefit of a common set of policies and credentials. With the development

of cloud computing and large-scale, distributed computing systems, information-security researchers have

realized the importance of accountability mechanisms to complement preventive mechanisms. Outsourcing

computations to powerful third parties and distributed organizations of large-scale systems accelerates the

process of data sharing and cooperation between different parties who do not necessarily trust each other. It

is difficult, if not impossible, to guarantee service-level agreements between cloud-service users and providers

or to enforce the policies of the distributed systems by pure preventive mechanisms.

Despite widespread agreement about its importance, accountability is not yet a unified research area yet.

Different researchers use the term “accountability” to mean different things. In Chapter 2, we propose a

framework to systematize much of the existing computer-science research on accountability. We provide a

high-level perspective on the appropriate focus of accountability work in computer science, and we categorize

existing work along three axes: time, information, and action. With respect to time, we consider five standard

approaches to violations and potential violations of security policies: prevention, detection, evidence, judg-

ment, and punishment. With respect to information, we examine the type(s) of credentials used by system

participants, the components of evidence of compliance with or violation of a security policy, and who must

have access to credentials and evidence for the system to function. With respect to action, we examine the

operational structures of accountability mechanisms and the systems that use them to achieve privacy and

7

CHAPTER 1. INTRODUCTION 8

security. Our systematization effort has revealed the need for more sparing use of the word “accountability”

and, more generally, for more precise and consistent terminology. Our formulation of accountability also dis-

pels the mistaken notions that accountability precludes anonymity and privacy and that it requires centralized

authority.

We then proceed to design accountability mechanisms for practical cloud computing and distributed com-

puting systems. In cloud-computing systems, cloud-service users need to hold cloud-service providers ac-

countable for providing reliable cloud services. It is natural for cloud-service providers to use redundancy to

achieve reliability. For example, a provider may replicate critical state in two data centers. However, if the

two data centers use the same power supply, a power outage will cause them to fail simultaneously; repli-

cation per se does not, therefore, enable the cloud-service provider to make strong reliability guarantees to

its users. On the other hand, cloud-service providers may be unwilling to reveal sensitive information about

their equipment and operational procedures to cloud-service users or any third parties, because doing so may

compromise their businesses. In Chapter 3, we present a privacy-preserving structural-reliability auditor (P-

SRA), discuss its privacy properties, and evaluate a prototype implementation built on the Sharemind SecreC

platform [BK13]. P-SRA is not only an accountability mechanism that enables cloud-service users to hold

cloud-service providers accountable; it is also an interesting application of secure multi-party computation

(SMPC), which has not often been used for graph problems. It achieves acceptable running times even on

large cloud structures by using a novel data-partitioning technique that may be useful in other applications of

SMPC. Moreover, it demonstrates that accountability can be achieved without compromising the privacy of

the system participants.

In Chapter 4, we continue our study of techniques that allow cloud-service users to hold cloud-service

providers accountable. Rather than focusing on just one property (reliability), as we did in Chapter 3, we con-

sider the general question of how to determine whether the promised properties of cloud infrastructures have

actually been delivered. Cloud-service users need assurance that they have received cloud resources with the

properties that they paid for and that their virtual machines function as expected. A practical accountability

mechanism should enable cloud-service providers to attest to cloud-service users that the resources they have

provided satisfy the users’ requirements. In particular, in addition to attestation that the computing resources

delivered have the desired properties, such as processor speed or amount of memory, cloud-service users

need attestation about the networking infrastructure that connects the virtual machines they are running in

the cloud. We develop the notion of cloud user infrastructure attestation, which attests to the properties of

the whole infrastructure that a cloud-service user has requested from a cloud-service provider, including both

CHAPTER 1. INTRODUCTION 9

the computing nodes where the virtual machines run and the interconnection of these virtual machines. We

propose the use of a novel secure-hardware component called a Network TPM to attest to the properties of

the networking infrastructure; it is meant to work in concert with traditional TPMs that attest to the properties

of the computing nodes. On top of these hardware security anchors, we build protocols that are able to attest

to the properties of the infrastructure that the user has leased from the provider. In addition, our protocols

protect the privacy of the provider, who does not need to reveal details of its physical infrastructure to the

user or to any third parties.

Finally, we study accountability in the operation of cloud-scale data centers — specifically on the actions

that should be taken when violations of system policies or other abnormal events are detected. In Chap-

ter 5, we investigate the data-integrity and data-security problems in cloud-based data centers, which are

often organized in a distributed manner. Unexpected and sudden events in data centers, such as detection of

an unauthorized physical intruder or a critical security event, require prompt responses if data integrity and

security are to be protected. Standard responses include resource reallocation and migration of computation

or data away from the affected hosts. Previous research in this area has focused on implementing fast and

efficient migration strategies. However, past work has not often explored how to select the target machines to

which computation and data should be migrated after the occurrence of sudden events. We focus on rapid re-

allocation of virtual machines in response to threat detection. We formally define virtual-machine reallocation

as an optimization problem and explain how it differs from the general virtual-machine allocation problem.

Virtual-machine reallocation is NP-hard, but we provide an efficient, two-layered, heuristic algorithm that

decomposes the problem and then applies optimization techniques to much smaller problem instances. We

use large-scale simulations to demonstrate that the two-layered approach is fast enough for the configurations

of real-world data centers, with only small and tolerable optimality losses. Our layered approach may be

applicable to other aspects of data-center and cloud security problems.

In Chapter 6, we present some open problems and directions for future research on accountability in cloud

services and distributed computing systems.

Chapter 2

Systematizing Accountability in
Computer Science

2.1 Introduction

Traditionally, computer-science researchers have taken a preventive approach to security and privacy in on-

line activity: Passwords, authentication protocols, and other before-the-fact authorization mechanisms are

designed to prevent users from violating policies and to obviate the need to adjudicate violations and punish

violators. Purely preventive approaches to security and privacy have proven to be inadequate as more and

more daily activity moves online, and users in different administrative domains must exchange information

and transact business without the benefit of a common set of policies and credentials. Many information-

security researchers have thus sought accountability mechanisms to complement preventive mechanisms.

Despite widespread agreement that “accountability” is important in online life, it is not yet a unified research

area. Indeed, the word is used by different researchers to mean different things and is not always defined

explicitly.

It is our thesis of this chapter that the lack of agreement about definitions and formal foundations is

impeding progress on accountability research and adoption of accountability technology. We offer this sys-

tematization as a step toward remedying this situation. Our starting point is a succinct, high-level perspective

on the appropriate focus of accountability work in computer science: Accountability mechanisms should en-

able actions to be tied to consequences and, in particular, enable violations to be tied to punishment. Guided

by that fundamental goal, we categorize existing work on accountability along three axes: time, information,

and action.

With respect to time, we consider five standard approaches to violations and potential violations of se-

10

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 11

curity policies: prevention, detection, evidence, judgment, and punishment. Roughly speaking, these ap-

proaches can be linearly ordered in time. First, one tries to prevent violations. When that cannot be done,

the goal is to detect violations. If a violation is detected, or even suspected, it may be necessary to gather

evidence that can later be used to render a judgment about precisely what happened and whom or what to

blame. Finally, actions can be tied to consequences by meting out punishment to the violator. A single

accountability mechanism can address one or more of these five phases; most do not address them all. A

stand-alone authentication or authorization mechanism that is purely preventive should not be called an “ac-

countability” mechanism, but before-the-fact authorization can be part of a larger system that also addresses

the later phases of accountability.

With respect to information, we examine the type(s) of credentials the system participants use, what con-

stitutes evidence of compliance with or violation of a security policy, and who must have access to credentials

and evidence for the system to function. To what extent does the system rely on participants’ identities, and

how is “identity” defined? If identity is used, how broadly does a participant’s identity become known? Who

learns about a violation when one occurs, and how soon after the fact of the violation does he learn it? The

role of identity is important because of the widespread but mistaken perception (discussed below) that ac-

countability is inherently in tension with anonymity. Interestingly, some of the works that we cover in this

systematization effort regard identification of wrongdoers as the final step in a process—as judgment and

punishment, in the terms introduced above. In these systems, an act that violates a security policy triggers

the identification of the violator who, until he committed the violation, was anonymous. It is assumed that

identification per se will ensure that the violator is held accountable, but precisely what it means for someone

to be “held accountable” is not specified. At the other end of the spectrum, some of the works that we cover

assume that all participants have persistent identities, i.e., that anonymity is not an issue, and deal exclusively

with formal protocols for presenting evidence, adjudicating a claimed violation, and meting out punishment

if the claim is validated. This lack of agreement about the scope of “accountability” research is one of our

main motivations for undertaking this systematization effort.

With respect to action, we examine the operational structures of accountability mechanisms and the sys-

tems that use them to achieve privacy and security. Are system actions centralized or decentralized? What

actions must be taken to deal with a violation? In particular, does a violation trigger automatic punishment

(such as the destruction of anonymity discussed above), or must evidence of a violation be presented to a

mediator, who invokes a formal adjudication protocol and, if necessary, a punishment protocol? If there is

a mediator, is it an entity that is already part of the system, or is it someone external to the system (like a

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 12

judge who is only called in for the purpose of adjudicating)? To what extent does the functioning of the sys-

tem assume continued participation by or access to the violator? That actions could be tied to consequences

automatically, e.g., without identification of the actors or the invocation of a formal adjudication protocol, is

not a new or radical idea but rather one that has been the subject of extensive study in at least one discipline,

namely Economics, in which the design of incentive-compatible systems and protocols is a standard goal.

The simplest and best-known example of an incentive-compatible protocol in Economics is the 2nd-price

Vickrey auction. The policy that bidders are supposed to comply with is “bid your true value.”1 For many

natural distributions on the bidders’ values, no bidder can improve his utility by lying; indeed, with positive

probability, his utility will be decreased if he lies about his value. Thus, actions are automatically tied to

consequences, and no explicit punishing action is taken. The violator is not identified, and, in fact, no one

else even knows that there was a violation.

One barrier to unification and systematization of this technical area is the word “accountability” itself. In

common parlance, “holding him accountable” connotes “making him account for himself” or “making him

stand up and be counted.” The sentiment conveyed therein has considerable social value, and it causes people

to resist using the term to describe approaches that may not entail an official “account” by the wrongdoer. This

erroneous assumption that “accountability mechanisms” must require the identification of those who violate

policies so that violators can be brought to “account” is widespread in the technical community as well, where

it raises the hackles of those who conclude that accountability is inherently in tension with anonymity. The

fact that “tying actions to consequences” can be accomplished without identifying wrongdoers, as the study of

incentive compatibility in Economics clearly demonstrates, gives us hope that this erroneous assumption can

be corrected and that the technical community will embrace accountability as an effective tool in situations

where preventive measures are inadequate and will recognize that it does not preclude anonymity.

2.2 Related work

The focus of this chapter is on accountability solutions and formalizations in Computer Science; that type

of related work is discussed in detail below. Other work on accountability in Computer Science includes

arguments by Weitzner et al. [WABL+08] and by Lampson [Lam09] about the need for accountability and

security-by-deterrence (such as might be provided by accountability). In early work on accountability in

Computer Science, Nissenbaum [Nis97] studied barriers to accountability in contexts involving software.

1This might not be explicitly stated as a policy requirement, but that does not affect incentive compatibility. In considering this in the
context of accountability, we may assume that we are in a setting in which this goal is an explicit policy and that we want to ensure that
violations of this policy are punished.

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 13

Chockler and Halpern [CH04] build on the Halpern–Pearl [HP05] framework of causality to give formal

definitions of both responsibility (the extent to which something is a cause of an event) and blame (which

additionally considers the epistemic state of an agent who causes an event). This does not directly provide a

definition of accountability, but these notions might be used to inform actions (such as punishment) taken in

response to a policy violation.

Outside of Computer Science, Mulgan [Mul00] has traced the evolution of “accountability” in Public

Administration from its core meaning of being able to be called to give an account (e.g., of one’s actions).

Grant and Keohane [GK05] have given a definition in the context of nation states interacting with each other.

Our focus is not on approaches outside of computer science, of which these are but a small sample, so we

will not discuss them in more detail here. (Feigenbaum et al. [FHJ+11, FJW11] provide more discussion of

non-Computer Science approaches to accountability.)

2.3 Aspects of Accountability

As we survey approaches to accountability, we evaluate how they address three broad aspects of accountabil-

ity: time, information, and action. In our analysis, we typically think of accountability with respect to some

policy violation (in a very general sense); the “time” aspect considers when the system is invoked relative to

the time of the violation. The “information” aspect considers what is known and by whom, while the action

aspect concerns what is done and by whom.

2.3.1 Time/Goals

In surveying approaches to accountability, it becomes clear that different systems are focused on different

times relative to a policy violation; this often corresponds to different goals for the system. As one example,

the formal framework of Küsters et al. [KTV10] explicitly models (and focuses on) judgments or verdicts,

i.e., declarations that a violator is guilty of committing a violation. By contrast, the formal framework of

Feigenbaum et al. [FJW11] focuses on punishment, which typically follows a declaration of guilt. (Within

this punishment-focused framework, there need not be a judgment that identifies an individual entity as guilty;

so this is indeed distinct from a focus on judgment.)

Motivated by such differences, we consider a spectrum of times, relative to a policy violation, at which

each system/framework/mechanism might play a role. We identify the points below on this spectrum. While

we categorize, and refer to, these based in terms of their goals/effects and not in terms of strict temporal

relationships, there is a natural temporal ordering of these effects.

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 14

Prevention The system is (at least partially concerned) with preventing violations and plays a role before

the violation occurs.

Detection The system facilitates, enables, etc., detection of a violation (either as it occurs or after it

occurs).

Evidence The system helps gather or preserve evidence about a violation that may be used against the

accused violator (e.g., in a court of law); in some settings, this may be connected to detection.

Judgment The system renders a verdict about an entity’s guilt with respect to a policy violation. (This

might be a verdict in a court of law or, e.g., a determination by a system administrator that a particular user

violated local policy.)

Punishment The system punishes a policy violator in some way.

As we will observe below, a single system might be involved at multiple points on this spectrum.

2.3.2 Information

One question about accountability is the extent to which it implicates privacy. Two aspects of this are the

information learned about a violation and the information learned about the violator (or even individuals

who do not violate any policy). In studying this, we ask the following related questions about accountability

systems:

• Is identity required to participate in the system? If so, how broadly is a participant’s identity known

(e.g., is it only learned by a trusted third party, is it learned by a limited set of entities, or is it potentially

learned by all participants)?

• Are violations disclosed? If so, how broadly (with the same set of possible answers as for identity)?

How soon after the violation is this information learned?

• Is the violator identified as such? If so, how broadly is this identification made (with the same set of

possible answers as above)?

2.3.3 Action

We identify different aspects of actions within the system, both in general operation and to detect and punish

policy violations.

• Is the system (as it operates in the absence of a detected violation) centralized or decentralized?

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 15

• Does the system respond to a violation (in the gathering of evidence, judgment, and punishment) in a

centralized or decentralized way?

• If violators are punished, is this done (in the terms of Feigenbaum et al. [FJW11]) “automatically” or

in a “mediated” manner? If there is a mediator, is this an entity that is already part of the system, or is

it a specialized external entity?

• To what extent does the functioning of the system rely upon continued participation by, or access to,

the violator? For example, is the violator only punished if he continues to interact with the system?

2.3.4 Applicability of this framework

The three broad aspects described above can be used to characterize various approaches to accountability in

Computer Science; we do this in the following section. As new accountability systems and approaches are

developed, they can also be analyzed within this framework.

In addition to being broadly applicable, we argue that our framework captures essential aspects of ac-

countability at a useful level of granularity. Insofar as “accountability” relates to violations (of policy, law,

etc.), either actual or possible, the “time” aspect of our framework allows us to compare the relative times at

which different systems have effects. The “information” and “action” aspects separate system characteristics

that should be compared separately without producing an unmanageably high-dimensional framework.

2.4 Survey of Approaches

There are many different Computer Science approaches to accountability. We discuss a variety of account-

ability solutions (in Section 2.4.1) and accountability formalizations (in Section 2.4.2) that take on different

values along the axes we identified in Section 2.3.

Table 2.1 summarizes our analysis of systems and formalizations that exemplify broader areas of account-

ability research in Computer Science. The columns correspond to the aspects and sub-aspects of account-

ability discussed in Sec. 2.3; the reasoning that supports the entries in the table is described in the section

of this chapter listed in the leftmost column. Where applicable, the discussion in the text also notes other

possible answers or answers that might arise in related but distinct solutions or formalizations. Some systems

are defined in general ways that do not enforce a particular categorization for some or all of the columns; we

discuss below the range of values they allow or what the most likely categorizations are.

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 16

Time/Goals Information Action
Se

ct
io

n

Approach/Paper Pr
ev

en
tio

n

D
et

ec
tio

n

E
vi

de
nc

e

Ju
dg

m
en

t

Pu
ni

sh
m

en
t

Id
en

tit
y

R
eq

ui
re

m
en

ts
fo

rP
ar

tic
ip

at
io

n

V
io

la
tio

n
D

is
cl

os
ed

?

V
io

la
to

rI
de

nt
ifi

ed
as

Su
ch

?

C
en

tr
al

iz
at

io
n

w
ith

ou
tV

io
la

tio
n?

C
en

tr
al

iz
at

io
n

w
ith

V
io

la
tio

n?

Pu
ni

sh
in

g
E

nt
ity

?

R
eq

ui
re

s
O

ng
oi

ng
In

vo
lv

em
en

t?

Solutions
2.4.1 PeerReview [HKD07] 4 4 4 Broad Broad Broad Decent. Decent. N/A No
2.4.1 PEREA [TAKS08] Med. Unique Unique No Cent. Cent. Internal No
2.4.1 ASMs [MOR01] 4 4 4 Broad Broad Broad Decent. Decent. N/A No
2.4.1 E-Cash [CHL06] 4 4 4 Unique Broad Broad Cent. Cent. N/A No
2.4.1 iOwe [LSL+11] 4 4 4 Med. Broad Broad Broad Decent. Decent. Internal No
2.4.1 Buchegger Med. Broad Broad Broad Decent. Decent. Internal Yes

& Boudec [BLB03]
2.4.1 A2SOCs [FZML02] 4 4 Med. Unique Broad Broad Cent. Cent. Int./Ext.

Formalizations
2.4.2 Küsters et al. [KTV10] 4 4 4 Broad Decent. Cent. N/A No
2.4.2 Bella & Paul-

son [BP06]
4 Limited Limited Limited Cent. Cent. N/A No

2.4.2 Yumerefendi 4 4 4 Broad Broad Broad Cent. Cent. N/A No
& Case [YC04, YC05,
YC07]

2.4.2 Feigenbaum et
al. [FJW11]

A/M

2.4.2 Jagadeesan et
al. [JJPR09]

4 Broad Broad Broad Decent. Decent. N/A No

2.4.2 Barth et al. [BDMS07] 4 Broad Broad Broad Cent. Cent. N/A No
2.4.2 Kailar [Kai96] 4 Broad N/A
2.4.2 Backes et

al. [BDD+06]
4 4 Broad N/A

Table 2.1: Overview of accountability approaches.

2.4.1 Accountability solutions
PeerReview

The PeerReview system of Haeberlen, Kouznetsov, and Druschel [HKD07] provides a notion of accountabil-

ity in distributed systems. They take an “accountable” system to be one that “maintains a tamper-evident

record that provides non-repudiable evidence of all nodes’ actions.” In the asynchronous setting considered

by Haeberlen et al., the possible violations are not responding to a message (to which a response is prescribed

by the protocol) or sending a message that is not prescribed by the protocol. The potential for message delays

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 17

means that the former cannot be conclusively proved; this gives rise to a distinction between suspicion and

certainty, both of which are included in the system.2

The design of PeerReview includes, at each node in the network, a detector module that implements the

system; this will indicate either suspicion or certainty that another node is violating the protocol. It makes use

of a tamper-evident log that each node maintains of its own interactions (and that can be obtained by other

nodes as they need it). Taken together, these range over the detection, evidence, and judgment parts of the

Information aspect of our framework.

Nodes must be identified to participate in a distributed protocol that incorporates PeerReview; for the

Information aspect of our framework, their identity is made known to a broad set of other participants.

The security goals for PeerReview include that every node that fails to acknowledge a message is eventually

suspected of violating the protocol by every node that does follow the protocol, so the disclosure of a violation

and the identification of the violator as such are broad/broad. Under the Action aspect, PeerReview is

decentralized both without and with violations and there is no punishing entity (not applicable). If a violator

no longer participates, then that node will be viewed as not responding to messages and will be suspected by

other nodes; thus, the system does not require ongoing involvement on the part of the violator.

Anonymous blacklisting systems

Like e-cash systems, anonymous blacklisting systems allow anonymous participation. In contrast to e-cash,

participants in these systems are not identified when they commit a violation; instead, they are blacklisted

(i.e., their credentials for participation are revoked) without identifying them. Henry and Goldberg have

recently surveyed this space of systems [HG11] and identified three broad subspaces thereof: pseudonym

systems, Nymble-like systems, and revocable anonymous credential systems. These provide varying levels

of privacy (ranging from pseudonyms to complete anonymity without trusted third parties); however, as the

privacy guarantees are strengthened, the feasibility of implementation decreases.

As an exemplar of this class of systems, we will take the PEREA revocable anonymous credential system

of Tsang, Au, Kapadia, and Smith [TAKS08]. The user must first register with the system. Depending on the

setting, this might require some form of identity; however, the user obtains a credential that can subsequently

be used to authenticate herself to the service provider without revealing her identity. The service provider

may subsequently revoke the client’s credential for any reason, without requiring a trusted third party to do

so; this prevents the client from authenticating herself in the future, but it does not reveal anything about her

2For example, one system goal is that nodes that ignore messages should eventually be suspected, in perpetuity, by all honest nodes
even though they cannot be certain that the ignoring node is in fact ignoring messages.

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 18

identity to anyone (nor does it link her various anonymous actions, among other properties).

For the Time/Goals aspect, this provides punishment (mediated), because the punishment is carried out

by the service provider (in blacklisting the anonymous credential). While this is presumably based on the

detection of some violation and the judgment of guilt, PEREA itself is not used to do these things. For

our Information aspect of accountability, the system might require some sort of identity to register, so we

categorize this as unique. Importantly, however, the violator is not identified as such (although the violation

is known by the service provider), so we categorize the last two sub-aspects of this as unique/none. The

registration and authentication require some centralized aspects (regardless of whether there is a violation);

the punishing entity is part of the system (internal), but punishment does not require the ongoing participation

of the violator (does not).

Accountable signatures

When digital signatures allow multiple potential signers, either because many individuals could generate

the signature or because a valid signature requires multiple signers to generate it, “accountability” has the

potential to become an issue in ways that it is not when there is only one potential signer. There are many

different approaches to signatures with multiple potential signers; as an exemplar of this area, we take the

work by Micali, Ohta, and Reyzin on “accountable-subgroup multisignatures” [MOR01] that explicitly took

“accountability” as a goal. Their definition of this goal was

Accountability means that, without use of trusted third parties, individual signers can be identi-

fied from the signed document.

As noted by Micali et al., other approaches with multiple potential signers allow sets of individuals (possibly

just a single individual) to generate signatures on behalf of a larger set of individuals in such a way that the

individual(s) who produced the signature cannot be identified.

For accountable-subgroup multisignatures as defined by Micali et al., all members of the group run a

key-generation protocol once; the signing protocol takes, from each signer, a description of the set of signers

and their public keys, the message being signed, and the individual signer’s secret key. The signers then

produce the signature, which can be verified (when input with a message and a set of purported signers) by

anyone. This is secure (and Micali et al. describe a secure scheme for accountable-subgroup multisignatures)

if an attacker cannot (except with negligible probability) produce a valid signature for a message m where the

set S of individuals who purportedly signed m includes an honest participant who did not execute the signing

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 19

protocol.3 The set of purported signers provides a guarantee to the verifier of the signature; the signers may

not know each other. As Micali et al. note [MOR01]:

Then, assuming that P2 [one purported signer] has not been corrupted, P1 [another purported

signer] is assured that the verifier will deem the signature valid only if the person whom the

verifier knows as P2 actually participated in the signing protocol on [m and S].

This approach provides accountability through identity; from the perspective of holding policy violators

“accountable,” it neither judges nor punishes violators. The Time/Goals properties that this approach does

provide arguably depend on the type of policy under consideration: the security definition provides prevention

of successful forgeries and detection of forgery attempts, while it provides evidence of violations that are

carried out by someone using his own identity for signing (analogous to, e.g., an officer of an company

signing his/her own name to an improper corporate check). With respect to the Information aspects of this

approach, identity is definitely requited, and a participant’s identity is potentially known to a broad set of

other individuals. We may take two different views of the questions of whether the violation is disclosed and

whether the violator is identified as such. Under the first, the violation consists of an attempted forgery. This

is detected by the verifier, but the violator might not be identified; we categorize this case as unique/none.

Under the second view, no forgery is attempted but the (valid) signature on the message indicates that the

signers have committed some (non-identity) violation. In this case, the violation is disclosed (because it is

embedded in the message), and the violators (the signers) are identified as such, to a broad set of participants;

we categorize this as broad/broad. For the Action aspects of this approach, the signatures can be generated

in a decentralized way (with or without a violation); this does not incorporate punishment, so we consider

the punishing entity to be not applicable; finally, this does not require ongoing involvement by violators.

