
Distributed Computing manuscript No.
(will be inserted by the editor)

Joan Feigenbaum · Rahul Sami · Scott Shenker

Mechanism Design for Policy Routing

Received: Accepted:

Abstract The Border Gateway Protocol (BGP) for inter-
domain routing is designed to allow autonomous systems
(ASes) to express policy preferences over alternative routes.
We model these preferences as arising from an AS’s under-
lying utility for each route and study the problem of finding
a set of routes that maximizes the overall welfare (i.e., the
sum of all ASes’ utilities for their selected routes).

We show that, if the utility functions are unrestricted, this
problem is NP-hard even to approximate closely. We then
study a natural class of restricted utilities that we callnext-
hop preferences. We present a strategyproof, polynomial-
time computable mechanism for welfare-maximizing rout-
ing over this restricted domain. However, we show that, in
contrast to earlier work on lowest-cost routing mechanism
design, this mechanism appears to be incompatible with BGP
and hence difficult to implement in the context of the current
Internet. Our contributions include a new complexity mea-

Supported in part by ONR grant N00014-01-1-0795 and NSF grant
ITR-0219018.

Supported by ONR grant N00014-01-1-0795 and NSF grant ITR-
0219018. Most of this work was done while the author was at Yale
University.

Supported in part by NSF grants ITR-0121555 and ANI-0207399.

This work was supported by the DoD University Research Initiative
(URI) program administered by the Office of Naval Research under
Grant N00014-01-1-0795. It was presented in preliminary form at the
2004 ACM Symposium on Principles of Distributed Computing [7].
Portions of this work appeared in preliminary form in the second au-
thor’s PhD Thesis [16].

J. Feigenbaum
Yale University, Computer Science Department, New Haven, CT
06520 USA.
E-mail: feigenbaum@cs.yale.edu

R. Sami
MIT CS&AI Laboratory, 77 Massachusetts Avenue 32-G582, Cam-
bridge, MA 02139 USA.
E-mail: sami@csail.mit.edu

S. Shenker
ICSI & University of California at Berkeley, EECS Department, Berke-
ley, CA 94704 USA.
E-mail: shenker@icsi.berkeley.edu

sure for Internet algorithms,dynamic stability, which may
be useful in other problem domains.

1 Introduction

The Internet is composed of many independently managed
subnetworks called domains orautonomous systems(ASes).
The task of discovering and selecting routes between these
ASes is calledinterdomain routing. Currently, the only widely
deployed protocol for interdomain routing is the Border Gate-
way Protocol (BGP); through BGP, a router can learn of
routes from neighboring networks, select routes from the
multiple alternatives it may learn of, and advertise its se-
lected routes to other networks.

In the interdomain-routing scenario, one of the key deci-
sions an AS must make is how to select a route from all the
routes it knows of to a particular destination. One frequently
studied model has each AS look at some objective metric
over the routes, such as the number of ASes a route passes
through or the cost of a route, and pick the route that mini-
mizes this metric. In practice, however, ASes want to selecta
route based on many other criteria, such as commercial rela-
tionships or perceived reliability. For example, it is common
for an AS to select a route advertised by one of its customers
over all other routes. Thus, BGP was explicitly designed to
allow ASes to apply their ownrouting policiesto the route-
selection and route-advertisement processes. This feature of
interdomain routing is referred to aspolicy-based routingor
policy routingfor short.

Another aspect of routing that has recently received at-
tention is that of incentives. The participants in the rout-
ing process—the ASes, in this case—are independent eco-
nomic entities, each with its own goals. Thus, they cannot
be relied on to follow any specified policy in circumstances
in which they could profit by deviating from that policy.
Further, much of the information relevant to selecting good
routes, such as costs or connectivity information, is known

2 Joan Feigenbaum et al.

privately to individual ASes; thus, even if there were a cen-
tral authority capable of enforcing a policy, it could not de-
tect strategic reporting of this information. This paper ex-
plores the extent to which one can cope with these strategic
issues in a computationally feasible manner.

Thealgorithmic mechanism designapproach, introduced
by Nisan and Ronen [15], seeks to address both incentives
and computational complexity. One of the problems studied
by Nisan and Ronen is a simple routing problem: Given a
graph with a distinguished source nodes, a distinguished
sink nodet, and costs associated with each edge, find the
lowest-cost path froms to t. The wrinkle in the model is that
each edge can strategically lie about its cost. Nisan and Ro-
nen showed how a central authority can compute payments
for each edge such that every edge’s dominant strategy is to
be honest about its cost, yielding astrategyproof mechanism
for this problem. Later, Hershberger and Suri [12] presented
a more efficient algorithm to compute the payments required
by this mechanism. Archer and Tardos [1] and Elkindet
al. [4] study mechanisms to select a path that minimizes a
metric from a broad class, not necessarily the sum of edge
costs; this too can be viewed as a variant of lowest-cost rout-
ing.

The mechanism-design approach was extended by Feigen-
baumet al.[5], who sought lowest-cost routing mechanisms
in the context of interdomain routing. Their main contribu-
tion was to focus ondistributedmechanisms, thus adopt-
ing the distributed algorithmic mechanism design approach
initiated by Feigenbaum, Papadimitriou, and Shenker [6].
Feigenbaumet al. [5] give a strategyproof mechanism for
the lowest-cost routing problem that can be computed by an
efficient distributed algorithm. Moreover, they show that this
mechanism can be computed by a “BGP-based” algorithm,
i.e., an algorithm with similar data structures and communi-
cation patterns to BGP that requires only modest increases
in communication and convergence time. Thus, the mecha-
nism is “backward compatible” with BGP, which is critical
for any routing algorithm that must be implemented in the
current Internet.

All the work on mechanism design for routing has fo-
cused on variants oflowest-costrouting. In practice, this has
two drawbacks: The cost model is oversimplified, and the
requirement that all ASes use a lowest-cost routing policy is
too restrictive. In this paper, we investigate whether the dis-
tributed algorithmic mechanism design approach can be ex-
tended to general policy routing. In essence, we look at inter-
domain routing at a higher level of abstraction: We assume
that source ASes have preferences over alternative routes to
a destination, but we do not model thecausesof these pref-
erences. Thus, in our initial model, an AS can express any
routing policy, provided that it is based onsomeunderlying
utility function—it need not arise from the cost of the route
but may take into account unspecified, subjective route at-
tributes as well. The goal of the mechanism is to compute
routes for every source-destination pair such that theoverall
welfare, i.e., the sum of all ASes’ utility for their selected
routes, is maximized. The only constraint on the selected

routes is that all routes to a given destination must form a
tree; this is a very natural constraint in the Internet, where
packet forwarding decisions are based only on the destina-
tion (not source and destination) of the packet.

Our first result is that, for general preferences, comput-
ing an optimal set of routes is NP-hard; it is even NP-hard to
compute a solution that approximates the optimum to within
a factor ofO(n

1

4
−ǫ), wheren is the number of nodes in the

network, andǫ is an arbitrarily small positive constant. We
prove this result by an approximability-preserving reduction
from the Maximum Independent Set problem.

This leads us to consider a restricted class of utility func-
tions that we callnext-hop preferences. The restriction is that
an AS’s utility for a route can depend only on the first hop
along that route. This class of utility functions captures pref-
erences arising from customer/provider/peer relationships an
AS might have with its neighbors. These commercial rela-
tionships are a major motivation for allowing flexible policy
routing in BGP, and so this is an interesting class of prefer-
ences to study. We show that, for next-hop preferences, the
welfare-maximization problem reduces to finding a maxi-
mum-weight directed spanning tree to each destination and
is hence computable in polynomial time. We derive a strat-
egyproof mechanism for this problem and show that it can
also be computed in polynomial time.

