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ABSTRACT
Distributed Algorithmic Mechanism Design (DAMD) com-
bines theoretical computer science’s traditional focus on com-
putational tractability with its more recent interest in incen-
tive compatibility and distributed computing. The Internet’s
decentralized nature, in which distributed computation and
autonomous agents prevail, makes DAMD a very natural ap-
proach for many Internet problems. This paper first outlines
the basics of DAMD and then reviews previous DAMD re-
sults on multicast cost sharing and interdomain routing. The
remainder of the paper describes several promising research
directions and poses some specific open problems.
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1. INTRODUCTION
Multi-agent systems have been extensively studied in both

economics and computer science, but the two communi-
ties have approached the topic very differently. In tradi-
tional theoretical computer science (TCS), computational
agents are typically assumed either to be obedient (i.e., to
follow the prescribed algorithm) or to be adversaries who
“play against” each other. On the other hand, the strate-
gic agents in game theory are neither obedient nor adver-
sarial. Although one cannot assume that they will follow
the prescribed algorithm, one can assume that they will re-
spond to incentives. Thus, the economics literature tradi-
tionally stressed incentives and downplayed computational
complexity, and the TCS literature traditionally did the op-
posite. The emergence of the Internet as a standard plat-
form for distributed computation has radically changed this
state of affairs: Ownership, operation, and use by many self-
interested, independent parties give the Internet the charac-
teristics of an economy as well as those of a computer.
This development requires that these previously separa-

ble concerns – incentive compatibility and computational
tractability – be jointly addressed. Although many subdis-
ciplines of computer science have a long history of using
game theory — such as networking (e.g., [21, 25, 35]), dis-
tributed artificial intelligence (e.g., [55, 61]), and market-
based computation (e.g., [65]) — the first work in TCS to
address incentives and computational complexity simulta-
neously was Nisan and Ronen’s seminal paper [52] on al-
gorithmic mechanism design (AMD). This paper put forth
a formal model of centralized computation that combined
incentive compatibility (the “mechanism design” part) with
computational tractability (the “algorithmic” part). Feigen-
baum, Papadimitriou, and Shenker [20] extended this to dis-
tributed algorithmic mechanism design (DAMD), in which
the same goals of incentive compatibility and computational
tractability are present, but, in addition, the agents, the
relevant information, and the computational model are all
inherently distributed.
The Internet is an arena in which incentive compatibil-

ity, distributed computation, and computational complex-
ity are all highly relevant. Thus, we believe that DAMD,
with its simultaneous attention to these issues, will be im-
portant for understanding our Internet-centric future. This
paper is intended to provide a basic overview of DAMD and
to identify several promising areas for future research. We
start, in Section 2, by providing some necessary background
on mechanism design (MD), algorithmic and otherwise. In
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Section 3, we review some previous DAMD results on mul-
ticast cost sharing and interdomain routing. The next five
sections are devoted to exploring the core technical founda-
tions of DAMD; we discuss the notion of hardness in DAMD
problems (Section 4), the role of approximations (Section
5), aspects of strategic models (Section 6), the use of indi-
rect mechanisms (Section 7), and alternative solution con-
cepts (Section 8). We then end the paper in Section 9 with
a discussion of several promising applications of DAMD.
Throughout Sections 4-9, we pose numerous open problems,
some very specific and others quite general, concerning the
foundations and applications of DAMD. Additional material
about the AMD and DAMD research agendas can be found
in, e.g., [50, 51, 54].

2. MD TO AMD TO DAMD
In essence, game theory is the study of what happens

when independent agents act selfishly. Mechanism design
asks how one can design systems so that agents’ selfish be-
havior results in the desired system-wide goals. The “mech-
anisms” in this field are output specifications and payments
to agents that incentivize them to behave in ways that lead
to the desired system-wide result. For example, consider the
problem of routing. Agents may be individual routers within
a network or entire autonomous domains. Each agent incurs
a cost when it transports a packet, and this cost is known
only to the agent, not to the mechanism designer or to the
routing protocol. Each agent is required by the protocol to
declare a cost. The system-wide goal is to have the routing
protocol choose the true lowest-cost path between any two
agents in the network. The mechanism specifies, for each
network topology, each sender-receiver pair, and each set of
agents’ declared costs, a path from sender to receiver and a
payment to each agent; the mechanism designer’s task is to
find a formula for the payments that causes agents to be no
worse off by revealing their true costs than they would be
by lying about their costs. Such truthful revelation would
allow the routing protocol to achieve the system-wide goal
of having all the traffic follow lowest-cost paths.
More formally, consider a distributed system in which