E-cash

Pioneered by David Chaum in the early 1980’s [Cha82, Cha83], e-cash was designed to have the anonymity

and untraceability properties of physical cash: A user should be able to withdraw money from the bank and

spend it with a merchant without revealing her identity, and the merchant should be able to deposit the money

received into his account without the bank learning how individual users spent their money. Due to the repli-

cable nature of the strings of bits that represent digital money, a primary issue to resolve in realizing e-cash is

how to prevent or deter “double-spending,” in which users or merchants make and spend (or deposit) multi-

3Micali et al. [MOR01] discuss issues of adaptive corruption and prove the equivalence of security notions that involve attackers of
formally different abilities; those distinctions do not affect our analysis.

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 20

ple copies of electronic coins. A solution to this [CFN90] provides consequences for double spending using

cryptographic mechanisms that break the anonymity of double spenders. These solutions rely on identity for

accountability. Depending on the context of the system, loss of anonymity might or might not be sufficient

punishment in and of itself. If not, the system would need to rely on an external mechanism to provide any

additional punishment.

Chaum’s solutions, and many that grew out of them, have a model in which the bank is a centralized

party that checks for double spending. Chaum’s initial proposals [Cha82, Cha83] were “on-line,” in the

sense that the bank must be involved in every transaction in order to prevent double-spending. Chaum, Fiat,

and Naor [CFN90] introduced “off-line” e-cash, in which double-spending was not strictly prevented, but the

identity of double-spenders would be revealed by the bank after-the-fact, including providing an incontestable

proof of the violation (including protecting against a cheating merchant who might try to collude with a

customer in order to undetectably allow double spending and/or attempting to frame an innocent customer as

a double-spender).

While a complete survey of e-cash schemes is beyond the scope of our work, we note that there have

been many proposals that take different approaches and provide different properties, including differences

in prevention vs. detection, centralization vs. decentralization, and security vs. efficiency. An interesting

example in trading off security and efficiency is Rivest and Shamir’s MicroMint [RS97], which is designed

so that small-scale fraud will be unprofitable, while large-scale fraud will be detectable.

A recent exemplar of the off-line approach, proposed by Camenisch, Hohenberger, and Lysyanskaya [CHL06],

explicitly addresses accountability as a goal to be balanced with privacy, while extending the accountability

goals beyond double spending. Specifically, in addition to detection of double spending, their work supports

spending limits for each merchant, motivating by concerns that anonymous e-cash can allow undetectable

money laundering. A user’s anonymity and untraceability is guaranteed as long as she does not violate either

policy (double spending or spending limits). Violations can be detected, including determining whether a user

or a merchant cheated. When a violation is detected, the bank becomes (mathematically) able to identify the

violating user as well as trace the other activities of the violating user. For Time/Goals, the system therefore

does not rely on prevention. It includes detection, evidence, and judgment. The consequence of detecting

cheating is that a user loses her anonymity and untraceability. As noted above, this might be considered

to provide sufficient punishment, but in general could need to be supplemented with additional punishment

external to the system. Regarding Information, identity is an inherent part of the system, but honest parties

are guaranteed anonymity. The bank learns about violations and the identity of violators at the time that

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 21

coins violating the policy are deposited with the bank. For Action, the system relies on the bank as a central

authority. Users can spend coins at merchants without the involvement of the bank, but users must obtain

all coins from the bank and merchants must deposit all coins with the bank, at which time violations can be

detected.

iOwe

As we have discussed, many e-cash systems rely on the use of a centralized authority in order to provide their

security and accountability properties. Given the decentralized context of peer-to-peer systems, it can be

undesirable to rely on a centralized authority for monetary purposes. To this end, a number of decentralized

currency systems have been proposed, including [ZCRY03, LSL+11, Nak].

We study the iOwe currency system [LSL+11] as an exemplar of such systems. iOwe allows peers in a

decentralized peer-to-peer system to exchange currency backed by system resources. Peers create “iotas” as

promises of future work. Iotas can be exchanged for work as payment, or “redeemed” with their originators

for work, along the line of standard “IOU”s, but with greater liquidity. iOwe does not prevent double-

spending, but addresses it by using signature chains that allow detection by a peer (possibly but not necessarily

the originator) seeing the same iota twice, using the two signature chains as a proof of misbehavior, and

applying a punishment mechanism that expels detected cheaters and all iotas they issued from the system.

Thus, on the Time/Goals aspect, iOwe uses detection, evidence, judgment, and punishment (mediated).

iOwe peers have a persistent identity within the system, but these identities need not be tied to external

identities and users are not prevented from creating multiple peers (or “Sybils”) within the system. iOwe

limits the potential for a user to benefit from double spending using by adding a layer of reputation to the

system. Specifically, peers build up trust of other peers by participating in the system (creating, spending,

and redeeming iotas), and peers only accept iotas that were both issued by peers they trust and only ever

held by peers they trust. In this way, “Sybil” peers are not able to create iotas, because they have not been

able to build up trust. A peer therefore can deflect blame for double-spending to another Sybil node it has

created, but the peer will be punished by losing the value of any outstanding iotas it holds that were issued

by or ever held by the expelled Sybil. In terms of our Information aspect, violators are identified by their

(weak) identities within the system. The violation is disclosed to any peer that receives the duplicate iota,

possibly when returned to the issuer but possibly earlier. In keeping with the decentralized nature of peer-

to-peer systems, the Action aspect is entirely decentralized. Both the normal operation and the handling of

violations are done in a decentralized way, with individual peers able to detect and verify double spending

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 22

and to implement their own part of the punishment by no longer trusting the violator. (Similar punishment is

extended to peers who refuse to redeem iotas they have issued; we omit discussion of that component of the

system here.)

Reputation systems

Reputation systems have received much attention in various settings. Even when not explicitly motivated by

“accountability,” aspects of accountability are closely related to the natural use of these systems. In particular,

an action that depends on the reputation of another node could very easily (unless the other node is always

indifferent to which action is chosen) be viewed as potential punishment.

As an example of a reputation system, we consider the one for mobile ad-hoc networks proposed by

Buchegger and Boudec [BLB03]. Each node i in the network has, for each other node j that it tracks, a trust

rating and a reputation rating. The reputation rating, which affects how i behaves towards j, is affected by

both i’s direct interactions with j and information obtained about j from other nodes (in particular, nodes that

either i trusts or that have experiences with j that are similar to i’s experiences). If i’s view of j is sufficiently

bad, then i will avoid routing through j, and i will ignore future route requests from j. (While we view this

as punishing j for misbehaving in the routing protocol, Buchegger and Boudec explicitly note that they do

not punish nodes that give inaccurate reports in the reputation system.) The particular (modified Bayesian)

approach to updating reputation is unrelated to the accountability properties of this system.

For the Time/Goals aspect of accountability, this provides punishment (mediated) through the avoidance

of a node in routing and ignorance of its route requests. Arguably, this is also providing a sort of judgment,

but in an average sense (over many different violations and non-violations); because of that averaging, we

will not categorize this as providing judgment. (Similarly, this requires that violations are detected, but the

reputation system propagates that information instead of actually doing the detecting.) For the Information

aspect, identity is definitely required4 and is known to a broad set of other participants. Similarly, the point

of a reputation system is to identify violators as such (in a fairly broad way), disclosing the violations, so we

categorize this as broad/broad. For the Action aspect, this is decentralized both without and with a violation.

There are punishing entities—the other nodes in the network, which are internal—but punishment does rely

on the continued participation of the violator (because punishment takes the forms of routing around and

ignoring the violator).

4Identity is required to be “persistent, unique, and distinct.”

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 23

A2SOCs

Farkas, Ziegler, Meretei, and Lörincz [FZML02] described an approach (Anonymous and Accountable Self-

Organizing Communities, or A2SOCs) to “anonymous accountability” with multiple levels of identities (in-

cluding pseudonyms). They use both “internal” and “external” notions of accountability and give protocols

to provide these. The former notion means that a pseudonym can be “held responsible” for its actions (even

under different pseudonyms that are not publicly linked); this is done by the other members of the virtual

community. By contrast, “external accountability” is used to mean that the real-world entity connected to

the pseudonyms is identified and this real-world identity may be given to, e.g., the police when a real-world

crime has been committed. Both the linking of different pseudonyms that belong to the same agent and the

release of an agent’s real-world identity require broad community agreement (although this assumes that the

trusted third party has, as required, deleted keys that it initially used to register pseudonyms).

Within the Time/Goals aspect of our framework, we categorize the approach of Farkas et al. as providing

evidence (e.g., through the linking of pseudonyms and providing real-world identities to outside agencies),

judgment (because the virtual community can, and must, agree to help link different pseudonyms or to reveal

a real-world identity), and punishment (mediated) (via either the community or the external authorities).

Within the Information aspect of our framework, identity is initially needed only for registration, which

reveals it to the unique trusted third party. However, violations are disclosed in a broad manner, and (either as

a pseudonym or as a real-world identity), violators are identified as such to the broad community. The trusted

third party means that, in our Action aspect, the system is centralized both with and without violations.

Depending on the level of the violation (and whether pseudonyms are linked or a real-world identity is

revealed), the punishing entity can be either internal or external to the community, so we classify this as both.

The punishment might (e.g., for within-community punishment) or might not (e.g., for banishing a user or for

external punishment) require ongoing involvement by the violator, so we do not classify the system in this

respect.

2.4.2 Formalizations of accountability

There have been several proposed formalizations of accountability. These, too, take different interpretations

of accountability and therefore can apply to different solutions or to different properties of those solutions. We

discuss different approaches to formalizing accountability, as well as one that formalizes the related notion

of auditability.

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 24

Accountability through judging

Küsters, Truderung, and Vogt provide a model for accountability. In an intuitive description of their defini-

tions, a protocol provides accountability if a specified “judge” (who might or might not have an additional

role in the protocol) is able to issue “verdicts” about misbehaving participants (“violators,” in our terminol-

ogy) in a way that is both fair and complete. Specifically, the judge should never blame protocol participants

who behave honestly (fairness), and, whenever the protocol fails to meet its specified goals, the judge should

blame at least some misbehaving participants (completeness). It is left external to this analysis what the con-

sequences for violators should be and how they should be enforced. Thus, for our Time/Goals aspect, the

model addresses detection, evidence, and judgment. Note that the judge is not required to produce evidence

in the form of proofs that others can use, but, if the system provably satisfies fairness, the very existence of

the judge’s verdict in fact serves as that evidence.

The required verdicts in their model are positive Boolean formulae “built from propositions of the form

dis(a), for an agent a, where dis(a) is intended to express that a misbehaved.” Thus, for our Information

aspect, this method relies on participating agents to have identities in whatever system is being analyzed.

They do, however, allow for the possibility of verdicts that do not identify individual violators, by allowing

disjuncts. In this sense, a violator might or might not be explicitly identified as such. (However, they point

out that individual accountability, in which individual violators are identified, is highly desirable in practice

to deter parties from misbehaving.) Violations are disclosed at least to the judge, as well as to any parties to

whom the judge shares the verdict.

For Action, the definition requires the existence of a judge to provide the required verdicts, suggesting a

centralized system. However, one could imagine applying their definitions to a decentralized system such as

iOwe [LSL+11], described in Sec. 2.4.1, where different parties can act as judges for different violations, for

example, proving results such as: if party P double-spends an iota, then another party Q can act as a judge

and hold P accountable.

Connecting actions to identities

Bella and Paulson [BP06] have formalized properties of two particular “accountability protocols” and verified

these using the Isabelle tool; these protocols connect actions to identities.5 The particular protocols that

they studied were for non-repudiation [ZG96] and certified email [AGHP02]; here, we focus not on these

5This broad approach is also embodied in the Accountable Internet Protocol [ABF+08] of Andersen et al. They identify the lack of
accountability with the fact that “the Internet architecture has no fundamental ability to associate an action with the responsible entity.”

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 25

protocols individually but on the class of accountability protocols that they exemplify (i.e., that corresponds

to the properties identified in [BP06]).

In the approach of Bella and Paulson,

[a]n accountability protocol gives agents lasting evidence, typically digitally signed, about ac-

tions performed by his peer.

They note that many authentication protocols prove the involvement of a participant to one other participant

(e.g., via an encrypted nonce), but that these do not provide evidence that is suitable to take to a third party.

Indeed, one of the two goals they identify for accountability protocols is that

an agent is given evidence sufficient to convince a third party of his peer participation in the

protocol.

(The other goal is a notion of fairness in which either both participants receive, or neither participant receives,

evidence about the other’s participation.) Bella and Paulson explicitly note that judging is left to humans who

are not modeled in their analysis. For the Time/Goals aspect of our framework, we thus say that their

approach (and the accountability solutions that fall within their model) provide evidence but not other parts

of this aspect.

Both protocols considered by Bella and Paulson involve two regular participants a trusted third party;

all three of these parties learn the identities of the participants, but those identities are not broadcast further.

For the Information aspect of our framework, we will thus say that identity is required in a limited sense.

Violations (captured in the protocol exchanges, not attempts to circumvent the protocols themselves) are

revealed through the evidence that the protocols provide, and the violators are identified as such; because

this information is provided to the other participant but not broadcast, we say that the other two parts of this

aspect are limited and limited.

For the Action aspect of our framework, the trusted third party is required regardless of whether there is a

violation, so we identify the Bella–Paulson approach as centralized/centralized. There is no punishing entity

(not applicable), and there is no requirement that a violator continue to participate in the protocol (does not).

Accountability for network services

Yumerefendi and Chase [YC04] have outlined an approach to accountability for network services that respond

to client requests. In so doing, they have articulated a definition of accountable services, described a general

method for achieving this, and sketched its application to three different settings; they subsequently used

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 26

this approach in a more detailed description of network storage with accountability [YC07]. Here, we are

interested in their general definition and method, which may be applied beyond the settings they noted.

Yumerefendi and Chase say that accountable systems should have actions that are: provable and non-

repudiable; verifiable (with the ability to prove misbehavior to any third party); and tamper-evident (regard-

ing the states of the system). (These foster the goal they identified in related work [YC05], which argued

for accountability as a design goal, of “assign[ing] responsibility for states and actions[.]”) Considering the

Time/Goals aspect of our framework, this means that the systems provide both detection and evidence. It

is envisioned that auditors are involved (who might examine the evidence that the service has behaved cor-

rectly); while these might arguably be viewed as lying outside of this system, we will include them (clients

may verify that the service correctly maintained its state) and so also view this approach as providing judg-

ment. (The subsequent extension of this approach to network storage [YC07] reinforces audit as an important

component of this approach and the fact that any participant may act as an auditor.)

This approach to accountability has systems publish signed, non-repudiable digests of their internal states.

As Yumerefendi and Chase observe, client actions (and potentially identities) may be incorporated into the

services’ states, so, under our Information aspect, we categorize this as requiring identity that may be re-

vealed (or at least checkable by) a broad set of participants. Violations are also identified to a broad set, and

violators are likewise identified to a broad set of participants.

For the Action aspect of our framework, regardless of whether there is a violation, the service plays a cen-

tral role in providing digests and proofs of its correct behavior, so we identify this as centralized/centralized.

There is no punishing entity (not applicable). Although the service publishes digests of its state, it needs to

respond to later requests to provide proofs of its correct behavior. Insofar as the system is aiming to provide

proofs of correct behavior, this requires ongoing participation; however, if others will be at least suspicious if

no proof is forthcoming, then this does not require the ongoing participation of the violator.

Accountability in terms of punishment

Feigenbaum, Jaggard, and Wright [FJW11] give an abstract definition of accountability in terms of punish-

ment and then capture this formally in terms of traces and utility functions. Their definition of accountability

includes punishment that is “automatic” in the sense that it is not meted out in conscious response to a viola-

tion (which would be “mediated” punishment as noted above). Coupled with this, they also explicitly do not

require identity, and they note the possibility of punishment occurring (thus providing accountability) without

anyone other than the violator knowing that a violation occurred.

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 27

The Feigenbaum et al. framework can capture systems with, e.g., varying identity requirements, so the

classifications that we have been using for the Information and Action aspects of accountability are not at

all determined without considering a particular system. For the Time/Goals aspect, this framework addresses

only punishment (automatic and mediated) and no other sub-aspects.

Accountability through audit

As one exemplar of accountability through the use of auditing, we consider the work of Jagadeesan, Jeffrey,

Pitcher, and Riely [JJPR09], who describe a formal operational model for distributed systems with a notion

of accountability that is obtained through auditing. In particular, the auditor(s) in a system may “blame” a

set of participants for a violation, i.e., name the members of that set as potential violators. This gives rise to

multiple desiderata (such as whether everyone blamed is a violator and whether all non-violators are able to

ensure that they are not blamed) for the audit system; these are treated as accountability properties, but they

do not change the underlying approach of blaming (sets of) individuals for violations.

We identify the blaming of individuals in the Jagadeesan et al. model with judgment within the Time/Goals

aspect of our framework. (While the auditors rely upon evidence to make their judgments, the notion of ac-

countability captured by this framework seems to fit much more with the judgment itself.) Because sets of

individuals are blamed using their identities, some sort of identity is required to participate; while this might

not be broadcast throughout the system, there are no restrictions on it, so, within the Information aspect,

we say that the identity required to participate is broad. Violations are disclosed, and violators are identi-

fied as such, in similar ways, so we identify those parts of this aspect as broad/broad. While auditors are

trusted in this system, they do not have a global view (i.e., they interact with the system as participants);

for the Action aspect of accountability, we thus say that the centralization without/with a violation is de-

centralized/decentralized. This framework is not concerned with punishment, so the punishing entity is not

applicable. Judgment can be made without the presence of the violator, so this system does not require the

ongoing participation of a violator.

As a second exemplar of accountability through audit, we note the work of Barth, Datta, Mitchell, and

Sundaram [BDMS07], who defined a logic for utility and privacy that they applied to models of business

practices (such as healthcare systems). In their application to healthcare systems, agents in the system are

responsible for things like tagging messages (e.g., to ensure that sensitive health information is not forwarded

to the agents responsible for scheduling patient appointments). Barth et al. say that an agent is accountable

for a policy violation if the agent did an action that occurred before the violation (from some perspective on

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 28

the system’s behavior) and also did not fulfil his responsibilities. They then give an algorithm to identify

accountable agents (via communication logs). While an “accountable agent” might not be the cause of the

violation in question, this can be determined by a human auditor, who can repeat the process until the agent

who caused the violation is identified.

Within the Time/Goals aspect of our framework, this approach has elements of detection, evidence, and

judgment. (The last is as with the work of Jagadeesan et al.; here we also include the first two elements

because evidence is provided through the tagging requirements, and detection is provided by the notion of

“suspicious” events, which can be used to find incorrectly tagged messages.) With respect to identities, the

disclosure of violations, and the identification of violators, this approach is similar to that of Jagadeesan et al.;

in the Information aspect of our system, we thus say that the approach of Barth et al. is broad/broad/broad.

Here, the auditing engine (which is used even in the absence of a violation) and the human auditors (who

determines whether an agent is the cause of a violation) appear to be centralized, so we say that, in the Action

aspect, centralization without/with a violation is again centralized/centralized. Similarly to the Jagadeesan et

al. approach, the punishing entity is not applicable, and the system does not require the ongoing participation

of a violator.

Analyzing accountability in logical frameworks

Kailar [Kai96] developed a logical framework for analyzing accountability in communication protocols and

considered sample applications to electronic-commerce protocols. He defined accountability as

the property whereby the association of a unique originator with an object or action can be proved

to a third party (i.e., a party who is different from the originator and the prover).

Accountability goals in a protocol might include that a customer can prove that a business agreed to sell

a particular item at a particular price or that the business can prove it provided that item to the customer.

Once these goals are formalized for a particular protocol, and the message contents are formalized, Kailar’s

framework can be used to derive information about who can prove what to whom. These results can then be

compared against the original accountability goals.

Within the Time/Goals aspect of our framework, we categorize Kailar’s approach as providing evidence

because the analysis of a particular protocol can determine whether an association between an agent and an

action/object can be proved to a third party (although it is the underlying protocol itself that actually provides

the evidence). Considering the Information aspect of our framework, the use of identities are inherent in

Kailar’s definition of accountability. It is most natural for these identities to become broadly known through

CHAPTER 2. SYSTEMATIZING ACCOUNTABILITY IN COMPUTER SCIENCE 29

participation in a protocol (e.g., when signing messages that might be seen by any agent on the network),

and there is no restriction on their distribution built in to the logical framework, so we classify this as broad.

The disclosure of violations and the identification of violators as such might vary across protocols analyzed

using Kailar’s framework, so we do not classify it in these respects. Similarly, the different components of

the Action aspect of our framework are not relevant at this level of abstraction, so we do not classify Kailar’s

framework with respect to those.

Backes, Datta, Derek, Mitchell, and Turuani [BDD+06] used a protocol logic (similar to one originally

used for authentication) to prove properties of contract-signing protocols. One of these properties was ac-

countability, which they defined as follows:

Accountability means that if one of the parties gets cheated as a result of [the trusted third party]

T̂ ’s misbehavior, that it will be able to hold T̂ accountable. More precisely, at the end of every run

where an agent gets cheated, its trace together with a contract of the other party should provide

non-repudiable evidence that T̂ misbehaved.

As an example of such evidence, Backes et al. give the example of terms that can be used (in the logic they

define) to derive a term that captures the dishonesty of the trusted third party.

Considering the approach of Backes et al. within the Time/Goals aspect of our framework, we say that

this is focused on determining whether the protocols they study provide evidence. (Because this is defined

in terms of being able to derive a judgment of dishonesty using the protocol logic, this also has aspects of

judgment.) Within the Information aspect of our framework, we say that this requires broad knowledge

of identity (because this concerns the behavior of trusted third parties); the disclosure of the violation and

the identification of the violator as such are not determined by the Backes et al. framework (although these

would likely be broad). The presence of the trusted third party means that the contract-signing protocols have

a centralized aspect to them, but this requirement is not imposed on the accountability analysis (although it

seems that the proof of dishonesty would typically be derived without centralization). There is no punishing

entity, and ongoing involvement by the dishonest trusted third party is also not determined.

Chapter 3

Structural Cloud Audits that Protect
Private Information

3.1 Introduction

Cloud computing and cloud storage now play a central role in the daily lives of individuals and businesses.

For example, more than a billion people use Gmail and Facebook to create, share, and store personal data,

20% of all organizations use the commercially available cloud-storage services provided both by established

vendors and by cloud-storage start-ups [But13a, But13b], and programs run on Amazon EC2 and Microsoft

Azure perform essential functions.

As people and organizations perform more and more critical tasks “in the cloud,” reliability of cloud-

service providers grows in importance. It is natural for cloud-service providers to use redundancy to achieve

reliability. For example, a provider may replicate critical state in two data centers. If the two data centers

use the same power supply, however, then a power outage will cause them to fail simultaneously; replication

per se does not, therefore, enable the cloud-service provider to make strong reliability guarantees to its

users. This is not merely a hypothetical problem: Although Amazon EC2 uses redundant data storage in

order to boost reliability, a lightning storm in northern Virginia took out both the main power supply and

the backup generator that powered all of Amazon’s data centers in the region [Ore12]. The lack of power

not only disabled EC2 service in the area but also disabled Netflix, Instagram, Pinterest, Heroku, and other

services that relied heavily on EC2. This type of dependence on common components is a pervasive source

of vulnerability in cloud services that believe (erroneously) that they have significantly reduced vulnerability

by employing simple redundancy.

Zhai et al. [ZWX+] propose structural-reliability auditing as a systematic way to discover and quantify

30

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 31

vulnerabilities that result from common infrastructural dependencies. To use their SRA system, a cloud-

service provider proceeds in three stages: (1) It collects from all of its infrastructure providers (e.g., ISPs,

power companies, and lower-level cloud providers) a comprehensive inventory of infrastructure components

and their dependencies; (2) it constructs a service-wide fault tree; and (3) using fault-tree analysis, it estimates

the likelihood that critical sets of components will cause an outage of the service. Prototype implementation

and testing presented in [ZWX+] indicates that the SRA approach to evaluation of cloud-service reliability

can be practical.

A potential barrier to adoption of SRA is the sensitive nature of both its input and its output. Infrastructure

providers justifiably regard the structure of their systems, including the components and the dependencies

among them, as proprietary information. They may be unwilling to disclose this information to a customer

so that the latter can improve its reliability guarantees to its customers. Fault trees and failure-probability

estimates computed by the SRA are also proprietary and potentially damaging (to the cloud-service provider

as well as the infrastructure providers). All of the parties to SRA computation thus have an incentive not to

participate. On the other hand, they have a countervailing incentive to participate: Each party stands to lose

reputation (and customers) if it promises more reliability than it can actually deliver because it is unaware of

common dependencies in its supposedly redundant infrastructure.

In this chapter, we investigate the use of secure multi-party computation (SMPC) to perform SRA com-

putations in a privacy-preserving manner. SRA computation is a novel and challenging application of SMPC,

which has not often been used for graph computations1 (or, more generally, for computations on complex,

linked data structures). We introduce a novel data-partitioning technique in order to achieve acceptable run-

ning times for SMPC even on large inputs; this approach to SMPC efficiency may be applicable in other

contexts. Our preliminary experiments indicate that our P-SRA (for “private structural-reliability auditing”)

approach can be practical.

3.2 Related Work

3.2.1 Secure Multi-Party Computation

The study of secure multi-party computation (SMPC) began with the seminal papers of Yao [Yao82, Yao86]

and has been pursued vigorously by the cryptographic-theory community for more than 30 years. SMPC

allows n parties P1, . . . ,Pn that hold private inputs x1, . . . ,xn to compute y = f (x1, . . . ,xn) in such a way that

they all learn y but no Pi learns anything about x j, i 6= j, except what is logically implied by the result y

1A notable exception is the work of Gupta et al. [GSP+12] on SMPC for interdomain routing.