We next ask whether it is possible to implement this
mechanism with a distributed, BGP-based algorithm. Unfor-
tunately, we find that this is not the case. In order to prove
that a BGP-based implementation is impractical, we refine
the model of BGP-based computation given in [5] and show
that any implementation of the welfare-maximizing policy-
routing mechanism would be unacceptable, even on Inter-
net-like
graphs with small numeric valuations, for two reasons: (1)
The selected routes may be long, and hence the routing algo-
rithm may take a long time to converge; and (2) Any change
in any AS’s utilities may require communication toΩ(n)
nodes, which defeats the rationale of using a path-vector
protocol such as BGP. Thus, we conclude that, unlike the
lowest-cost routing mechanism of [5], this mechanism is not
easy to implement in the current Internet.

Mechanisms, and indeed Internet algorithms in general,
need to be compatible with the existing protocols that they
seek to extend or replace; this allows them to be adopted
gradually. Positive results about protocol compatibilityhave
been studied earlier,e.g., in [5,8]. However, proving nega-
tive results about protocol compatibility is more difficult; to
our knowledge, our current paper is the first to prove that a
mechanism isincompatiblewith a given protocol. Thus, part
of our contribution is refinement of the BGP-based computa-
tional model to allow negative results to be proven. Further,
we believe that the “dynamic stability” criterion introduced
in Section 5.3 could potentially be used to prove hardness
results for other Internet-algorithmic problems.

The rest of this paper is structured as follows: We for-
mulate the welfare-maximizing policy-routing problem in
Section 2. In Section 3, we prove that, with arbitrary prefer-

Mechanism Design for Policy Routing 3

ences, the problem is NP-hard, even to approximate closely.
We then turn to the next-hop preference model in Section 4.
We design a strategyproof, polynomial-time computable me-
chanism, the MDST mechanism, that maximizes welfare in
this model. In Section 5, we elaborate on the BGP-based
computation model and show that the MDST mechanism
is hard to implement in this model. The crux of this re-
sult is a proof that any distributed algorithm for the MDST
mechanism will suffer from poordynamic stability: Every
change in the network or preferences will trigger a large
number of messages in the network. We then demonstrate
how dynamic-stability analysis can be extended to other op-
timization problems in Section 6. Finally, in Section 7, we
summarize and present some open questions.

2 The Policy-Routing Problem

The network consists ofn Autonomous Systems. For sim-
plicity, we treat each AS as an atomic entity; thus, we model
the network as a directed graph with nodes corresponding
to the autonomous systems. The edges in this graph corre-
spond to BGP peering or transit relationships between ASes:
We have a directed edge from nodea to nodeb if b adver-
tises its routes toa. In practice, the edges in this graph may
vary with the destination under consideration; however, we
assume here that these edges are identical for routes to any
destination.

We assume throughout that the network is 2-connected,
i .e., even if a single node is removed, there is a directed path
from each node to every other node in the remaining graph.
This assumption is necessary to rule out monopolistic nodes
that can extract infinite payments. Earlier measurements on
a realundirectedAS graph suggest that there is a large com-
ponent that remains connected even if a single node is re-
moved [5]; further, for an AS not in this component, there is
typically no route-selection problem, because each upstream
provider that serves such an AS typically knows only one
route to it, and that is the route that the provider advertises.
We believe that these properties of AS graphs will hold even
when edge directions are taken into account.

A route from a nodei to a nodej is simply a directed
path, with no cycles, fromi to j in the AS graph. Therouting
problemin this network is as follows: For each pair of nodes
i andj, we need to select a single route fromi to j. Further,
we insist that the set of all routes to destinationj forms a
tree rooted atj. This is a natural restriction when packets
are routed one hop at a time (as opposed to being routed
in an end-to-end manner,e.g., source-routed). A candidate
solution to the routing problem is thus a set of directed trees,
one for each destination. The trees for different destinations
are independent of each other, and hence it is possible to
analyze the model for a single destination. In the remainder
of the paper, we consider routing to a fixed destinationj.

The basic difference between the lowest-cost routing prob-
lem and the policy-routing problem lies in the source of pref-
erences. In the former, the costs incurred by transit carri-

ers result in their preferring routes that do not pass through
them; in the latter, ASes have differing preferences over al-
ternative routes, and the constraint that routes form a tree
leads to conflicts of interest. There are many reasons why
ASes may have real economic preferences for different routes:
Two different routes fromi to j may lead to differing tran-
sit costs, customer satisfaction, or service payments. In this
paper, we assume that ASi’s preferences among the candi-
date solutions are dictated entirely by the route fromi to j in
each solution, independent of the routes from other nodes to
j. In a sense, this is complementary to the lowest-cost rout-
ing model, in which ASi’s utility for a tree depends only on
the routes on which it was atransitnode.

Specifically, we suppose that ASi’s preferences for paths
can be expressed as a utility functionui : Pij → ℜ, where
Pij is the set of all possible paths fromi to j and theempty
path ⊥ (which corresponds to solutions in which there is
no route fromi to j). Only the relative utilities are impor-
tant, and so we can normalize this function by requiring that
ui(⊥) = 0. Further, we assume that, for any routePij from
i to j, ui(Pij) ≥ 0; in other words, having any route toj
cannot be worse fori than having no route at all.

AS preferences are private information, and hence an AS
may misreport its preferences, unless it is given appropriate
incentives. These incentives are provided by amechanism.
Abstractly, a mechanism for the routing problem for desti-
nationj takes as input the players’ reported utility profiles
u′ = (u′

1, u
′
2, . . . , u

′
n) and outputs a routing treeT and a vec-

tor of paymentsp = (p1, . . . , pn), wherepi is the amount of
money paid toi. We use the notationui(T) to denotei’s util-
ity for its path toj in the treeT . We assume that the utility
functions are quasilinear1 and thus can be expressed directly
in terms of money. Then, ASi’s combined benefit from the
mechanism can be expressed as the sum(ui(T) + pi). A
mechanism isstrategyproofif the payments are such that
every ASi’s dominant strategy is to reportui truthfully. In
other words, strategyproofness requires that, regardlessof
other ASes’ reported utility functions, each ASi maximizes
the sum(ui(T) + pi) by reporting its true utility function
(i.e., u′

i = ui) to the mechanism.
The economic goal of this routing mechanism is to max-

imize theoverall welfare, i.e., to choose a routing tree T that
maximizesW (T) =

∑

i∈N ui(T), whereN is the set of all
ASes. We call this thewelfare-maximizing routing problem.

We make one further simplifying assumption: We as-
sume that, for each nodei, the paymentpi must be stored at
nodei. Thus, when the value ofpi changes, nodei must be
updated. This natural assumption allows for a clearer proof
of the hardness result in Section 5.3. We can drop this as-
sumption and still prove essentially the same hardness result;
this extension is discussed at the end of Section 5.3.

3 NP-hardness of the general

1 A utility function is quasilinear if the player’s happinesson receiv-
ing an outcomeT and paymentpi is equal toui(T) + pi.

4 Joan Feigenbaum et al.

problem

In this section, we show that the general form of the welfare-
maximizing routing problem stated in Section 2 is not trac-
table.

An instance of the routing problem we are considering is
as follows: We are given a directed graphG, with a distin-
guished destination nodej. Each nodei is associated with a
setSi of allowed paths2 from i to j in G and a utility func-
tion ui : Si → ℜ≥0.

