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Abstract The Border Gateway Protocol (BGP) for intersure for Internet algorithmslynamic stability which may

domain routing is designed to allow autonomous systerns useful in other problem domains.

(ASes) to express policy preferences over alternativeesut

We model these preferences as arising from an AS’s under-

lying utility for each route and study the problem of finding

a set of routes that maximizes the overall welfdre, (the

sum of all ASes’ utilities for their selected routes). .
We show that, if the utility functions are unrestrictedsthil Introduction

problem is NP-hard even to approximate closely. We then

study a natural class of restricted utilities that we catkt- The Internet is composed of many independently managed

hop preferencesWe present a strategyproof, polynomialsubnetworks called domains autonomous syster(ASes).

time computable mechanism for welfare-maximizing routFhe task of discovering and selecting routes between these

ing over this restricted domain. However, we show that, i&Ses is calledhterdomain routingCurrently, the only widely

contrast to earlier work on lowest-cost routing mechanis@ieployed protocol for interdomain routing is the Borderésat

design, this mechanism appears to be incompatible with B@&y Protocol (BGP); through BGP, a router can learn of

and hence difficult to implement in the context of the curremeutes from neighboring networks, select routes from the

Internet. Our contributions include a new complexity mednultiple alternatives it may learn of, and advertise its se-

lected routes to other networks.
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privately to individual ASes; thus, even if there were a cemeutes is that all routes to a given destination must form a
tral authority capable of enforcing a policy, it could not detree; this is a very natural constraint in the Internet, wher
tect strategic reporting of this information. This paper eyacket forwarding decisions are based only on the destina-
plores the extent to which one can cope with these stratetian (not source and destination) of the packet.
issues in a computationally feasible manner. Our first result is that, for general preferences, comput-
Thealgorithmic mechanism desigpproach, introduced ing an optimal set of routes is NP-hard,; it is even NP-hard to
by Nisan and Ronen [15], seeks to address both incenti@@npute a solution that approximates the optimum to within
and computational complexity. One of the problems studiadfactor ofO(ni*E), wheren is the number of nodes in the
by Nisan and Ronen is a simple routing problem: Givenreetwork, andt is an arbitrarily small positive constant. We
graph with a distinguished source noglea distinguished prove this result by an approximability-preserving redurct
sink nodet, and costs associated with each edge, find them the Maximum Independent Set problem.
lowest-cost path frora to . The wrinkle in the modelis that  This leads us to consider a restricted class of utility func-
each edge can strategically lie about its cost. Nisan and Riens that we calhext-hop preference$he restriction is that
nen showed how a central authority can compute paymeatsAS’s utility for a route can depend only on the first hop
for each edge such that every edge’s dominant strategy isifong that route. This class of utility functions capturesfp
be honest about its cost, yieldingtategyproof mechanismerences arising from customer/provider/peer relatigrssin
for this problem. Later, Hershberger and Suri [12] presgéntaS might have with its neighbors. These commercial rela-
amore efficient algorithm to compute the payments requirgédnships are a major motivation for allowing flexible pglic
by this mechanism. Archer and Tardos [1] and Elketd routing in BGP, and so this is an interesting class of prefer-
al. [4] study mechanisms to select a path that minimizeseaces to study. We show that, for next-hop preferences, the
metric from a broad class, not necessarily the sum of edgelfare-maximization problem reduces to finding a maxi-
costs; this too can be viewed as a variant of lowest-cost rorfum-weight directed spanning tree to each destination and
ing. is hence computable in polynomial time. We derive a strat-
The mechanism-design approach was extended by Feiggyproof mechanism for this problem and show that it can
baumet al.[5], who sought lowest-cost routing mechanismglso be computed in polynomial time.
in the context of interdomain routing. Their main contribu- We next ask whether it is possible to implement this
tion was to focus ordistributed mechanisms, thus adopt-mechanism with a distributed, BGP-based algorithm. Unfor-
ing the distributed algorithmic mechanism design approatimately, we find that this is not the case. In order to prove
initiated by Feigenbaum, Papadimitriou, and Shenker [@hat a BGP-based implementation is impractical, we refine
Feigenbaunet al. [5] give a strategyproof mechanism forthe model of BGP-based computation given in [5] and show
the lowest-cost routing problem that can be computed by #rat any implementation of the welfare-maximizing policy-
efficient distributed algorithm. Moreover, they show thast routing mechanism would be unacceptable, even on Inter-
mechanism can be computed by a “BGP-based” algorithret-like
i.e., an algorithm with similar data structures and commungraphs with small numeric valuations, for two reasons: (1)
cation patterns to BGP that requires only modest increagd® selected routes may be long, and hence the routing algo-
in communication and convergence time. Thus, the mechi@hm may take a long time to converge; and (2) Any change
nism is “backward compatible” with BGP, which is criticalin any AS’s utilities may require communication f&(n)
for any routing algorithm that must be implemented in theodes, which defeats the rationale of using a path-vector
current Internet. protocol such as BGP. Thus, we conclude that, unlike the
All the work on mechanism design for routing has folowest-cost routing mechanism of [5], this mechanism is not

cused on variants dbwest-costouting. In practice, this has €asy to implement in the current Internet.

two drawbacks: The cost model is oversimplified, and the Mechanisms, and indeed Internet algorithms in general,
requirement that all ASes use a lowest-cost routing poticyrieed to be compatible with the existing protocols that they
too restrictive. In this paper, we investigate whether tise dseek to extend or replace; this allows them to be adopted
tributed algorithmic mechanism design approach can be @adually. Positive results about protocol compatibifigve
tended to general policy routing. In essence, we look at-int®een studied earliee.qg, in [5,8]. However, proving nega-
domain routing at a higher level of abstraction: We assurtige results about protocol compatibility is more diffiguti

that source ASes have preferences over alternative rautegur knowledge, our current paper is the first to prove that a
a destination, but we do not model tbausesof these pref- mechanism isncompatiblewith a given protocol. Thus, part
erences. Thus, in our initial model, an AS can express adour contribution is refinement of the BGP-based computa-
routing policy, provided that it is based someunderlying tional model to allow negative results to be proven. Further
utility function—it need not arise from the cost of the rout&ve believe that the “dynamic stability” criterion introckat

but may take into account unspecified, subjective route #-Section 5.3 could potentially be used to prove hardness
tributes as well. The goal of the mechanism is to computesults for other Internet-algorithmic problems.