there is a set of possible outcomes O. Each of the n au-
tonomous strategic agents has a utility function ui : O → �,
where ui ∈ U , that expresses its preferences over these out-
comes. The desired system-wide goals are specified by a so-
cial choice function (SCF) F : Un → O that maps each par-
ticular instantiation of agents (who are completely described
by their utility functions) into a particular outcome.1 The
problem is that these utilities are known only to the agents,
not to the system designer or to any other central adminis-
trative entity; thus, one cannot just implement the desired
outcome by fiat.
An SCF is strategyproof if ui(F (u)) ≥ ui(F (u|iv)), for

all i and all v ∈ U , where we use the notation (u|iv)i =
v and (u|iv)j = uj , for all j �= i. If F is strategyproof,
then no agent has an incentive to lie, and the desired social
goals can be achieved by asking agents to reveal their utility

1More generally, we can consider social choice correspon-
dences (SCCs), H : Un → 2O , which map utility vectors
into sets of outcomes. For notational simplicity, we discuss
only SCFs in this section. In addition, we restrict ourselves
to equivalent agents; in general, each agent could have a
different set of possible utilities Ui.

functions. Mechanisms in which agents are asked to directly
reveal their utility functions are call direct mechanisms.
An SCF is group-strategyproof if the following holds for

all S, u, and u′ (where S = {i | ui �= u′
i} is the defecting

group): Either ui(F (u)) = ui(F (u
′)), ∀i ∈ S, or ∃i ∈ S for

which ui(F (u
′)) < ui(F (u)). That is, if any agent in the

group benefits from the group’s colluding and lying to the
mechanism, then at least one agent in the group suffers.
An important class of problems are those in which the

utilities are quasilinear, and the outcome space O factors
into a set of system states Õ and a set of payment states
P ⊆ �n that represent a vector of payoffs (or charges). At
a particular outcome o = (õ, p), agent i’s utility factors into

ui(o) = vi(õ) + pi, where vi : Õ → � represents his valua-
tions of each of the system states, and pi is his payment. For
such problems, there is a class of strategyproof mechanisms,
called Vickrey-Clarke-Groves (VCG) mechanisms [13, 29,
64], that result in the system state that optimizes

P
i vi(õ).

Direct strategyproof mechanisms provide a conceptually
simple, if not always ideal (see Section 7), way to achieve
strategyproof SCFs. However, there are many cases in which
the desired result, i.e., the desired social choice function F ,
is not strategyproof. To describe how to realize such non-
strategyproof SCFs, we now introduce indirect mechanisms.
Here, one designs a mechanism < M,S >, where S is a strat-
egy space, and M : Sn → O maps vectors of strategies into
outcomes.2 These are called indirect mechanisms, because
the agents no longer directly reveal their utilities but instead
choose strategies from the space S. This strategy choice is
done selfishly, with each agent attempting to maximize its
own utility. For a given mechanism M and a given utility
vector u, we let the set CM (u) ⊆ Sn represent all possible
strategy vectors that could reasonably result from selfish
behavior. This set is called the solution concept. Tradi-
tional game theory often uses the Nash-equilibrium solution
concept, i.e., selfish play is assumed to result in strategy
vectors in which no agent can unilaterally increase his util-
ity. Other solution concepts include rationalizable strategies
(agents use strategies that are best responses to rational
beliefs about the other agents’ strategy choices [10, 57]),
evolutionarily stable strategies (agents imitate the success-
ful strategies used by others in previous rounds of the game
[62]), and dominant strategies (agents only choose strategies
that, regardless of how other agents play, never result in
lower payoffs than any other strategy). To date, most of
the AMD and DAMD literature uses the dominant-strategy
solution concept.
The goal of mechanism design is to define a mechanism