We now show that, for the very general class of utility
functions defined in Section 2, it is NP-hard to compute a
tree that maximizes the overall welfare. We prove this result
by a reduction from theIndependent Setproblem: Given a
graphG with verticesN , find a largest subsetS of N such
that no two vertices inS have an edge between them. This
problem is known to be NP-hard [14]; in fact, it is even NP-
hard to approximate the size of the largest independent set to
within a factor ofn

1

2
−ǫ [11]. Under the different complexity

assumption thatNP 6= ZPP , Håstad has shown that there
is no polynomial-time algorithm to approximate the size of
the largest independent set to within a factor ofn1−ǫ [11].

Given an instanceG = (N, E) of the Independent Set
problem, we construct an instance of the welfare-maximizing
routing problem. The construction of the networkH is illus-
trated in Fig. 1. For each vertexv in N , we have aterminal
vertextv in H. In addition, for each edgee = (v1, v2) in E,
we add three verticesev1 , ev2 , ande to H. We also add di-
rected edges frome to ev1 andev2 . Finally, we add a special
destination vertexj to H. We then choose an arbitrary order
for the edges inE. For a vertexv in N , let ei1 , ei2 , . . . , eil

be the edges incident onv in G, in that order. We add the di-
rected edges(tv, ei1), (e

v
i1 , ei2), . . . (e

v
il−1

, eil
), (ev

il
, j) to H.

In this manner, we construct a directed path

Pv = (tv, ei1), (ei1 , e
v
i1), (e

v
i1 , ei2), . . . , (eil

, ev
il
), (ev

il
, j)

for each terminal vertextv. Now, we letStv
= {Pv}, and

utv
(Pv) = 1, for each such vertex. For a nonterminal ver-

tex e corresponding to an edgee = (v1, v2) in G, we let
Se = {P v1

, P v2
}, whereP v1

is the suffix ofPv1
from e to

j, andP v2
is the suffix ofPv2

from e to j. We letue(P v1
) =

ue(P v2
) = 0. Similarly, for a vertex of the formev, we let

Sev contain only the suffix ofPv from ev to j, and setev ’s
utility for this path to zero.3

2 There may be an exponentially high number of paths fromi to j
in the graph (and, indeed, in the Internet). Thus, it might seem that
even describing the AS utility functions completely is a hopeless task.
However, it is possible that an AS’s utility function can be described
in a polynomial amount of space. We include a set of allowed paths
in the problem description simply to provide one such representation:
A path Pij implicitly has utility 0 if it is not in the allowed set. The
NP-hardness reduction in this section shows that, even whenall ASes
have utility functions that can be expressed concisely using this rep-
resentation, it is NP-hard to find a welfare-maximizing routing tree.
Any other concise representation of utility functions withsmall sup-
port would suffice for the reduction described here.

3 We could alternatively defineSe andSev to be empty sets, because
all of their candidate paths have zero value. However, we choose to
explicitly define the possible paths in order to clarify the construction.

tctb ta

c

a

e2e1

b

G

j

eb

1
ea

1

e1

e2

ea

2
ec

2

H

Fig. 1 Reduction from Independent Set. The pathPa is shown in bold.

Lemma 1 Given an instanceG = (N, E) of the Indepen-
dent Set problem, let(H, {Si}, {ui(·)}) be an instance of
the welfare-maximizing routing problem constructed as de-
scribed above. LetT ∗ be an optimal routing tree for this
problem. Then, the following conditions hold:

(i). For any verticesv1, v2 ∈ N such that(v1, v2) is an edge
in G, at most one oftv1

andtv2
has an allowed path toj

in T ∗.
(ii). If S ⊆ N is an independent set, thenW (T ∗) ≥ |S|.

Proof (i) Let e be the edge(v1, v2). If tv1
has a path toj,

it must be the pathPv1
. The vertexe lies on this path, and

hence the unique path frome to j in T ∗ must pass through
ev1 , notev2 . It then follows that the pathPv2

is not contained
in T ∗, and hence there is no path fromtv2

to j in T ∗.
(ii) No two vertices inS have any edge in common; hence,
if v1, v2 ∈ S, the pathsPv1

andPv2
are disjoint. Thus, the

union of pathsPv for all v ∈ S forms a treeT (S). Fur-
ther, we note thatW (T (S)) = |S|. T ∗ is optimal, and hence
W (T ∗) ≥ |S|. ⊓⊔

Corollary 1 If S is a maximum independent set inG, then
T (S) is an optimal routing tree. Conversely, ifT ∗ is an opti-
mal routing tree, thenS = {v|tv has a path toj in T ∗} is a
maximum independent set inG.

Finally, we observe that this reduction implies that even
an approximately optimal routing tree is hard to find: IfT̃
is an approximately optimal routing tree, then the setS̃ =
{v|tv has a path toj in T̃} is an approximately maximum in-
dependent set inG, with the same approximation factor. Note
that we reduce a graph withn vertices to a network with
O(n2) nodes andO(n2) allowed paths. Thus, an(n2)

1

4
−ǫ =

n
1

2
−2ǫ approximation to the welfare-maximizing routing prob-

lem would give us ann
1

2
−2ǫ approximation to the indepen-

dent set problem, and an(n2)
1

2
−ǫ = n1−2ǫ approximation to

Mechanism Design for Policy Routing 5

the welfare-maximizing routing problem would give us an
n1−2ǫ approximation to the independent set problem. Com-
bining this with known results on the hardness of computing
exactly maximum independent sets and approximately max-
imum independent sets [14,11], we get the following hard-
ness result:

Theorem 1 Given a general network onn nodes with a to-
tal of O(n) allowed paths and arbitrary AS-path utility func-
tions,

– UnlessNP = P , there is no polynomial-time algorithm
to compute a welfare-maximizing routing tree.

– For anyǫ > 0, unlessNP = P , there is no polynomial-
time algorithm to compute a tree the total welfare of
which approximates that of a welfare-maximizing rout-
ing tree to within a factor ofn

1

4
−ǫ.

– For anyǫ > 0, unlessNP = ZPP , there is no polynom-
ial-time algorithm to compute a tree the total welfare of
which approximates that of a welfare-maximizing rout-
ing tree to within a factor ofn

1

2
−ǫ.

Theorem 1 probably rules out the possibility of solving
this problem exactly or approximately in the most general
case. There are two possible approaches to restrict the scope
of the problem in order to make it more tractable. The first is
to restrict the class of networks, while still covering Internet-
like situations. The second approach is to restrict the class of
allowable utility functions; we pursue the second approach
in Section 4.

4 Next-hop preferences

In this section, we consider solutions to the welfare-maxi-
mizing routing problem with a restricted class of AS prefer-
ences. Specifically, we assume that ASi’s utility ui(Pij) for
routePij depends only on thenext hopfrom i on this route
(i.e., the utility depends only on which ofi’s neighbors this
route passes through). The motivation for this is that an AS
is likely to have different economic relationships with dif-
ferent neighbors (customers, providers, and peers), leading
to different utilities for routes depending on which neighbor
is used for transit; however, it is reasonable to assume that
two routes toj through the same neighbor have a similar
economic impact oni. Further, we assume that the set of al-
lowed routes fromi is likewise determined solely by which
neighbors ofi may be used to transit packets destined toj.

With this assumption,i’s utility function can be written
as a functionui(a) of the neighboring ASa. Similarly, the
set ofi’s allowed routes can be expressed as a setSi of i’s
neighbors that can be used to carry transit traffic toj. (The
set Si reflects agreements betweeni and its neighbors: If
a ∈ Si, it means that, in principle,i is willing to send pack-
ets througha, anda is willing to accept packets fromi for
destinationj.)