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 32

and the particular input xi that he already knew. Typically, the input providers P1, . . . ,Pn wish not only to

compute y in a privacy-preserving manner but also to do so using a protocol in which they all play equivalent

roles; in particular, they don’t want simply to send the xi’s to one trusted party that can compute y and send

it to all of them. Natural applications include voting, survey computation, and set operations. One of the

crowning achievements of cryptographic theory is that such privacy-preserving protocols can be obtained

for any function f , provided one is willing to make some reasonable assumptions, e.g., that certain crypto-

graphic primitives are secure or that some fraction of the Pi’s do not cheat (i.e., that they follow the protocol

scrupulously).

Many SMPC protocols have the following structure: In the first round, each Pi splits its input xi into

shares, using a secret-sharing scheme, and sends one share to each Pj; the privacy-preserving properties of

secret sharing guarantee that the shares do not reveal xi to the other parties (or even to coalitions of other

parties, provided that the coalitions are not too large). The parties then execute a multi-round protocol to

compute shares of y; the protocol ensures that the shares of intermediate results computed in each round also

do not reveal xi. In the last round, the parties broadcast their shares of y so that all of them can reconstruct

the result. Alternatively, they may send the shares of y to an outside entity (resp., to a subset of the Pj’s)

if none (resp., only a subset) of the Pj’s is supposed to learn the result. The maximum size of a coalition

of cheating parties that the protocol must be able to thwart and the “adversarial model,” i.e., the capabilities

and resources available to the cheaters, determine which secret-sharing scheme the Pi’s should use. Because

secret-sharing-based SMPC is common (and for ease of exposition), we will refer to parties’ “sharing” or

“splitting” their inputs. Note, however, that some SMPC protocols use other techniques to encode inputs and

preserve privacy in multi-round computation.

The past decade has seen great progress on general-purpose platforms for SMPC, including Fairplay [MNPS04],

FairplayMP [BDNP08], SEPIA [BSMD10], VIFF [DGKN09], and Tasty [HKS+10]. For our prototype im-

plementation of P-SRA, we use the Sharemind SecreC platform [BK13]. Thorough comparison of SMPC

platforms is beyond the scope of our work, but we note briefly the properties of SecreC that make it a good

choice in this context. Because it has a C-like programming language and optimizing compiler, assembler,

and virtual machine, programmers can more easily write efficient programs with SecreC than with most of the

other SMPC tools. Scalability to large numbers of input providers and reliable predictions of running times of

programs are better in SecreC than in other SMPC environments. SecreC makes it easy for programs to use

both private data (known to only one input provider) and public data (known to all parties to the computation)

in the same program – something that is useful in our reliability-auditing context but is not provided by all

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 33

SMPC platforms. On the downside, SecreC is not especially flexible or easily configurable.

3.2.2 Cloud Reliability

The case for “audits” as a method of achieving reliability in cloud services was originally put forth by Shah et

al. [SBMS07], who advocated both internal and external auditing. Internal audits use information about the

structure and operational procedures of a cloud-service provider to estimate the likelihood that the provider

can live up to its service-level agreements. To the best of our knowledge, the first substantial effort to de-

sign and implement a general-purpose internal-auditing system that receives the structural and operational

information directly from the cloud-service providers is the recent work of Zhai et al. [ZWX+]; the pri-

vacy issue and the possibility of addressing it with SMPC were raised in [ZWX+] but were not developed

in detail.2 External audits use samples of the cloud-service output provided by third parties through ex-

ternally available interfaces to evaluate the quality of service; they have been investigated extensively, e.g.,

in [SSB08, WCW+13, WRLL10, WWRL10, WWR+11, YJ12]. Bleikertz et al. [BSP+10] present a cloud-

auditing system that Shah et al. [SBMS07] would probably classify as “internal,” because it uses structural

and operational information about the cloud services to estimate reliability rather than using sampled output,

but it obtains that structural and operational information through external interfaces rather than receiving it

directly from the cloud-service providers.

In addition to auditing, technical approaches that researchers have taken to cloud reliability include di-

agnosis, the purpose of which is to discover the causes of failures after they occur and, in some cases, to

mitigate their effects, accountability, the purpose of which is to place blame for a failure after it occurs, and

fault tolerance. Further discussion of these approaches and pointers to key references can be found in Section

6 of [ZWX+].

3.2.3 Fault Trees

Fault-tree analysis [VGRH81] is a deductive-reasoning technique in which an undesirable event in a system is

represented as a boolean combination of simpler or “lower-level” events. Each node in a fault tree3 represents

either an event or a logic gate. Event nodes depict failure events in the system, and logic gates depict the

2Concurrently with this work, Zhai, Chen, and Ford [ZCWF13] also explored the problem of privacy in cloud-reliability analysis,
with a different goal of recommending good cloud configurations in a privacy-preserving manner. Their work was done independently
of ours and differs from ours both in its target problem and in its technical approach. Briefly, Zhai et al. [ZCWF13] simply compute the
set of components that are common to two cloud-service systems, while our P-SRA system involves more participants and a richer set of
outputs. The main technical tool in [ZCWF13] is privacy-preserving set intersection, whereas P-SRA does a variety of privacy-preserving
distributed computations using a general-purpose SMPC platform.

3What are called “fault trees” in the literature are not, in general, trees but rather DAGs. Because it is standard and widely used, we
adopt the term “fault tree” in this chapter.

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 34

logical relationships among these events. The links of a fault tree illustrate the dependencies among failure

events. The root node represents a “top event” that is the specific undesirable state that this tree is designed to

analyze. The leaf nodes are “basic events,” i.e., failures that may trigger the top event; in order to use a fault

tree, one must be able to assess (at least approximately accurately) the probabilities of these basic failures.

Figure 3.4 is an example of a fault tree.

Fault-tree analysis has been applied very widely, e.g., in aerospace, nuclear power, and even social ser-

vices [EI00], but, to the best of our knowledge, was first used for cloud-service-reliability auditing by Zhai et

al. [ZWX+]. It is an appropriate technique in this context for at least two reasons. First, the architectures

of many cloud platforms can be accurately represented as leveled DAGs; therefore, potential cloud-service

failures are naturally modeled by fault trees. Second, to construct a fault tree, one must uncover and represent

the dependency relationships among components in a cloud system, and this inventory of dependencies is

itself helpful in identifying potential failures (especially correlated failures).

3.3 Problem Formulation

In order to specify in full detail the goals of our P-SRA system and how it achieves them, we start with a brief

explanation of the SRA system of Zhai et al. [ZWX+]. Here and throughout the rest of this chapter, a failure

set (FS) is a set of components whose simultaneous failure results in cloud-service outage.4 For example, the

main and backup power supplies in the Amazon EC2 example described in Section 3.1 are an FS. A minimal

FS is an FS that contains no proper subset that is also an FS.

The first necessary and nontrivial task of SRA is data acquisition. SRA’s data-acquisition unit (DAU)

collects from a target cloud-service provider S and all of the service providers that S depends on the details of

network dependencies, hardware dependencies, and software dependencies, as well as the failure probability

of each component. Using this inventory of components and the dependencies among them, SRA builds a

model of S and the services on which it depends in the form of a dependency graph. Zhai et al. [ZWX+]

assume that the dependency graph of a cloud service is a leveled DAG, and we also make this assumption;

we are aware that it is a simplification (see Section 6.2), but it is an important first step. There are many

potential technical and administrative challenges involved in modeling cloud components, discovering their

dependencies, and assigning realistic failure probabilities; in particular, all cloud-service providers that par-

ticipate in an SRA computation must agree on a taxonomy of components and types of dependencies. We

defer to Subsection 3.2 of Zhai et al. [ZWX+] for discussion of these challenges and for details about data

4These are called cut sets in the fault-tree literature.

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 35

acquisition and dependency-graph construction in SRA. Here, we merely assume that cloud providers have

some usable modeling and dependency-gathering infrastructure.

The next step in SRA is fault-tree analysis for the target cloud service S. Ideally, the output of this step is

a complete set of minimal FSes for S. Note that an outage may occur because multiple entities that S relied

on for redundancy had a common dependency on a set of components that failed; so accurate reporting of

all minimal FSes requires information about all of the other service providers (e.g., ISPs, power suppliers,

and lower-level cloud services) that S uses. For some of these other services, the information might be

publicly available (or, in any case, available to S) and thus not require the other service to participate in

the computation; for example, SRA makes the simplifying assumption that it can obtain the information it

needs about the ISPs and power suppliers that S uses without their participation, and we continue with that

assumption in P-SRA. In other cases, participation in the SRA computation by other service providers is

required; this is true, for example, of lower-level and peer cloud services on which S depends. If the ideal

of reporting all minimal FSes is unattainable because it is too time-consuming, then SRA may produce a

collection of (not necessarily minimal) FSes using a failure-sampling algorithm; this algorithm uses both the

dependency graph and the individual components’ failure probabilities.

Figure 3.3 depicts a simple dependency graph. Figure 3.4 depicts a corresponding fault tree. The seman-

tics of an OR gate in the fault tree are that, if any input fails, the output of the gate is “fail.” For an AND

gate, only if all of the inputs fail does the gate output “fail.” So Data Center #1 fails if Power #1 fails or

if both Router #1 and Router #2 fail. Note that the logic-gate nodes in Figure 3.4 cannot be inferred from

Figure 3.3; SRA collects additional information during its data-acquisition phase that is needed for fault-tree

construction. The minimal FSes for Cloud Service #1 are {Data Center #1, Data Center #2}, {Router #1,

Router #2}, {Power #1, Power #2}, {Power #1, Data Center #2}, and {Data Center #1, Power #2}.

The goal of P-SRA is to perform structural-reliability auditing in a privacy-preserving manner; to do this,

we must modify all phases of SRA – data acquisition, fault-tree construction and analysis, and delivery of

output. Our basic approach to the first two is to use SMPC. Instead of sending their data to one machine

that integrates them and performs fault-tree analysis, P-SRA participants split their data into shares and

perform fault-tree construction and analysis in a distributed, privacy-preserving fashion. However, the output

of this computation cannot simply be a comprehensive list of S’s minimal FSes, as it was in SRA, because

these sets may contain infrastructural components that are used only by other service providers (i.e., not

by S). So the first technical challenge in the design of P-SRA is to specify SMPC outputs that reveal to S

the components of its own infrastructure that could cause an outage while not revealing private information

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 36

about other service providers’ infrastructure. The second technical challenge is to reduce the size of the

data sets that are input to the SMPC; the complete dependency graph of a cloud-service provider could have

millions of nodes, which is more than current SMPC technology can handle, even in an off-line procedure

like reliability auditing. P-SRA deals with this challenge by requiring each service provider that participates

in the SMPC to partition its components into those that are known to be “private” and those that might be

shared with other participants. For example, if the storage devices in a data center owned and operated by

S are not accessible by anyone outside of S, then their failure cannot cause any service other than S to fail –

they can be marked “private” by S and not entered individually into the SMPC. Rather, S can collapse certain

“private” subgraphs of its dependency graph into single nodes, treat each such node as a “component” when

entering its input to the SMPC, and perform SRA-style fault-tree analysis on the private subgraph locally.

We refer to this data-partitioning technique as subgraph abstraction. Finally, P-SRA must provide useful,

privacy-preserving output to cloud-service users as well as cloud-service providers. These three technical

challenges are addressed in detail in Section 3.4.

In Section 3.5, we present a P-SRA prototype implemented on the Sharemind SecreC platform. The

properties of this platform guarantee security in the semi-honest (or honest-but-curious) adversarial model.

See the beginning of Section 3.5 for a more detailed explanation of Sharemind’s computational model and

adversarial model.

3.4 System Design

3.4.1 System Overview

There are three types of participants in the P-SRA system: the P-SRA host, cloud-service providers, and

cloud-service users; see Figure 3.1. The input supplied by each cloud-service provider is its topology infor-

mation; this is private information and cannot be revealed to any other participants. The input supplied by the

P-SRA host is the SMPC protocol. The inputs supplied by the cloud-service users are the set of cloud-service

providers that they use or plan to use. The inputs of the P-SRA host and the cloud-service users are not

private.

The P-SRA host consists of two modules. One is the SMPC execution unit (SMPC), which is responsible

for execution of the SMPC protocol. The other is the coordination unit, which is responsible for establishing

the SMPC protocol and coordinating the communication among the P-SRA host and the other participants.

Each cloud-service provider installs and controls a P-SRA client that processes local data and communi-

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 37

Figure 3.1: System Overview

cates with the P-SRA host. The P-SRA client consists of three modules: the Data-Acquisition Unit (DAU),

the Secret-Sharing Unit (SSU), and the Local-Execution Unit (LEU). The DAU collects component and de-

pendency information from the cloud-service provider and stores it in a local database. The SSU (1) abstracts

the dependency information of “private” components in order to reduce the size of the input to the SMPC,

(2) splits the dependency information into secret shares, and (3) connects to the P-SRA host and the SSUs

of other cloud-service providers to execute the SMPC. The LEU performs local structural-reliability analysis

within each “abstracted” macro-component.

Step 1: Privacy-preserving dependency acquisition: The DAU of the P-SRA client in each cloud-

service provider S collects as much dependency information as possible from S, including network depen-

dencies, hardware dependencies, software dependencies, and component-failure probabilities. The DAU

stores this information in a local database. Because the P-SRA client is fully controlled by S, and the DAU

does not communicate with any other cloud-service providers or the P-SRA host, there is no risk that private

information will leak through the DAU.

Step 2: Subgraph abstraction. After data acquisition by the DAU, the SSU processes the depen-

dency information and creates the macro-components to generate the SMPC input according to some ab-

straction policy. For instance, if cloud-service provider S1 uses cloud-service provider S2 as a lower-level

infrastructure provider, S1 can abstract S2 as a macro-component that its services depend on. The SSU treats

macro-components, the number of which is much smaller than total number of components in a cloud-service

provider, as individual inputs to the SMPC. We leave the choices of abstraction policies to the cloud-service

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 38

providers, which can tailor the policies based on the features of their architectures. However, we provide a

standard example of subgraph abstraction in Subsection 3.4.3.

Step 3: SMPC protocol execution and local computation. After the subgraph-abstraction step, the

SSUs of the cloud-service providers and the P-SRA host execute the SMPC protocol. The SSU of each

cloud-service provider first adds some randomness to conceal statistical information about the input (without

changing the output) and splits the randomized input into secret shares. It then establishes connections with

the SSUs of other providers and the P-SRA host to execute the SMPC protocol, which identifies common

dependency, performs fault-tree analysis, and computes reliability measures in a privacy-preserving manner.

Meanwhile, the SSU passes the dependency graphs of the macro-components to the LEU, which performs

local computation. The LEU mainly performs fault-tree analysis to obtain minimal FSes of the macro-

components. After both the SSU and the LEU finish their execution, the SSU combines the results of the

SMPC protocol and local computation to generate the comprehensive outputs for the cloud-service providers

and users.

Step 4: Privacy-preserving output delivery. The output of the P-SRA system should satisfy two re-

quirements: preserving privacy of the cloud-service providers and illustrating reliability risk caused by corre-

lated failure. The SRA system of Zhai et al. [ZWX+] fully reveals all minimal FSes; P-SRA cannot do this,

because the full specification of all minimal FSes may compromise the privacy of cloud-service providers.

Although P-SRA is flexible in that cloud-service providers can specify the output sets that are most ap-

propriate for them, we recommend some sets of benchmark outputs for cloud-service providers and users.

For cloud-service providers, we recommend common dependency and partial failure sets. For cloud-service

users, we recommend common dependency ratio, failure probabilities of relevant cloud services, and a small

set of top-ranked FSes. All the outputs are delivered by an SMPC protocol in a privacy-preserving manner.

We discuss these recommended outputs in Subsection 3.4.5.

3.4.2 Privacy-preserving Data Acquisition

The DAU of each cloud-service provider collects as much information as possible about the components and

dependencies of this provider and then stores the information in a local database for later use by the P-SRA’s

other modules. The DAU can collect network dependencies, hardware dependencies, software dependencies,

and failure probabilities of each component. For network dependencies, it collects information about a variety

of components in the cloud structure including servers, racks, switches, aggregation switches, routers, and

power stations, as well as the connections between these components within the cloud infrastructure and from

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 39

the cloud infrastructure to the Internet. For hardware dependencies, the DAU inventories the CPUs, network

cards, memory, disks, and drivers, and collects product information about each piece of hardware, including

vendor, machine life, model number, and uptime. For software dependencies, the DAU analyzes the cloud-

service provider’s software stacks to determine the correlations between programs within the applications

running on servers and the calls and libraries used by these programs. Failure probabilities can be obtained

via a variety of methods, including examining the warranty documents of a vendor or searching online based

on hardware type and serial number.

The dependency information can be encoded in XML files to store in the local databases of the cloud

providers. We use the topology-path form to store graph information. The definition of the topology-path

form and our reasons for choosing it are given in Subsection 3.4.4.

3.4.3 Subgraph Abstraction

Recall that a macro-component is an abstracted (or virtual) node in the dependency graph of a cloud-service

provider that can be considered an atomic unit for the purpose of SMPC protocol execution. Creating macro-

components allows us to reduce the input-set size to something that is feasible for SMPC execution. A

subgraph H of the full dependency graph of a cloud-service provider S should have two properties in order

to be eligible for abstraction as a macro-component. First, all components in H must be used only by S;

intuitively, this is a “private” part of S’s infrastructure. Second, for any two components v and w in H, the

dependency information of v with respect to components outside of H is identical to that of w; that is, if

v has a dependency relationship (as computed by the DAU) with a component y outside of H, then w has

exactly the same dependency relationship with y. (Note that y may be inside or outside of S.) Abstraction

of a subgraph that does not satisfy these properties would destroy dependency information that is needed for

structural-reliability auditing.

Recall that different cloud-service providers may wish to use different abstraction policies. That is, we

do not require that all subgraphs that satisfy the two properties given above be abstracted – some providers

may wish to use a more stringent definition of a macro-component.

Suppose that G is the full dependency graph of cloud-service provider S and that G contains macro-

component H. To transform G into a smaller graph G′ via subgraph abstraction of H, S “collapses” H to a

single node in G′; that is, S replaces H with a single node, say h, and, for every node y in G but not in H,

replaces all dependency relationships in G of the form (w,y, `), where w was a node in H and ` is a label that

describes the nature of the dependency relationship between w and y, with a single dependency relationship

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 40

(h,y, `) in G′. (Note that there will, in general, be many nodes y that have no dependency relationships

with nodes in H.) Of course, there may be more than one subgraph H that is abstracted before the reduced

dependency graph is entered into the SMPC. After S receives the results of the SMPC, it combines them with

the results of local fault-tree analysis of the macro-components H. For example, if F is an FS of G′, h ∈ F ,

and f is an FS of H, then (F−{h})∪ f is an FS of G.

As promised, we now provide a standard example in order to illustrate the abstraction process. In this

example, the SSU creates a macro-component to represent all of the components in a data center. In most

cloud structures, the data centers are eligible for subgraph abstract. First, all the nodes in the data centers

are owned and used by exactly one cloud-service provider. Second, all nodes in a data center communicate

with the rest of the world only through the data-center gateways; they therefore have identical dependency

relationships with components outside of the data center.

Figures 3.2 and 3.3 illustrate this process. Suppose that Figure 3.2 is the full dependency graph of cloud-

service provider C1, which contains a storage-cloud service. C1’s users’ files are stored in server S2, with

two backup copies stored in server S5 and S7. The components inside the red box belong to a data center

DC1, which has the two properties required for asbtraction. After abstracting both DC1 and another data-

center subgraph, the SSU obtains Figure 3.3 as the input to the SMPC. After the abstraction process, the SSU

executes the SMPC protocol with the abstracted inputs and passes the dependency information within the

macro-components (such as the red box in Figure 3.2 for DC1) to the LEU for local computation.

Because the number of components in a data center is often huge, this kind of abstraction can be a crucial

step toward the feasibility of SMPC.

3.4.4 SMPC and Local Computation
SSU Protocol:

Fault-tree construction: Recall that a fault tree contains two kinds of information: dependency information

about components (events and links) and logical relationships among components (represented as logic gates).

As we said in Subsection 3.4.2, we use the topology-path form to store dependency information. That is, we

represent a leveled DAG as a set of (directed) paths in which the first node of each path is the root node

of the leveled DAG, the last node is one of the leaf nodes of the leveled DAG, and the other nodes form

a path from the root to the leaf. Figure 3.5 depicts the topology-path form of the dependency graph in

Figure 3.3. The topology-path form of a DAG can, in the worst case, be exponentially larger than the DAG

itself; thus, subgraph abstraction is crucially important, because we need to start with modest-sized DAGs.

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 41

Figure 3.2: Full Dependency Graph of C1

Figure 3.3: Abstracted Dependency Graph, suitable for SMPC

On the positive side, the topology-path form enables us to avoid using conditional statements in our SecreC

code – something we must do to avoid leaking private information.

In order to capture the logical relationships among components of a cloud-service provider, we extend

this representation to what we call the topology-path form with types. The SSU builds a “disjunction of

conjunctions of disjunctions” data structure by assigning different “types” to the topology paths. Failure of

the top event in the fault tree is the OR of a set of “type failures”; if any “type” that is an input to this OR

fails, then the top event fails. Each “type failure” is the AND of failures of individual topology paths in the

type; the “type failure” occurs only if all of the topology paths in that type fail. Failure of a topology path is

the OR of failures of individual nodes on the path.

The SSU assigns a “type ID” to each topology path; the type ID is a function of the component IDs in

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 42

Figure 3.4: Fault Tree Based on Dependency Graph in Figure 3.3

the nodes on the path. Type IDs and the mapping from sets of component IDs to type IDs can be agreed

upon by all of the relevant cloud-service providers and stored in a table before the P-SRA execution starts;

so the SSU simply needs to look up type IDs during the protocol execution. To construct the fault tree from

the topology-path form with types, the SSU traverses each path and constructs an OR gate for each path, the

inputs to which are the nodes on the path. It then constructs an AND gate for each type of path, the inputs to

which are the outputs of the OR gates of the paths in the type. Finally, the SSU constructs an OR gate whose

inputs are the outputs of all the AND gates in the previous step.

For example, starting with the fault tree of Figure 3.4, the SSU can classify the topology paths of

Figure 3.5 into two types. Type 1 includes the two topology paths (Cloud Service1, DC1, Power1) and

(Cloud Service1, DC2, Power2). Type 2 includes the other four topology paths. It can be verified that the

minimal FSes of the fault tree generated by the topology path form with types are the same as the minimal

FSes of the fault tree in Figure 3.4; we refer to [ZWX+] for more formal statements of the necessary details

of fault-tree analysis.

Generate input for the SMPC: After constructing the topology paths with types, the SSU “pads” the

paths so that they all have the same length L, where L is an agreed-upon global parameter distributed by

the P-SRA host. Padding is accomplished by adding the required number of “dummy” nodes in which the

component ID is 0. (Here, “0” is any fixed value that is not a valid, real component ID.) Similarly, the SSU

adds a random number of “0 paths,” which are topology paths with types in which all of the nodes have

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 43

Figure 3.5: Topology-path Form of Dependency Graph in Figure 3.3.

Algorithm 1: Common-Dependency Finder
Input: Fault tree Ti, i = 1 to N, where N is the number of participating cloud-service providers
Output: Common Dependency

1 foreach TI and TJ , I 6= J do
2 private mask.clear();
3 foreach nodei ∈ TI and node j ∈ TJ do
4 private mask[i][j] = (nodei.ID == node j.ID);

5 private CommonDep.clear();
6 foreach nodei ∈ Ti and node j ∈ Tj do
7 private CommonDep[i] = mask[i][j]×node j.ID+CommonDep[i];

8 private CommonDependent.append(CommonDep);

9 return private CommonDependent;

component ID 0. The types of these 0 paths can be assigned randomly, because they do not affect the result –

the 0 paths never fail. The purpose of this padding step is to prevent leakage of structural information about

the cloud-service providers’ architectures, including the number of topology paths or the size of each path.

Finally, the SSU splits the padded paths into secret shares that are input to the SMPC protocol.

Identify common dependencies: A component is in the common dependency of cloud-service provider

Si if it is in the fault tree of Si and in the fault tree of at least one other cloud-service provider S j, j 6= i.

Conceptually, the common dependency is very easy to compute by doing multiple (privacy-preserving) set

intersections, followed by one (privacy-preserving) union. However, we need to do this computation without

conditional statements; see Algorithm 1 for a method of doing so.

Calculate failure sets: Finally, the SMPC protocol integrates the fault trees of all participating cloud-

service providers into a unified, global fault tree and performs fault-tree analysis. It can execute either algo-

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 44

Algorithm 2: Minimal-FS algorithm
Input: Global Fault tree T
Output: MinimalFS

1 foreach private pathi ∈ T do
2 foreach private node j ∈ private pathi do
3 private pathi.FS.apped(node j);

/* each path corresponds to an OR gate with input as the nodes along the path */

4 foreach AndGatei ∈ T do
5 AndGatei.FS.clear();
6 foreach path j ∈ AndGatei do
7 AndGatei.FS← AndGatei.FS× path j.FS;

/* process the AndGate for each type of topology paths */

/* FS of AndGatei is the Cartesian Product of AndGatei.FS and path j.FS. */

8 private minimalFS.clear();
9 foreach AndGatei ∈ T do

10 minimalFS.append(AndGatei.FS);
/* process the OR gate connecting to the And Gates */

/* reduce redundant items in minimumFS and assign the result to minimalFS, and then

simplify minimalFS. */

11 minimalFS← reduce redundancy(minimalFS);
12 minimalFS← simpli f y(minimalFS);
13 return minimalFS;

rithm 2, which computes minimal FSes, or algorithm 3, a heuristic “failure-sampling” algorithm that is faster

than algorithm 2 and computes FSes but does not guarantee that the FSes returned are minimal.