M that implements the SCF, i.e., M(CM (u)) = F (u), for
all u ∈ Un.
When this condition holds, then selfish behavior by the

agents will result in the desired system-wide outcome. In
short, the system will be incentive-compatible. There is a
large game-theory literature on which SCFs can be achieved
for different notions of “incentive compatibility,” e.g., for
different solution concepts; see Jackson [32] for an overview.
With the Nash-equilibrium solution concept, one can design
mechanisms to achieve a very wide range of non-strategyproof
social choice functions [38].
When M = F and S = U , we reduce to the direct-

2Our assumption that all agents are equivalent, made for
notational simplicity, renders all strategy spaces the same;
in general, we could have different strategy spaces Si.
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mechanism case, and so our preceding discussion applies to
direct mechanisms as well. That is, one can achieve non-
strategyproof SCFs with direct mechanisms by invoking dif-
ferent solution concepts. For example, one can achieve effi-
ciency and budget balance using the Bayesian-Nash-equili-
brium solution concept [7, 14] – something that is impossible
using the dominant-strategy solution concept [27, 58].
It is important to note that, although the mechanism is

chosen by the system designer, the solution concept is sup-
posed to reflect reality. The solution concept thus depends
greatly on the context (e.g., is it a repeated game or a
single-shot game, do agents collude, do they know about the
other agents, do they know about the other agents’ strate-
gic choices, etc.). Because the Internet is somewhat different
from traditional game-theoretic contexts, the traditional so-
lution concepts may not be sufficient; we shall return to this
issue in Section 8.
The game-theory literature on mechanism design does not

consider computational and communication complexity, and
many of the existence proofs rely on extremely impractical
mechanisms. For the mechanism-design approach to have
any practical relevance for Internet computation, one must
focus on scalable algorithms. That is, the function M must
be computable with reasonable computational and commu-
nication resources.
Nisan and Ronen [52] initiated the study of AMD by

adding computational tractability to the set of concerns
that must be addressed in the design of incentive-compatible
mechanisms. Succinctly stated, Nisan and Ronen’s contri-
bution to the mechanism-design framework is the notion of a
(centralized) polynomial-time mechanism, i.e., one in which
M(·) is polynomial-time computable. They also provide
strategyproof, polynomial-time VCG mechanisms for some
concrete problems, including lowest-cost paths and task al-
location.
The centralized computational model of [52] is not ade-

quate for the study of Internet computation, where not only
are the agents distributed, but so are the resources (e.g., link
bandwidth and cache storage) and the computational nodes.
Internet-based mechanisms involve distributed algorithms
and any measure of their computational feasibility must re-
flect their distributed nature. In one attempt to address
this issue, Feigenbaum, Papadimitriou, and Shenker [20] put
forth a general concept of network complexity that requires a
distributed algorithm executed over an interconnection net-
work T to be modest in four respects: the total number of
messages sent over T (ideally, this should be linear in |T |),
the maximum number of messages sent over any one link
in T (ideally, this should be constant, to avoid “hot spots”
altogether), the maximum size of a message, and the local
computational burden on agents.
The network-complexity criterion in [20] evaluates the mech-

anism in isolation based on its absolute computation and
communication requirements. A relative notion of complex-
ity, which we call protocol compatibility, is adopted in the
work of Feigenbaum, Papadimitriou, Sami, and Shenker [19]
on interdomain-routing mechanism design. This measure of
complexity does not place absolute limits on what is consid-
ered feasible; instead, it requires the mechanism to be a sim-
ple extension of a widely deployed, standard Internet proto-
col. The relevant standardized protocol in [19] is the Border
Gateway Protocol (BGP). For a distributed algorithm that
computes a mechanism to be considered a simple extension

of a standard protocol, it must have the same general al-
gorithmic structure as the standard and must not require
substantially more computation, communication, local stor-
age, or any other resource expenditure than the standard,
regardless of whether the standard has high or low absolute
network complexity. Protocol compatibility addresses two
aspects of practical feasibility – computational tractability
and deployability3 – and we expect it to become an increas-
ingly important aspect of DAMD in particular and Internet
algorithms in general. In this paper, we use the term net-
work complexity generically, encompassing the absolute no-
tion of network complexity used in [20], the relative notion
of protocol compatibility used in [19], and other related no-
tions of complexity of Internet computation that will arise in
the analysis of future distributed algorithmic mechanisms.
Clearly, “network complexity” is not (yet) a well defined
term, and we return to this point in Section 4 below. We
expect the development of more prima facie good (and bad)
distributed algorithmic mechanisms to lead to a satisfactory
formalization.