This leads to a convenient combinatorial form of the wel-
fare-maximizing routing problem. We construct a graphGj ,

with a vertex corresponding to each AS and an identified
destination vertexj. If a ∈ Si, we include a directed edge
e from i to a; we assign this edge aweightue = ui(a). A
routing tree is then simply a directed tree (arborescence) T
with all edges directed towards the rootj. Further, an ASi’s
utility for its route inT is the weightue of the edge outgoing
from i in T if such an edge exists or0 otherwise. Thus, the
overall welfare with routing treeT is

W (T) =
∑

e∈T

ue

It follows that the welfare-maximizing routing treeT ∗ is a
maximum-weight directed treewith root j in Gj .

We first show that we can restrict our attention to di-
rectedspanning trees.

Lemma 2 Suppose we are given a weighted graphGj , with
vertex setN . DefineR ⊆ N by

R
def
= {i ∈ N | There is a path fromi to j in Gj} ∪ {j}

Then, there is a maximum-weight directed tree with rootj
that spansR.

Proof Let T ∗ be a maximum-weight directed tree with root
j. Suppose there is some vertexv ∈ R such thatv /∈ T ∗.
There is a path fromv to j in Gj ; we can add edges from
this path toT ∗ without decreasing its weight, because the
utilities are always non-negative. By adding edges along this
path in order, we can eventually grow the tree to includev,
without reducing its weight. ⊓⊔

Note that the ASes that cannot even reachj can be com-
pletely ignored for the purpose of finding routes toj. Also,
it is easy to compute, for each ASi, whetherj is reachable
from i. This, combined with Lemma 2, means that, without
loss of generality, we can assume thatT ∗ spans the vertex
setN .

Thus, we want to compute a maximum-weight directed
spanning tree (MDST), with edges directed towardsj. (A
spanning tree with edges directed towardsj is also known as
aj-arborescence; thus, we seek amaximum-weight spanning
j-arborescence).4 This is a well-studied problem; the first
polynomial-time algorithm was given by Edmonds [3]. A
distributed algorithm for the MDST problem was given by
Humblet [13].

4.1 A VCG Mechanism

We now describe a welfare-maximizing5, strategyproof mech-
anism for the welfare-maximizing routing problem with next-
hop preferences. This is a direct application of the theory

4 This is essentially equivalent to the problem of computing a
minimum-weight spanningj-arborescence, with weights adjusted ap-
propriately.

5 In the economics literature, welfare-maximizing mechanisms are
also known as “efficient” mechanisms. In this paper, we use the term
“welfare-maximizing” to avoid any confusion with computational effi-
ciency.

6 Joan Feigenbaum et al.

of Vickrey-Clarke-Groves (VCG) mechanisms [18,2,10]. It
follows from the characterization of welfare-maximizing and
strategyproof mechanisms [9] that the payment to ASi must
have the form:

pi =
∑

a6=i

ua(T
∗) + hi(u

−i) (1)

(Here,hi(·) is an arbitrary function ofu−i, the vector of
utilities of all agents other thani.) Further, any mechanism
with output and payments of this form is strategyproof [9].

The exact form of the functionshi(·) can be determined
by normalizing the payments to satisfy other reasonable con-
ditions. We normalize the payment by requiring that nodes
that do not carry transit traffic (leaf nodes inT ∗) are not paid.
The rationale for this requirement here is that leaf nodes are
not contributing to other agents’ value. LetT−i denote the
maximum-weightj-arborescence6 in N\{i}. Then,W (T−i)
is a function ofu−i alone. Recall that an AS can refuse to ac-
cept transit traffic,i.e., effectively cut off allincomingedges.
If AS i did this, it would force the optimal tree to have it as
a leaf node. We would then haveT ∗ = T−i ∪ (i, a), where
(i, a), an edge from ASi to some other ASa in the net-
work, is the heaviest outgoing edge fromi. As i would be a
leaf, the paymentpi must evaluate to0 in this case; for this
to occur, we must havehi(u

−i) = −W (T−i). Substituting
back into Equation 1, we get the following formula for the
paymentpi:

pi =
∑

a6=i

ua(T ∗) − W (T−i)

= W (T ∗) − ui(T
∗) − W (T−i) (2)

We call this theMDST mechanism. In order to compute
this mechanism, we will have to compute the MDST, as well
as the paymentpi to be given to each ASi. The payments
can be computed by solving(n − 1) maximum-weightj-
arborescence instances (one for each node exceptj), and
thus the MDST mechanism is polynomial-time computable.

5 Hardness of BGP-based
Implementation

Up to this point, we have formulated the problem of finding
the welfare-maximizing routing tree with next-hop prefer-
ences as a maximum-weight directed-spanning-tree problem
and derived the natural strategyproof, welfare-maximizing
mechanism for this problem. This mechanism is polynomial-
time computable in a centralized computational model; this
leads us to hope that, as in the case of lowest-cost routing [5],
we can find a BGP-based distributed algorithm for it. Un-
fortunately, this appears not to be the case. In Section 5.1,
we further develop the BGP-based computational model; in
sections 5.2 and 5.3, we argue that the MDST mechanism is
incompatible with BGP.

6 Recall that we assume the network is 2-connected, and hence such
a tree exists.

5.1 BGP-based Distributed Computation

We start by recalling the BGP-based computation model de-
fined by Feigenbaumet al.[5]: An algorithm is “BGP-based”
if it has similar data structures and communication patternto
(a simplified abstraction of) BGP. Further, such an algorithm
has acceptable performance if the storage space per router,
time to convergence, and total communication required in
running the algorithm are within constant factors of the re-
quirements for running BGP itself.

This definition of BGP-based algorithms is not yet com-
plete. It is adequate for proving that a specific algorithm,
such as the price-computation algorithm in [5], does not cause
large changes in the structure or performance of BGP: We
can assure ourselves by inspection that the algorithm “has
similar structure” to BGP. However, for proving impossibil-
ity results, we need a more precise specification of the class
of acceptable algorithms. Thus, we elaborate on the specific
properties that we expect a BGP-based computation to have.

Consider routing to some destinationj. The properties
we require of any BGP-based computation of the routes toj
are:

P1 The routing tables should useO(l) space to store a route
of lengthl.

P2 Routes should be computable in time polynomial in the
diameterof the network rather than the total size of the
network.

P3 When a node fails or there is a change in the information
(such as costs or preferences) associated with the node,
the change should not always have to propagate to the
whole network; instead, it should usually be propagated
only to a small subset of nodes. Formally, we require
that there are onlyo(n) nodes that triggerΩ(n) UPDATE
messages by failing and coming back up, or by changing
their cost or utility reports by infinitesimal amounts.

Property P1 says that the routing table should have roughly
the same size as BGP routing tables or be smaller; this is
clearly desirable in any proposed routing algorithm. While
the number of ASes in the Internet has grown rapidly, the
AS-graph diameter has remained small. In addition, current
Internet routes typically pass through few intermediate ASes.
Property P2 requires a routing algorithm to stabilize rapidly
in networks of this form.

The justification for Property P3 is as follows: In alink-
staterouting protocol, any change has to be broadcast to all
the nodes in the network. BGP is apath-vectorprotocol,
partly to avoid this dynamic communication burden; thus, a
BGP-based algorithm should preserve this property. As the
set of routes toj forms a tree, we cannot prevent changes in
a few nodes near the root from affecting many other nodes.
Similarly, it seems acceptable that a large change in the cost
or preference of nodei can put it near the root and hence
affect many nodes. However, we don’t wanteverychange to
result in this much communication; this is expressed in the
statement of P3.