routes for every source-destination pair such thabtrezall The rest of this paper is structured as follows: We for-
welfarg i.e., the sum of all ASes’ utility for their selectedmulate the welfare-maximizing policy-routing problem in
routes, is maximized. The only constraint on the select&ection 2. In Section 3, we prove that, with arbitrary prefer
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ences, the problem is NP-hard, even to approximate clos&lss result in their preferring routes that do not pass thoug
We then turn to the next-hop preference model in Sectionthem; in the latter, ASes have differing preferences over al
We design a strategyproof, polynomial-time computable mirnative routes, and the constraint that routes form a tree
chanism, the MDST mechanism, that maximizes welfare igads to conflicts of interest. There are many reasons why
this model. In Section 5, we elaborate on the BGP-basA&es may have real economic preferences for different soute
computation model and show that the MDST mechanisiwo different routes from to j may lead to differing tran-

is hard to implement in this model. The crux of this resit costs, customer satisfaction, or service paymentsign t
sult is a proof that any distributed algorithm for the MDSpaper, we assume that AS preferences among the candi-
mechanism will suffer from poodynamic stability Every date solutions are dictated entirely by the route fidm; in
change in the network or preferences will trigger a largesach solution, independent of the routes from other nodes to
number of messages in the network. We then demonstratén a sense, this is complementary to the lowest-cost rout-
how dynamic-stability analysis can be extended to other dpg model, in which AS’s utility for a tree depends only on
timization problems in Section 6. Finally, in Section 7, wéhe routes on which it wastaansitnode.

summarize and present some open questions. Specifically, we suppose that AS preferences for paths
can be expressed as a utility function: P,; — R, where

Pi; is the set of all possible paths froito j and theempty
path L (which corresponds to solutions in which there is
no route from: to j). Only the relative utilities are impor-

The network consists of Autonomous Systems. For sim-fant, and so we can normalize this function by requiring that

plicity, we treat each AS as an atomic entity; thus, we mo ;élgg) = 0. Further, we assume that, for any rowtg from

2 The Policy-Routing Problem

the network as a directed graph with nodes correspondih g(')tuk;(ep ijc))rsze ?&'&gg}hﬁg v_\:]orcquso, rkc])a\{g]gtzrllly route o
to the autonomous systems. The edges in this graph corfe- W ving u :

spond to BGP peering or transit relationships between ASes: AS _preferenpes are private |nformat.|o_n, and hence an_AS
We have a directed edge from noddo nodeb if b adver- M2y MiSreport its preferences, unless it is given appragpria
centives. These incentives are provided byechanism

tises its routes ta. In practice, the edges in this graph ma _ X .
P g grap vg;bstractly, a mechanism for the routing problem for desti-

vary with the destination under consideration; however, n 7 tak . he ol , d utli fil
assume here that these edges are identical for routes to ApjPN/ taxes as input the players reported utility profiles
u’ = (uf,ul, ..., ul) and outputs a routing trééand a vec-

destination. i >

We assume throughout that the network is 2-connectdd’ of payme”.t?f’ = (p1;---,Pn), wherep; is the a”?,oun.t of
i.e., even if a single node is removed, there is a directed p ney paid ta. We_ use the notation; (') to denote’s Ut'l.'.
from each node to every other node in the remaining gra _for its path to; n thgtreeT. We assume that the u.t'“ty
This assumption is necessary to rule out monopolistic no gﬁcnons are quasilineaand thus can be expres_sed directly
that can extract infinite payments. Earlier measurements' erms_of money. Then, ABs combined benefit from the
a realundirectedAS graph suggest that there is a large corfiiechanism can be expressed as the surtl’) + pi). A
ponent that remains connected even if a single node is p&e_zchamsrn isstrategyproofif the payments are such that
moved [5]; further, for an AS not in this component, there i very ASi's dominant strategy is to VQPO“‘% truthfully. In
typically no route-selection problem, because each mreother word§, strategyprqofness requires that, re_ga_rtdlliass
provider that serves such an AS typically knows only o% her ASes’ reported utility functions, each Agaximizes

route to it, and that is the route that the provider advestisé:'c Su/”l(“za;) :—hpi) byhrep.ortlng its true utility function
We believe that these properties of AS graphs will hold ev e Ui = ui) 10 Ne mechanism. L
when edge directions are taken into account. The economic goal of this routing mechanism is to max-
A route from a nodei to a nodej is simply a directed imize theoverall welfarei.e., to choose a routing tree T that
path, with no cycles, fromto j in the AS graph. Theouting mSXIm{/Z\/eSWI(Ijgr)]':tr?ief]‘v ui(T), whereN is tthe set %fl all
problemin this network is as follows: For each pair of node§>€S- We call this thevelfare-maximizing routing problem
We make one further simplifying assumption: We as-

1 andj, we need to select a single route froro ;. Further, hat. f h nodeth b d
we insist that the set of all routes to destinatjoforms a SUMe that, for each nodethe paymenp; must be stored at

tree rooted ay. This is a natural restriction when packet§0dei. Thus, when the value of; changes, nodemust be
are routed one hop at a time (as opposed to being routRfiated. This natural assumption allows for a clearer proof
in an end-to-end mannee,g, source-routed). A candidate®f the_hardnes; result in Section 5.3. We can drop this as-
solution to the routing problem is thus a set of directedgyegUMPtion and still prove essentially the same hardneskresu
one for each destination. The trees for different destinati NS extension is discussed at the end of Section 5.3.
are independent of each other, and hence it is possible to
analyze the model for a single destination. In the remainder
of the paper, we consider routing to a fixed destinaji.qn 3 NP-hardness of the general

The basic difference between the lowest-cost routing prob-

lem and the policy-routing problem !ies in the source quref_l A utility function is quasilinear if the player’s happiness receiv-
erences. In the former, the costs incurred by transit caiirig an outcom&” and paymenp; is equal tou; (7") + p;.
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problem

In this section, we show that the general form of the welfare-
maximizing routing problem stated in Section 2 is not trac-
table.

An instance of the routing problem we are considering is
as follows: We are given a directed gra@gh with a distin-
guished destination nodge Each node is associated with a
setS; of allowed path$ from i to j in G and a utility func-
tion w; S — %20.

We now show that, for the very general class of utility(®) (o)
functions defined in Section 2, it is NP-hard to compute a
tree that maximizes the overall welfare. We prove this tesul
by a reduction from théndependent Sgiroblem: Given a
graphG with verticesN, find a largest subset of NV such ©
that no two vertices irt have an edge between them. This
problem is known to be NP-hard [14]; in fact, it is even NP-
hard to approximate the size of the largest independent set t G :{> H
within a factor ofnz < [11]. Under the different complexity
assumption thalv P> # Z PP, Hastad has shown that thergig 1 Reduction from Independent Set. The p#this shown in bold.
is no polynomial-time algorithm to approximate the size of
the largest independent set to within a factonbf< [11]. . .