3. SOME PREVIOUS DAMD RESULTS
The DAMD approach is relevant to several problems of

practical importance. For instance, as we discuss in Section
9, problems of web caching, peer-to-peer systems, overlay
networks, and task allocation involve distributed comput-
ing by many (possibly) selfish agents. In this section, we
focus on two specific scenarios in which DAMD has been
applied: multicast cost sharing, which exercises the notion
of absolute network complexity, and interdomain routing,
which exercises the notion of BGP compatibility.

3.1 Multicast Cost Sharing
The multicast cost-sharing mechanism-design problem in-

volves an agent population P residing at a set of network
nodesN that are connected by bidirectional network links L.
The multicast flow emanates from a source node αs ∈ N ;
given any set of receivers R ⊆ P , the transmission flows
through a multicast tree T (R) ⊆ L rooted at αs and span-
ning the nodes at which agents in R reside. It is assumed
that there is a universal tree T (P ) and that, for each sub-
set R ⊆ P , the multicast tree T (R) is merely the smallest
subtree of T (P ) required to reach the elements in R. Each
link l ∈ L has an associated cost c(l) ≥ 0 that is known
by the nodes on each end, and each agent i assigns a value
vi to receiving the transmission. A cost-sharing mechanism
determines which agents receive the multicast transmission
and how much each receiver is charged. We let xi ≥ 0 denote
how much agent i is charged and σi denote whether agent
i receives the transmission; σi = 1 if the agent receives the
multicast transmission, and σi = 0 otherwise. We use v to
denote the input vector (v1, v2, . . . , v|P |). The mechanism
M is then a pair of functions M(v) = (x(v), σ(v)). The re-
ceiver set for a given input vector is R(v) = {i | σi = 1}. An
agent’s individual utility is therefore given by the quasilin-
ear form ui = σivi − xi. The cost of the tree T (R) reaching
a set of receivers R is c(T (R)), and the overall welfare, also
known as efficiency or net worth, is NW (R) = vR−c(T (R)),
where vR =

P
i∈R vi and c(T (R)) =

P
l∈T (R) c(l). The over-

all welfare measures the total benefit of providing the multi-

3In practice, straightforward extensions of existing protocols
are easier to deploy than de novo designs.
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cast transmission (the sum of the valuations minus the total
transmission cost).
Economic considerations [47] point to two strategyproof

mechanisms that are worthy of algorithmic consideration:
marginal-cost (MC) and Shapley-value (SH). The MC mech-
anism is efficient, which means that it chooses the receiver
set R that maximizes NW (R); let W be the net worth of
this welfare-maximizing R. For each i ∈ R, let W−i be
the net worth of the receiver set that the MC mechanism
would have computed if i had not participated (i.e., if vi

had been set to 0). Then W − W−i measures the gain in
overall welfare that results from i’s participation. The cost
share that MC assigns to i is xi ≡ vi − (W − W−i). MC
is the only strategyproof and efficient mechanism that also
has the following two properties:

NPT No Positive Transfers: xi(v) ≥ 0, or, in other words,
the mechanism cannot pay receivers to receive the trans-
mission.

VP Voluntary Participation: ui(v) ≥ 0; this implies that
xi = 0 whenever σi = 0 and that agents are always free
to not receive the transmission and not be charged (by
setting vi = 0).