Property P3 is an unusual feature of our model in that it
deals with the dynamic performance of an algorithm—speci-

Mechanism Design for Policy Routing 7

fically, it requires the algorithm to havedynamic stability.
The main analytic reason for introducing this constraint isto
rule out algorithms that compute routes in a centralized fash-
ion at a single location, using logarithmic-depth spanning
trees to collect the inputs and distribute the outputs. Such
an algorithm is clearly not similar to BGP, yet it could meet
the static performance requirements with some clever en-
coding in the routing tables. The dynamic stability require-
ment prevents this and also provides new insight as to why a
fully distributed algorithm, such as BGP, may be preferable
in loosely coupled systems.

It may be argued that requirements P2 and P3 capture
desirable properties of distributed algorithms generallyand
not BGP-based algorithms in particular. This is not an obsta-
cle for our purposes in this section. Because we are trying to
show that the MDST mechanism isnot BGP-compatible, it
suffices to show that it does not have properties required for
a larger class of algorithms that contain those that are BGP-
based. These three properties suffice for the negative result
sought in this section. We do not claim that these proper-
ties provide us with a fully fleshed out “BGP computational
model”; that is a goal for future work.

We are also concerned about the robustness of our hard-
ness results—a hardness result that is too contrived would
not be meaningful to the real-world application of this mech-
anism. For this reason, we do not necessarily require these
conditions to hold for all possible networks and all possible
cost or preference values. The only networks that we care
about are “Internet-like” networks—those that can plausibly
represent an AS graph or some subgraph of an AS graph. We
restrict ourselves to networks that satisfy three properties:
They must be sparse, with average node degreeO(1); they
must have small diameter—specifically, diameterO(log n);
and, when any one node is removed from the network, the
diameter must remainO(log n).

It is more difficult to identify what “reasonable” cost or
preference values might be. We definitely want them to be
polynomial inn and preferably polylogarithmic inn. Fur-
ther, we are not concerned with hardness that may arise be-
cause of some strange coincidence of specific numerical val-
ues that happen to produce a very unstable state. At the same
time, there is no single natural distribution with respect to
which we can analyze the average-case complexity of an
algorithm. Instead, we insist that any hardness result hold
over an open set of cost or preference values; this means
that the hardness holds over a region of preference space
with non-zero volume, as opposed to holding on isolated
points or a degenerate surface. This is similar in spirit to
the smoothed analysisof Spielman and Teng [17]. For ex-
ample, in a lowest-cost mechanism, it is possible that, for a
specific cost profile, there are many paths to a node with ex-
actly equal costs. At this profile, the lowest-cost path may be
sensitive to a large number of node costs. However, this sen-
sitivity occurs only because of numerical coincidence, and
it disappears if the costs are infinitesimally perturbed. This
example would not count as a hardness proof in our model,
because it does not meet the open-set criterion.

In [5], the authors presented a distributed algorithm to
compute the lowest-cost paths (LCPs) and the prices required
by the strategyproof LCP-mechanism. This algorithm was
“BGP-based” in the sense that it used similar data structures
and communication patterns as BGP. We can show that this
algorithm satisfies properties 1-3, provided the costs are not
very skewed; the proof is included in the Appendix.

By contrast, we now show that a welfare-maximizing
routing mechanism cannot simultaneously satisfy all these
properties, even for networks and preference values that fit
our definition of “reasonable.”

5.2 Long convergence time

Fig. 2 shows an example of a network with2n− 1 nodes for
which a BGP-based algorithm for the welfare-maximizing
routing mechanism takesΩ(n) stages to converge. The net-
work consists of a balancedj-arborescence. The leaf nodes
area1, a2, . . . , an. The network can be extended to have di-
ameter2 logn by adding reverse edges with lower prefer-
ence values; these reverse edges do not affect our argument,
and so we omit them from Fig. 2. Similarly, by adding one
more low-preference edge from each internal node to a node
outside its parent’s subtree, we can arrange for the diameter
to remain small even when any one node is removed. Each
node is adjacent to at most4 other nodes, and so the network
satisfies the sparseness requirement as well.

The preference values are shown as numbers (weights)
on the edges in Fig. 2. Eachai in {a1, a2, . . . , an−1} prefers
to route through its neighborai+1 (value2) rather than take
the path up the tree (value1). Thus, the welfare-maximizing
routing solution, given by the maximum-weightj-arbore-
scence in this network, consists of the patha1a2 · · · an, at-
tached to the remainder of the tree atan. Note that the values
are in a small range[1, 2]. We also remark that this remains
the optimal solution even if any subset of the next-hop val-
ues are perturbed by a small amount (less than0.5 each).

Thus, the optimal solution has a route of lengthΩ(n),
for any preference values in an open set around the specified
values. BGP builds routes on a hop-by-hop basis. An AS can
use a route only when its next hop on the route has advertised
it, and it can itself extend and advertise the route only in the
next stage. Thus, we have proved that any such algorithm
does not satisfy property P2:

Theorem 2 Any BGP-based algorithm for computing the
next-hop welfare-maximizing mechanism in the network of
Fig. 2, over an open set of preference values in a small
range, takesΩ(n) stages to converge.

Given the hop-by-hop route construction in BGP, it may
seem that a more reasonable requirement than P2 is that the
number of stages required for convergence is proportional
to the length of the longest route. However, the length of the
longest selected route is also a function of the mechanism
under consideration (in this case, the MDST mechanism);
for this reason, we prefer the more stringent requirement P2,

8 Joan Feigenbaum et al.

Edge in MDST

Edge not in MDST

1

1

1

1 1

1 1 1 1 1

1

an

2 2 222 2

bn/2

a2 a3 a4 an−1

c1

a1

b2b1

Destinationj

Fig. 2 Network with low diameter and a long path in MDST.

which is independent of the mechanism. One of the reasons
that the MDST mechanism is incompatible with BGP is pre-
cisely that it may select very long routes even in networks
with small diameter and hence will cause BGP (or any hop-
by-hop protocol substrate) to converge very slowly.

5.3 Extensive dynamic communication

It may be argued that the long route in Fig. 2 is unlikely
to arise, because long routes are inherently undesirable, and
hence ASes will lower their preference values for neigh-
bors with long routes to the destination. In other words, even
though next-hop preferences may adequately capture an AS’s
preferences at any given time, these preferences will them-
selves evolve (over a longer time period, perhaps) to rule
out value profiles that lead to long routes. In this section, we
show that, even if there are no long routes, any algorithm to
compute the next-hop welfare-maximizing mechanism will
not satisfy condition P3: There are situations in which every
change in a single node’s utility function will trigger update
messages to at least half of the other nodes.

At a high level, we prove this result as follows: We con-
struct a network such that there are two edge-disjoint ar-
borescencesTB andTR such thatTB is optimal andTR is
nearly optimal. In addition, these trees have the property that
every transit node inTB is a leaf node inTR. We prove that
for each such nodei, TR contains the optimal treeT−i in the
network withouti. Then, using the structure of the MDST
mechanism payments, it is easy to show thatpi will change
whenever any edge in eitherTB or TR changes in weight.
Updatingpi requires at least one message, and as this must
be done for almost half the nodes in the network, any algo-
rithm to implement the mechanism must violate P3.

The network construction is depicted in Fig. 3. The net-
work hasn = 2m + 1 nodes. We construct it with by recur-
sively constructing clusters of nodes.

At the bottom, we construct a1-cluster that consists of
two nodes,B andR. The1-cluster has two edges, a “blue”
edge fromR to B and a “red” edge fromB to R. Here,
“blue” and “red” are simply labels that we attach to the edges

to clarify the analysis; they have no particular semantics.
Each of these two edges has weightL−1, whereL = 2m+4.