Given an instanc& = (N, E) of the Independent SetLemma 1 Given an instance& = (I, E) of the Indepen-
problem, we construct an instance of the welfare-maxingiziflent Set problem, IetH, {S;}, {u:(-)}) be an instance of
routing problem. The construction of the netwdfkis illus-  the welfare-maximizing routing problem constructed as de-
trated in Fig. 1. For each vertexin N, we have aerminal Scribed above. LeT™* be an optimal routing tree for this
vertext, in H. In addition, for each edge= (v, vs) in E, problem. Then, the following conditions hold:
we add three vertices, e"2, ande to H. We also add di- (i). For any vertices);, v, € N such that(v;,v2) is an edge
rected edges froraito e”* ande”>. Finally, we add a special  in GG, at most one of,,, andt,, has an allowed path t¢
destination vertey to H. We then choose an arbitrary order in T*.
for the edges inF. For a vertexv in N, lete;,,e;,,...,e; (ii). If S C N isanindependent set, théw(T*) > |5].
be the edges incident anin G, in that order. We add the di- )
rected edgeét,, e, ), (¢!, ), ... (¢ &), (e%,j) to H. Proof () Let ¢ be the edgguv:,v2). If ¢,, has a path tg,

i1

In this manner, we construct a directed path it must be the patl®,,. The vertexe lies on this path, and
hence the unique path fromto j in 7* must pass through
P, = (ty,€,), @iy, ef)), (€f,,8in), - - -5 (i ep), (ed), 7) e’', note2. It then follows that the pati®,, is not contained

in 7*, and hence there is no path frap to j in 7.

for each terminal vertex,. Now, we letS;, = {P”}'. and i) No two vertices inS have any edge in common; hence,
ut, () = 1, for gach such vertex. For a n_ontermlnal Vel v1,v9 € S, the pathsP,, and P,, are disjoint. Thus, the
tex e corresponding to an edge= (v1,v2) in G, we let ' y ! 2 y

= == a - union of pathspP, for all v € S forms a treeT’(S). Fur-
Se = {Pu,, Py, }, WwhereP,, is the suffix of P,, frome to th te th T - T+ i timal. and h
j» andP,, is the suffix ofP,, frome to j. We letug(P,,) = er, we note thal/(T'(5)) = |5]. T* is optimal, and hence

ug(P,,) = 0. Similarly, for a vertex of the forma”, we let W(T") = |S]- H
S.. contain only the suffix of?, from eV to j, and sek¥’s Corollary 1 If S is a maximum independent setdh then
utility for this path to zerd' T'(S) is an optimal routing tree. Conversely/7if is an opti-
mal routing tree, thert = {v|t, has a path tg in 7"} is a

2 There may be an exponentially high number of paths ficm; maximum independent setdh
in the graph (and, indeed, in the Internet). Thus, it miglensehat P

even describing the AS utility functions completely is a élegs task. Finally, we observe that this reduction implies that even

However, it is possible that an AS’s utility function can besdribed an approximately optimal routing tree is hard to find 71
in a polynomial amount of space. We include a set of allowetigpa

in the problem description simply to provide one such regmeation: 1S an approximately optimal routing tree, then the Set
A path P;; implicitly has utility 0 if it is not in the allowed set. The {y|¢,, has a path tg in 7'} is an approximately maximum in-
NP-hardness reduction in this section shows that, even alhétes dependent setifi. with the same approximation factor. Note

have utility functions that can be expressed conciselygu#iis rep- . ; .
resentation, it is NP-hard to find a welfare-maximizing imgttree. that We reduce a graph with vertices to a network with

Any other concise representation of utility functions witmall sup- O(n?) nodes and)(n?) allowed paths. Thus, am2)i ¢ =

port would suffice for the reduction described here. ns—2e approximation to the welfare-maximizing routing prob-

% We could alternatively defing. andS.» to be empty sets, becauseI Id ai 1 9 imation to the ind
all of their candidate paths have zero value. However, weoshdo €M WOUId give us am= = approximation 1o the indepen-

explicitly define the possible paths in order to clarify tiomstruction. dent set problem, and @n2)z—¢ = n!~2¢ approximation to
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the welfare-maximizing routing problem would give us awith a vertex corresponding to each AS and an identified
n'~2¢ approximation to the independent set problem. Cordestination vertey. If a € S;, we include a directed edge
bining this with known results on the hardness of computingfrom  to a; we assign this edgeweightu, = u;(a). A
exactly maximum independent sets and approximately maguting tree is then simply a directed trest{orescenceTl’
imum independent sets [14,11], we get the following hareith all edges directed towards the rgot-urther, an AS’s
ness result: utility for its route inT' is the weightu. of the edge outgoing

_ . from 7 in T if such an edge exists orotherwise. Thus, the
Theorem 1 Given a general network om nodes with a to- yerall welfare with routing tre@ is

tal of O(n) allowed paths and arbitrary AS-path utility func-

tions, W(T)=> ue
— UnlessN P = P, there is no polynomial-time algorithm e€T
to compute a welfare-maximizing routing tree. It follows that the welfare-maximizing routing treg* is a

— Foranye > 0, unlessN P = P, there is no polynomial- maximum-weight directed traeith root j in G;.
time algorithm to compute a tree the total welfare of \ve first show that we can restrict our attention to di-
which approximates that of a welfare-maximizing roufectedspanning trees
ing tree to within a factor ofi —<. . . .
_ Foranye > 0, unlessN P — Z PP, there is no polynom- L€éMma 2 Suppose we are given a weighted grapf with
ial-time algorithm to compute a tree the total welfare oyertex setv. DefineR C N by
which approximates that of a welfare-maximizing rout- . .
ing tree I;)gwithin a factor ofyz <. SR {i € N'| There is a path fromto jiin G} U {j}
Then, there is a maximum-weight directed tree with rpot
Theorem 1 probably rules out the possibility of solvinghat spansR.
this problem exactly or approximately in the most geneEBI
case. There are two possible approaches to restrict the scof?

of the problem in order to make it more tractable. The ﬁrSt'qShere is a path from 10 j in G, we can add edges from
J g

to restrict the class of networks, while still covering Imtet- hi h to7* without d A iaht b h
like situations. The second approach is to restrict thesas S Path tol™ without decreasing its weight, because the
ilities are always non-negative. By adding edges aloigy th

allowable utility functions; we pursue the second approaHIn - !
in Section 4. path in order, we can eventually grow the tree to include

without reducing its weight. O
Note that the ASes that cannot even reaclan be com-

pletely ignored for the purpose of finding routesjtAlso,

it is easy to compute, for each ASwhether; is reachable

. . . . from 4. This, combined with Lemma 2, means that, without

In this section, we consider solutions to the welfare-ma Lss of generality. we can assume thet spans the vertex

mizing routing problem with a restricted class of AS prefeéetN 9 4 P

ences. Specifically, we assume that #sSutility «;(P;;) for THus we want to compute a maximum-weiaht directed

route P;; depends only on theext hopfrom ¢ on this route S annin' tree (MDST) w?th edaes directed togva'd$A