By contrast, the SH mechanism is group-strategyproof
and budget-balanced, where the latter means simply thatP

i∈R xi = c(T (R)), where R is the receiver set chosen by
the mechanism. SH assigns cost shares xi by dividing the
cost c(l) of each link l in T (R) equally among all members
of i ∈ R that are downstream of l. The SH receiver set is the
largest R ⊆ P such that vi ≥ xi, for all i ∈ R. A classical
result in mechanism design [27, 58] shows that no strategy-
proof mechanism can be both efficient and budget-balanced.
The MC mechanism has good network complexity: In [20],

a distributed algorithm is given that computes the MC re-
ceiver set and cost shares by sending just two modest-sized
messages over each l ∈ L and doing two very simple calcula-
tions at each node. On the other hand, the SH mechanism
has bad network complexity: In [18], it is shown that any
algorithm, deterministic or randomized, that computes SH
must, in the worst case, send Ω(|P |) bits over linearly many
links.
Before turning to our next representative DAMD prob-

lem, i.e., interdomain routing, we say a few words about
why efficiency and budget balance are natural mechanism-
design goals. Efficiency arises naturally as a design goal in
the scenario in which the network is owned and operated
by society at large, and multicast delivery may be subsi-
dized, e.g., via taxation, if the cost-sharing mechanism runs
a deficit; here, the MC mechanism is a natural one to use,
because it maximizes the overall welfare of the society as
a whole and ensures (because it’s strategyproof) that, once
the collective choice has been made to charge for multicast
delivery in this fashion, no single agent can cheat the group.
Budget balance arises naturally as a design goal if the prices
charged for multicast delivery must be set by competition
among service providers. Competing providers could not
charge more than their real costs, because they would be
undercut, nor could they charge less than their real costs,
because they would go out of business. These are the two
scenarios considered in the work of Moulin and Shenker [47],
which provides the economic foundation for [20] and most of
the subsequent work on computational aspects of multicast

cost sharing. By contrast, in the scenario in which the mul-
ticast delivery is done by a monopoly content owner, profit
maximization is the natural mechanism-design goal. Fiat
et al. [22] provide several novel cost-sharing mechanisms for
this scenario.
Finally, we note that, in the problem as we have stated

it here, the potential receivers are strategic, but the net-
work (i.e., the universal multicast tree T (P )) is obedient.
In particular, the network nodes are neither in cahoots with
nor conspiring against their resident agents, and the vari-
ous subnetworks are not competing with each other or with
the network as a whole. This is an accurate model of the
real-world multicasting scenarios discussed above, in which
T (P ) is operated by society at large, by a service provider
with competitors, or by a monopoly content owner. Even
in this simplest possible strategic model, determining the
inherent network complexity of natural mechanisms is non-
trivial. There may be other multicasting scenarios in which
more complex strategic models are needed; we return to this
issue in Section 6 below.
Although the multicast cost-sharing problem has been

quite useful in establishing the basic conceptual foundations
of DAMD, it is neither realistically formulated4 nor of press-
ing importance. Interdomain routing, our next example, is
both more realistic and more important.

3.2 Interdomain Routing
The Internet is comprised of many separate administrative

domains or Autonomous Systems (ASs). Routing between
these domains – i.e., interdomain routing – is currently han-
dled by the Border Gateway Protocol (BGP). There has
been much research on routing in general and BGP in par-
ticular, but most of it takes a traditional protocol-design ap-
proach.5 Recently, Feigenbaum, Papadimitriou, Sami, and
Shenker [19] focused on DAMD issues inherent in interdo-
main routing.
The basic incentive problem involves transit traffic, i.e.,

traffic neither originating from nor destined to the AS that
is currently carrying the packets. For the overall efficiency of
the network, packets should travel along shortest or, more
generally, lowest-cost paths (LCPs). These optimal paths
would typically, in general networks, cut across several ASs.
However, carrying transit traffic is a burden that ASs would
prefer to avoid. The basic problem is simple: Overall system
efficiency is maximized when ASs accept transit traffic, but
individual domains are happiest when they carry no transit
traffic at all.
In the model of Feigenbaum et al. [19], which is an ex-

tension of an earlier (centralized) LCP-mechanism model
proposed by Nisan and Ronen [52] and studied further by
Hershberger and Suri [30], each AS incurs a per-packet cost
for carrying traffic, where the cost represents the additional
load imposed on the internal AS network by this traffic. Fur-
thermore, the model also assumes that, to compensate for
these incurred costs, each AS is paid a price for carrying
transit traffic. The goal is to maximize network efficiency
by routing packets along the LCPs. Standard routing pro-