Algorithm 2 works as follows. Let T denote the unified, global fault tree; because we represent fault trees

as padded, topology paths with types, T is simply the union of the fault trees of the individual cloud-service

providers. The algorithm traverses T , producing FSes for each of the visited events. Basic events generate

FSes containing only themselves, while non-basic events produce FSes based on the FSes of their child events

and their gate types. For an OR gate, any FS of one of the input nodes is an FS of the OR. For an AND gate,

we first take the cartesian product of the sets of FSes of the input nodes and then combine each element of

the cartesian product into a single FS by taking a union. The last step of algorithm 2 reduces the top event’s

FSes to minimal FSes.

Algorithm 3 works as follows. For each sampling round, the algorithm randomly assigns 1 or 0 to the

basic events (leaves) of the fault tree T , where 1 represents failure and 0 represents non-failure. Starting from

such an assignment, the algorithm can assign 1s and 0s to all non-basic events in T , using the logic gates. At

the end of each sampling round, the algorithm checks whether the top event fails. If the top event fails, then

the failure nodes in this sampling round are an FS. The algorithm runs for a large number of sampling rounds

to find FSes. In [ZWX+], it is proven that most of the critical FSes can be found in this fashion but that the

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 45

Algorithm 3: Failure-Sampling Algorithm
Input: Global Fault tree T and the number of samples N
Output: FSes

1 private FSes.clear();
2 for i← 1 to N do
3 foreach private path j ∈ T do
4 private tmp = 0;
5 foreach private nodes ∈ path j do
6 foreach private nodek ∈ T do
7 private random = 0 or 1 based on randomly flipping a fair coin;
8 tmp+= random× (nodes.ID == nodek.ID);

/* calculate whether path j fails */

9 path j. f ailure = (tmp > 0);

10 foreach AndGatei ∈ T do
11 AndGatei. f ailure = true;
12 foreach path j ∈ AndGatei do
13 AndGatei. f ailure = AndGatei. f ailure && path j. f ailure;

14 private serviceFailure = false;
15 foreach AndGatei ∈ T do
16 serviceFailure = AndGatei. f ailure ‖ serviceFailure;

17 open(serviceFailure);
18 if serviceFailure then
19 FS.clear();
20 foreach pathi ∈ T do
21 FS.append(pathi. f ailure);

22 FSes.append(FS);

23 return FS;

FSes are not necessarily minimal.

LEU Protocol:

The LEU in the P-SRA client of cloud-service provider S performs fault-tree analysis on S’s macro-components.

The LEU can use algorithm 2 or algorithm 3. Note that these computations are done locally and do not in-

volve SMPC; so, large macro-components are not necessarily bottlenecks in P-SRA computation. It is very

advantageous when a cloud-service provider can partition its infrastructure in a way that produces a modest

number of large macro-components, each one of which is a “virtual node” in the SMPC.

3.4.5 Privacy-preserving Output Delivery

Recall that P-SRA performs an SMPC on dependency information that is potentially shared by multiple

cloud-service providers and performs local computation on dependency information that is definitely relevant

to only one provider. The intermediate results include common dependency and minimal FSes (or FSes

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 46

if algorithm 3 was used). We now turn our attention to the outputs that P-SRA delivers to cloud-service

providers and to cloud-service users. P-SRA gives cloud services the flexibility to choose exactly what

should be output. However, we argue that the outputs should not compromise the privacy of cloud-service

providers and must be illustrative of correlated-failure risk and reliability. We propose some specific outputs

that satisfying these two requirements.

Output for Cloud-Service Providers

Common dependency: The common dependency set, as defined in Subsection 3.4.4, includes components

shared by more than one cloud-service provider. It is useful for cloud-service providers, in that it can make

them aware of unexpected correlation with other providers. They can then deploy independent components as

backups to mitigate the impact of the common dependency or switch to independent components to improve

the reliability of their service and decrease the correlation with other cloud-service providers.

Partial failure sets: If F is a (minimal) FS for cloud-service provider S, then the corresponding partial

(minimal) FS is simply all of the components in F that are used by S. Such a partial FS gives S information

about components whose failure may lead to an outage because equipment that is controlled by some other

service provider fails. If S can build enough redundancy into its internal infrastructure to avoid failure of all

of the components in this partial FS, then it will not suffer an outage because of F , regardless of what happens

outside.

Sometimes the number of FSes is huge. If this is the case, we need to rank the FSes first and only

output the partial failure sets of the top-ranked FSes. Ranking of comprehensive failure sets can be either

probability-based or size-based [ZWX+].

Output for Cloud-Service Users

Common-dependency ratio: Cloud-service users can obtain a common-dependency ratio for each cloud-

service provider. We define the common-dependency ratio of cloud-service provider S as the fraction of

components in S that are shared with at least one other cloud-service provider. Intuitively, the larger the

common-dependency ratio, the higher the risk of correlated failure. In the extreme case, if a cloud ser-

vice is deployed entirely on an external cloud infrastructure (as is the case with some Software-as-a-Service

providers), then its common-dependency ratio is 1. If a cloud-service provider shares no components with

other providers, then its common-dependency ratio is 0. Cloud-service users can evaluate risk and choose

cloud providers in part based on this ratio. This common-dependency ratio does not reveal any information

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 47

about internal architecture of the cloud providers.

Overall failure probabilities of cloud services: Cloud-service users can compare these failure proba-

bilities with the reliability measures promised by the providers in their service-level agreements and evalu-

ate whether they are subject the risk of unexpected, correlated failure. Failure probabilities, like common-

dependency ratios, do not reveal the architectures of the service providers.

Top-ranked failure sets: Recall from Subsection 3.2.1 that, in its SMPC, P-SRA computes the secret

shares of the (minimal) FSes of the cloud-service providers. As we have seen, an SMPC program can compute

from those shares the partial (minimal) FSes that are delivered to the providers. However, an alternative

SMPC program could use those shares to rank the (minimal) FSes based on failure probability or size. Then

a small set of top-ranked (minimal) FSes can be delivered to cloud-service users. Just a few top-ranked sets

can give users useful information about how to avoid correlated failures; they reveal some information about

the cloud-service architectures, but this may be tolerable in some markets.

3.5 Implementation

3.5.1 P-SRA Prototype

The Sharemind SecreC platform includes a set of miners to execute the SMPC protocols and a controller to

coordinate the miners. The SMPC protocols run by the miners are coded in SecreC, a C-like programming

language for SMPC programs. Variables in SecreC may be declared as public or private. The language

supports basic arithmetic as well as some matrix and vector operations. SecreC uses a client/server model,

with multiple clients providing (secret-shared) input to the miners, which execute the SMPC protocol.

Our implementation of P-SRA is illustrated in Figure 4.8. The miners are installed in the SMPC module

of the P-SRA host. The P-SRA clients and P-SRA host upload their SecreC scripts to the miners. The SecreC

scripts are executed by the P-SRA clients remotely through the C++ interface of the controller or by the

P-SRA host locally. The P-SRA clients execute the SecreC scripts to split their inputs into secret shares and

to read and write shares of inputs or intermediate results from the miners’ secure databases. The P-SRA host

executes the SecreC scripts to perform the SMPC protocol that identifies common dependencies and performs

fault-tree analysis. SecreC uses SSL for secure communication between miners and clients.

From Figure 4.8, it is not immediately obvious what one gains from using the Sharemind platform and

SMPC instead of a trusted-party SRA as in [ZWX+]: All of the miners, i.e., the nodes that execute the SMPC

protocol, run inside the P-SRA host; if they share information, then together they constitute a trusted party.

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 48

Figure 3.6: Implementation in Sharemind SecreC

However, this system configuration is merely the default of the currently available Sharemind “demo,” and

we have used it only in order to be able to build this proof-of-concept prototype as quickly as possible. In

a real, deployed P-SRA (or any real SMPC-based application coded in SecreC), the miners would run on

separate, independently administered machines and communicate over a network; no substantive changes to

the SecreC compiler are needed to create executables that run on separate networked nodes, and we expect

future Sharemind releases to create them. Thus, moving to P-SRA from the SRA of Zhai et al. [ZWX+], in

which one trusted auditor handles all of the sensitive information supplied by the cloud-service providers, is

tantamount to “distributing trust” over a number of independently administered auditors no one of which is

trusted with any sensitive information, in the sense that each receives only a secret share of every input; if

the independent owners of the networked nodes that run the auditors do not collude, then the clients’ inputs

will remain private. This SMPC architecture, in which clients (or “input providers”), rather than executing

an SMPC protocol themselves, instead send their input shares to independently administered computational

agents that then execute the SMPC protocol, is known as secure outsourcing in the SMPC literature; see, e.g.,

Gupta et al. [GSP+12] for more information about secure outsourcing’s history, its practical advantages, and

its use in a routing application.

The SecreC compiler relieves programmers of the need to code standard cryptographic functionality. In

particular, it generates secret-sharing code automatically. Currently, it uses additive secret sharing and thus

guarantees privacy only against honest-but-curious adversaries. We expect future releases to incorporate

more elaborate secret-sharing techniques and hence to protect input providers against stronger classes of

adversaries.

The DAU and LEU in the P-SRA client are written in Python. The DAU uses the SNMPv2 library

support from NetSNMP to collect network dependencies; it uses lshw, a lightweight tool that extracts detailed

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 49

hardware configuration from the local machines, to collect hardware dependencies; it uses ps and gprof to

collect software dependencies. The LEU uses the Network-X library [net] to process the dependency-graph

data structures.

3.5.2 Case Study

This section outlines a case study to illustrate the prototype’s operation. Let CS1 denote a cloud service

provided by cloud provider C1. To improve the reliability of CS1, C1 decides to use providers C2 and C3 for

redundant storage. Only C1 serves users directly, while C2 and C3 provide lower-level services to C1. This

architecture is analogous to iCloud, Apple’s storage service, which uses Amazon EC2 and Microsoft Azure

for redundant backup storage.

Suppose Alice, a user of CS1, wants to deploy a MapReduce function using CS1. Alice deploys the

MapReduce Master on a data center DC1 of C1, and C1 uses a data center DC2 of C2 and a data center D3

of C3 as backup for the MapReduce Master. However, as in Figure 3.7, C1, C2, and C3 depend on the same

power station P1. Alice and all three cloud providers are unaware of this situation. Therefore, they may

overestimate the reliability of the MapReduce Master and underestimate the risk of correlated failure. If P1

goes down, Alice’s MapReduce may not work, because all the backup data centers may fail simultaneously.

The P-SRA system can help to identify P1 as the common dependency in the cloud structure supporting

CS1 and provide multiple measures of reliability and correlated failure risk (the failure probability for Alice

and partial FSes for C1), without revealing significant private information about C1, C2, and C3. Alice need

not learn private topological information about the three cloud providers (or even learn of the existence of

C2 and C3) but can accurately assess the failure risk via the P-SRA system. Meanwhile, C1 can improve the

reliability of CS1 by connecting to alternative power stations or seeking redundancy from cloud providers

other than C2 and C3, without learning private topological information about C2 and C3.

To further illustrate P-SRA, we display the details within a data center. There are a large number of

components in data centers including servers, racks, switches, aggregate switches and routers. For simplicity,

we generate the same topology for all the data centers and show only the components in DC1 – see Figure 3.8.

The MapReduce Master is installed on server 5 of DC1. The DAUs of C1, C2, and C3 collect the dependency

information of each cloud provider. Then the SSUs abstract macro-components for each cloud provider

using standard data-center abstraction. The SSUs pass the information within the data centers to the LEUs

and establish connections with each other and the P-SRA host to execute the SMPC protocol. The LEUs

perform fault-tree analysis on the dependency information within the data centers locally. The results of the

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 50

Figure 3.7: Multi-level Structure of Cloud Service

SMPC and the local computation are then combined as explained in Subsection 3.4.3.

The P-SRA system is practical in this case study. Even using a laptop with little computational power,

equipped only with a 2.5GHz 2-core Intel i5 CPU and 2.00GB of memory, the running time used by the SSUs

and P-SRA host to find the common dependency was approximately 20 seconds; the time to perform the

fault-tree analysis was approximately 13 minutes using the minimal-FS algorithm and 55 seconds using the

failure-sampling algorithm with 100 rounds. The running time for the LEUs deployed on servers equipped

with two 2.8GHz 4-core Intel Xeon CPUs and 16GB of memory was less than 30 seconds for both the

minimal-FS algorithm and the failure-sampling algorithm.

3.5.3 Large-Scale Simulation

This section evaluates the P-SRA prototype using larger-scale simulations. Our data set is synthesized based

on the widely accepted three-stage fat-tree cloud model [Lei85] and scaled up to what we expect to find

in real cloud structures. For the SMPC protocol run by the P-SRA host and the SSUs of P-SRA clients,

we test the running time of the common-dependency-finder Algorithm 1, the minimal-FS Algorithm 2, and

the failure-sampling Algorithm 3. Our output for both cloud-service providers and users can be computed

efficiently from the common dependency and the (minimal) FSes.

We test the five cases summarized in Table 3.1. For simplicity, we generate only homogeneous cloud

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 51

Figure 3.8: Components in Data Center DC1: Core, Agg, and ToR represent core router, aggregation switch,
and top-of-rack switch.

providers. In Table 3.1, the numbers of data centers, Internet routers, and power stations are numbers per

cloud provider. The common-dependency ratio is as defined in Subsection 3.4.5. The padding ratio is the

number of zeros with which the topology paths were padded divided by the total number of nodes on the

topology paths after padding.

The five cases are intended to be illustrative of configurations broadly comparable to realistic multi-cloud

services. To the best of our knowledge, it is uncommon for any cloud services to be deployed on more

than three cloud providers or distributed over more than 10 data centers, because the total number of data

centers worldwide is limited, and cloud-service management costs increase quickly as data centers are added.

Amazon, one of the giant cloud providers, owns only 15 data centers globally [Amaa]; Microsoft Azure has

fewer than 10 data centers [Azu].

Measured P-SRA computation performance is summarized in Figure 3.9. The P-SRA host and SSUs of

the P-SRA clients were run on laptops with 2.5GHz 2-core Intel i5 CPU and 2.00GB of memory. We used

these machines because the SecreC platform supported only Microsoft Windows when we started this work.

We expect that performance would improve using higher-powered machines.

The common-dependency finder exhibits reasonable efficiency in all five cases, the runtimes of which

are all less than 3 minutes. The minimal-FS algorithm yields exact minimal FSes (but takes exponential

time in the worst case, because the problem in NP-hard), while the failure-sampling algorithm produces

FSes approximating the minimal FSes and runs in polynomial time. In Cases 4 and 5, the minimal-FS

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 52

Case 1 Case 2 Case 3 Case 4 Case 5

of cloud providers 2 2 3 3 2
of data center 1 3 8 10 3
of internet router 3 5 10 15 5
of power stations 1 2 3 5 2
ratio of common dep. 0.8 0.2 0.2 0.2 0.2
ratio of padding 0.0 0.0 0.0 0.0 0.5

Table 3.1: Configuration of Test Data Sets

Figure 3.9: Performance of algorithms. On the X axis, “Common” represents the common-dependency
finder, 2 through 4 represent the failure-sampling algorithm with sampling rounds at various powers of 10,
and “Min” represents the minimal-FS algorithm.

algorithm was aborted before it finished, and thus no results are shown for them in Figure 3.9. The runtimes

of other simulations of the minimal-FS algorithm and the failure-sampling algorithm range from 1 to 50 hours

depending on the configuration. As the number of nodes increases, the efficiency of fault-tree analysis drops

quickly. Case 5 shows that the cost of padding to conceal the statistical information of each topology path

is high. Therefore, subgraph abstraction to reduce the size of the dependency graphs is important for the

efficiency of fault-tree analysis in P-SRA.

For the LEUs in the P-SRA clients performing local computations, we also test the running times of both

the minimal-FS algorithm and the failure-sampling algorithm. For the LEUs running on servers with two

2.8GHz 4-core Intel Xeon CPUs and 16GB of memory, the failure-sampling algorithm with 106 rounds on a

data center with 13,824 servers and 3000 switches takes around 6 hours. For details, see Table 3.2. “FS round

10n” denotes the running time (in minutes) of the failure-sampling algorithm running 10n rounds’ “minimal

FS” denotes the running time of the minimal-FS algorithm.

CHAPTER 3. STRUCTURAL CLOUD AUDITS THAT PROTECT PRIVATE INFORMATION 53

Table 3.2: Performance of the LEU of a P-SRA client

Configuration Case 1 Case 2 Case 3 Case 4 Case 5

of switch ports 4 8 16 24 48
of core routers 4 16 64 144 576
of agg switches 8 32 128 288 1152
of ToR switches 8 32 128 288 1152
of servers 16 128 1024 3456 13824
Total # of components 40 216 1360 4200 16752
Running time (minutes)

FS round 103 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7
FS round 104 0.7 0.7 1.7 2.3 6.9
FS round 105 0.8 0.9 5.3 28.1 6.9
FS round 106 1.7 4.5 65.0 243.5 462.9
FS round 107 28.3 56.6 512.1 NA NA
Minimal FS 0.8 14.8 309.7 NA NA

Chapter 4

Cloud User Infrastructure Attestation

4.1 Introduction

Customers running virtualized infrastructure in the cloud need attestation that they have received the resources

they have paid for. For performance, reliability, and security reasons, a customer needs concrete assurance

that his virtualized infrastructure, also called his “user infrastructure” (as opposed to “the cloud infrastruc-

ture,” which is all the hardware and software owned by a cloud provider), satisfies his request. While cloud

providers enter into service-level agreements (SLAs) with their customers, there is usually little attestation

that can back up the SLA guarantees in practice. In particular, these agreements focus on “99.99...%” up

time and other vague metrics. There is need for more concrete attestation to back up a provider’s promises to

customers.

While more assurance and attestation should attract more users, cloud providers may be unwilling to

reveal their cloud infrastructure to the users or to active third parties1. Their competitive advantage may be

diminished if others are able to learn about the settings and hardware that they use. Number of physical

servers, types of servers, networking equipment used, networking bandwidths between specific nodes, etc.,

are all details about the cloud infrastructure that the cloud provider may want to keep secret.

Without a way to provide attestation to the users without revealing critical, proprietary information,

providers may not be willing to adopt new attestation techniques. The users, however, are interested in

making sure they get what they paid for. In particular, the users want attestation about their leased resources.

Hence, our work aims to satisfy both users and cloud providers.

Previous work on this problem uses active, trusted third parties who act as intermediaries between the

1Here, an “active” third party is a trusted third party that must be online when the cloud provider and the cloud user execute the
attestation protocols in order to help the cloud provider generate the proof or to help the cloud user verify it. By contrast, the trusted
third party in our work can stay offline after certificating the infrastructure. The cloud provider and user can generate and verify the
proof without the trusted third party’s help.

54

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 55

cloud provider and the users. The provider is required to trust the active third party and to give it access to

some information about the infrastructure. The users also trust the third party and believe that it will given

them correct information about the provider (without actually giving the user any details about provider’s

infrastructure). The active third party often simply replies yes or no as to whether the user received satis-

factory resources. There is, however, significant risk in disclosing infrastructure details to a third party, who

presumably would know such details about other providers as well. Such information may be misused or

even stolen by competitors.

Our solution, on the other hand, focuses on hardware security anchors, or roots of trust, installed in the

individual servers of the cloud provider. We leverage well established TPM technology and also propose a

novel component called a Network TPM. Both of these hardware components are used to collect information

about the cloud infrastructure and attest to properties requested by users. In particular, our attestations refer

not to the actual physical infrastructure but only to its properties. Thus, users never learn details of the

infrastructure.

TPMs on the servers where the user’s VMs run are used to attest to the properties of server infrastructure

and to give users assurance about the properties of the servers. Our new proposed Network TPMs installed

in these servers are used to attest to the properties of the network infrastructure and to give users assurance

about the properties of the interconnection of their VMs. The TPMs and Network TPMs have to be trusted

for correct operation; however, they never release any information to an outside third party. Meanwhile, our

attestation protocol uses digitally signed data and verifiable computation mechanisms [PHGR13, TRMP12,

SMBW12, SVP+12, CMT12] to ensure that the attestation is correct and trustworthy. Because the keys used

by the hardware could be used to identify specific nodes in the infrastructure, and even to let outsiders enu-

merate all the physical components, Direct Anonymous Attestation (DAA) [BCC04] and Property-based

Attestation (PBA) [SS04] are used together with the zero-knowledge property of certain verifiable computa-

tion mechanisms to prevent cloud users from tying the measurement to a specific physical node or link, even

while receiving meaningful attestation.

4.2 Related Work

Trusted Computing: The Trusted Computing Group (TCG) [TCG] proposed a set of hardware and soft-

ware technologies to enable the construction of trusted platforms. In particular, the TCG proposed a standard

for the design of the trusted platform module (TPM) chips that are now bundled with commodity hard-

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 56

ware. The TPM provides tamper-resistant cryptographic identities and functionalities, as well as random-

number generators to support cryptographic operations. Leveraging the properties of TPM, trusted plat-

forms [GPC+03,PSvD06,SJV+05] enable remote attestation, in which remote users can verify that the servers

are secure and trustworthy. At boot time, the TPM on each server computes a measurement list (ML) that is

stored in a set of tamper-resistant registers in the TPM. The remote party challenges the server with a nonce

and asks the local TPM to authenticate the server using the ML, the nonce, and the private endorsement key

of the TPM.

To address concerns that trusted platforms and remote attestation may leak private information about the

attested machines, Direct Anonymous Attestation (DAA) [BCC04] and Property-based Attestation (PBA) [SS04]

were proposed. DAA achieves anonymity of the attested machines using a type of group signature in which

the signer is anonymous; that is, the verifier can determine whether the signer is a member of the group

but cannot determine the signer’s identity. PBA enables the verifier to check that certain properties of the

configurations of the servers are met without releasing which configurations the servers are in.

Leveraging the trusted-computing works, several trusted cloud-computing platforms have been proposed

(see [SGR09] for a survey) to protect the confidentiality and integrity of cloud users’ data. Trusted cloud-

computing platform (TCCP) [SGR09] leveraged a trusted third party to maintain a list of trusted nodes in

the cloud providers and authenticate the nodes whenever a cloud user wants to launch or migrate a virtual

machine. Excalibur [SRGS12] proposed a policy-sealed data abstraction, in which only those nodes whose

configurations match the policy could unseal the data.

Our work leverages the TPM chip but also proposes a novel component called a “network TPM.” More-

over, rather than focus on the hosts, as most TCG work does, our approach focuses both on the hosts (servers)

and the network that connects them.

Accountability of Cloud Computing: Accountability in cloud computing has been explored; for ex-

ample, Haeberlen [Hae10] proposed an accountable-cloud design in which each action is undeniably linked

to the node that performs it, the system maintains a secure record of past actions that can be audited for

signs of faults, and the audit results can be verified by an independent third party. It uses tamper-evident

logs, virtualization-based replay, and trusted timestamping to detect faults in cloud providers. Meanwhile,

Haeberlen et al. [HARD10] proposed an accountable virtual machine (AVM) that records non-repudiable

information that allows auditors to check whether the software behaves as intended. Other works, such

as [KJM+11], outline the key issues and challenges in accountability of cloud-computing systems and pro-

posed a framework to achieve accountability and trust via technical and policy-based approaches.

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 57

Verifiable Computation: Attestation that remote services are running correctly is related to the idea of

verifiable computation. There has been a great deal of work on protocols for verifiable, outsourced computa-

tion, in which a user submits inputs to a server that is supposed to compute a predefined function; after receiv-

ing the result, the user should be able to verify that the function was computed correctly. Efficient mechanisms

have long been known for verifiable, outsourced computation of constrained classes of functions [MWR99,

GM01, DG05]. General purpose solutions were proposed [GMR89, Kil92, GKR08, Gro10, GGP10, CKV10]

but often relied on complex cryptographic protocols such as Fully Homomorphic Encryption [Gen09] and

Probabilistic Checkable Proofs [AS98]. Recent works [TRMP12, SMBW12, SVP+12, CMT12] consider-

ably improved the efficiency of the general-purpose solutions, but the verification protocols were not quite

practical. Most recently, Parno et al. [PHGR13] proposed a system for efficiently verifying general compu-

tations that produces a small (288-byte) proof for each computation performed and that anyone with a public

verification key can check.

Rather than focus on verifying specific computation, this work focuses on providing attestation to the user

that he or she received the requested resources, and then any computation can be performed on these.

4.3 Cloud User Infrastructure

We focus on attestation of the cloud user infrastructure, which we define in this section. A cloud user infras-

tructure is essentially an instance of a user’s requested infrastructure (VMs and their interconnection) on the

cloud provider’s infrastructure. The term “cloud user infrastructure” also captures the user’s requirements

with respect to the properties that the hardware on which the VMs run should have and how the physical

servers hosting the VMs should be connected, e.g., with redundant links for reliability. We describe the

concepts of user infrastructure, cloud infrastructure, and cloud user infrastructure below.

Figure 4.1: User infrastructure example with multiple VMs and links among them

User Infrastructure: The basic request that a user can make when leasing cloud resources is to request

a set of VMs, Vx, with certain properties, psV = Prop(Vx). These properties may include amount of memory,

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 58

processor speed and number of virtual CPUs, and disk storage. Such requests, however, do not say anything

about how the VMs are connected. The idea of user infrastructure thus also includes the interconnection of

the VMs with each other and with the external internet, which we denote psLink = Prop(Linkx). These virtual

properties of the VMs and their interconnection comprise the basic user infrastructure that one could request;

an example is shown in Figure 4.1. 2

The users may also have requirements for the physical properties on which the VMs and their network

are realized. For example, certain VMs will need to be connected with redundant links, and some may have

to be placed on separate servers or on servers with special properties, e.g., “equipped with a TPM chip.”