(i.e. the utility depends only on which a@% neighbors this P 9 ' 9 d

route passes through). The motivation for this is that an Aanning tree W'th edges directed t_owafaisal_s 0 known as
aj-arborescence; thus, we seakaximum-weight spanning

is likely to have different economic relationships with-dif arborescencg® This is a well-studied problem; the first
fere_nt neighb_o_r_s (customers, provide_zrs, and p.eers)’.ngadg)olynomial—time algorithm was given b}? Edmoﬁds 3], A
to different utilities for routes depending on which neighb '

is used for transit; however, it is reasonable to assume tEﬁmbUted algorithm for the MDST problem was given by

two routes toj through the same neighbor have a simila Umblet [13].
economic impact on. Further, we assume that the set of al-

lowed routes from is likewise determined solely by which, 1 A \yvcG Mechanism
neighbors of may be used to transit packets destinegl.to

With this assumption;’s utility function can be written \ye no\ describe a welfare-maximizfgtrategyproof mech-
as a function; (a) of the neighboring ASi. Similarly, the  4nism for the welfare-maximizing routing problem with next

set ofi's allowed routes can be expressed as a5s@ff i's o5 preferences. This is a direct application of the theory
neighbors that can be used to carry transit traffig.tfrhe

set S; reflects agreements betweemand its neighbors: If f‘_This is essentially equivalent to the problem of computing a
a € S;, it means that, in principle,is willing to send pack- minimumweight spanning-arborescence, with weights adjusted ap-

ets throughs, and a is willing to accept packets fromfor ~ProPriately. . . .

destinationi ) In the economics literature, welfare-maximizing mechasisire
atiory. . . . Iso known as “efficient” mechanisms. In this paper, we uset¢hm

This leads to a convenient combinatorial form of the welyeifare-maximizing” to avoid any confusion with compuitatal effi-

fare-maximizing routing problem. We construct a gr&phy  ciency.

of Let T* be a maximum-weight directed tree with root
Suppose there is some vertexc R such thatv ¢ T*.

4 Next-hop preferences




6 Joan Feigenbaum et al.

of Vickrey-Clarke-Groves (VCG) mechanisms [18,2,10]. .1 BGP-based Distributed Computation
follows from the characterization of welfare-maximizinga
strategyproof mechanisms [9] that the payment ta Afist We start by recalling the BGP-based computation model de-
have the form: fined by Feigenbauret al.[5]: An algorithm is “BGP-based”
if it has similar data structures and communication pattern
- X i (a simplified abstraction of) BGP. Further, such an algatith
pi= Zu“(T ) + hi(u™) (1) has acceptable performance if the storage space per router,
a7 time to convergence, and total communication required in
(Here,h;(-) is an arbitrary function ofi ¢, the vector of running the algorithm are within constant factors of the re-
utilities of all agents other than) Further, any mechanismauirements for running BGP itself.
with output and payments of this form is strategyproof [9].  This definition of BGP-based algorithms is not yet com-
The exact form of the functions;(-) can be determined plete. It is adequate for proving that a specific algorithm,
by normalizing the payments to satisfy other reasonable cstich as the price-computation algorithm in [5], does noseau
ditions. We normalize the payment by requiring that nodéarge changes in the structure or performance of BGP: We
that do not carry transit traffic (leaf nodesiiii) are not paid. can assure ourselves by inspection that the algorithm “has
The rationale for this requirement here is that leaf nodes &imilar structure” to BGP. However, for proving impossibil
not contributing to other agents’ value. LEt " denote the ity results, we need a more precise specification of the class
maximum-weightj-arborescen®én N\ {i}. Then,W (T~%) of acceptable algorithms. Thus, we elaborate on the specific
is a function ofu—? alone. Recall that an AS can refuse to agroperties that we expect a BGP-based computation to have.
cept transit traffici.e., effectively cut off alincomingedges. Consider routing to some destinatignThe properties
If AS i did this, it would force the optimal tree to have it agve require of any BGP-based computation of the routgs to
a leaf node. We would then ha® =7~ U (i,a), where are:

(i,a), an edge from AS to some other AS: in the net- p1 The routing tables should us¥!) space to store a route

work, is the heaviest outgoing edge framAs i would be a of lengthi.

leaf, the paymenp; must evaluate o in this case; for this pp Routes should be computable in time polynomial in the
to occur, we must have; (u™") = —W (7). Substituting  giameterof the network rather than the total size of the
back into Equation 1, we get the following formula for the  network.

paymentp;: P3 When a node fails or there is a change in the information
P = Zua(T*) — wW(r) (such as costs or preferences) associated with the node,

the change should not always have to propagate to the

. . » whole network; instead, it should usually be propagated
= W(T") —ui(T") = W(T™) @) only to a small subset of nodes. Formally, we require
We call this theMDST mechanismn order to compute that there are only(n) nodes that trigge®(n) UPDATE

this mechanism, we will have to compute the MDST, as well messages by failing and coming back up, or by changing

as the payment; to be given to each A% The payments their cost or utility reports by infinitesimal amounts.

can be computed by solving: — 1) maximum-weight;- Property P1 says that the routing table should have roughly
arborescence instances (one for each node exgepind the same size as BGP routing tables or be smaller; this is

thus the MDST mechanism is polynomial-time computablgjeayly desirable in any proposed routing algorithm. While

the number of ASes in the Internet has grown rapidly, the
AS-graph diameter has remained small. In addition, current
Internet routes typically pass through few intermediate &S
Property P2 requires a routing algorithm to stabilize rppid

. . _.._in networks of this form.
Up to this point, we have formulated the problem of finding 1,0 justification for Property P3 is as follows: Irink-

the welfare-maximizing routing tree with next-hop prefelgaierquting protocol, any change has to be broadcast to all

ences as a maximum-weight directed-spanning-tree problg{n 5 qes in the network. BGP ispath-vectorprotocol,
and derl_ved the F‘at“ra' strateg_yproof, wglfar_e-maxmgz! artly to avoid this dynamic communication burden; thus, a
mechanism for this problem. This mechanismis polynomiggss_pased algorithm should preserve this property. As the
time computable in a centralized computational model; thig of routes tg forms a tree, we cannot prevent changes in
leads us to hope that, as in the case of lowest-cost rouing [3 ey nodes near the root from affecting many other nodes.
we can find a BGP-based distributed algorithm for It UrS'milarly, it seems acceptable that a large change in thie cos
fortunately, this appears not to be the case. In Section % preference of nodé can put it near the root and hence

we further develop the BGP-based computational model;é}ﬁect many nodes. However, we don't waverychange to

sections 5.2 and 5.3, we argue that the MDST mechanismds it in this much communication; this is expressed in the
incompatible with BGP.

statement of P3.
® Recall that we assume the network is 2-connected, and haobe s~ Property P3 is an unusual feature of our model in that it
atree exists. deals with the dynamic performance of an algorithm—speci-

a#i

5 Hardness of BGP-based
Implementation
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fically, it requires the algorithm to hawdynamic stability In [5], the authors presented a distributed algorithm to
The main analytic reason for introducing this constraimndis compute the lowest-cost paths (LCPs) and the prices retjuire
rule out algorithms that compute routes in a centralizelalfasdy the strategyproof LCP-mechanism. This algorithm was
ion at a single location, using logarithmic-depth spannif@GP-based” in the sense that it used similar data strusture
trees to collect the inputs and distribute the outputs. Suahd communication patterns as BGP. We can show that this
an algorithm is clearly not similar to BGP, yet it could meedlgorithm satisfies properties 1-3, provided the costs are n
the static performance requirements with some clever emry skewed; the proof is included in the Appendix.

coding in the routing tables. The dynamic stability require By contrast, we now show that a welfare-maximizing
ment prevents this and also provides new insight as to whyaating mechanism cannot simultaneously satisfy all these
fully distributed algorithm, such as BGP, may be preferabjgoperties, even for networks and preference values that fit
in loosely coupled systems. our definition of “reasonable.”