In each cluster in our construction, we identify two spe-
cial nodes: One is the “blue port,” and the other is the “red
port.” For a1-cluster,B is the blue port, andR is the red
port. We recursively construct(k + 1)-clusters from twok-
clusters, fork = 1, 2, . . . , m − 1: We add a blue edge from
the blue port of the rightk-cluster to the blue port of the
left k-cluster; the latter then serves as the blue port of the
(k + 1)-cluster. Similarly, we add a red edge from the red
port of the leftk-cluster to the red port of the rightk-cluster,
which serves as the red port of the(k + 1)-cluster. These
edges both have weightL − 2k − 1.

Once we have built up them-cluster in this manner, we
complete the network construction as follows: We add one
more node, the destinationj. We also add a blue edge from
the blue port of them-cluster toj, with weightL−2m−1 =
3, and a red edge from the red port of them-cluster toj, with
weightL − 2m − 2 = 2. The complete network, form = 3,
is shown in Fig. 3.

This network is sparse (each node has only two outgo-
ing edges) and has low diameter, as required. As in Sec-
tion 5.2, we can augment it with edges of lower value so that
the diameter stays low after removing one node; these edges
do not affect the analysis, and so we ignore them here. All
the valuations are in the range[1, L], whereL = O(log n).
The network we have just built has two distinguishedj-
arborescences: one consisting of all the blue edges and one
consisting of all the red edges. We call these two arbores-
cencesTB andTR respectively. In each of these trees, the
longest path (route) hasm+1 = O(log n) hops. We will now
show that these twoj-arborescences have greater weight
than any otherj-arborescence.

Lemma 3 If T is a j-arborescence in a network of the form
shown in Fig. 3, andT has both blue and red edges, then
there is anotherj-arborescencẽT such thatW (T̃) ≥ W (T)+
2.

Proof Consider a minimum-sized cluster that has both red
and blue outgoing edges inT . Suppose this is a(k + 1)-
cluster, as shown in Fig. 4(a). Consider the twok-clusters it
is composed of, and label the portsB1, R1, B2, R2 as shown.

Mechanism Design for Policy Routing 9

3
2

5

5

7

7 7

7

9

9 9

9 9

9

9

9
R1B1 B2 R2 B3 R3 B4 R4

j

red edge

blue edge

1-cluster

1-cluster

1-cluster

1-cluster

2-cluster

2-cluster

3-cluster

Fig. 3 Construction of network for Section 5.3, form = 3.

k-cluster
(k + 1)-cluster

k-cluster

R1
R2B1 B2

L − (2k + 3)

L − (2k + 1)

(b) TreeT̃

(a) TreeT

k-cluster
(k + 1)-cluster

k-cluster

R1
R2B1 B2

L − (2k + 3) L − (2k + 3)

Fig. 4 Construction that increases the weight of a treeT with both red and blue edges.

Now, the(k+1)-cluster has a blue outgoing edge; it must
be from the blue portB1. All smaller clusters have only one
color of outgoing edge inT . It follows that the leftk-cluster
must have only blue edges. Similarly, the red outgoing edge
must be from the portR2, and so the rightk-cluster must
have all red edges. Thus, the spanning treeT must include
the blue spanning tree of the leftk-cluster, the red spanning
tree of the rightk-cluster, and the two outgoing edges with
weightL − 2k − 3 (or less ifk = m − 1).

We now construct the treẽT as shown in Fig. 4(b): We
replace the red spanning tree by a blue spanning tree and

replace the red outgoing edge by the blue edge within the
(k+1)-cluster, with weightL−2k−1. Because of the sym-
metric construction of thek-clusters, the red and blue span-
ning trees have the same weight. Thus, the overall weight of
T̃ is at least2 higher than the weight ofT . ⊓⊔

Lemma 4 For the network and weightsu as constructed
in Fig. 3, the maximum-weightj-arborescenceT ∗(u) is the
blue spanning tree. Further, for any blue nodeBx, T−Bx(u)
(the maximum-weightj-arborescence onN\{Bx}) is the
red spanning tree restricted toN\{Bx}.

10 Joan Feigenbaum et al.

Proof From Lemma 3, we know that the maximum weight
j-arborescence must be either entirely blue or entirely red.
At the top level, the blue edge has a higher weight than the
red edge; at all other levels of the construction, the weights
are the same. Thus, the blue spanning tree must be the maxi-
mum-weightj-arborescenceT ∗(u).

The red spanning tree hasBx as a leaf and has weight
only 1 less than optimal. Any otherj-arborescence withBx

as a leaf must have both red and blue edges and hence have
weight at least2 less than optimal, by Lemma 3. Finally,
we observe that anyj-arborescence onN\{Bx} can be ex-
tended to aj-arborescence that hasBx as a leaf, by adding
the red edge(Bx, Rx) with weightL − 1. Thus, the restric-
tion of the red subtree toN\{Bx} must be optimal. ⊓⊔

Now, consider perturbing the weightsu by adding an
amountδe to the weight of each edgee, for anyδe with ab-
solute value less than1n . Then, the weight of any spanning
tree cannot change by1 or more, and so Lemma 4 still holds.
This leads us to the hardness result for this section:

Theorem 3 For networks constructed in Fig. 3 any infini-
tesimal change in valuation must causeUPDATE messages
to be sent to at least(n−3)/2 nodes. This remains true even
if each utility value is perturbed slightly (i.e., it is truefor an
open set of preference values).

Proof We start with the weight vectoru. A perturbed weight
vectorũ can be constructed fromu as follows: For each node
i, we addδblue

i to the weight of the blue outgoing edge from

i and δred
i to the weight of the red outgoing edge fromi,

where |δblue
i |, |δred

i | < 1
n . This corresponds to picking a

weight vector from an open set aroundu.
Consider the paymentpBx

due to some nodeBx. Let k
be such thatBx is the blue port of ak-cluster but not the
blue port of a(k + 1)-cluster. Then, the blue outgoing edge
from Bx has weight(L − 2k − 1). The red outgoing edge
from Bx must have weight(L − 1), and so using Lemma 4
and Equation 2, we get

pBx
= W (T ∗) − uBx

(T ∗) − W (T−Bx)

= W (blue spanning tree) − (L − 2k − 1)

− [W (red spanning tree) − (L − 1)]

=

[

W (blue sp. tree) − W (red sp. tree)
]

+ 2k

=

[

1 +
∑

i∈N

(δblue
i − δred

i)

]

+ 2k (3)

Note thatpBx
satisfies Equation (3) for any perturbed

weight vectorũ in the given range. Now, suppose we start
from some weight vector̃u, and then there is an infinitesi-
mal change inδblue

a (or δred
a) for some nodea. It follows

from Equation (3) thatpBx
changes when this happens, and

hence nodeBx must receive an update message (or else, it
cannot update its value ofpBx

). This is true for every blue
node, and thus an infinitesimal change in any node’s pref-
erence must cause price updates at every blue node (a total

of n−1
2 nodes). Apart from the nodea that originated the

change (which may be a blue node), every other blue node
must receive an update message, thus proving the theorem
statement. ⊓⊔

The proof of Theorem 3 is based on our assumption that
the paymentpBx

must be stored atBx. However, we can
drop this assumption, and get a result that is nearly as strong,
as follows:pBx

must be stored atsomenode. By property P1,
each node can storeO(m) values only; thus, the payments
for all the blue nodes must be distributed acrossΩ(n/m) =
Ω(n

log n) nodes, which must all receiveUPDATEs every time
the preferences change.