Figure 4.2: Cloud infrastructure example.

Cloud Infrastructure: The user infrastructure will eventually be mapped into and instantiated on a cloud

infrastructure; an example is shown in Figure 4.2. Each cloud provider has an infrastructure that consists of

physical compute and networking elements. Typically, there are compute nodes (C), server racks (S) each

of which houses multiple compute nodes, and top-of-the-rack (TOR) switches that connect all the compute

nodes in a server rack and provide connection to the aggregation switches (AGG). Aggregation switches are

connected to routers (R), which eventually provide connectivity to the outside world. This model is based

on the popular fat-tree networking model, originally applied to supercomputing and now common in data

centers [Lei85].

Each of the physical components has certain properties, or “attributes,” attr = Attr(C,S, ...). The server

properties include memory, processor speed, and disk and may also include special properties such as “equipped

with a TPM chip.” The networking components have bandwidth properties and may also have redundant links

2Note that there are even more complex ways of defining user infrastructure. For example, in a “cloud resident datacenter” [KDSR11],
a customer can design and manage the servers, network, storage, and middleboxes, as in a private data center. This may be too complex
for average users, however; our user infrastructure definition occupies a middle ground between simply requesting VMs and a full-blow
virtual datacenter specification.

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 59

for reliability.

Figure 4.3: Cloud user infrastructure example, showing mapping of the user infrastructure, Figure 4.1, onto
the cloud infrastructure, Figure 4.2.

Cloud User Infrastructure: Given the user infrastructure request, the cloud provider allocates to the user

infrastructure resources on its physical infrastructure; this creates the “cloud user infrastructure,” an example

of which is shown in Figure 4.3. The VMs are mapped to run on specific servers. Virtual links may be

mapped to physical links between servers or may remain purely virtual if two VMs that share a link happen

to be mapped to the same server. After the instantiation of the user infrastructure on the cloud infrastructure

is done, the cloud user infrastructure has been created, and the user seeks attestation that the properties he

requested for his VMs, psV , and interconnections, psLink, are collectively satisfied by attr, the attributes of

the underlying servers and network.

4.4 Cloud User Infrastructure Attestation

In this section, we describe the procedure and algorithms for cloud user infrastructure attestation. First, the

cloud service user receives the list of servers in the cloud user infrastructure from the cloud service provider,

together with the provider’s attestation that the trusted components exist on the servers. Second, the cloud

users leverage the trusted components to verify the architecture of each server. Third, the cloud users leverage

the trusted components to measure the topology information of the user infrastructure. Fourth, the cloud

users verify whether the connectivity and topology configurations provide the correct properties. Note that

the cloud provider attests to the desired properties, not to the specific configurations of its hardware systems;

thus, it does not reveal sensitive infrastructure trade secrets to the customers or potential competitors.

4.4.1 Threat Model

We target scenarios in which the cloud users do not trust the cloud provider to fulfill service-level agreements.

The cloud provider may maliciously or accidentally fail to implement the cloud user infrastructure that cloud

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 60

users pay for. The cloud provider has privileged control over the hypervisor, operating systems, and virtual

machines. It can also migrate the users’ VMs from one server to another. However, we assume that, as long

as the cloud provider implements the required cloud user infrastructure, the properties of the infrastructure

are enforced, and no third party can hack the security mechanisms to compromise the cloud users’ data.

Vulnerabilities of the security mechanisms exploited by the cloud providers are outside of the scope of this

work.

We assume that there may be hardware components installed on the servers of the cloud provider that are

trusted by both the cloud users and the cloud provider. These trusted components are accurate and tamper-

resistant as long as they reside on the servers. Existing trusted components include Trusted Platform Modules

(TPMs) and the associated Trusted Software Stack (TSS). We also advocate a new trusted component that

can be used to measure the network topology; it is tamper-resistant and trusted by both the cloud provider

and the users. The hardware components are associated with private signing keys and public verification keys

available from the manufacturer; the verification keys can be used to confirm the accuracy of the information

sent from these components.

4.4.2 Attestation of Server Architecture

Cloud users can leverage the trusted hardware components to verify the server architecture. The TPM can

be used to verify the system architecture. The TPM on each server computes a measurement list, ML, of the

configuration of the server; it includes, for example, the BIOS, the bootloader, and the software implementing

the platform. The ML is stored securely in the TPM, which is tamper-resistant. A remote cloud user can

challenge the server by sending a nonce nc and the desired properties psV to the platform running on the

server. The local TPM on the platform checks whether the ML satisfies psV , creates a message including the

results of these checks and nc, and signs the message with the her private key. The platform then sends the

signed message back to the challenger, who can verify the signature of the message using the public key of the

TPM and check whether psV is satisfied. Direct Anonymous Attestation (DAA) [BCC04] and Property-based

Attestation (PBA) [SS04] can be used so that cloud users are not able to tie the measurement to a specific

physical node based on the key.

4.4.3 Attestation of Topology Infrastructure

We focus on topology infrastructure attestation, which has not been fully explored before. The following

questions are crucial. 1) How can one obtain tamper-resistant measures of topology information? 2) How can

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 61

one measure and consolidate the topology information? 3) How can one verify the properties of the topology

infrastructure based on the topology information?

We provide a framework to answer these three questions as follows. First, we propose a design of a smart

and secure component, which we call a Network TPM (NTPM), to collect topology information. The NTPM

can be installed on each server as a network card to collect topology information in a distributed manner.

Each NTPM is equipped with some hardware-based tamper-resistant cryptographic functionalities and can

sign the topology measurements to guarantee integrity. There is a hardware-based secure channel between

the CPU and the NTPM to consolidate the topology information.

Second, we propose a set of protocols that enable NTPMs to collect and analyze the topology informa-

tion. We describe two kinds of networks in the topology infrastructure, named virtual network and physical

network, based on the vitualized or physical nature of the nodes and links in the networks. We propose a

Physical Topology Discovery Protocol (PTDP), which enables the NTPMs to communicate with each other

to measure the physical topology, and describe how to use well known protocols to collect virtual network

information. We also propose a Topology Attribution Protocol (TAP) to consolidate the virtual network and

physical network and obtain the topology infrastructure.

After obtaining the topology infrastructure, we leverage the delegation model to do the attestation. There

exists a trusted third party that specifies an algorithm A(CUT I, p) that decides whether the cloud user in-

frastructure CUT I provides p, a set of properties. The trusted third party stays offline after certifying the

algorithm A(., .). Thus, it is not an “active, trusted third party” of the type used in previous work in this

area. Finally, we propose a property-based attestation protocol, in which the NTPMs, the cloud user, and

the untrusted platform controlled by the cloud provider cooperate to generate a proof that the cloud user can

verify. The protocol protects the private information of the cloud provider, i.e., the cloud user learns nothing

about the private infrastructure of the cloud provider except whether it satisfies a certain set of properties.

Design of the Network TPM

The design of the proposed Network TPM (NTPM) is shown in Figure 4.4. The NTPM consists of a network

module (NM) and a crypto module (CM). The NM is responsible for collecting topology information by

communicating with the network modules of the other NTPMs in the cloud user infrastructure. There are

two units in the NM of the NTPM. The first is a communication unit, which executes the communication

protocols with other NTPMs. The other is a topology-storage unit, which consists of a set of secure memory

units (registers) storing the topology information collected by the communication unit in a tamper-resistant

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 62

manner. The storage is read-only to the untrusted platform; so the hypervisor cannot modify the measures of

the topology information.

The CM provides a secure random-number generator, non-volatile tamper-resistant storage, cryptographic

functions for encryption, decryption and digital signature, and a hash function. The CM can measure the

trusted NTPM driver, check its integrity, and encrypt/decrypt and sign the measures collected by the com-

munication unit of NM. The communication channel between the communication unit of NM and the CM is

realized by a bus, which is tamper-resistant.

Figure 4.4: Network TPM Design

Measuring the Topology Infrastructure

Virtual Network v.s. Physical Network: The Cloud provider can virtualize the networks for the cloud

users. Different VMs can be launched on the same server and connected with each other through a virtual

network. Each VM has its own virtual network card and MAC address to connect with virtual routers. The

links between the VMs can be virtual, too. The user who controls the VMs does not perceive a difference

between the virtualized network and a physical network, because the network interfaces are the same in both

cases. When calling the topology-discovery algorithms, such as the Link-Layer Discovery Protocol (LLDP),

the cloud user can only measure the link-layer network topology after the virtualization process. The links

discovered by LLDP can be either virtual or physical, depending on the implementation details of the cloud

provider, which are often not revealed to the cloud users.

For instance, in Figure 4.5, user 1 controls VMs 1 through 4. The cloud provider initiates the VMs in

two servers. VM1 and VM2 communicate with each other through a virtual network that is established on

server 1. The links connecting VM1 and VM2 are virtual, which leverages the software/hardware of server 1.

The links between the two servers are physical. If user 1 only needs to coordinate VM1 and VM2, she only

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 63

needs the virtual network. However, if she needs to coordinate VM1 and VM3, she needs to go through the

physical links as well as the virtual links.

In order to provide concrete and precise measures of the cloud user topology infrastructure, the NTPMs

should be able to measure both virtual network topology and physical network topology. Additionally, the

NTPMs should be able to evaluate the virtual and physical network topology and attribute the virtual network

topology to the physical network topology so that the cloud users can better understand the performance and

risks of their cloud services.

Figure 4.5: Virtual and Physical Networks

Overview of the Topology Measurement Protocol: When a cloud user starts to verify the properties of

the topology infrastructure, she first measures the virtual network assigned by the cloud provider to determine

the virtual links between the nodes in the link layer. The virtual network is the collection of all the data layer

links and nodes that constitute of the cloud user topology infrastructure. The virtual network topology is then

passed to the NTPMs, which measure the physical topology, isolate the virtual networks from the physical

networks, and attribute the virtual network to the physical network. The virtual network, the physical network,

and the attribution relationship from virtual to physical network are stored in the NTPMs and used as the

inputs to the property-based attestation of topology infrastructure.

Measuring the Virtual Network: The cloud user can use known link-layer topology discovery proto-

cols, such as LLDP, to measure the virtual topology and discover the links and nodes along the paths between

the VMs she controls and from the VMs to the internet. She can also request the virtual topology information

from a database, such as the management information database (MIB). The design of the NTPM is inde-

pendent of the link-layer topology discovery protocols. After obtaining the virtual topology, the cloud user

passes the virtual network information to the NTPMs on the servers running the VMs by passing either an

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 64

adjacency matrix or the queries of the MIB. We assume that the link-layer topology discovery protocols are

accurate and tamper-resistant, i.e., that the cloud provider cannot tamper with them.

Measuring the Physical Network: Because the computational power of the hardware is limited, it is

hard to implement most of the topology-discovery protocols directly in NTPMs; trusted modules often rely

heavily on the computational power of software. A simple but effective protocol is demanded, and thus we

proceed as follows. The NTPMs choose one NTPM as the master NTPM. The master NTPM communicates

with other NTPMs involved in the cloud user infrastructure and collects the physical topology information. It

is preferable that the master NTPM be the NTPM in one of the servers that runs one of the VMs of the cloud

user, but it can also be selected by an optimization protocol according to the workload of each NTPM and the

remaining attestation tasks. In our system, we randomly select a master NTPM from the NTPMs and leave

more sophisticated methods as future work.

We design a top-down mechanism for the NTPMs to measure the physical topology. First, the master

NTPM examines the virtual topology and verifies whether there are any nodes that use one of the NTPMs as

network cards. If not, we call the virtual network a pure virtual network, i.e., one in which all the nodes and

links are virtual as there are not any nodes with physical network cards. In this case, the physical topology

consists of the servers that run and support the virtual network. If the virtual network is not a pure virtual

network, then the master NTPM identifies all the nodes that are physical and all the links that connect to

the physical nodes in the virtual network. The master NTPM then executes a Physical Topology Discovery

Protocol (PTDP) to measure the physical topology that connects the NTPMs involved in the cloud user

infrastructure.

The design of the PTDP is as follows. First, the master NTPM establishes connections with all the other

NTPMs in the virtual network and sends them an initial signal to start the topology discovery process. Then

each NTPM sends the acknowledgement to the master NTPM and waits for the signals from other NTPMs.

Then the master NTPM initiates a breadth-first traversal to reach all the NTPMs involved. At each round of

the traversal, one NTPM is called the “current NTPM”; the first current NTPM is the master NTPM. There are

three phases in each round. First is the probing phase, in which the current NTPM sends a probing packet to

each of the involved NTPMs. Another NTPM sends an acknowledgement back to the current NTPM only if it

is the neighbor of the current NTPM, which is determined by verifying whether the destination MAC address

in the packet equals its own MAC address. In the probing phase, the NTPMs never forward the packets for

other NTPMs; so, after the probing phase, the current NTPM knows its neighbors. Second is the reporting

phase, in which the current NTPM sends the list of its neighbors to the master NTPM, and the master NTPM

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 65

Algorithm 4: Physical Topology Discovery Protocol
Input: Virtual topology of the user infrastructure V T P = {EV T P,VV T P}, available set of NTPMs N
Output: Physical topology of the user infrastructure PT P

1 Set of Involved NTPMs of the user infrastructure SubNT PMs =VV T P∩N;
2 master NTPM m = generateMasterNT PM(SubNT PMs);
3 current NTPM cur = m;
4 visited NTPMs Visited = /0;
5 Edges of PTP EPT P = /0;
6 while Visited 6= SubNT PMs do
7 Edgecur = /0;
8 foreach v ∈ SubNT PMs and v 6= cur and v /∈Visited do
9 cur.sendSignalTo(v, probing);

10 if cur.receiveACK(v) then
11 cur.neighbor.add(v);
12 Edgecur.add(cur,v);

13 if cur.sendSignalTo(m, reporting, list(neighbors)) then
14 EPT P = EPT P∪Edgecur;
15 Visited.add(v);

16 nextCur = cur.generateNextCur(list(neighbors));
17 while not cur.sendSignalTo(m, selecting, nextCur do
18 m.sendNaN(v, selecting);
19 nextCur = cur.generateNextCur(list(neighbors));

20 cur = nextCur;

21 return PT P = {EPT P,SubNT PMs};

marks the current NTPM as a visited node. In the third or “selecting” phase, the current NTPM randomly

selects a neighbor as the current NTPM for the next round and reports it to the master NTPM. The master

NTPM checks that the new current NTPM has not been visited already; if it has, then the master requests

another selecting phase. In the reporting and selecting phases, all the NTPMs help to forward the packets to

other NTPMs. After the selecting phase, another round starts, and things proceed in this fashion until all the

NTPMs are visited (i.e., become “current” once).

The communication between the NTMPs is done through the PTDP Data Unit (PTDPDU) and proceeds

as follows. There are three fields for each PTDPDU. First is the source address field, which records the MAC

address of the source node, virtual or physical. Second is the destination field, which is the MAC address of

the destination node. Third is the data type field, which is used to record the data type of the PTDPDU and

the state of the breadth-first traversal. The data units are signed by the NTPMs on the nodes along the path to

guarantee integrity.

Attribution to the Physical Network: After the physical network is obtained, the master NTPM com-

pares the virtual network and the physical network to obtain the topology infrastructure of the cloud user.

Basically, the attribution process finds the clusters of the virtual network that are supported by the physical

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 66

Figure 4.6: Physical Topology Discovery Protocol Data Unit

nodes and links. If the clusters of the virtual network connect to the other parts of the virtual network through

only physical nodes and links, we attribute the virtual cluster to the physical cluster. Some properties, such

as bandwidth, are more relevant to the virtual clusters, while other properties, such as reliability and failure

probability, are more relevant to the physical clusters. Others are determined by both.

There are two different scenarios for topology attribution from virtual network to physical network. For a

pure virtual network, the entire virtual network should be attributed to the physical server that supports it. The

performance and the reliability of the virtual network are highly related to the performance and reliability of

the underlying server. For a hybrid virtual network, the attribution should be determined by the connectivity

and virtualization of the virtual network.

In order to describe the attribution process, we use a special link called the attribution link, i.e., a link that

connects a VM and a NTPM that resides on the server that supports the VM. The attribution link is not a real

network link but rather a link that indicates the attribution relationship between the VMs and the server that

supports the VMs. The attribution links can have properties, such as failure probabilities and can be treated

as normal (virtual/physical) links when computing the properties of the topology infrastructure.

The attribution links describe the relationship between the virtual network and the physical network.

The properties of the attribution link are determined by the virtualization and configuration of the cloud

provider. We use the virtual network, the physical network, and the attribution links to describe the topology

infrastructure of the cloud users and compute the properties of the topology infrastructure.

There are three kinds of properties of the attribution link: dominant properties, supportive properties,

and irrelevant properties. Dominant properties determine the properties of the virtual networks, because they

result directly from the properties of the underlying physical networks. For example, if a virtual network is

established on a single server, then the reliability properties of the underlying server and the virtualization

process determine the reliability properties of the virtual network. Supportive properties have to be combined

with the properties of both the virtual networks and physical networks. For example, the security properties

of the virtual networks involve the virtual machines, the virtualization process, and the physical servers. Ir-

relevant properties exclude the involvement of the attribution links. For example, the bandwidth of the virtual

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 67

network does not depend on the attribution links, because the virtualization process is not the bottleneck of

the transmission bandwidth.

Therefore, for different kinds of properties, we use different methods to assign properties to the attribution

links and compute the properties of the topology infrastructure. For dominant properties, we replace the

virtual networks with the attribution links, because the properties of the attribution links, combined with the

properties of the physical networks, can determine the dominant properties of the whole virtual networks.

We then use this new topology without virtual networks to compute the dominant properties of the topology

infrastructure. For supportive properties, we do not replace the virtual networks with the attribution links

but instead add the attribution links directly into the topology infrastructure that already contains the virtual

and physical networks. When computing the properties of the topology infrastructure, we treat the properties

of the attribution links in the same way that we treat the properties of the virtual and physical networks.

For irrelevant properties, we also directly add the attribution links to the topology infrastructure, but we just

ignore the properties of the attribution links when we compute the properties of the topology infrastructure.

The process of topology attribution is as follows. First the master NTMP compares the virtual networks

and the physical networks to identify the common parts, i.e., the physical nodes in the virtual networks. Then

the master NTMP identifies the virtual clusters that are isolated by the physical nodes in the virtual networks

and adds an attribution link from each virtual link to the physical node that isolates it. Finally, the master

NTMP classifies the rest of the connected VM clusters as different pure virtual networks, adds the physical

nodes that support the pure virtual networks into the topology, and adds the attribution links between each

VM and the server that supports it.

Topology Property Attestation

Overview: After obtaining the topology infrastructure, the NTPMs, cloud provider, and cloud user execute

an attestation protocol so that the cloud provider can prove that the topology infrastructure provides the

properties required by the cloud user. The cloud user and cloud provider first need to reach an agreement on

which topology infrastructure provides what properties. A simple solution is to follow the trusted computing

literature to create a data structure in which each topology infrastructure is associated with the properties that

it provides and store the data structure in a trusted database. However, the topology infrastructure is far more

complicated than the system architecture; so this solution requires a lot of storage resources and cannot be

realized by hardware based NTPMs. We propose a more suitable solution in which an algorithm is specified

to check whether a cloud user topology infrastructure provides a set of properties. For instance, the cloud user

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 68

Algorithm 5: Topology Attribution Protocol
Input: Virtual topology of the user infrastructure V T P = {EV T P,VV T P}, Physical topology of the user

infrastructure PT P = {EPT P.VPT P}
Output: Topology of the user infrastructure with attribution links AT P

1 the set of physical nodes in virtual nodes PV = empty() ;
2 AT P.add(V T P∪PT P) foreach node eV T P ∈ EV T P do
3 foreach node ePT P ∈ EPT P do
4 if eV T P.NT PM == ePT P.NT PM then
5 PV.add(eV T P);

6 hybrid = empty();
7 foreach node e ∈ PV do
8 path.clear();
9 foreach node p ∈ e.neighbors() do

10 path = deepFirstSearch(p, hybrid);
11 if all nodes in path are virtual then
12 foreach node t ∈ path do
13 ATP.attribute(t, e);
14 hybrid.add(t);

15 foreach node e ∈ EV T P and !hybrid.contains(e) do
16 clusters = seachClusters(e);
17 foreach cluster ∈ clusters do
18 ePT P = seachPhysicalNode(cluster);
19 AT P.add(ePT P);
20 AT P.attribute(cluster,ePT P);

21 return AT P;

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 69

and cloud provider can specify an algorithm to determine whether there is a pure virtual network to verify

that whether the cloud user bears the correlated failure risk.

As mentioned before, we leverage a delegation model in which an offline trusted third party helps to spec-

ify the algorithm that determines whether a topology infrastructure provides a certain set of properties. Then

the trusted third party stays offline and does not involve itself in the attestation procedure. The trusted third

party allows the cloud users to avoid engagement in complex technical details that requires deep technology

knowledge. It could be eliminated if one wishes to use ring signatures such as in [CLMS08].

After reaching an agreement, the NTPMs can assist the cloud user to verify the properties. A simple

solution is to let the NTPMs to run the protocols, sign the verification results, and send them to the cloud

user. However, because the NTPMs’ computing power is limited, this solution is not practical. In our system,

the cloud provider affords the computation workloads for the NTPMs. The master NTPM signs and sends

the topology infrastructure as the inputs to the cloud provider. The cloud provider computes the verification

result and the proof and sends them to the cloud user. The following three requirements of the system need

to be satisfied: 1) The input of the topology infrastructure is correct, and the cloud provider cannot modify

it. 2) The computation of the verification result is correct in the sense that the cloud provider executes the

correct protocols and cannot switch to other protocols or provide wrong computation results. 3) The cloud

user should be able to verify the result without compromising the private cloud infrastructure information of

the cloud provider.

The first requirement is satisfied because of the tamper-resistant property of the NTPMs. For the second

and third requirements, we leverage verifiable computation [PHGR13,GGP10,TRMP12,SMBW12,SVP+12].

In particular, we design a system in which the master NTPM executes a verifiable computation protocol with

the cloud provider, and the cloud provider returns the verification results and a proof that the result was

computed with the correct inputs (topology infrastructure) and the correct function (the verification protocol).

The cloud user can verify the computation results and the proof on her own. The proof is zero-knowledge,

in the sense that the cloud user can only verify whether the topology infrastructure provides the required

properties, i.e., it cannot infer the specific topology infrastructure implemented by the cloud provider.

Attestation Protocol: Suppose the cloud user topology infrastructure obtained is CUT I, and the set of

properties required is p. There are three parties involved in the attestation protocol, i.e., the master NTPM,

the cloud provider and the cloud user. The three parties try to verify that A(CUT I, p) = 1, where A is the

algorithm certified by the trusted third party.

The master NTPM generates a verifiable computation (VC) key pair (EKA,V KA) by running a protocol

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 70

Figure 4.7: Property-based Attestation Protocol of Topology Infrastructure

(EKA,V KA)← GenKey(A,λ) which takes A(., .) and a security parameter λ as inputs. EKA is an evaluation

key that is sent to the cloud provider, and V KA is a verification key that is sent to the cloud user. To guarantee

the integrity of the key pair, the master NTPM signs the key pair with her private key, sk before sending the

individual keys to the cloud provider and user. Suppose the signing protocol of the master NTPM is signsk,

the cloud provider receives {EKA, signsk(EKA)}, and the cloud user receives {V KA,signsk(V KA)}. The cloud

user and provider can use pk, the public key of the master NTPM, and the verification protocol of the master

NTPM veri f ypk to verify the integrity of the VC key pair.

After obtaining the evaluation key of the VC key pair, the cloud provider executes a verifiable computation

protocol to obtain the result of v= A(CUT I, p) and the proof πv that proves the correctness of v, i.e., (v,πv)←

Compute(EKA, p). The CUT I is sent from the master NTPM, and the set of properties that needs to be

verified is sent from the cloud user. In order to preserve the privacy of the cloud provider, the cloud provider

implements a randomization method such as in [PHGR13] to add randomness in the proof, so that the cloud

user cannot learn CUT I through the verification process.

Then, the result pair v,πv is sent back to the cloud user. The cloud provider is accountable for any

mistakes or manipulations that occur during the VC protocol. The cloud user can determine whether v is

correct or not by running a VC-verification protocol Veri f y(V KA,v,πv,p); the protocol returns “pass” or

“fail” to indicate whether or not the proof is valid, and it also assigns a numerical value to the variable v. We

use a VC-verification protocol that has a strong correctness property: When the computation is correct, the

proof is always valid. Therefore, if the verification fails, the cloud user knows that there were mistakes or

manipulations on the part of the cloud provider; the user can reject the verification result and request another

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 71

attestation process. If the verification passes and v = 1, then the cloud user knows that CUT I supports p. If

the verification passes but v 6= 1, then the cloud user knows that CUT I does not support p.

4.5 Implementation

4.5.1 Prototype of Topology Infrastructure Attestation

We use ComplexNetworkSim [Com] and Pinocchio [PHGR13] to implement a prototype of our topology

infrastructure attestation framework and evaluate the prototype by simulation. ComplexNetworkSim is a

simulation tool written in Python and used to model and simulate network related problems. ComplexNet-

workSim leverages the Python graph package NetworkX [net] to represent complex network information and

implements SimPy [Sim], an object-oriented, process-based discrete-event simulation language for Python.