4For example, the per-link cost model, although appealing
and widely used, does not accurately capture network costs
in most situations. Unfortunately, we are unaware of an
alternative, well-validated cost model.
5By this we mean that the participating entities are assumed
to be obedient, and so incentive issues can be ignored.
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tocols (such as BGP) can compute LCPs given a set of AS
costs.6 However, under many pricing schemes, an AS would
be better off lying about its costs;7 such lying would cause
traffic to take non-optimal routes and thereby interfere with
overall network efficiency.
To prevent this, one needs the pricing scheme to be stra-

tegyproof, so that ASs have no incentive to lie about their
costs. The pricing scheme should also have the reasonable
property that ASs that carry no transit traffic at all receive
no payment. It is shown in [19] that there is only one strate-
gyproof pricing scheme with this property; it is a member of
the VCG family. Moreover, a BGP-compatible distributed
algorithm is given that computes these prices. This algo-
rithm requires only minor and straightforward modifications
of the BGP computational model given by Griffin and Wil-
fong [28]. Specifically, the algorithm in [19] requires a small
constant-factor increase in both the table sizes and the mes-
sage sizes of BGP, but it does not require any new messages
or any new infrastructural or computational capability; in
particular, all messages are still sent between neighbors in
the AS graph.8 Similarly, the local computation done by a
node in each stage (i.e., between receiving an updated table
from a neighbor and, if necessary, sending an update to each
of its neighbors) is the same order of magnitude as the BGP
local-computation time.9

The results on multicast cost sharing and interdomain
routing represent the two most successful applications to
date of DAMD to practical network problems. In Sections
4-8, we turn our focus away from specific applications and
towards the foundational underpinnings of DAMD. Each
of these five sections fleshes out a fundamental aspect of
DAMD: “Hard” vs. “easy” DAMD problems, the role (and
meaning) of approximation, strategic models, indirect mech-
anisms, and solution concepts. In section 9, we return to
specific Internet-based problems in which DAMD may be
applicable. The general discussions to follow are augmented
by a series of open problems representing both open-ended
and focused research issues that warrant further study.

4. HARD AND EASY DAMD PROBLEMS
The central mission of TCS is to determine which pro-

blems are easy and which are hard in relevant computa-
tional models. In the Turing-machine model of centralized

6BGP does not currently consider general path costs; it sim-
ply computes shortest AS paths in terms of number of AS
hops. However, BGP could be trivially modified so that it
computes LCPs; in what follows, we assume that this mod-
ification has been made.
7Lying could increase an AS’s total welfare by either attract-
ing more traffic, and thereby increasing revenue, or increas-
ing the price, or decreasing the costs incurred. In particular,
if an AS declared an infinite cost, it would carry no transit
traffic at all, and thus not incur any related transit costs.
8The tables in [19] contain both LCPs (as do BGP tables)
and costs and prices.
9Although it can be done in a BGP-compatible fashion, we
do not expect the pricing scheme of [19] (or any similar
scheme) to be deployed in the near future. This first work on
DAMD for interdomain routing is not an attempt to “solve
a BGP problem.” Rather, it is an attempt to study algo-
rithmic mechanism design for routing in a computational
model that is faithful to the Internet-centric motivation for
the study; this was not done in the earlier papers [52, 30] on
routing mechanisms.

computation, the (crude) distinction is between polynomial-
time solvable problems and those that are NP-hard. In the
PRAM model of parallel computation, it is between those
problems that are in NC and those that are P-hard. One of
the major goals of this study of DAMD foundations is to de-
velop the tools needed to classify relevant problems as easy
or hard “to compute incentive-compatibly on the Internet”
and to find more natural examples of both hard and easy
DAMD problems.
Informally, a DAMD problem can be considered “easy” if

it can be solved in a manner that is both incentive-compatible
and computationally tractable. The technical definitions of
incentive compatibility and computational tractability will
depend on the particular problem under consideration.
The discussion in Section 3.1 shows that welfare-maxi-

mizing multicast cost sharing is easy when strategyproof-
ness is the incentive-compatibility requirement, and low ab-
solute network complexity is the computational-tractability
requirement. The first open problem is to determine how
general this result is. Recall that the MC mechanism is
the only strategyproof and efficient mechanism that satis-
fies NPT and VP. If we remove the NPT and VP require-
ments, then we have the entire family of VCG mechanisms
at our disposal. How many of these have reasonable network
complexity?