It may be argued that requirements P2 and P3 capture
desirable properties of distributed algorithms generatig )
not BGP-based algorithms in particular. This is not an ebsta:2 Long convergence time
cle for our purposes in this section. Because we are trying to
show that the MDST mechanismnst BGP-compatible, it Fig. 2 shows an example of a network with — 1 nodes for
suffices to show that it does not have properties required #hich a BGP-based algorithm for the welfare-maximizing
a larger class of algorithms that contain those that are B@puting mechanism takeg(n) stages to converge. The net-
based. These three properties suffice for the negativet re¥(firk consists of a balance@arborescence. The leaf nodes
sought in this section. We do not claim that these propéit€ai,az, ..., a,. The network can be extended to have di-

ties provide us with a fully fleshed out “BGP computation@@meter2logn by adding reverse edges with lower prefer-
model”; that is a goal for future work. ence values; these reverse edges do not affect our argument,

We are also concerned about the robustness of our haf?fagj so we omit them from Fig. 2. S'f'?"a”y’ by adding one
ness results—a hardness result that is too contrived wolli§® Iow—preferef\ce edge from each internal node toa node
not be meaningful to the real-world application of this mecf?ms'de Its parent's subtree, we can arrange for the diamete
anism. For this reason, we do not necessarily require thégdemain fsmall even when any one node is removed. Each
conditions to hold for all possible networks and all possibfwde Is adjacent to at mosbther nodes, and so the network

cost or preference values. The only networks that we ce%t'Sf'es the sparseness requirement as well. .
about are “Internet-like” networks—those that can plalysib The prefer_enc_e values are shown as numbers (weights)
represent an AS graph or some subgraph of an AS graph.t thet e?t?es InhF_;g. 2‘.E€§h in {ax, IQQ’ . ‘;ﬁfl}[hpreffrlf
restrict ourselves to networks that satisfy three proesrti 0 route through its neighbai;, (value2) rather than take
They must be sparse, with average node degr@e; they the path up the tree (valug. Thus, thg welfare_—njaxmlzmg
must have small diameter—specifically, diametgtog n); routing solution, given by the maximum-weiglarbore-

and, when any one node is removed from the network, tieence In this network, consists of the paihs -- - a,, at-
diameter must remai@ (log n). ached to the remainder of the treezat Note that the values

It difficult to identi hat ble” are in a small rangd, 2]. We also remark that this remains
tis more difficult to identify what "reasonable” oSt Ony, gntimal solution even if any subset of the next-hop val-
preference values might be. We definitely want them 10 bg are perturbed by a small amount (less tharach).
polynomial inn and preferably polylogarithmic in. Fur- Thus, the optimal solution has a route of lengttn),

ther, we are not concerned with hardness that may arise Rg-» . hreference values in an open set around the specified
cause of some strange coincidence of specific numerical @al; ,as BGP builds routes on a hop-by-hop basis. An AS can
ues th?‘t hap_pen to _prciduce a vleg/_ un_ls)table stathe. Atthe s a route only when its next hop on the route has advertised
time, there Is no single natural distribution with respect t 5.4 it can itself extend and advertise the route only & th

Wlh'ch r\]/ve (I:an andalyze the avsrage—ca;]sedcomplexnyl orf] Xt stage. Thus, we have proved that any such algorithm
algorithm. Instead, we insist that any hardness result holfoq ot satisfy property P2:

over an open set of cost or preference values; this means

that the hardness holds over a region of preference spaggorem 2 Any BGP-based algorithm for computing the
with non-zero volume, as opposed to holding on isolate@xt-hop welfare-maximizing mechanism in the network of

points or a degenerate surface. This is similar in spirit f9g. 2, over an open set of preference values in a small
the smoothed analysisf Spielman and Teng [17]. For eX-range, take$2(n) stages to converge.

ample, in a lowest-cost mechanism, it is possible that, for a

specific cost profile, there are many paths to a node with ex- Given the hop-by-hop route construction in BGP, it may
actly equal costs. At this profile, the lowest-cost path may Beem that a more reasonable requirement than P2 is that the
sensitive to a large number of node costs. However, this semimber of stages required for convergence is proportional
sitivity occurs only because of numerical coincidence, and the length of the longest route. However, the length of the
it disappears if the costs are infinitesimally perturbedsTHongest selected route is also a function of the mechanism
example would not count as a hardness proof in our modehder consideration (in this case, the MDST mechanism);
because it does not meet the open-set criterion. for this reason, we prefer the more stringent requirement P2
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Destinationj Edge in MDST
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Fig. 2 Network with low diameter and a long path in MDST.

which is independent of the mechanism. One of the reasdosclarify the analysis; they have no particular semantics.
that the MDST mechanism is incompatible with BGP is prd=ach of these two edges has wei@ht1, whereL = 2m-+4.
cisely that it may select very long routes even in networks In each cluster in our construction, we identify two spe-
with small diameter and hence will cause BGP (or any hopial nodes: One is the “blue port,” and the other is the “red
by-hop protocol substrate) to converge very slowly. port.” For al-cluster,B is the blue port, and? is the red
port. We recursively construgk: + 1)-clusters from twak-
clusters, fork = 1,2,...,m — 1: We add a blue edge from
the blue port of the right-cluster to the blue port of the
left k-cluster; the latter then serves as the blue port of the
N ) . (k + 1)-cluster. Similarly, we add a red edge from the red
It may be argued that the long route in Fig. 2 is unlikelyqt of the leftk-cluster to the red port of the rightcluster,

to arise, because long routes are inherently undesiraide, gnich serves as the red port of tkle + 1)-cluster. These
hence ASes will lower their preference values for neigré—dges both have weiglit— 2k — 1.