ComplexNetworkSim can generate NetworkAgents, which can interact with their neighbors according to a

network topology specified as a NetworkX graph object. The NetworkAgents can define different behav-

iors and protocols and run a clean but sophisticated discrete event simulation. ComplexNetworkSim enables

us to implement our topology measurement and infrastructure attestation protocols without involving too

many network communication details, thereby providing clean and meaningful simulation results. Pinocchio

is a system that provides fast, zero-knowledge, verifiable computation; it was implemented by Microsoft

Research.

Our implementation is illustrated as Figure 4.8. Each node in the cloud infrastructure is installed with

a NetworkAgent, consisting of two components: NTPM and Network Trusted Software Stack (NTSS). The

NTSS is the trusted software that interacts with NTPM to read and write the secure registers and commu-

nicate with the untrusted platform controlled by the cloud provider. The communication channel between

the NTMPs in different NetworkAgents is modeled as the resource object of ComplexNetworkSim, which is

secure and reliable. The untrusted platform of the cloud provider consists of a Verifiable Computation Unit

(VC Unit) and a Communication Unit (Comm. Unit). Pinocchio is installed on the VC Unit of the cloud

provider, and the VC Unit communicates with the NTSS of the NetworkAgent through the Comm. Unit.

In our system, we simulate the NTPM with software, i.e., there is a trusted and tamper-resistent software

module with cryptographic functions and limited secure storage. The cryptographic functions are realized by

the python cryptographic library PyCrypto [PyC].

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 72

Figure 4.8: Prototype of Topology Infrastructure

4.5.2 Case Study

We illustrate the prototype and simulation with a simple case study. Suppose there is a cloud provider, denoted

by CS, and a cloud user, denoted by CU. CU wants to deploy a cloud service on CS. CU requires the following

set of properties, denoted by p = p1, p2; the failure probability of the service, denoted p1, is less than 0.01, and

the communication bandwidth between the servers controlled by CU, denoted p2, is at least 1Gbps. There is

a trusted third party that determines a reasonable solution to calculate the properties from a given cloud user

topology infrastructure. Suppose the trusted third party specifies that the algorithm to calculate the failure

probability of the service, denoted A1, will be the failure sampling algorithm in PSRA [XFF13]. The trusted

third party determines a heuristic algorithm, denoted A2, to calculate the bandwidth between the servers by

checking whether the total number of routers and aggregate routers in the cloud user infrastructure is at least

4. Then CU and CS agree on the algorithms of the trusted third party, and the trusted third party combines

the two algorithms into a single algorithm A = A1∪A2. After signing and passing algorithm A to CU and CS,

the trusted third party stays offline, not involving itself further in the attestation process.

After obtaining the node list of the cloud user infrastructure and verifying the System Architecture with

DAA or PBA, the NTPMs select randomly a master NTPM to initiate and execute the topology measurement

protocols with the assistance of NTSS. The master NTPM coordinates with the cloud platform to obtain the

virtual topology information and communicates with other NTPMs to obtain the physical topology informa-

tion. Then the master NTPM executes the Topology Attribution Protocol to compute the attribution between

physical and virtual topology. In the next step, the master NTPM executes a Verifiable Computation protocol

with the untrusted platform controlled by the cloud provider, by generating the evaluation key and verifica-

tion key, signing them, and sending them to CS and CU, respectively. After receiving the verification key,

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 73

the VC Unit in the untrusted platform computes the result v and the proof π and returns the result and proof

to CU. CU can verify the result and the proof to learn whether the topology infrastructure satisfies the set of

properties p.

Consider the following three cases of topology infrastructure. Suppose the failure probability of the

servers is 0.01, and the failure probability of other nodes in the cloud user infrastructure is negligible. The

topology infrastructure is as in Figure 4.9, where two VMs are launched on the same server; the relationship

is indicated by the attribute link. Therefore, as long as server 1 fails, the cloud service fails. Because the

failure probability of the server 1 is equal to 0.01, p1 is not satisfied. If the topology infrastructure is as in

Figure 4.10, in which the two VMs are launched on two different servers, but the two servers are connected

only by one aggregate router and one router, then p2 fails to be satisfied. Figure 4.11 satisfies both p1 and

p2. On the one hand, the two VMs are launched on two different servers; therefore, the failure probability of

the server is less than the failure probability of each server, which is 0.01. On the other hand, the number of

routers reaches the threshold 4; therefore, p2 is also satisfied.

If the attestation process does not have any mistakes, CU should be able to verify that the proof is valid.

If the proof is valid, and the result v = 1, then CU is assured that the topology infrastructure provides the

set of properties p. If the proof is valid, but the result v = 0, then CU can be sure that p is not satisfied.

Recall that the VC protocol we use has a strong correctness property: When the computation is correct, the

proof is always valid. Therefore, if the proof is not valid, CU knows that something went wrong during the

attestation process, and it can reject the proof and request another attestation; the mishap during attestation

might have been a manipulation on the part of the cloud provider or, with negligible probability, some sort of

communication error.

Figure 4.9: Example 1 of Topology Infrastructure

The simulation result for this case study is efficient. The running time of the three cases are 15, 11, and

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 74

Figure 4.10: Example 2 of Topology Infrastructure

Figure 4.11: Example 3 of Topology Infrastructure

15 seconds, respectively, with the failure sampling algorithm in PSRA as A1 and the simple loop counting

algorithm as A2. The memory usage of the NTPM is less than 1kb, and the memory usage of NTSS is less

than 5kb. The simulation was done on a laptop equipped with a 2.5GHz 2-core Intel i5 CPU and 2.00GB of

memory.

4.5.3 Large Scale Simulation

We evaluated our prototype through large scale simulation. We tested five cases summarized in table 4.1. Our

cloud infrastructure data is based on the widely accepted three-stage, fat-tree cloud model [Lei85], scaled up

to what we expect to find in a real cloud structure. The cloud user topology infrastructures were randomly

selected subgraphs of the cloud infrastructure. The size of the cloud user topology infrastructure was also

randomly generated, from one router, one aggregate router, one TOR, one server to hundreds of routers,

aggregate routers, TORs and servers. In simulations, we generated cloud topology infrastructures as complete

infrastructures, containing at least one router, one aggregate router, one TOR and one server, so the cloud user

could establish a valid cloud service on them.

We first evaluated our topology measurement protocols, protocol 4 and protocol 5. We leveraged Com-

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 75

plexNetworkSim to establish a TCP/IP channel between each two NTPMs. We set the parameters of the

simulation very conservatively. The bandwidth of the channel was only 500kb/s. The cpu frequency support-

ing the NTSS was set at 1.5GHz, and the data streaming capacity between the NTSS and NTPM was 1kb/s.

We argue that the real network channel capacity, hardware processing power, and software processing power

are much larger than these settings in real cases. The running times of the two protocols are illustrated in fig-

ure 4.12. The PTDP represents the Physical Topology Discovery Protocol, and TAP represents the Topology

Attribution Protocol.

Table 4.1: Simulation Cases of Cloud User Topology Infrastructure

Configuration Case 1 Case 2 Case 3 Case 4 Case 5

of switch ports 4 8 16 24 48
of core routers 8 16 32 156 96
of agg switches 16 32 128 288 1152
of ToR switches 24 64 512 1024 2484
of servers 32 128 1024 4812 13824
Total # of components 84 248 1712 6304 17604

From Figure 4.12, we observe that the performance of the topology measurement protocols is in general

practical for offline services in the large-scale settings. For personal cloud users, such as case 1 and 2, the

topology measurement can be finished within 10 seconds. For enterprise cloud users, such as case 3 to 5,

the cloud user infrastructure that consists of hundreds of or even thousands of machines can be measured

in 12 minutes to 20 hours. The running time grows polynomially (but superlinearly) with the size of the

infrastructure; in a larger infrastructure, the NTPMs need to communicate with more neighbors to measure

the connectivity. The majority of the time was spent on PTDP, which takes around 80% to 90% of total time.

Because our simulation settings were very conservative, the performance of a real implementation for a cloud

platform might be much more better.

We also evaluated the attestation protocol of the cloud user topology infrastructure for the five cases. The

machine that ran the untrusted platform with VC unit and Comm. unit was a laptop with 2.5GHz 2-core Intel

i5 CPU and 2.00GB of memory. The set of properties attested to was that the probability that no server is

accessible by the cloud user was less than a threshold, and the algorithm that the cloud user and provider agree

on was the Failure Sampling Algorithm in PSRA [XFF13]. The running time is illustrated in figure 4.13, and

the memory usages of the NTPM, the NTSS and the untrusted platform are illustrated in figure 4.14.

In Figure 4.13, we observe that the running time of the attestation for the large-scale cloud settings

are practical as an offline service, ranging from 40 seconds to less than 30 hours, with increment of the

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 76

Figure 4.12: Running Time of Topology Measurement Protocols

Figure 4.13: Running Time of Topology Attestation Protocols

topology infrastructure size. The VC cpt, VC verify, Key Gen and Comm represent the computation time of

the verifiable computation, verification time of the verifiable computation, the key generation time, and the

communication overhead, respectively. We can observe that the VC cpt absorbs the majority of the time and

grows faster with the size of the cloud user topology infrastructure than other running times.

Figure 4.14 demonstrates that our design effectively transfers the majority of the memory burden to the

untrusted platform, thereby reducing the memory usages of the NTPM and NTSS. According to the figure,

the NTPM’s memory usages were less than 10% of the memory usage of the untrusted platform, and the

NTTS’s were less than one third of the memory usage of the untrusted platform. With the increment of the

size of the cloud user infrastructure, the percentages of memory usage of the NTPM and the NTSS decreases

compared to untrusted platforms, which would be beneficial to the hardware based design of NTPM and

NTSS in real cloud platforms.

CHAPTER 4. CLOUD USER INFRASTRUCTURE ATTESTATION 77

Figure 4.14: Memory Usage Comparison of Topology Attestation Protocols

Chapter 5

On Virtual-Machine Reallocation in
Cloud-scale Data Centers

5.1 Introduction

When an unexpected and sudden event occurs, such as a security break-in, computation and data located

on the host or hosts that are affected has to be secured. While much of the data is replicated and stored

in encrypted form, there is still ongoing computation on the hosts that is not yet backed up or replicated.

Moreover, there is plaintext code and data in the memories (DRAM) of the hosts. Ideally, this computation

and data must be moved promptly (and local hosts resources scrubbed) to ensure confidentiality, integrity,

and availability.

Such prompt movement of computation and data can be achieved through virtual-machine (VM) migra-

tion. Many techniques and optimizations have been presented that deal with movement of VMs; see, for ex-

ample, [CFH+05,NLH05,HG09,DWG11,WSVY07]. Moreover, efficient networking and various resiliency

features, such as data replication, can speed up the migration process. All of this earlier work focuses on how

to perform movement of code and data from one server to another. It does not, however, consider how to select

which servers the VMs should be transferred to or what the minimal cost, i.e. migration time, to migrate these

VMs is. We believe that the VM-reallocation problem is at least as important as the VM-migration problem

itself, especially in the “sudden and unexpected event scenario. An efficient VM-migration mechanism is of

little use if suitable servers with available resources cannot be found efficiently.

We formally define the virtual-machine reallocation problem (VMRAP) as an optimization task. The in-

put is the topology of the data-center network, the resources available in each server, and the data-transmission

rates of all channels in the network. The optimal solution is a decision vector that indicates to which server

78

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 79

each VM in danger should be migrated. We show that the VMRAP is NP-hard; an optimal solution cannot

be found efficiently, given the size of today’s cloud data centers.

Consequently, we propose a two-layer heuristic scheme to solve the VMRAP efficiently. We group secure

servers1 into secure resource pools, calculate the decision vector based on secure resource pools first, and

compute the final decision vectors within each secure resource pool. We evaluate our scheme using large

data sets generated randomly using the fat-tree model [Lei85] of cloud data-center networks. We compare

the results obtained using our scheme to optimal solutions (computed by a slow algorithm that could not be

used in an emergency) and to those obtained by a naı̈ve randomized scheme. The comparison shows that the

accuracy of the two-layer scheme is high; it effectively overcomes the drawbacks of the naı̈ve randomized

scheme.

5.1.1 VM Allocation vs. Reallocation

VM-allocation problems have received a lot of attention recently [MPZ10,BB10,JLH+12,SZL+11,MSY12,

AL12]. The VMRAP differs in at least two respects from most of the VM-allocation problems that have been

studied. First, we consider the VM target-selection problem after the occurrence of unexpected events, while

VM placement is done during normal operation of cloud-computing systems. We need to react quickly and

calculate the VM reallocation in a very short time before the unexpected event has negative consequences.

Second, we consider how to reallocate the VMs from servers in danger to secure servers, instead of launching

new VMs and placing them onto available servers. We claim that the reallocation problem is more difficult

for at least two reasons. One is that, after the occurrence of unexpected events, the resources of secure

servers may be scarce, and reallocation cannot be allowed to affect the normal operations of other secure

VMs on secure servers. A second reason is that the number of VMs in the reallocation pipeline is more

volatile than VMs in the VM allocation pipeline, because the unexpected events could cause a large number

of VMs in several servers or even several racks to be in danger; they all have to be reallocated quickly and

simultaneously.

5.1.2 Random Selection and Hot Spares

The VMRAP could be approached through a naı̈ve random-selection scheme in which VMs are reallocated

to randomly selected secure servers. This solution has the major drawbacks of unpredictability and of lack of

optimality. Randomly selecting servers to which VMs should be migrated means that a server already fully

1We use term “secure servers” to denote servers that are not in danger in an emergency situation. The emergency may be equipment
failure, physical security breach, etc., depending on the types of threats that the users are worried about.

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 80

occupied could be selected, and random selection would potentially have to be done many times before a

target can be found. This is especially time-consuming when servers are running at a high utilization rate.

Another alternative is to use hot spares or other under-utilized servers that are kept as backup for emer-

gencies. However, there are two drawbacks of this approach. First, many sudden and unexpected events,

such as physical break-ins and attacks, affect both the servers and their hot spares, because the hot spares are

often deployed within close range of the servers. Therefore, the hot spares cannot be considered reliable and

secure migration targets in these situations. Second, the cost of keeping unutilized servers around may be

very high. Even if that is not a concern, such servers are likely to be idle or powered down to save energy.

Selecting such a server may be quick, because it is known a priori which server is the hot spare that will have

available resources, but the overall migration will not be quick because of the lag time to bring the server

back up before VM migration can occur.

5.2 Cloud-scale Data Centers

We explore the migration-target selection problem for cloud-scale data centers. A typical logical data center

architecture is shown in Figure 5.1; it is based on the latest (fall 2013) OpenStack architecture. Within

an OpenStack system, our work would enhance the scheduler component (nova-scheduler) and the data-

orchestration component (nova-conductor); it would use the nova database. Optionally, a new nova-guard

component could be introduced.

The nova-scheduler is responsible for the scheduling of VMs on different compute nodes (or servers we

use the terms interchangeably). The compute nodes, via the nova-conductor, report their status to the nova

database. This includes the total resources of the compute node as well as the currently available resources.

Today, the scheduler receives commands from the Dashboard (via the nova-api and the Queue). These

commands come from the administrator, who may instruct the scheduler to allocate a new VM, terminate an

existing VM, etc. However, there is currently no autonomous mechanism for reallocation of VMs. Realloca-

tion is done manually by the administrators via the Dashboard or the command line.

To enable the reallocation of resources after a sudden and unexpected event, the nova-scheduler has to

be enhanced with an algorithm that calculates where (and how fast) VMS can be reallocated. The triggers

for reallocation can be obtained from status updates of the servers and read from the database. In particular,

a compute node (via nova-conductor) may update status about some internal event. Also, the new nova-

guard component may update some information about security events in the data center (e.g., breaches by

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 81

Figure 5.1: Logical architecture of a data center, modeled after OpenStack “Grizzly” logical architecture
[Gri]. The highlighted elements would be modified to integrate our reallocation code into OpenStack. The
modified parts fall into one of the seven core components; nova-guard is a new, optional part that we propose.
The blue dashed boxes logically group parts of each of the seven core components. The solid lines represent
API calls from outside of the core components; they are routed on the public network. The dashed lines
represent API calls between the core components; they are routed on the management network.

unauthorized parties). These events are logged as new status of the nodes and can be read from the database

by the nova-scheduler. Given the current information about the hosts and resources, our work focuses on

answering where to the migration should happen after an unexpected event; this would be a new part of the

scheduler. We show that this is a computationally difficult problem that cannot be solved efficiently using

standard optimization techniques because of the considerable input size.

Our work assumes a data center with a networking topology similar to one shown in Figure 5.2; it is based

on current, standard design principles [AF12]. The network is organized as a fat tree in which the leaves are

the server racks (and the top-of-rack switch at each rack). Within server racks, there are highly interconnected

servers. The racks in turn are connected together through a series of aggregation switches and aggregation

routers. There are also core routers that connect the data center to the internet. In Section 5.4.4, we leverage

the fat-tree model to help design our efficient, heuristic algorithm for the migration-target allocation problem.

Our work is focused on intra-data-center networking - the resources will be reallocated within the data

center when the unexpected or sudden event occurs. Within the data center, we assume 1Gbps VM-migration

bandwidth between servers in a rack and 0.1Gbps VM-migration bandwidth between racks. We use 125,000

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 82

Figure 5.2: Typical data center network, modeled after [GHJ+09].

bytes/s as the real transmission rate, because there may be other traffic flows in the data center network.

These are very conservative assumptions. Our algorithm can easily be updated with different values for

bandwidths among servers and among server racks. Recent PortLand [NMPF+09] and VL2 [GHJ+09] work

presents quite fast network designs that may facilitate much faster migration times. Our focus, however, is

on the migration-target selection problem. Interestingly, even with these very conservative assumptions, the

calculated migration time for a small number of in-danger servers is less than the time needed to select which

hosts the computation and data should be moved to.

5.3 The VM-Reallocation Problem

When a threat is detected (imminent hardware failure, physical security breach, etc.), a reallocation algorithm

has to calculate on-the-fly where to move VMs. There is a set of servers that are in danger and a (much larger)

set of servers not in danger. The not-in-danger servers, however, are themselves occupied with VMs; so the

VMs on the in-danger servers cannot just be moved to other servers arbitrarily. Given the resources taken

up by the VMs in danger, the algorithm has to find enough not-in-danger servers with sufficient available

resources. VMs from the same in-danger servers may be migrated to different not-in-danger servers.

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 83

5.3.1 Threat Model

We assume that resources in a data center are protected by number of standard measures. Encryption of

persistent storage protects data at rest. Replication of storage ensures availability. Moreover, we assume that

servers contain code and local data but that most of the data are stored on network-attached-storage servers.

The management infrastructure is trusted, and in particular we rely on correct and secure implementation of

the scheduler and VM-migration algorithms. We expect the management infrastructure to be able to detect

an imminent threat and trigger our algorithm.

Protections have to be triggered by all imminent threats, because, at any time, there are code and data

executing in VMs that have not yet been backed up or replicated. Furthermore, today’s server architectures

do not use hardware encryption of DRAM, and there are plaintext data and code in memory. As a result,

when there is an unexpected or sudden event, the VM has to be quickly relocated to a different host. This

involves moving the contents of the memory (DRAM) and scrubbing the source host once all code and data

have been moved to a target host.

5.3.2 Threat Examples

Data-center operators today are well prepared for a number of events that may interrupt operation. There are,

however, cases of unexpected events or ones that can not be predicted. We list some examples here of events

that require on-the-fly reallocation of resources.

Equipment failure is one of the examples. Much of todays hardware includes many mechanisms, such

as the SMART (Self-Monitoring, Analysis and Reporting Technology) failure-prediction system currently

available in many disk-drives [Sma]. These mechanisms warn of a potential upcoming failure. If there are

servers that do not have redundant drives, or if immediate hot swapping of physical drives is not possible, the

ongoing computation and data have to be migrated from the server. This can be done remotely, but it currently

requires the involvement of an administrator. With our proposed algorithm for reallocation of VMs, once an

event is detected, the reallocation is calculated automatically and can be executed without involvement of an

administrator. This can reduce costs by reducing human involvement. Also, physical maintenance can be

delayed (e.g., until the next business day), which reduces the size of the on-site staff.

Reliability for virtual appliances is another example. While large companies such as Google may design

their cloud applications to be resilient and to tolerate failure of individual nodes, there are many casual

customers who use “off-the-shelf” virtual appliances that are stand-alone VMs. When a data center is running

some portion of VMs that do not have built-in resiliency, there is no other option but to migrate the VMs to

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 84

avoid loss of data and computation when an unexpected event occurs.

Security events are yet a different example. A hypervisor may detect, through techniques such as VM

introspection [GR+03], that one of the VMs poses a security threat. One possible action in such a situation is

to move other VMs away. While strong isolation should keep the virtual machines separate, it cannot prevent

a malicious party that controls a VM from performing a side-channel attack [ZJRR12]. Thus, in situations

when a suspicious VM cannot be terminated immediately, strong isolation may not be able to protect the

other VMs, and the best option is to migrate other VMs to a safe system.

Recent work has shown that physical security breaches need to be detected and acted upon [SJCL12].

When an unauthorized individual enters a server room, opens a server rack, etc., the computation on the

servers is in danger. Here, the choices are encrypt, delete data, or migrate VMs. Only migration of VMs

away from the affected servers (along with scrubbing the servers) will ensure confidentiality, integrity, and

availability. The proposed nova-guard can be used to supply information about physical security events that

will trigger reallocation.

5.3.3 Problem Formulation

In our model, the data center is divided into a set R of server racks. Suppose that there are NR racks, i.e.,

that |R| = NR. Each rack r ∈ R is occupied by a set Sr of servers. On each s ∈ Sr, there is a set Vs of VMs

running. Each s has a number of total capacities for a variety of resources: microprocessor2, cCap
s ; memory,

mCap
s ; and disk, dCap

s . Each virtual machine v uses a number of resources: microprocessors, cv; memory, mv;

and disk, dv. For each server s, we denote the available resources of microprocessors, memory, and disk by

cava
s , mava

s and dava
s , respectively. Consequently, we have cava

s = cCap
s −∑v∈Vs cv, mava

s = mCap
s −∑v∈Vs mv and

dava
s = dCap

s −∑v∈Vs dv

We consider the situation in which an unexpected event occurs. Suppose that there is a set SD of servers

that are in danger after the unexpected event; we need to move the VMs running on these servers to the

set of secure servers, denoted by SS. For each VM v running on one of the in-danger servers sD ∈ SD and

any not-in-danger (i.e., secure) server s ∈ SS, we define an indicator variable Iv
sD,s ∈ {0,1} that captures the

migration decision of v with respect to s. When Iv
sD,s = 1, VM v is moved from sD to s. If Iv

sD,s = 0, VM v is

not moved to s. We denote by tv
sD,s the migration time of VM v running on an in-danger server in sD to secure

server s ∈ SS as the total time needed to move the memory and disk storage of v to s. This migration time is

tv
sD,s =

(mv+dv)Iv
sD,s

BWsD,s
, where BWsD,s is the bandwidth of the data-center network from server sD to server s. In

2Because microprocessors used to be called “central processing units, we use the variable name c.

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 85

real data-center networks, the bandwidth may vary. However, because in VMRAP the reaction time for VM

migration is very short, we assume that the bandwidth is constant during that time. We leave consideration

of variable bandwidth to future work.

To solve VMRAP, we wish to compute the value of the indicator variables Iv
sD,s for each VM v running on

an in-danger server to minimize the total migration time of the VMs.

min
Iv
sD,s

∑
sD∈SD

∑
v∈VsD

∑
s∈SS

tv
sD,s (5.1)

s.t. for any sD ∈ SD and any v ∈VsD :

∑
s∈SS

Iv
sD,s = 1 (5.2)

for any s ∈ SS, any sD ∈ SD, and any v ∈VsD :

Iv
sD,s ∈ {0,1} (5.3)

for any s ∈ SS:
∑

sD∈SD

∑
v∈VsD

mvIv
sD,s ≤ mava

s (5.4)

for any s ∈ SS:
∑

sD∈SD

∑
v∈VsD

cvIv
sD,s ≤ cava

s (5.5)

for any s ∈ SS:
∑

sD∈SD

∑
v∈VsD

dvIv
sD,s ≤ dava

s (5.6)

5.3.4 Computational Complexity

The VMRAP can be represented as a binary-programming problem [NW88], the decision version of which

was one of the Karp’s 21 NP-complete problems [Kar72]. (“Binary programming is also known as “0-

1 integer programming.) Moreover, any instance of binary programming can be interpreted as a VMRAP

instance; so VMRAP is NP-hard (or, if formulated as a decision problem rather than an optimization problem,

NP-complete). If the constraint matrix has the total unimodularity property [NW88], one can relax the binary

program to a normal linear program and compute an optimal solution efficiently. Otherwise, the algorithms

that solve this problem exactly, including those based on cutting-plane methods [Kel60], are not efficient. In

our case, the constraint matrix is derived from the complicated structure of the data-center network and is not

typically unimodular.

We used linear-programming and binary-programming algorithms to solve large VMRAP instances with

commercial and open-source optimization tools [CVX, Gur]. We first implemented a binary-programming

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 86

solver using CVXOPT [CVX] and the GNU Linear-Programming Kit (GLPK) [GLP] to solve those in in-

stances in a centralized manner. The algorithm is implemented in Python version 2.7.5 and CVXOPT version

1.1.5. We ran it on a workstation equipped with a 6-core 2.4GHz Intel Xeon 2.4GHz CPU and 32GB mem-

ory. We generated a data-center network topology using the fat-tree model, setting the network bandwidth as

1Gbps within racks and 0.1Gbps between racks and generating servers with the configuration of Dell Pow-

erEdge R910 Rack Servers [Del] and VMs with resource requirements that are average for Amazon EC2

instances [Amab].