Open Problem 1. Fully characterize the set of easy wel-
fare-maximizing multicast cost sharing problems.

Of course, we are interested in far more than just multicast
cost sharing, and one of the central DAMD challenges is the
search for additional examples.

Open Problem 2. Design good distributed algorithmic
mechanisms to show that natural problems of interest are
easy.

While easy problems are a field’s “successes,” hard pro-
blems often lead to a deeper understanding of an approach’s
fundamental limitations. Thus, we are interested in how
to define hardness in the DAMD context. Superficially, a
problem is hard if it cannot be solved in a manner that satis-
fies both the incentive-compatibility and the computational-
tractability requirements. There will be many problems for
which this cannot be done; NP-hard problems, for example,
cannot be solved in a computationally tractable manner (un-
less P=NP), and there are no efficient, strategyproof, and
budget-balanced solutions to general cost-sharing problems.
However, we are not interested in hardness per se but rather
in hardness that results from the interplay of incentive com-
patibility and computational complexity. Thus, a more use-
ful distinction is made by defining a DAMD problem to be
canonically hard if each of these two requirements can be
satisfied individually, but they cannot be satisfied simulta-
neously. Canonical hard problems will help us understand
the fundamental nature of hardness in DAMD, as opposed
to hardness that results solely from computational issues or
solely from incentive issues.

Budget-balanced multicast cost sharing, under a few natu-
ral incentive-compatibility restrictions, is canonically hard.
Here, the computational-tractability requirement is low ab-
solute network complexity, as it is for welfare-maximizing
multicast cost sharing. The incentive-compatibility condi-
tions include the aforementioned group strategyproofness,
NPT, and VP and the following two additional require-
ments:
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CS Consumer Sovereignty: For given T (P )10 and link costs
c(·), there exists some κ such that σi(v) = 1 if vi ≥ κ;
this condition ensures that the network cannot exclude
any agent who is willing to pay a sufficiently large
amount, regardless of other agents’ valuations.

SYM Symmetry: If i and j are at the same node or are
at different nodes separated by a zero-cost path, and
vi = vj , then xi = xj .

The SH mechanism defined in Section 3.1 is the natural
group-strategyproof, budget-balanced mechanism to consi-
der, for reasons discussed at length by Moulin and Shen-
ker [47], but it is only one of several group-strategyproof,
budget-balanced mechanisms in the literature that have prop-
erties NPT, VP, CS, and SYM; see [16, 33] for more ex-
amples. It is shown in [18] that no group-strategyproof,
budget-balanced multicast cost-sharing mechanism that sat-
isfies conditions NPT, VP, CS, and SYM can have low ab-
solute network complexity.
Thus, for this problem, one cannot simultaneously meet

the computational-tractability requirement and the incentive-
compatibility requirement. However, one can meet each re-
quirement independently. The SH mechanism satisfies the
incentive-compatibility requirement, and one can easily ob-
tain budget-balanced cost-sharing “mechanisms” with low
absolute network complexity if incentive issues are ignored.
For instance, in one bottom-up pass of T (P ), one can com-
pute V =

P
i∈P vi and C =

P
l∈L c(l). If C > V , no one

receives the transmission, and the mechanism does one top-
down pass to inform all members of P that this is the out-
come; if C ≤ V , everyone receives the transmission, and the
mechanism does one top-down pass to communicate the cost
share (C · vi)/V to agent i, for all i ∈ P .
Group-strategyproof, budget-balanced multicast cost sha-

ring with the additional restrictions of NPT, VP, CS, and
SYM is the only canonically hard DAMD problem that has
been identified so far. To gain a greater understanding of
DAMD, we need many more examples.

Open Problem 3. Find more DAMD problems that are
canonically hard.

These informal descriptions of what we mean by “easy” and
“hard” suffice for the analysis of some examples, but a for-
mal framework is needed if we are to go beyond examples
and develop a full-fledged “complexity theory of Internet
computation.”