bors with long routes to the destination. In other wordspeve Once we have built up the-cluster in this manner, we

though next-hop preferences may adequately capture an Agi$plete the network construction as follows: We add one
preferences at any given time,.these p_references will thefgre node, the destinatign We also add a blue edge from
selves evolve (over a longer time period, perhaps) to ryje, piue port of then-cluster toj, with weightZ —2m —1 =
out value profiles that lead to long routes. In this sectiaa, Y§ and a red edge from the red port of thecluster toj, with
show that, even if there are no long routes, any algorithm\y\%ightL — 2m — 2 = 2. The complete network, for = 3,
compute the next-hop welfare-maximizing mechanism Wil chown in Fig. 3.
not satisfy condition P3: There are situations in which gver  This network is sparse (each node has only two outgo-
change in a single node’s utility function will trigger ugda ing edges) and has low diameter, as required. As in Sec-
messages to at least half of the other nodes. tion 5.2, we can augment it with edges of lower value so that
At a high level, we prove this result as follows: We cone diameter stays low after removing one node; these edges
struct a network such that there are two edge-disjoint g not affect the analysis, and so we ignore them here. Al
borescence$’s andT’r such thatl's is optimal andT’r iS  the valuations are in the rande L], whereL = O(logn).
nearly optimal. In addition, these trees have the propBEY t The network we have just built has two distinguishgd
every transit node ifi’ is a leaf node i'’z. We prove that arhorescences: one consisting of all the blue edges and one
for each such nodg T’z contains the optimal treE™" in the ¢onsisting of all the red edges. We call these two arbores-
network withouti. Then, using the structure of the MDSTeencesr; and Tx respectively. In each of these trees, the
mechanism payments, it is easy to show thawill change longest path (route) has+1 = O(log n) hops. We will now

whenever any edge in eith@lz or Tx changes in weight. show that these twg-arborescences have greater weight
Updatingp; requires at least one message, and as this Migdn any othej-arborescence.

be done for almost half the nodes in the network, any algo- o .

rithm to implement the mechanism must violate P3. Lemma_3 If_ T is aj-arborescence in a network of the form
The network construction is depicted in Fig. 3. The nefOWn in Fig. 3, and’” has both blue and red edges, then

work hasn — 2™ + 1 nodes. We construct it with by recur-IN€re is anothey-arborescencé’ such thatv’(T’) > W (T')+

sively constructing clusters of nodes. 2.
At the bottom, we construct &cluster that consists of Proof Consider a minimum-sized cluster that has both red

two nodes,B and R. The1-cluster has two edges, a “blue”and blue outgoing edges ifi. Suppose this is & + 1)-

edge fromR to B and a “red” edge fromB to R. Here, cluster, as shown in Fig. 4(a). Consider the twolusters it

“blue” and “red” are simply labels that we attach to the edgéscomposed of, and label the poBs, R;, B2, R2 as shown.

5.3 Extensive dynamic communication
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3-cluster

2-cluster
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L— (2k+3)

k-cluster ) ! k-cluster
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L— (2k+3)

(b) TreeT

Fig. 4 Construction that increases the weight of a ffeeith both red and blue edges.

Now, the(k+1)-cluster has a blue outgoing edge; it mugeplace the red outgoing edge by the blue edge within the
be from the blue porB;. All smaller clusters have only one(k + 1)-cluster, with weight — 2k — 1. Because of the sym-
color of outgoing edge iff'. It follows that the leftk-cluster metric construction of thé-clusters, the red and blue span-
must have only blue edges. Similarly, the red outgoing edging trees have the same weight. Thus, the overall weight of
must be from the porR,, and so the righk-cluster must T is at leas® higher than the weight df. O
have all red edges. Thus, the spanning ffemust include
the blue spanning tree of the léftcluster, the red spanningLemma 4 For the network and weighta as constructed
tree of the rightk-cluster, and the two outgoing edges witfin Fig. 3, the maximum-weightarborescencd™ (u) is the
weight L — 2k — 3 (or less ifk = m — 1). blue spanning tree. Further, for any blue noBtg, 7~ 5= (u)

We now construct the treé® as shown in Fig. 4(b): We (the maximum-weighj-arborescence onV\{B.}) is the
replace the red spanning tree by a blue spanning tree &8 Spanning tree restricted v\ {3, }.
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Proof From Lemma 3, we know that the maximum weightf 251 nodes). Apart from the node that originated the
j-arborescence must be either entirely blue or entirely rezshange (which may be a blue node), every other blue node
At the top level, the blue edge has a higher weight than thmust receive an update message, thus proving the theorem

red edge; at all other levels of the construction, the waighdtatement. O
are the same. Thus, the blue spanning tree must be the maxi-The proof of Theorem 3 is based on our assumption that
mum-weightj-arborescencg&*(u). the paymenip, must be stored aB,.. However, we can

The red spanning tree hds, as a leaf and has weightdrop this assumption, and get a result that is nearly asgtron
only 1 less than optimal. Any othegrarborescence with, as follows:ps, must be stored apmenode. By property P,
as a leaf must have both red and blue edges and hence feaeh node can sto@(m) values only; thus, the payments
weight at least less than optimal, by Lemma 3. Finallyfor all the blue nodes must be distributed acrQ$s/m) =
we observe that any-arborescence oiV\{B,} can be ex- () nodes, which must all recei#DATES every time
tended to g-arborescence that hds, as a leaf, by adding the preferences change.
the red edgéB,, R,) with weight L — 1. Thus, the restric-  Dynamic problems with routing policies are inherently
tion of the red subtree &\ { B, } must be optimal. O harder for network operators to identify and correct than
static performance problems (such as the violation of 2 @1 Se
tion 5.2). In the latter case, the operator only has to chieek t
local routing tables to see that, say, a long route is being se
lected over a short route. However, in the example in Fig. 3,
‘each node’s local policy looks reasonable, and the operator
has no way of telling how a change in policy will affect the
Theorem 3 For networks constructed in Fig. 3 any infini-overall stability.
tesimal change in valuation must caudeDATE messages
to be sent to at leagi: —3) /2 nodes. This remains true even - — —
if each utility value is perturbed slightly (i.e., itis trer an 6 Dynamic Stability of Optimization Problems
open set of preference values).

Now, consider perturbing the weights by adding an
amounts, to the weight of each edge for any . with ab-
solute value less thaﬁl. Then, the weight of any spanning
tree cannot change lyor more, and so Lemma 4 still holds
This leads us to the hardness result for this section:

Theorem 3 shows the essence of why the MDST mechanism
Proof We start with the weight vectar. A perturbed weight appears difficult for a BGP-based computational model: A
vectora can be constructed fromas follows: For each node small change at any one node can cause changes that are
i, we addPIU€ to the weight of the blue outgoing edge fromylobal, not confined to the routes the node lies on. This ap-
i and 5ired to the weight of the red outgoing edge framn pears to be an inherent problem of the maximum-weight
Where|5lb|ue|7 |5irEd| < L. This corresponds to picking adirected-spanning-;ree structure: Even if we neglected th
weight vector from an open set around payment computation, the failure of any blue node would

Consider the payments_ due to some nod@,. Let k force the red spanning tree to be used, effectively changing
be such thaf3.. is the bluezport of a-cluster bu?.not the the routes of all other nodes. Therefore, if each node had to

blue port of a(k + 1)-cluster. Then, the blue outgoing edgétore its outgoing link locally, the communication impatt o

; 9k — 1), ; a failed node would be severe.
;:gm gm rrr]fst\l\;]ea{ggr%eigrft]z _ 1)) ;23 g%duc;?rfgol_lggmﬁ]dfi We can therefore study the dynamic stability of distributed
and Eqmuation 2, we get ’ optimization problems, independently of any mechanism-

design concerns. Consider a scenario in which each node
pp, = W(T*) —up, (T*) — W(T~5) in a distributed system has an inpyt We wish to run some
= W (blue spanning trée- (L — 2k — 1) glo(;)aLo%[imization ofn rt]he inputshafter optirr?izatic(jjn, kac
: node holds a piecg of the output. However, the nodes may
— [W(red spanning trge- (L —1)] fail or leave the network. The optimization should then be
= [W(blue sp. treg— W (red sp. tre?ﬂ] + 2k defined for variable-sized populations. We can study how
sensitive such an optimization scheme is to changes in the
input. We now present a formal development of this idea.