Table 5.1 shows the results of using CVXOPT and Table 5.2 the results of using Gurobi.

Table 5.1: Results of binary programming using CVXOPT

Realloc. Calc. Racks Serv. VM Vuln.
Calculation Moving / Rack / Serv. Serv.
Time (s) Time (s)
0.1 263 10 40 64 1
7 527 10 40 64 2
70 2636 10 40 64 10
1.5 263 50 40 64 1
3.1 527 50 40 64 2
30 2636 50 40 64 10
3 263 100 40 64 1
7 527 100 40 64 2
65 2636 100 40 64 10
36 263 500 40 64 1
73 527 500 40 64 2
587 2636 500 40 64 10
674 263 2500 40 64 1
1381 527 2500 40 64 2
>7200 n/a 2500 40 64 10

Table 5.2: Results of binary programming using Gurobi

Realloc. Calc. Racks Serv. VM Vuln.
Calculation Moving / Rack / Serv. Serv.
Time (s) Time (s)
1.7 263 10 40 64 1
3 527 10 40 64 2
15.4 2636 10 40 64 10
8.56 263 50 40 64 1
17.54 527 50 40 64 2
108 2636 50 40 64 10
20 263 100 40 64 1
42 527 100 40 64 2
290 2636 100 40 64 10
251 263 500 40 64 1
589 527 500 40 64 2
>7200 n/a 500 40 64 10
>7200 n/a 2500 40 64 1
>7200 n/a 2500 40 64 2
>7200 n/a 2500 40 64 10

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 87

From the tables, we see that neither academic nor commercial solvers can solve the type of binary-

programming instances we have in real time when we scale up the input size to realistic data-center sizes.

When we scale up the size of the inputs, the running time of the algorithm exceeds the migration time of the

VMs, reaching more than 2 hours.

Linear-programming relaxation is a natural and standard approach to explore in this context. The relaxed

linear-programming problem is polynomial-time solvable but cannot guarantee that a complete VM is sent

to one secure server. Instead, some portion of the VM may be sent to one server and other portions to other

servers. How to “split VMs and send them to different servers while making them run normally is another

interesting research problem that is beyond the scope of this work. Without splitting technology, the split

VMs are not available until they are merged back together; therefore, the relaxation to linear programming

may sacrifice the availability of VMs while improving the efficiency of VM reallocation.

To relax the binary-programming problem to a linear-programming problem, we relax constraint 5.3 to

continuous constraint 5.7:

0≤ Iv
sD,s ≤ 1 (5.7)

Table 5.3 shows results obtained with linear programming. The algorithm is implemented in Python

version 2.7.5 and CVXOPT version 1.1.5. The results using Gurobi are shown in Table 5.4.

Table 5.3: Results of linear programming using CVXOPT

Realloc. Calc. Racks Serv. VM Vuln.
Calculation Moving / Rack / Serv. Serv.
Time (s) Time (s)
0.1 263 10 40 64 1
7 527 10 40 64 2
71 2636 10 40 64 10
1.4 263 50 40 64 1
3 527 50 40 64 2
33 2636 50 40 64 10
2.5 263 100 40 64 1
6.5 527 100 40 64 2
66 2636 100 40 64 10
33 263 500 40 64 1
70 527 500 40 64 2
580 2636 500 40 64 10
660 263 2500 40 64 1
1344 527 2500 40 64 2
>7200 n/a 2500 40 64 10

As Tables 5.3 and 5.4 show, neither academic nor commercial solvers are fast enough for large problem

instances, even when we are willing to tolerate some loss of availability of VMs. When we scale to realistic

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 88

Table 5.4: Results of linear programming using Gurobi

Realloc. Calc. Racks Serv. VM Vuln.
Calculation Moving / Rack / Serv. Serv.
Time (s) Time (s)
1.5 263 10 40 64 1
3 527 10 40 64 2
15 2636 10 40 64 10
7.53 263 50 40 64 1
15.8 527 50 40 64 2
80 2636 50 40 64 10
16 263 100 40 64 1
33 527 100 40 64 2
163 2636 100 40 64 10
84 263 500 40 64 1
168 527 500 40 64 2
973 2636 500 40 64 10
464 263 2500 40 64 1
1375 527 2500 40 64 2
>7200 n/a 2500 40 64 10

data-center sizes, the running times grow to more than 2 hours, i.e., can be as bad the binary-programming

problem running time. Therefore, we need a new approach; one is presented in the next section.

5.4 An Efficient, Decomposed, Two-Layer Approach

To solve the VMRAP efficiently, we propose a decomposed, two-layer heuristic approach. Our scheme

leverages the special structure of current data-center networks, and experiments demonstrate that the heuristic

approach is both accurate and efficient.

5.4.1 Overview of the Two-Layer Approach

We decompose a very large optimization problem into a number of smaller sub-problems. We first partition

all the secure servers into a number of secure resource pools and partition all the in-danger VMs into a number

of in-danger pools. The available resource capacities of each secure resource pool are the summation of the

resource capacities of the individual servers in the pool, while the resources needed by each in-danger pool

are the summation of the resources needed by the individual VMs in the pool. We formulate a first-layer

optimization problem to split the in-danger pools and fit them into the secure resource pools with minimal

migration time, while satisfying the resource constraints of the secure resource pools. We define the migration

time of an in-danger pool as the total number of bytes that must be transferred to move the pool, divided by

the average bandwidth from the servers running the VMs in the in-danger pool to the servers in the secure

resource pools. An overview of the two-layer approach is given in Figure 5.3.

After the first-layer optimization, each secure resource pool gets assigned some of the resource requests

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 89

Figure 5.3: Overview of the two-layer approach

from the in-danger pools. In the second layer, each secure resource pool decides how to distribute the resource

requests from the in danger pools to its servers by solving a small-sized optimization problem to minimize the

total expected migration time. The secure resource pools can perform the optimization simultaneously, which

improves the efficiency of the global optimization problem. After all the secure resource pools complete the

optimization, the results are sent back to the servers in the in-danger pools, which can decide how to send the

VMs to the secure servers to which they were assigned.

Recall that, in the binary-programming and linear-programming problems, the number of variables is

proportional to the number of VMs in danger and the number of secure servers. In the two-layer approach,

the size of the optimization problem is proportional to the number of in-danger pools and secure resource

pools, which can be far smaller by design. In addition, the fact that the second-layer optimizations can be

executed in parallel further reduces the running time.

5.4.2 First-Layer Optimization Problem

Let G : SS → PS be a partition of secure servers, SS, into a set of secure resource pools, PS. Recall that, by

definition, a partition must be complete and mutually exclusive, which means that one secure server must

belong to one and only one pool in PS, i.e., SS = ∪p∈PS p and pi ∩ p j = ∅ for any pi, p j ∈ PS and pi 6= p j.

Therefore, there are no in-danger VMs that are sent to the same secure server twice, and no secure servers

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 90

are omitted as potential targets of the in-danger VMs. Let VD = {v : v ∈ s and s ∈ SD} be the set of VMs in

danger. Let F : VD→ PD be a partition of VD, the in-danger VMs, into a set of in-danger pools, PD.

The optimization problem of layer 1 can be formulated as follows. The algorithm minimizes the total

migration time of the in-danger pools with respect to the resource constraints of each secure resource pool.

Let Ipd
ps be a variable in the minimization problem for in-danger pool pD ∈ PD and secure resource pool

pS ∈ PS; this means that in-danger pool pD sends percentage of IpD
pS to secure resource pool pS. For any

in-danger pool or secure resource pool p, the resource needed and the resource available are xp and xava
p ,

respectively, where x ∈ {c,m,d}. Denote the migration time of in-danger pool pD to secure resource pool pS

by t pD
pS =

(cpD+mpD)I
pd
ps

BWpD,pS
, where BWpD,pS =

∑sD∈pD,s∈pS
BWsD,s

|pD||pS|
.

min
I

pd
ps , pd∈PD, ps∈PS

∑
pD∈PD

∑
pS∈PS

t pD
pS

(5.8)

s.t.

for any pD ∈ PD:

∑
pS∈PS

IpD
pS

= 1 (5.9)

for any pD ∈ PD and pS ∈ PS:

0≤ IpD
pS
≤ 1 (5.10)

for any pS ∈ PS:

∑
pD∈PD

mpD IpD
pS
≤ mava

pS
(5.11)

∑
pD∈PD

cpD IpD
pS
≤ cava

pS
(5.12)

∑
pD∈PD

dpD IpD
pS
≤ dava

pS
(5.13)

5.4.3 Second-Layer Optimization Problem

The second-layer optimization for each secure resource pool pS ∈ PS can be formulated as follows. Each

secure resource pool dispatches the resource requests from the in-danger pools to its servers by minimizing

the total migration time. Let IpD
s be the variable for in-danger pool pD ∈ PD and server s in the secure resource

pool pS, i.e., s ∈ pS. Let BWpD,s be the average bandwidth between in-danger pool pD and secure server s,

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 91

i.e., BWpD,s = (∑sD∈pD BWsD,s)/|pD|. The migration time is defined as tpD,s = ((mpD +dpD)I
pD
pS IpD

s)/BWpD,s.

Now, the minimization problem becomes:

min
IpD
s f or pD∈PD

∑
pD∈PD

∑
s∈pS

tpD,s (5.14)

s.t.

for any pD ∈ PD:

∑
s∈pS

IpD
s = 1 (5.15)

for any pD ∈ PD and s ∈ pS:

0≤ IpD
s ≤ 1 (5.16)

for any s ∈ PS:

∑
pD∈PD

mpD IpD
pS

IpD
s ≤ mava

s (5.17)

∑
pD∈PD

cpD IpD
pS

IpD
s ≤ cava

s (5.18)

∑
pD∈PD

dpD IpD
pS

IpD
s ≤ dava

s (5.19)

After each secure resource pool’s optimization finishes, each in-danger pool decides which VM sends to

which secure server based on the results of first-layer optimization and secure resource pool’s optimization,

i.e., IpD
pS and IpD

s . To avoid split VMs as much as possible, each in-danger pool first tries to fit a set of complete

VMs to each server. The set VC
pD

of VMs for server s satisfies:

∑
v∈VC

pD

mv ≤ mpD IpD
pS

IpD
s (5.20)

∑
v∈VC

pD

cv ≤ cpD IpD
pS

IpD
s (5.21)

∑
v∈VC

pD

dv ≤ dpD IpD
pS

IpD
s (5.22)

Finally, each in-danger pool splits the remaining VMs and fits them into the resources left on each of the

servers in its assigned not-in-danger pool.

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 92

5.4.4 How to Partition the Problem

We want to minimize the loss of optimality when we partition the secure servers and in-danger VMs to

decompose the optimization problem into two layers. The two-layer approach loses optimality in two ways.

In the first layer, average bandwidth of the servers in the secure resource pools and VMs in the in-danger

pools is used to replace individual bandwidths; therefore, if the VMs in the same in-danger pool connect to

secure servers with different bandwidth, there will be loss of optimality. In the second layer, all VMs in the

same in-danger pool tend to be reallocated to the same set of servers according to the resource requests from

the first layer. The globally optimal solution, however, may be to reallocate these VMs to different set of

servers.

We propose a heuristic that leverages the structure of the data-center network: Group all secure servers

in a rack together as a secure resource pool, and group VMs in the same server in danger into an in-danger

pool. The benefits are: 1) The bandwidths and average bandwidth between one server in danger and other

secure servers in the same rack tend to be good, because all the secure servers in the same rack connect to the

same set of ToR switches, leading to homogeneous connectivity to the other parts of the data-center network.

Therefore the loss of optimality in the first layer is small. 2) The VMs in the same server tend to share

bandwidth toward other servers in the data-center network; therefore they are highly likely to be reallocated

to the same set of servers in the globally optimal solution. 3) The number of racks and the number of servers

in danger tend to be relatively small (much smaller than the total number of secure servers and VMs in

danger), which improves the efficiency of the optimization process significantly.

5.5 Experimental Evaluation of the Two-Layer Approach

In this section, we evaluate our two-layer approach using simulation. The hardware and software configura-

tions used for this simulation are identical to those used for the experiments in Section 5.3.4.

5.5.1 Efficiency of the Two-Layer Approach

Table 5.5 shows results of the proposed two-layer algorithm. Our implementation solves the VMRAP in less

than 4 seconds even when we scale the size of the data center to 2500 racks, 40 servers per rack, and 64 VMs

per server (that is over 6 million possible VMs total) with 10 servers in danger. This is efficient enough to be

used in practice.

We also compare the performance of the two-layer approach with the binary-programming and linear-

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 93

Table 5.5: Results of two-layer linear programming using CVXOPT

Realloc. Calc. Racks Serv. VM Vuln.
Calculation Moving / Rack / Serv. Serv.
Time (s) Time (s)
<0.1 263 10 40 64 1
<0.1 527 10 40 64 2
1.1 2636 10 40 64 10
<0.1 263 50 40 64 1
<0.1 527 50 40 64 2
1.1 2636 50 40 64 10
<0.1 263 100 40 64 1
<0.1 527 100 40 64 2
1.1 2636 100 40 64 10
<0.1 263 500 40 64 1
0.1 527 500 40 64 2
1.2 2636 500 40 64 10
0.1 263 2500 40 64 1
0.3 527 2500 40 64 2
3.3 2636 2500 40 64 10

programming relaxation, as shown in Figure 5.4. The running times come from the Tables 5.2, 5.4, and 5.5,

in the case of 10 servers in danger. The x-axis is the number of servers in the simulation, while the y-axis

is the total computation time for reallocation. Binary programming and linear programming run more than

2 hours in the case of 100000 servers; so we have not plotted these points. From the figure, we can see that

the performance of the two-layer approach is much better than that of integer programming or relaxed linear

programming.

Figure 5.4: Comparison of the performance of different approaches.

5.5.2 Accuracy vs. Improved Performance

The improved performance comes at a cost; so we also test the accuracy of the two-layer approach as follows.

We measure the accuracy by how close the sub-optimal migration time computed by the two-layer approach is

to the globally optimal migration time and the sub-optimal migration time computed by linear-programming

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 94

relaxation. We generate simulation cases of data centers with 100 racks, 40 servers per rack, 64 VMs per

server, and 10 servers in danger. In addition, we generate simulations with different utilization of servers.

We define the utilization uts of a server s as the maximal usage rate of each kind of resources, i.e., uts =

maxx∈{c,m,d}
xCap−xava

xCap . The higher the utilization, the more scarce the available resources are in the secure

servers. For each utilization point, we randomly set the resources needed by each VM based on a uniform

distribution among available Amazon EC2 instances to generate 1000 samples and take the average of the

migration times of the 1000 samples. We plot the accuracy of the results in Figure 5.5. The x-axis is the

utilization of the servers. The y-axis is the total migration time computed by the different approaches.

Figure 5.5: Comparison of the accuracy of different approaches.

Note that the optimal migration time computed by linear-programming relaxation should be less than

or equal to the optimal time computed by global binary programming, because the linear-programming re-

laxation sacrifices the availability of the VMs or forces the usage of advanced VM-splitting technology to

maintain the availability. Because of splitting of the VMs, the migration time of linear-programming relax-

ation is smaller than that of binary programming. On the other hand, the two-layer approach’s running time

is slightly higher than that of linear-programming relaxation in most cases, because of the loss of optimality

in the decomposition.

When the utilization of servers is low, which means that the available secure resources are plentiful, the

two-layer approach coincides with binary and linear programming. This is because the number of VMs

in danger is far less than the capacities of the secure servers; therefore each in-danger VM can always be

completely migrated to the secure server with the largest bandwidth toward the in-danger server of the VM.

When the utilization increases, binary programming and linear programming diverge to different results, and

the result of the two-layer approach is in the middle of the two. On average, the two-layer approach is a good

approximation of binary programming and linear-programming relaxation, because the difference between

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 95

the migration time of the two-layer approach and binary programming is less than 15%, and the difference

between the migration time of the two-layer approach and linear programming is less than 10%.

Given this bound on the difference of the solutions, the two-layer approach can be used and its calculated

migration-time output increased by 15% to ensure that the scheduler does not underestimate the migration

time (leading to false choice of whether the migration is an appropriate action to take given the current threat).

5.6 Related Work

Virtualization was explored by IBM researchers as early as 1970s [MS70]. VM migration is a newer concept

but has already been throughly explored. Ideas such as process migration of processes from one instance

of an OS to another [MDP+00] or self-migration of a whole OS instance, done by the OS itself, have been

presented [HJ04]. Cold, warm, and live [CFH+05] migration of whole VMs performed by the hypervisor has

been proposed and explored extensively. Live migration minimizes downtime and ensures responsiveness

of services; so it is often most desired. There are pre-copy algorithms, e.g. [NLH05], that copy memory

pages of a VM ahead of time, and once most pages are copied execution transfers from the source to the

target machine. Post-copy algorithms, e.g. [HG09], on the other hand defer the transfer of memory pages

until such a page is actually accessed. Further optimizations, such as gang migration of many VMs at once,

have been proposed as well [DWG11]. Using some information about content of the VM (i.e., black-box vs.

gray-box) to aid in migration has been investigated as well [WSVY07]. Security aspects of migration have

also been explored, e.g., use of a virtual trusted-platform module (vTPM), e.g. [DMKC11]. None of these

works presents algorithms to determine which servers the VMs should be transferred to.

There are many algorithms for scheduling of resources within a single server. Just as there are schedulers

inside an operating system, hypervisors have schedulers that decide when certain VMs should runs and which

resources within the server they will use. Borrowed Virtual Time (BVT), Simplest Earliest Deadline First

(SEDF), and fair-share proportional scheduling (Credit scheduler) are examples of schedulers in production

hypervisors [CGV07]. Our work similarly could be considered a scheduler, but at the data-center level rather

than at the server level. The significant difference, however, is the scale of the problem. Rather than dealing

with tens of processors, we are dealing with tens of thousands, or more, of servers.

Cloud-management software such as the OpenStack contains a “scheduler. The default OpenStack sched-

uler, however, applies very simple policies, such as choosing the least loaded server, randomly selecting an

available server, etc. [CFF12] The management software does not deal with reallocation of resources on the

CHAPTER 5. ON VIRTUAL-MACHINE REALLOCATION IN CLOUD-SCALE DATA CENTERS 96

fly.

Chapter 6

Conclusion and Open Problems

In this work, we investigate accountability in cloud-computing and distributed computer systems. We first

systematize much of the research on “accountability” in computer science and then proceed to design, imple-

ment, and evaluate new accountability mechanisms for cloud-computing and distributed computer systems.

We have designed and developed a P-SRA (for “private structural-reliability auditing”) system, which can au-

dit the cloud infrastructure to assess the reliability of cloud services without revealing the private information

of the cloud providers. The P-SRA system is not only a useful accountability mechanism for cloud-computing

systems but also an interesting application of secure multi-party computation (SMPC), which has not often

be used for computations on complex, linked data structures. We have also developed the notion of “cloud

user infrastructure attestation, and designed a framework that enables cloud-service providers to attest to

cloud-service users that the resources they have provided satisfy the users’ requirements. The privacy of

the cloud-service providers is protected, while the accountability of the cloud-service providers to the cloud-

service users is achieved. Finally, we investigate accountability mechanisms in cloud-scale data centers.

We formulate the virtual-machine reallocation as an optimization problem and explain how it differs from

the general virtual-machine allocation problem. Virtual-machine reallocation is NP-hard, but we provide an

efficient, two-layered, heuristic algorithm to solve it reasonably efficiently.

6.1 Systematizing Accountability in Computer Science

Our systematic consideration of many major works on “accountability” in Chapter 2 demonstrates that com-

puter scientists have used the term to mean different things. We have organized prior work on accountability

along the axes of time, information, and actions and highlighted both existing results and open questions.

Interestingly, our decision to define accountability mechanisms as those that allow actions to be tied to con-

97

CHAPTER 6. CONCLUSION AND OPEN PROBLEMS 98

sequences (and, in particular, allow violations to be tied to punishment) dispels the mistaken notions that

accountability precludes anonymity and that it requires centralized authority.

Our systematization effort has revealed the need for more sparing use of the word “accountability” and,

more generally, for more precise and consistent terminology. In particular, destroying the anonymity of the

violator of a security policy is more accurately described as “identification” or “exposure” than as “account-

ability.” Consistent and more focused use of the term “accountability” should promote the formation of a

coherent research area and the adoption of the technology that it develops.

As discussed elsewhere [FJW11], one challenge in addressing punishment is separating punishment for

a violation from other, unrelated events that might occur between the violation and the punishment. Other

challenges (especially in implementing systems for accountability) include calibrating the severity of the

punishment so that it is an effective deterrent (despite the fact that different participants may view the cost

of a particular punishment very differently) and determining how often punishment should be meted out.1

In addition to these punishment-related issues, our work in Chapter 2 highlights and distinguishes differing

approaches to the detection–evidence–judgment–punishment spectrum and to questions of information and

action. These different approaches will inform further analysis of accountability, including the study of

fundamental tradeoffs related to accountability and the design of new accountability systems.

While we have focused on accountability in Computer Science, the aspects of accountability that we

use in our analysis might also be applied to accountability in other disciplines (e.g., the notion of “calling

to account” within a particular legal or political framework). The work in Chapter 2 might thus facilitate

comparisons and interactions between notions of accountability in different disciplines.

Finally, we remark that the work we have presented in Chapter 2 is about accountability with respect to

established policies. Yet, there are forms of online life, including search and social networking, in which

expectations, laws, and policies are still developing. Despite the fact that their obligations have not yet

been fully formalized and are not yet fully agreed upon, it would be highly desirable to be able to hold the

companies that provide search, social networking, and other online services accountable if, at some point in

the future, they are seen to have acted egregiously. As work on accountability in computer science continues,

this issue should receive more attention.
1There are certainly occasions on which punishment might be withheld in order to promote some larger goal, but, if punishment were

always withheld, the system would not provide accountability.

CHAPTER 6. CONCLUSION AND OPEN PROBLEMS 99

6.2 Structural Cloud Audits that Protect Private Information

In Chapter 3, we study mechanisms that enable cloud users to hold cloud providers accountable for providing

reliable services. We have designed P-SRA (a private, structural-reliability auditor for cloud services based

on secure, multi-party computation) and prototyped it using the Sharemind SecreC platform. In addition,

we have explored the use of data partitioning and subgraph abstraction in secure, multi-party computations

on large graphs, with promising results. We believe that data partitioning and subgraph abstraction can be

applied to other cloud-computing or SMPC-related problems. Our preliminary experiments and simulations

indicate that P-SRA could be a practical, off-line service, at least for small-scale cloud services or for ones

that permit significant subgraph abstraction.

There are many interesting directions for future work, including: (1) Although our preliminary experi-

ments indicate that the cost of privacy in structural reliability auditing (i.e., the additional cost of using P-SRA

instead of SRA) is not prohibitive, it would be useful to measure this cost more precisely with more exhaus-

tive experiments. (2) It will be interesting to seek more efficient algorithms for fault-tree analysis and/or a

more efficient P-SRA implementation; both would enable us to test P-SRA on larger cloud architectures. (3)

Note that we assumed, following Zhai et al. [ZWX+], that dependency graphs of cloud services are acyclic,

but they need not be. Tunneling-within-tunneling of the type already in use in MPLS and corporate VPNs

could (perhaps unintentionally) create cyclic dependencies if used in clouds. Thus, it will be worthwhile to

develop structural-reliability auditing techniques that apply to cyclic dependency graphs. (4) P-SRA parti-

tions components based on the fact that some physical equipment is used by exactly one service provider

and hence cannot cause the failure of another provider’s service, but this type of partitioning has limitations.

If, for example, two cloud-service providers purchase large numbers of hard drives of the same make and

model from the same batch, and that batch is discovered to be faulty, then the two services have a common

dependency on this faulty batch of drives. P-SRA’s data partitioning could hide this common dependency,

because the hard drives could be considered “private” equipment by both services. It will be worthwhile to

extend P-SRA so that it can discover this type of common dependency while retaining the efficiency provided

by data partitioning and subgraph abstraction.

6.3 Cloud User Infrastructure Attestation

In Chapter 4, we continue our study of techniques that allow cloud-service users to hold cloud-service

providers accountable. Specifically, we develop the notion of cloud user infrastructure attestation. The goal

CHAPTER 6. CONCLUSION AND OPEN PROBLEMS 100

of the work is to enable cloud providers to attest to cloud users that the users have received the resources

(VMs and their interconnection) that they requested. Furthermore, the provider should not have to reveal

to the users the actual configuration of its servers or network, only their properties; this helps protect the

providers’ trade secrets and should motivate more providers to adopt such attestation protocols.

Our solution focuses on hardware security anchors, or roots of trust, installed in the individual servers

of the cloud provider. We leverage well established TPM technology and also propose a novel component

called a Network TPM. Both of these hardware components are used to collect information about the cloud

infrastructure and attest to properties requested by users. TPMs on the servers where the users VMs run are

used to attest to the properties of server infrastructure and to give users assurance about the properties of

the servers. Our new proposed Network TPMs installed in these servers are used to attest to the properties

of the network infrastructure and to give users assurance about the properties of the interconnection of their

VMs. Meanwhile, our attestation protocol uses digitally signed data and verifiable-computation mechanisms

to ensure that the attestation is correct and trustworthy. We use ComplexNetworkSim and Pinocchio to

implement a prototype of our topology infrastructure attestation framework. Through large-scale simulations,

we demonstrate that our cloud user infrastructure attestation framework is a practical offline service.