Dynamic problems with routing policies are inherently
harder for network operators to identify and correct than
static performance problems (such as the violation of 2 in Sec-
tion 5.2). In the latter case, the operator only has to check the
local routing tables to see that, say, a long route is being se-
lected over a short route. However, in the example in Fig. 3,
each node’s local policy looks reasonable, and the operator
has no way of telling how a change in policy will affect the
overall stability.

6 Dynamic Stability of Optimization Problems

Theorem 3 shows the essence of why the MDST mechanism
appears difficult for a BGP-based computational model: A
small change at any one node can cause changes that are
global, not confined to the routes the node lies on. This ap-
pears to be an inherent problem of the maximum-weight
directed-spanning-tree structure: Even if we neglected the
payment computation, the failure of any blue node would
force the red spanning tree to be used, effectively changing
the routes of all other nodes. Therefore, if each node had to
store its outgoing link locally, the communication impact of
a failed node would be severe.

We can therefore study the dynamic stability of distributed
optimization problems, independently of any mechanism-
design concerns. Consider a scenario in which each node
in a distributed system has an inputxi. We wish to run some
global optimization on the inputs; after optimization, each
node holds a pieceyi of the output. However, the nodes may
fail or leave the network. The optimization should then be
defined for variable-sized populations. We can study how
sensitive such an optimization scheme is to changes in the
input. We now present a formal development of this idea.

Definition 1 A distributed optimization scheme is a
sequence of tuples(Gn,Xn, rn, fn), one for each positive
integern, with the following properties:
– EachG ∈ Gn represents the non-numeric input of a

problem of sizen.
– The setXn ⊆ ℜn represents the domain of numeric in-

puts under consideration; each elementx = (x1, x2, · · · ,
xn) ∈ Xn represents a valid numeric input.

– For any input(G ∈ Gn,x ∈ Xn), the functionfn :
(G,x) 7→ y = (y1, y2, · · · , yn) determines the optimiza-
tion output. Theyi’s may be numeric or non-numeric.

Mechanism Design for Policy Routing 11

– For anyG ∈ Gn andi ∈ {1, · · · , n} therestriction func-
tion rn : (G, i) 7→ G−i determines the non-numeric in-
put withouti. Also, the restricted numeric input isx−i =
(x1, · · · , xi−1, xi+1, · · · , xn). The restriction function
should be such thatfn−1(G−i,x−i) is defined.7

Definition 2 Thedynamic instability of a distributed opti-
mization schemeS is a sequence{sn} defined as follows:
Given an input(G,x) andy = fn(G,x), let yi = (y0, y1,
· · · , yi−1, yi+1, · · · yn) be the output with theith component
removed, and lety−i = fn−1(rn(G, i),x−i) be the output
on the restricted input. LetB denote the set of all open balls
in Xn. Now define

sn = max
G∈Gn

max
b∈B

{

min
x∈b

[

1

n

n
∑

i=1

diff (y−i,yi)

]}

,

where diff(a,b) is a count of the number of components in
whicha andb differ, i.e., the size of the set{j|aj 6= bj}.

This Definition generalizes the definition of property 3
in section 5.3. Note that definition 1 assumes that the num-
ber of outputs is equal to the number of numeric inputs. This
can easily be generalized to include a different number of
outputs. Further, we can also extend the definitions to in-
clude scenarios in which one “node” corresponds to more
than one numeric parameter, as in the MDST problem; the
corresponding restriction map would then generate a smaller
input instance. For simplicity, however, we restrict our atten-
tion to Definitions 1 and 2.

Theorems 3 and 5 show that the MDST scheme on the
domain of Internet-like graphs and small preferences has
Ω(n) dynamic instability and that the LCP scheme on a sim-
ilar domain has dynamic instability polylog(n). We now il-
lustrate the framework with another example, aweighted
multicommodity flowoptimization scheme.

Example 1We are given a directed graphG. For each ver-
tex i in the graph, there is a destinationti and a unit flow
demand fromi to ti. Each edge in the graph has unit ca-
pacity. Each flow demand has an associated valuewi > 0.
The weighted multicommodity flow optimization problem is
to select8 a subset of the demands to satisfy that maximizes
the total value delivered, without violating any capacity con-
straint. The output is partitioned such that each node knows
whether its flow is selected.

7 It may seem like it would be more natural to require thatG
−i ∈

G
n−1 and x

−i ∈ X
n−1. However, this would make it impossible

to express domain restrictions such as “the graph is biconnected” or
“the values are polylog(n)”, because we could recursively apply the
restriction function until the input is of constant size. Instead, we al-
low the functionfn−1 to be defined on a larger set of inputs than
(Gn−1,Xn−1). The restriction functionneed notbe defined on this
larger input set, and hence recursive restrictions may be invalid.

8 We can also consider a version that allows for fractional optimal
solutions. The hardness result extends to this more generalsetting as
well.

Theorem 4 Let Gn be the set of alln-node graphs with di-
ameterlog n and constant average degree, with an identified
destinationti for each nodei. SupposeXn is the space of
all value vectors such that eachwi = O(log n). Consider
the natural restriction function corresponding to dropping a
single flow demand and its source node. Then the weighted
multicommodity flow optimization scheme has dynamic in-
stabilityΩ(n).

Proof The proof is based on constructing an instance that
is equivalent to the hard instance for MDST. The graphG
is constructed starting from the final cluster in Fig. 3. Each
blue nodeBi with k incoming edges is replaced with a set
of (k+3) nodesBi1, Bi2, · · · , Bi(k+1), Biα, Biβ . The nodes
Bi1, Bi2, · · · , Bi(k+1), Biα form a directed path, and there is
an additional edge fromBiβ to Bi(k+1). The incoming edge
with rth highest weight is incident toBir. Both outgoing
edges emanate from nodeBiα. A symmetric transformation
is done on the red nodes. The nodej is kept as it is. The
transformation is shown in Fig. 5. Note that this transforma-
tion changes anN -node instance of the MDST problem to
ann = O(N) node instance of the weighted multicommod-
ity flow optimization problem, because the MDST instance
hasO(N) edges.

We next identify the source-sink pairs and the values.
Consider a blue nodeBi with k incoming edges in the the
original network. Corresponding to this node, we have a
“red” flow demand fromBi1 to Riα; the value of the de-
mand is the weight of the corresponding red outgoing edge
in Fig. 3. There is also a “blue flow demand”: If the blue
outgoing edge is attached to nodeBhp, the blue flow de-
mand is fromBiβ to Bh(p+1). If the blue outgoing edge is
attached to nodej, there the blue flow demand is fromBiβ

to j. Again, the value of this demand is picked to be the
same as the weight of the blue outgoing edge fromBi in
Fig. 3. Similarly, we construct red and blue flow demands
corresponding to each red node in the original construction.
All other nodes’ demands are picked to be irrelevant,e.g.,
by setting their value to be zero.

This construction of the network and demands has the
following property: For any node in the original network, if
the corresponding red outgoing flow is selected, then no blue
incoming or outgoing flow can be selected. Similarly, if the
blue outgoing flow is selected, no red incoming or outgo-
ing flow can be selected. Further, it is possible to satisfy all
blue-flow demands simultaneously, or to satisfy all red-flow
demands simultaneously. Thus, the optimal set of flows cor-
responds to the blue spanning tree in Fig. 3. However, if even
one blue flow is dropped, the optimal set of demands to pick
would correspond to the red spanning tree. Thus, it follows
that the dynamic instability of this optimization scheme is
Ω(n). ⊓⊔

Note that this dynamic instability analysis only provides
a lower bound on the communication cost of a distributed
implementation: The fact that a particular optimization scheme
has low dynamic instability does not imply that there is an
algorithm with low incremental communication costs. Fur-
ther, the importance of low dynamic instability depends to a

12 Joan Feigenbaum et al.

B1α

B11

3
2

5

5

7

7 7

7

9

9 9

9 9

9

9

9
R1B1 B2 R2 B3 R3 B4 R4

j
B12

B13

B14B1β

FromB3α

FromB2α

FromR1α

To R11

To j

Fig. 5 Transformation of a single node in construction of Theorem 4.

great extent on the context (as does the choice of an appro-
priate domain); while it is clearly essential for a BGP-based
algorithm, it may be irrelevant in some applications. How-
ever, this analysis appears to be fairly easy in many cases
and should provide a useful tool in comparing different op-
timization schemes.