+2k (3)  Definition 1 A distributed optimization scheme is a

sequence of tupleg™, X", ", f™), one for each positive
Note thatpp, satisfies Equation (3) for any perturbedntegern, with the following properties:

weight vectora in the given range. Now, suppose we start- EachG € G" represents the non-numeric input of a

from some weight vectod, and then there is an infinitesi-  problem of sizen.

mal change insP!U€ (or 57€Y) for some nodex. It follows ~ — The set¥™ C R" represents the domain of numeric in-

from Equation (3) thaps, changes when this happens, and puts under consideration; each element (z1, zo, -,

hence nodeB, must receive an update message (or else, it x,,) € X™ represents a valid numeric input.

cannot update its value @fz, ). This is true for every blue — For any input(G € G",x € &™), the functionf™ :

node, and thus an infinitesimal change in any node’s pref- (G,x) — y = (v1, 2, - , y») determines the optimiza-

erence must cause price updates at every blue node (a totation output. They;’s may be numeric or non-numeric.

14 (oPle - gfed)
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— ForanyG € g™ andi € {1,--- ,n} therestriction func- Theorem 4 LetG" be the set of alk-node graphs with di-
tionr™ : (G,i) — G_; determines the non-numeric in-ameterog n and constant average degree, with an identified
put without:. Also, the restricted numeric inputis ; = destinationt; for each node. Supposet™ is the space of
(1, -+ ,@i—1,Tit1, - ,Ty). The restriction function all value vectors such that eaeh, = O(logn). Consider
should be such that"~'(G_;,x_;) is defined’ the natural restriction function corresponding to dropgia

single flow demand and its source node. Then the weighted

Definition 2 Thedynamic instability of a distributed opti- Q;g:ﬁ&n;)@gqlty flow optimization scheme has dynamic in-

mization scheme is a sequencés,, } defined as follows:
Given an inpuf(GG,x) andy = f"(G,x), lety, = (yo,y1, Proof The proof is based on constructing an instance that
S L Yio1, Yir, - - yn) be the output with théh component is equivalent to the hard instance for MDST. The graph
removed, and ley_;, = f"~1(+"(G,1i),x_;) be the output is constructed starting from the final cluster in Fig. 3. Each
on the restricted input. L& denote the set of all open ballsblue nodeB; with k& incoming edges is replaced with a set
in X™. Now define of (k+3) nodesB;1, Biz, - -, Bi(k+1); Bia, Big. The nodes
Bi1, Bia, - -+, Bij(k+1), Bio form a directed path, and there is
R _ an additional edge from®;; to B;(;41). The incoming edge
Sn = JBX IBX {r,{lel{} lg Zd'ﬁ(ylﬁyi)] } g with rth highest weight is incident td,;,. Both outgoing
i=1 edges emanate from nodg,. A symmetric transformation
is done on the red nodes. The noflés kept as it is. The
ransformation is shown in Fig. 5. Note that this transforma
tion changes aiv-node instance of the MDST problem to

n = O(N) node instance of the weighted multicommod-

. Th'.s Definition generahz_es _the definition of property g flow optimization problem, because the MDST instance
in section 5.3. Note that definition 1 assumes that the nu 3sO(N) edges '

ber of outputs is equal to the number of numeric inputs. This \ys next identify the source-sink pairs and the values.

can easily be generalized to include a different number 8f,\giqer 4 blue node; with & incoming edges in the the
outputs. Further,_we can also extend the definitions to 'Bfiginal network. Corresponding to this node, we have a
clude scenarios in which one “nhode” corresponds to mor d” flow demand fromB;; to Ry, the value C’Jf the de-

than one numeric parameter, as in the MDST problem; t nd is the weight of the corresponding red outgoing edge
corresponding restriction map would then generate a smajfe Fig. 3. There is also a “blue flow demand™: If the blue
input instance. For simplicity, however, we restrict ouent outgoi.ng. edge is attached to nodk,, the blué flow de-
tion to Definitions 1 and 2. and is fromB;s to By, (,41). If the blue outgoing edge is
Theorems 3 and 5 show that the MDST scheme on thg,ched to nodg, there the blue flow demand is fromy
domain of Internet-like graphs and small preferences hﬁ'ﬁj. Again, the value of this demand is picked to be the

{)(n) dynamic instability and that the LCP scheme on a sigzme a5 the weight of the blue outgoing edge fiBmin
ilar domain has dynamic instability polyleg). We now il- - g5 3 " Similarly, we construct red and blue flow demands
lustrate the framework with another examplewaighted ¢4 responding to each red node in the original construction

where diffa, b) is a count of the number of components i
which a andb differ, i.e., the size of the seftj|a; # b, }.

multicommodity floveptimization scheme. All other nodes’ demands are picked to be irrelevan,
) . by setting their value to be zero.
Example 1We are given a directed gragh For each ver- 15 construction of the network and demands has the

texi in the graph, there is a destinationand a unit flow 4j16wing property: For any node in the original network, if
demand from: to ¢;. Each edge in the graph has unit cagne corresponding red outgoing flow is selected, then no blue
pacity. Each flow demand has an associated value- 0. incoming or outgoing flow can be selected. Similarly, if the
The weighted multicommodity flow optimization problgm_ i$Hlue outgoing flow is selected, no red incoming or outgo-
to select a subset of the demands to satisfy that MaxiMIZggy flow can be selected. Further, it is possible to satidfy al
the total value delivered, without violating any capactye |,e-flow demands simultaneously, or to satisfy all red-flow
straint. T_he output is partitioned such that each node knoysmands simultaneously. Thus, the optimal set of flows cor-
whether its flow is selected. responds to the blue spanning tree in Fig. 3. However, if even