Directions for future work on cloud user infrastructure attestation include 1) It would be interesting to

build a prototype of a network TPMs, along with a trusted software driver. These could be used to measure the

performance of a real hardware implementation and to assess extra costs attributable to this special hardware.

2) It would be more convenient for cloud providers to adopt our framework if our attestation protocols were

integrated into existing cloud-management software, such as OpenStack. 3) Further work is needed on the

design of attestation protocols and on improved efficiency of attestation (with respect to both running time

and memory utilization).

6.4 On Virtual-Machine Reallocation in Cloud-scale Data Centers

In Chapter 5, we investigate accountability in the operation of cloud-scale data centers — specifically, we

ask what actions should be taken when violations of system policies or other abnormal events are detected.

We have formulated the virtual-machine reallocation problem (VMRAP) as an optimization problem, which

is NP-hard. We propose a heuristic, two-layer approach and use large-scale simulations to demonstrate that

it is efficient and highly accurate. Our solution may be applicable to other aspects of data-center and cloud

security.

CHAPTER 6. CONCLUSION AND OPEN PROBLEMS 101

Interesting directions for future work on VMRAP include 1) As usual, our algorithms would be more

likely to be adopted if they were integrated into OpenStack. They could be integrated as an independent

module or as a part of the existing VM-scheduling module. 2) In the formulation of the VMRAP, we follow

a deterministic but intuitive network model of data-center networks. However, in real data centers, there are

many random events that affect the network conditions, such as random failures of links and congestions

caused by abrupt arrivals of new tasks. Therefore, it would be interesting to use a probabilistic network

model in a formulation the VMRAP, analyze the effects of the randomness, and design random-event-driven

solutions to the problem.

Bibliography

[ABF+08] David G. Andersen, Hari Balakrishnan, Nick Feamster, Teemu Koponen, Daekyeong Moon,

and Scott Shenker. Accountable internet protocol (AIP). SIGCOMM Comput. Commun. Rev.,

38:339–350, August 2008.

[AF12] Dennis Abts and Bob Felderman. A guided tour through data-center networking. Queue,

10(5):10, 2012.

[AGHP02] Martı́n Abadi, Neal Glew, Bill Horne, and Benny Pinkas. Certified email with a light on-

line trusted third party: design and implementation. In Proceedings of the 11th international

conference on World Wide Web, WWW ’02, pages 387–395, New York, NY, USA, 2002. ACM.

[AL12] Mansoor Alicherry and TV Lakshman. Network aware resource allocation in distributed

clouds. In INFOCOM, 2012 Proceedings IEEE, pages 963–971. IEEE, 2012.

[Amaa] Amazon web services global infrastructure. http://aws.amazon.com/en/about-aws/

globalinfrastructure/.

[Amab] Amazon EC2 Instance Types. http://aws.amazon.com/ec2/instance-types/

#instance-details, accessed September 2013.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of

np. Journal of the ACM (JACM), 45(1):70–122, 1998.

[Azu] Windows azure. http://en.wikipedia.org/wiki/Windows_Azure.

[BB10] Anton Beloglazov and Rajkumar Buyya. Energy efficient resource management in virtualized

cloud data centers. In Proceedings of the 2010 10th IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing, CCGRID ’10, pages 826–831, Washington, DC, USA,

2010. IEEE Computer Society.

102

BIBLIOGRAPHY 103

[BCC04] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In Proceed-

ings of the 11th ACM Conference on Computer and Communications Security, pages 132–145.

ACM, 2004.

[BDD+06] Michael Backes, Anupam Datta, Ante Derek, John C. Mitchell, and Mathieu Turuani. Com-

positional analysis of contract-signing protocols. Theor. Comput. Sci., 367:33–56, November

2006.

[BDMS07] Adam Barth, Anupam Datta, John Mitchell, and Sharada Sundaram. Privacy and utility in busi-

ness processes. In Proceedings of the 20th IEEE Computer Security Foundations Symposium,

pages 279–294, Washington, DC, USA, 2007. IEEE Computer Society.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure multi-party

computation. In ACM Symposium on Computer and Communication Security, pages 257–266,

2008.

[BK13] Dan Bogdanov and Aivo Kalu. Pushing back the rain – how to create trustworthy services in

the cloud. ISACA Journal, 3:49–51, 2013. Available at http://www.isaca.org/Journal/

Past-Issues/2013/Volume-3/Pages/default.aspx.

[BLB03] Sonja Buchegger and Jean-Yves Le Boudec. A robust reputation system for mobile ad-hoc

networks. Technical report, EPFL, 2003.

[BP06] Giampaolo Bella and Lawrence C. Paulson. Accountability protocols: Formalized and verified.

ACM Trans. Inf. Syst. Secur., 9:138–161, May 2006.

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos. SEPIA: Privacy-

preserving aggregation of multi-domain network events and statistics. In USENIX Security

Symposium, 2010.

[BSP+10] Soren Bleikertz, Matthias Schunter, Christian W. Probst, Dimitrios Pendarakis, and Konrad

Eriksson. Security audits of multi-tier virtual infrastructures in public infrastructure clouds. In

ACM Cloud Computing Security Workshop, pages 93–102, 2010.

[But13a] Brandon Butler. Cloud storage viable option, but proceed carefully, 2013. Available at http:

//www.networkworld.com/news/2013/010313-gartner-storage-265460.html.

BIBLIOGRAPHY 104

[But13b] Brandon Butler. Top 10 cloud storage providers, 2013. Available at http://www.

networkworld.com/news/2013/010313-gartner-cloud-storage-265459.html.

[CFF12] Antonio Corradi, Mario Fanelli, and Luca Foschini. Vm consolidation: a real case based on

openstack cloud. Future Generation Computer Systems, 2012.

[CFH+05] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach,

Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proceedings of the

2nd conference on Symposium on Networked Systems Design & Implementation - Volume 2,

NSDI’05, pages 273–286, Berkeley, CA, USA, 2005. USENIX Association.

[CFN90] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Proceedings on Advances in

cryptology, CRYPTO ’88, pages 319–327, New York, NY, USA, 1990. Springer-Verlag New

York, Inc.

[CGV07] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Comparison of the three cpu

schedulers in xen. SIGMETRICS Performance Evaluation Review, 35(2):42–51, 2007. http:

//www-archive.xenproject.org/files/xensummit_4/3schedulers-xen-summit_

Cherkosova.pdf, accessed September 2013.

[CH04] Hana Chockler and Joseph Y. Halpern. Responsibility and blame: A structural-model approach.

Journal of Artificial Intelligence Research, 22:93–115, 2004.

[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203, 1982.

[Cha83] David Chaum. Blind signature system. In CRYPTO, page 153, 1983.

[CHL06] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing accountability and

privacy using e-cash (extended abstract). In SCN, pages 141–155, 2006.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation using

fully homomorphic encryption. In Advances in Cryptology–CRYPTO 2010, pages 483–501.

Springer, 2010.

[CLMS08] Liqun Chen, Hans Löhr, Mark Manulis, and Ahmad-Reza Sadeghi. Property-based attestation

without a trusted third party. In Information Security, pages 31–46. Springer, 2008.

BIBLIOGRAPHY 105

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation

with streaming interactive proofs. In Proceedings of the 3rd Innovations in Theoretical Com-

puter Science Conference, pages 90–112. ACM, 2012.

[Com] ComplexNetworkSim. http://pythonhosted.org//ComplexNetworkSim/index.html.

Accessed: 2014-07-28.

[CVX] CVXOPT. Python Software for Convex Optimization. http://cvxopt.org/, accessed

September 2013.

[Del] Dell R910 Rack Server. https://www.dell.com/us/business/p/poweredge-r910/pd?

~ck=anav, accessed September 2013.

[DG05] Wenliang Du and Michael T Goodrich. Searching for high-value rare events with uncheatable

grid computing. In Applied Cryptography and Network Security, pages 122–137. Springer,

2005.

[DGKN09] Ivan Damgård, Martin Geisler, Mikkel Krøigård, and JesperBuus Nielsen. Asynchronous mul-

tiparty computation: Theory and implementation. In Stanislaw Jarecki and Gene Tsudik, ed-

itors, Public Key Cryptography – PKC 2009, pages 160–179. Springer Verlag, LNCS 5443,

2009.

[DMKC11] Boris Danev, Ramya Jayaram Masti, Ghassan O. Karame, and Srdjan Capkun. Enabling secure

vm-vtpm migration in private clouds. In Proceedings of the 27th Annual Computer Security

Applications Conference, ACSAC ’11, pages 187–196, New York, NY, USA, 2011. ACM.

[DWG11] Umesh Deshpande, Xiaoshuang Wang, and Kartik Gopalan. Live gang migration of virtual ma-

chines. In Proceedings of the 20th international symposium on High performance distributed

computing, HPDC ’11, pages 135–146, New York, NY, USA, 2011. ACM.

[EI00] Clifton A. Ericson II. Hazard analysis techniques for system safety. John Wiley and Sons,

2000.

[FHJ+11] Joan Feigenbaum, James A. Hendler, Aaron D. Jaggard, Daniel J. Weitzner, and Rebecca N.

Wright. Accountability and deterrence in online life (extended abstract). In ACM Web Science,

2011. http://www.websci11.org/fileadmin/websci/Papers/35_paper.pdf.

BIBLIOGRAPHY 106

[FJW11] Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N. Wright. Towards a formal model of

accountability. In Proceedings of the 2011 workshop on New security paradigms workshop,

NSPW ’11, pages 45–56, New York, NY, USA, 2011. ACM.

[FZML02] Csilla Farkas, Gábor Ziegler, Attila Meretei, and András Lörincz. Anonymity and accountabil-

ity in self-organizing electronic communities. In Proceedings of the 2002 ACM workshop on

Privacy in the Electronic Society, WPES ’02, pages 81–90, New York, NY, USA, 2002. ACM.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, volume 9, pages

169–178, 2009.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Out-

sourcing computation to untrusted workers. In Advances in Cryptology–CRYPTO 2010, pages

465–482. Springer, 2010.

[GHJ+09] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim,

Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. Vl2: a scalable and

flexible data center network. In Proceedings of the ACM SIGCOMM 2009 conference on Data

communication, SIGCOMM ’09, pages 51–62, New York, NY, USA, 2009. ACM.

[GK05] Ruth W. Grant and Robert O. Keohane. Accountability and abuses of power in world politics.

American Political Science Review, 99(01):29–43, 2005.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation: in-

teractive proofs for muggles. In Proceedings of the annual ACM Symposium on Theory of

Computing, pages 113–122. ACM, 2008.

[GLP] GLPK (GNU Linear Programming Kit). https://www.gnu.org/software/glpk/, ac-

cessed September 2013.

[GM01] Philippe Golle and Ilya Mironov. Uncheatable distributed computations. In Topics in Cryptol-

ogy, CT-RSA 2001, pages 425–440. Springer, 2001.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive

proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

BIBLIOGRAPHY 107

[GPC+03] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A virtual

machine-based platform for trusted computing. In ACM SIGOPS Operating Systems Review,

volume 37, pages 193–206. ACM, 2003.

[GR+03] Tal Garfinkel, Mendel Rosenblum, et al. A virtual machine introspection based architecture for

intrusion detection. In NDSS, 2003.

[Gri] Openstack grizzly architecture. http://www.solinea.com/2013/06/15/

openstack-grizzly-architecture-revisited/, accessed September 2013.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Advances in

Cryptology-ASIACRYPT 2010, pages 321–340. Springer, 2010.

[GSP+12] Debayan Gupta, Aaron Segal, Aurojit Panda, Gil Segev, Michael Schapira, Joan Feigenbaum,

Jennifer Rexford, and Scott Shenker. A New Approach to Interdomain Routing Based on

Secure Multi-Party Computation. In ACM SIGCOMM Workshop on Hot Topics in Networks,

2012.

[Gur] Gurobi Optimizer, State of the Art Mathematical Programming Solver. http://www.gurobi.

com/products/gurobi-optimizer/gurobi-overview, accessed September 2013.

[Hae10] Andreas Haeberlen. A case for the accountable cloud. ACM SIGOPS Operating Systems

Review, 44(2):52–57, 2010.

[HARD10] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel. Accountable

virtual machines. In OSDI, pages 119–134, 2010.

[HG09] Michael R. Hines and Kartik Gopalan. Post-copy based live virtual machine migration us-

ing adaptive pre-paging and dynamic self-ballooning. In Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environments, VEE ’09, pages

51–60, New York, NY, USA, 2009. ACM.

[HG11] Ryan Henry and Ian Goldberg. Formalizing anonymous blacklisting systems. In Proceedings

of the 2011 IEEE Symposium on Security and Privacy, SP ’11, pages 81–95, Washington, DC,

USA, 2011. IEEE Computer Society.

BIBLIOGRAPHY 108

[HJ04] Jacob Gorm Hansen and Eric Jul. Self-migration of operating systems. In Proceedings of the

11th workshop on ACM SIGOPS European workshop, EW 11, New York, NY, USA, 2004.

ACM.

[HKD07] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: practical accountability

for distributed systems. SIGOPS Oper. Syst. Rev., 41:175–188, October 2007.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehren-

berg. Tasty: tool for automating secure two-party computations. In ACM Conference on Com-

puter and Communications Security, pages 451–462, 2010.

[HP05] Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model approach–part

I: Causes. British J. Philos. Sci., 56:843–887, 2005.

[JJPR09] Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. Towards a theory of account-

ability and audit. In Proceedings of the 14th European conference on Research in computer

security, ESORICS’09, pages 152–167, Berlin, Heidelberg, 2009. Springer-Verlag.

[JLH+12] Joe Wenjie Jiang, Tian Lan, Sangtae Ha, Minghua Chen, and Mung Chiang. Joint vm placement

and routing for data center traffic engineering. In INFOCOM, 2012 Proceedings IEEE, pages

2876–2880. IEEE, 2012.

[Kai96] Rajashekar Kailar. Accountability in electronic commerce protocols. IEEE Trans. Softw. Eng.,

22:313–328, May 1996.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[KDSR11] Eric Keller, Dmitry Drutskoy, Jakub Szefer, and Jennifer Rexford. Cloud resident data center,

2011. Technical report, Princeton University.

[Kel60] James E Kelley, Jr. The cutting-plane method for solving convex programs. Journal of the

Society for Industrial & Applied Mathematics, 8(4):703–712, 1960.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the

annual ACM Symposium on Theory of Computing, pages 723–732. ACM, 1992.

[KJM+11] Ryan KL Ko, Peter Jagadpramana, Miranda Mowbray, Siani Pearson, Markus Kirchberg, Qian-

hui Liang, and Bu Sung Lee. Trustcloud: A framework for accountability and trust in cloud

BIBLIOGRAPHY 109

computing. In Proceedings of the IEEE World Congress on Services, pages 584–588. IEEE,

2011.

[KTV10] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability: definition and relationship

to verifiability. In Proceedings of the 17th ACM conference on Computer and communications

security, CCS ’10, pages 526–535, New York, NY, USA, 2010. ACM.

[Lam09] Butler Lampson. Privacy and security: Usable security: how to get it. Commun. ACM, 52:25–

27, November 2009.

[Lei85] C.E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE

Transactions on Computers, C-34(10):892–901, Oct 1985.

[LSL+11] Dave Levin, Aaron Schulman, Katrina Lacurts, Neil Spring, and Bobby Bhattacharjee. Making

currency inexpensive with iOwe. In Proceedings of NetEcon’11, 2011.

[MDP+00] Dejan S. Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian Zhou.

Process migration. ACM Comput. Surv., 32(3):241–299, September 2000.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay – a secure two-party

computation system. In USENIX Security Symposium, pages 298–302, 2004.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: ex-

tended abstract. In Proceedings of the 8th ACM conference on Computer and Communications

Security, CCS ’01, pages 245–254, New York, NY, USA, 2001. ACM.

[MPZ10] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Improving the scalability of data center net-

works with traffic-aware virtual machine placement. In INFOCOM, 2010 Proceedings IEEE,

pages 1–9. IEEE, 2010.

[MS70] R. A. Meyer and L. H. Seawright. A virtual machine time-sharing system. IBM Systems

Journal, 9(3):199–218, 1970.

[MSY12] Siva Theja Maguluri, R Srikant, and Lei Ying. Stochastic models of load balancing and

scheduling in cloud computing clusters. In INFOCOM, 2012 Proceedings IEEE, pages 702–

710. IEEE, 2012.

BIBLIOGRAPHY 110

[Mul00] Richard Mulgan. ‘Accountability’: An ever-expanding concept? Public Administration,

78(3):555–573, 2000.

[MWR99] Fabian Monrose, Peter Wyckoff, and Aviel D Rubin. Distributed execution with remote audit.

In NDSS, volume 99, pages 3–5, 1999.

[Nak] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/

bitcoin.pdf.

[net] NetworkX. http://networkx.github.com/.

[Nis97] Helen Nissenbaum. Accountability in a computerized society. In Batya Friedman, editor,

Human values and the design of computer technology, pages 41–64. Center for the Study of

Language and Information, Stanford, CA, USA, 1997.

[NLH05] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent migration for virtual

machines. In Proceedings of the annual conference on USENIX Annual Technical Conference,

ATEC ’05, pages 25–25, Berkeley, CA, USA, 2005. USENIX Association.

[NMPF+09] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri,

Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat. Portland: a scalable fault-

tolerant layer 2 data center network fabric. In Proceedings of the ACM SIGCOMM 2009 con-

ference on Data communication, SIGCOMM ’09, pages 39–50, New York, NY, USA, 2009.

ACM.

[NW88] George L Nemhauser and Laurence A Wolsey. Integer and combinatorial optimization, vol-

ume 18. Wiley New York, 1988.

[Ore12] Will Oremus. Internet outages highlight problem for cloud computing: Actual clouds, 2012.

Available at http://www.slate.com/blogs/future_tense/2012/07/02/amazon_ec2_

outage_netflix_pinterest_instagram_down_after_aws_cloud_loses_power.

html.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical

verifiable computation. In Proceedings of the EEE Symposium on Security and Privacy, pages

238–252. IEEE, 2013.

BIBLIOGRAPHY 111

[PSvD06] Ronald Perez, Reiner Sailer, and Leendert van Doorn. vtpm: virtualizing the trusted platform

module. In Proceedings of the 15th Conference on USENIX Security Symposium, pages 305–

320, 2006.

[PyC] PyCrypto. https://www.dlitz.net/software/pycrypto/. Accessed: 2014-07-28.

[RS97] Ronald L. Rivest and Adi Shamir. Payword and micromint: Two simple micropayment

schemes. In Proceedings of the International Workshop on Security Protocols, pages 69–87,

London, UK, 1997. Springer-Verlag.

[SBMS07] Mehul A. Shah, Mary Baker, Jeffrey C. Mogul, and Ram Swaminathan. Auditing to keep online

storage services honest. In USENIX Workshop on Hot Topics in Operating Systems, 2007.

[SGR09] Nuno Santos, Krishna P Gummadi, and Rodrigo Rodrigues. Towards trusted cloud computing.

In Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, pages 3–3, 2009.

[Sim] SimPy. https://simpy.readthedocs.org/en/latest/. Accessed: 2014-07-28.

[SJCL12] Jakub Szefer, Pramod Jamkhedkar, Yu-Yuan Chen, and Ruby B. Lee. Physical Attack Pro-

tection with Human-Secure Virtualization in Data Centers. In Workshop on Open Resilient

human-aware Cyber-physical Systems, WORCS, pages 1–6, June 2012.

[SJV+05] Reiner Sailer, Trent Jaeger, Enriquillo Valdez, Ramon Caceres, Ronald Perez, Stefan Berger,

John Linwood Griffin, and Leendert van Doorn. Building a mac-based security architecture for

the xen open-source hypervisor. In Computer Security Applications Conference, pages 10–pp.

IEEE, 2005.

[Sma] Hard disk smart drives. http://www.pctechguide.com/hard-disks/

hard-disk-smart-drives, accessed September 2013.

[SMBW12] Srinath TV Setty, Richard McPherson, Andrew J Blumberg, and Michael Walfish. Making

argument systems for outsourced computation practical (sometimes). In NDSS, 2012.

[SRGS12] Nuno Santos, Rodrigo Rodrigues, Krishna P Gummadi, and Stefan Saroiu. Policy-sealed data:

A new abstraction for building trusted cloud services. In Usenix Security, 2012.

BIBLIOGRAPHY 112

[SS04] Ahmad-Reza Sadeghi and Christian Stüble. Property-based attestation for computing plat-

forms: caring about properties, not mechanisms. In Proceedings of the 2004 Workshop on New

Security Paradigms, pages 67–77. ACM, 2004.

[SSB08] Mehul A. Shah, Ram Swaminathan, and Mary Baker. Privacy-preserving audit and extraction

of digital contents. Cryptology ePrint Archive, Report 2008/186, 2008. Available at http:

//eprint.iacr.org/2008/186/.

[SVP+12] Srinath TV Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J Blumberg, and

Michael Walfish. Taking proof-based verified computation a few steps closer to practicality. In

USENIX Security Symposium, pages 253–268, 2012.

[SZL+11] Vivek Shrivastava, Petros Zerfos, Kang-Won Lee, Hani Jamjoom, Yew-Huey Liu, and Suman

Banerjee. Application-aware virtual machine migration in data centers. In INFOCOM, 2011

Proceedings IEEE, pages 66–70. IEEE, 2011.

[TAKS08] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. PEREA: towards practical

TTP-free revocation in anonymous authentication. In Proceedings of the 15th ACM conference

on Computer and communications security, CCS ’08, pages 333–344, New York, NY, USA,

2008. ACM.

[TCG] Trusted Computing Group. http://www.trustedcomputinggroup.org/. Accessed: 2014-

02-07.

[TRMP12] Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. Verifiable compu-

tation with massively parallel interactive proofs. In USENIX HotCloud Workshop, 2012.

[VGRH81] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault Tree Handbook. US Nuclear

Regulatory Commission, 1981.

[WABL+08] Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum, James Hendler, and

Gerald Jay Sussman. Information accountability. Commun. ACM, 51:82–87, June 2008.

[WCW+13] Cong Wang, Sherman S. M. Chow, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving

public auditing for secure cloud storage. IEEE Transactions on Computers, 62(2):362–375,

2013.

BIBLIOGRAPHY 113

[WRLL10] Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Toward publicly auditable secure cloud data

storage services. IEEE Network, 24(4):19–24, 2010.

[WSVY07] Timothy Wood, Prashant J Shenoy, Arun Venkataramani, and Mazin S Yousif. Black-box and

gray-box strategies for virtual machine migration. In NSDI, volume 7, pages 229–242, 2007.

[WWR+11] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Enabling public auditability and

data dynamics for storage security in cloud computing. IEEE Transactions on Parallel and

Distributed Systems, 22(5):847–859, 2011.

[WWRL10] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving public auditing for

data storage security in cloud computing. In IEEE INFOCOM, pages 525–533, 2010.

[XFF13] Hongda Xiao, Bryan Ford, and Joan Feigenbaum. Structural cloud audits that protect private

information. In Proceedings of the 2013 ACM Workshop on Cloud Computing Security Work-

shop, pages 101–112. ACM, 2013.

[Yao82] Andrew C. Yao. Protocols for secure computation. In IEEE Symposium on Foundations of

Computer Science, pages 160–164, 1982.

[Yao86] Andrew C. Yao. How to generate and exchange secrets. In IEEE Symposium on Foundations

of Computer Science, pages 162–167, 1986.

[YC04] Aydan R. Yumerefendi and Jeffrey S. Chase. Trust but verify: accountability for network

services. In Proceedings of the 11th workshop on ACM SIGOPS European workshop, EW 11,

New York, NY, USA, 2004. ACM.

[YC05] Aydan R. Yumerefendi and Jeffrey S. Chase. The role of accountability in dependable dis-

tributed systems. In Proceedings of the First conference on Hot topics in system dependability,

HotDep’05, pages 3–3, Berkeley, CA, USA, 2005. USENIX Association.

[YC07] Aydan R. Yumerefendi and Jeffrey S. Chase. Strong accountability for network storage. Trans.

Storage, 3, October 2007.

[YJ12] Kan Yang and Xiaohua Jia. Data storage auditing service in cloud computing: challenges,

methods and opportunities. World Wide Web, 15(4):409–428, 2012.

BIBLIOGRAPHY 114

[ZCRY03] Sheng Zhong, Jiang Chen, and Yang Richard Richard Yang. Sprite: A simple, cheat-proof,

credit-based system for mobile ad-hoc networks. In INFOCOM, 2003.

[ZCWF13] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. An untold story of redun-

dant clouds: Making your service deployment truly reliable. In ACM Workshop on Hot Topics

in Dependable Systems, 2013.

[ZG96] Jianying Zhou and D. Gollman. A fair non-repudiation protocol. In Proceedings of the 1996

IEEE Symposium on Security and Privacy, SP ’96, pages 55–, Washington, DC, USA, 1996.

IEEE Computer Society.

[ZJRR12] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-vm side channels

and their use to extract private keys. In Proceedings of the 2012 ACM conference on Computer

and communications security, CCS ’12, pages 305–316, New York, NY, USA, 2012. ACM.

[ZWX+] Ennan Zhai, David Isaac Wolinsky, Hongda Xiao, Hongqiang Liu, Xueyuan Su, and Bryan

Ford. Auditing the structural reliability of the clouds. Technical Report YALEU/DCS/TR-

1479, July 2013. Available at http://www.cs.yale.edu/publications/techreports/

tr1479.pdf.