7 Conclusion

We have presented a formulation of welfare-maximizing pol-
icy routing in the mechanism-design framework. We showed
that, in the most general case, it is NP-hard to maximize the
overall welfare or even to approximate it within any reason-
able factor. When utility functions are restricted to the class
of next-hop preferences, an optimal strategyproof mecha-
nism is polynomial-time computable. However, a BGP-based
distributed implementation of this mechanism appears to be
unrealistic: It may converge very slowly even on small-dia-
meter networks, and it may require messages to be sent to
a large fraction of the nodes whenever any node changes its
preferences.

This raises several natural questions for further study.
We can ask whether it is possible to design a mechanism
for the next-hop preference setting thatapproximatelymax-
imizes the overall welfare and also has a low-complexity
BGP-based distributed implementation. Another approach is
to find reasonable additional restrictions on the preferences
for which an efficient exact algorithm exists.

An unusual feature of our computational model is the use
of the dynamic communication requirement as a complexity

measure. This may be relevant to other problem domains as
well: Many network protocols are designed to operate over
long periods of time, during which their inputs frequently
change. Thus, it may be useful to extend the dynamic-stability
analysis in Section 6 to other distributed optimization prob-
lems.

Acknowledgments

We would like to thank Tim Griffin and Vijay Ramachandran
for helpful discussions.

Appendix

We include here a proof that the lowest-cost routing mech-
anism described by Feigenbaumet al. [5] satisfies the prop-
erties P1-P3 introduced in this paper, and thus meets our re-
quirements for BGP-based algorithms.

Theorem 5 Consider the route and price computation algo-
rithms for the lowest-cost routing mechanism of [5], and as-
sume that all costs are in the range[1, r], for r = polylog(n).
Then, the mechanism satisfies properties P1-P3.

Proof We adopt the following notation from [5]: Let ak-
avoiding pathbe a path that does not pass through nodek.
Then, define

d
def
= max

i,j
||LCP fromi to j||

d′
def
= max

i,j,k
||lowest-costk-avoiding path fromi to j||,

Mechanism Design for Policy Routing 13

where||P || denotes thenumber of hopsin pathP . Note that
the lowest-cost path may have more hops than more expen-
sive paths. We now prove that each property is satisfied:
(P1) The LCP route and price computation algorithm was
constructed to use space proportional to the length of the
route.
(P2) The result in [5, Theorem 2] shows that the mechanism
converges inmax(d, d′) stages. ForunweightedInternet-like
graphs, bothd andd′ areO(log n). If the weights are very
skewed, the convergence may takeΩ(n) stages; however, if
all the weights are in the range[1, r], for small r, thend
andd′ are at most a factor ofr greater than their respective
values in the underlying unweighted graph. (Any path with
more hops would have a cost higher than that of the corre-
sponding LCP or minimum-costk-avoiding path in the un-
derlying graph.) In this case, the LCP mechanism converges
in O(r log n) stages.
(P3) The failure of a nodei only affects the nodes for which
i lies on the LCP or on the minimum-costk-avoiding path
(for somek). For any nodea, there are at mostd nodes on
the LCP toj; for each such nodek, there are potentiallyd′

different nodes on the lowest-costk-avoiding path froma to
j. Thus, each node is affected by at mostdd′ other node fail-
ures; this argument also holds for cost increases. Similarly,
when the node comes back up, only those nodes that end
up having it on their LCP or minimum-costk-avoiding path
are affected. Finally, we note that a small change in the cost
of one node does not change the routing tree (except in the
rare case that multiple paths have the same length). Thus, a
node near the root of the tree may impactΩ(n) nodes, but,
because most nodes are near a leaf of the tree, a change in a
single node only affectsO(dd′) other nodes on average. In
Internet-like graphs with weights in a small range, we ex-
pectd andd′ to be polylog(n), and so most changes trig-
gerUPDATE messages among only a small subset of then
ASes. ⊓⊔

References

1. Archer, A., Tardos,́E: Frugal path mechanisms. In:Proceedings of
13th ACM-SIAM Symposium on Discrete Algorithms (SODA ’02),
pages 991–999, ACM Press/SIAM, New York (2002).

2. Clarke, E: Multipart pricing of public goods. Public Choice 11,
17–33 (1971).

3. Edmonds, J.: Optimal Branchings. Journal of Research of the
National Bureau of StandardsB71, 233–240 (1967).

4. Elkind, E., Sahai, A., Steiglitz, K.: Frugality in path auctions.
In: Proceedings of the 15th ACM-SIAM Symposium on Discrete
Algorithms (SODA ’04), pages 701–709, ACM Press/SIAM, New
York (2004).

5. Feigenbaum, J., Papadimitriou, C., Sami, R., Shenker, S.: A BGP-
based mechanism for lowest-cost routing. Distributed Computing
18 (2005) 61–72.

6. Feigenbaum, J., Papadimitriou, C., Shenker, S.: Sharingthe cost
of multicast transmissions. Journal of Computer and SystemSci-
ences63, 21–41 (2001).

7. Feigenbaum, J., Sami, R., Shenker, S.: Mechanism Design for
Policy Routing. In:Proceedings of the 23rd ACM Symposium on
Principles of Distributed Computing (PODC ’04), pages 11–20,
ACM Press, New York (2004).

8. Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism
design: Recent results and future directions. In:Proceedings of the
6th International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communication (DIALM ’02), pages
1–13, ACM Press, New York (2002).

9. Green, J., Laffont, J.: Incentives in public decision making. In:
Studies in Public Economics, volume 1, pages 65–78., North Hol-
land, Amsterdam (1979).

10. Groves, T.: Incentives in teams. Econometrica41, 617–663,
(1973).

11. Håstad, J.: Clique is hard to approximate withinn1−ǫ. Acta Math-
ematica182, 105–142 (1999).

12. Hershberger, J., Suri, S.: Vickrey prices and shortest paths: What
is an edge worth? In:Proceedings of the 42nd IEEE Symposium
on the Foundations of Computer Science (FOCS ’01), pages 129–
140, IEEE Computer Society Press, Los Alamitos (2001).

13. Humblet, P.: A distributed algorithm for minimum weightdirected
spanning trees. IEEE Transactions on CommunicationsCOM-
31(6), 756–762 (1983).

14. Karp, R.: Reducibility among combinatorial problems. In:
R. E. Miller and J. W. Thatcher, editors,Complexity of Computer
Computations (Proceedings of a Symposium on the Complexity
of Computer Computations), pages 85–103, Plenum Press, New
York (1972).

15. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and
Economic Behavior35, 166–196 (2001).

16. Sami, R.:Distributed Algorithmic Mechanism Design. PhD thesis,
Yale University (2003).

17. Spielman, D., Teng, S.: Smoothed analysis of algorithms: why the
simplex algorithm usually takes polynomial time. Journal of the
ACM 51, 385–463 (2004).

18. Vickrey, W.: Counterspeculation, auctions, and competitive sealed
tenders. Journal of Finance16, 8–37 (1961).