It may seem like it would be more natural to require that; € one blue flow is dropped, the optlmgl set of demands to pick
G" ' andx_; € X" 1. However, this would make it imloossiblewould correspor\d_ to the_ red spanning tree. Thus, it follows
to express domain restrictions such as “the graph is bicgedeor that the dynamic instability of this optimization scheme is
“the values are polyla@:)”, because we could recursively apply the{)(n). O
restriction function until the input is of constant sizestiead, we al- Note that this dynamic instability analysis only provides
low the furlcltioanl to be defined on a larger set of inputs thany |ower bound on the communication cost of a distributed
I(zfrger : n); ut sgi Tarr‘]‘:“j L%Srfgg“r%’;ljfs’;\fg?;"S‘iﬁgﬂgﬂ??ngs\fg‘ﬁi on this jmplementation: The fact that a particular optimizatiohesoe

8 We can also consider a version that allows for fractionainogit has IQW dyn_amlc IrI.Stablllty does not |mply t.hat there is an
solutions. The hardness result extends to this more gesettiig as @lgorithm with low incremental communication costs. Fur-
well. ther, the importance of low dynamic instability depends to a
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Toyj

Fig. 5 Transformation of a single node in construction of Theorem 4

great extent on the context (as does the choice of an appreeasure. This may be relevant to other problem domains as
priate domain); while it is clearly essential for a BGP-lwhsavell: Many network protocols are designed to operate over
algorithm, it may be irrelevant in some applications. Howeng periods of time, during which their inputs frequently
ever, this analysis appears to be fairly easy in many casésnge. Thus, it may be useful to extend the dynamic-stabili
and should provide a useful tool in comparing different o@nalysis in Section 6 to other distributed optimizationtpro
timization schemes. lems.
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We have presented a formulation of welfare-maximizing pgls, helpful discussions.

icy routing in the mechanism-design framework. We showed

that, in the most general case, it is NP-hard to maximize the
overall welfare or even to approximate it within any reasongppendix
able factor. When utility functions are restricted to thessl

of next-hop preferences, an optimal strategyproof mechge include here a proof that the lowest-cost routing mech-
nism is polynomial-time computable. However, a BGP-basgfism described by Feigenbawtal. [5] satisfies the prop-
distributed implementation of this mechanism appears 10 Bties P1-P3 introduced in this paper, and thus meets our re-

unrealistic: It may converge very slowly even on small-diggirements for BGP-based algorithms.
meter networks, and it may require messages to be senﬁ_

0 . . .
a large fraction of the nodes whenever any node changes.i orem 5 Consider the route and price computation algo-
preferences. rithms for the lowest-cost routing mechanism of [5], and as-

This raises several natural questions for further stuc§}"meth""t all costs are in the rangg 7], for r = polylog(n).

We can ask whether it is possible to design a mechani rfaen, the mechanism satisfies properties P1-P3.

for the next-hop preference setting tlagiproximatelymax- Proof We adopt the following notation from [5]: Let &-

imizes the overall welfare and also has a low-complexipvoiding pathbe a path that does not pass through nede

BGP-based distributed implementation. Another approgachiihen, define

to find reasonable additional restrictions on the prefesnc | def

for which an efficient exact algorithm exists. d=
An unusual feature of our computational model is the use e

of the dynamic communication requirement as a complexi‘{"y = Ilnj

max ||[LCP from: to j||
3

X ||lowest-cost:-avoiding path from to j||,
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where|| P|| denotes theumber of hop# pathP. Note that 8. Feigenbaum, J., Shenker, S.: Distributed algorithmicharism
the lowest-cost path may have more hops than more expen_design: Recent results and future directionsPlrmceedings of the

; ; iofiad- 6th International Workshop on Discrete Algorithms and Meth
sive paths. We now prove th.at each prope_rty IS Sat.ISfled' for Mobile Computing and Communication (DIALM 'Q2)ages
(P1) The LCP route and price computation algorithm was 1_13 AcM Press, New York (2002).

constructed to use space proportional to the length of th® Green, J., Laffont, J.: Incentives in public decision mgk In:
route. Studies in Public Economicgolume 1, pages 65-78., North Hol-

(P2) The re.SUIt in [5, Theorem 2] ShOWS that the mechanislra' Ig?g\’/:sms"lfe'rd&rze(&g\;gs)'in teams. Econometdda 617-663
converges innax(d, d’') stages. Founweightednternet-like ' (1973)" - ' '

graphs, bothi andd’ areO(logn). If the weights are very 11. Hastad, J.: Clique is hard to approximate withtn ©. Acta Math-
skewed, the convergence may tdk@:) stages; however, if ~ ematical82 105-142 (1999). _
all the weights are in the range, ], for smallr, thend 12. Hershberger, J., Suri, S.: Vickrey prices and shortattsp What

’ ; ; is an edge worth? IrProceedings of the 42nd IEEE Symposium
andd’ are at most a factor of greater than their respective 5, "o ons of Computer Science (FOCS, pajes 129—

values in the underlying unweighted graph. (Any path with 140, IEEE Computer Society Press, Los Alamitos (2001).
more hops would have a cost higher than that of the coris:. Humblet, P.: A distributed algorithm for minimum weigtitected

sponding LCP or minimum-cogt-avoiding path in the un- spanning trees. IEEE Transactions on Communicatood/-
derlying graph.) In this case, the LCP mechanism converggs 31(6), 756762 (1983). o _

. . Karp, R.: Reducibility among combinatorial problemsn: |

in O(r log ”) stages. . R. E. Miller and J. W. Thatcher, editor€omplexity of Computer
(P3) The failure of a nodeonly affects the nodes for which ~ Computations (Proceedings of a Symposium on the Complexity
i lies on the LCP or on the minimum-coktavoiding path of Computer Computationspages 85-103, Plenum Press, New

York (1972).
(for Somek)' For any node, there are at most nodes on 15. Nisan, N., Ronen, A.: Algorithmic mechanism design. Garmnd

the LCP toj; for each such nodg, there are potentially’ Economic Behavio5, 166-196 (2001).
different nodes on the lowest-castavoiding path fronuto 16, Sami, R.Distributed Algorithmic Mechanism DesigRhD thesis,
j. Thus, each node is affected by at mé@#tother node fail- Yale University (2003).

ures; this argument also holds for cost increases. Sipilaft”- Spielman, D., Teng, S.: Smoothed analysis of algorittwhg the

simplex algorithm usually takes polynomial time. Journiathe
when the node comes back up, only those nodes that end -~y 51, 385-463 (2004).

up having it On_thEir LCP or minimum—costavoidin_g path g Vickrey, W.: Counterspeculation, auctions, and coitipetsealed
are affected. Finally, we note that a small change in the cost tenders. Journal of Finand#, 8-37 (1961).

of one node does not change the routing tree (except in the
rare case that multiple paths have the same length). Thus, a
node near the root of the tree may imp&xi) nodes, but,
because most nodes are near a leaf of the tree, a change in a
single node only affect®(dd’) other nodes on average. In
Internet-like graphs with weights in a small range, we ex-
pectd andd’ to be polylodn), and so most changes trig-
gerUPDATE messages among only a small subset ofithe
ASes. a
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