Open Problem 4. Define the computational models and
computational resources needed to formalize “network com-
plexity,” both absolute and relative, and other relevant mea-
sures of DAMD complexity. Develop the appropriate no-
tions of “reduction” to show that certain problems are hard
or complete for the relevant complexity classes.

The preceding discussion considered hardness of DAMD
problems. One can also consider hardness of AMD problems
by using notions of computational tractability that are ap-
propriate in a centralized computational model. However,

10For brevity, we often use T (P ) to denote four components
of a multicast cost-sharing problem instance: the node-
set N , the link-set L, the locations of the agents, and the
multicast-source location αs.

we are not aware of a canonically hard AMD problem.11 All
unsuccessful attempts to devise computationally tractable,
centralized algorithmic mechanisms that we are aware of
fail either because incentive compatibility is unattainable
(e.g., budget-balanced and welfare-maximizing cost sharing)
or because computational tractability is unattainable (e.g.,
NP-hard welfare maximization in combinatorial auctions)
but not because of the interplay of the two. An interest-
ing open question is whether such canonically hard AMD
problems exist.

5. APPROXIMATION
Given that some DAMD problems are hard, it is natural to

ask whether approximate versions of these DAMD problems
are easy. In order to study this question, we must decide
what it means to “approximate” a mechanism. For con-
creteness, we first discuss approximations of multicast cost-
sharing mechanisms, one of which we know to be canonically
hard and for which we already have the necessary terminol-
ogy and notation.
Recall that a multicast cost-sharing mechanism is a pair

of functions (σ, x). One may be tempted to define an ap-
proximation of the mechanism as a pair of functions (σ′, x′)
such that σ′ approximates σ well (for each v, these are char-
acteristic vectors of subsets of P ; so, we may call σ′ a good
approximation of σ if, for each v, the Hamming distance
between the vectors is small), and x′ approximates x well
(in the sense, say, that, for some p, the Lp-difference of x(v)
and x′(v) is small, for each v). However, the mechanism
(σ′, x′) may not have the desired game-theoretic proper-
ties. For example, if (σ, x) were strategyproof but (σ′, x′)
were not strategyproof, agents might misreport their valu-
ations to the approximate mechanism. Thus, even if (σ, x)
and (σ′, x′) were, for each v, approximately equal as pairs
of functions, the resulting equilibria might be very differ-
ent, i.e., (σ′(v′), x′(v′)) might be very far from (σ(v), x(v)),
where v′ is the reported valuation vector when using the
approximate mechanism (σ′, x′).
Thus, we first consider “approximate mechanisms” that

retain the strategic properties (e.g., strategyproof or group-
strategyproof) of the mechanisms that they are approximat-
ing. In addition, if the original mechanism has some prop-
erty, such as budget balance or efficiency, that does not re-
late to the underlying strategic behavior of agents but is an
important design goal of the mechanism, then the approxi-
mate mechanism must approximate that property well.
The SHmechanism is group-strategyproof, budget-balanced,

and, among all mechanisms with these two properties, the
unique one that minimizes the worst-case efficiency loss.12

Therefore, in a distributed computational model (where SH
is canonically hard [18]), one should strive for a group-
strategyproof mechanism that has low network complexity

11The question of whether there are any such problems was
brought to our attention by Eric Friedman.

12The efficiency loss of a mechanism M on a particular prob-
lem instance I is the difference between the optimal net
worth of I and the net worth realized by M . The SH mech-
anism minimizes the worst-case loss in the following sense.
For each group-strategyproof, budget-balanced M and each
instance size k, there is a worst-case instance IM,k, i.e., one
for which efficiency loss L(IM,k) is largest; for all k, SH
achieves the minimum, over all group-strategyproof, budget-
balanced M , of L(IM,k), and it is the only such mechanism
that does so.
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and is approximately budget-balanced and approximately
efficiency-loss minimizing in the worst case. “Approximately
budget-balanced” can be taken to mean that there is a con-
stant β > 1 such that, for all c(·), T (P ), and v:

(1/β) · c(T (R(v))) ≤Pi∈R(v) xi(v) ≤ β · c(T (R(v)))

Similarly, the statement that mechanism M is “approxi-
mately efficiency-loss minimizing in the worst case” can be
taken to mean that there is a constant γ > 1 such that, for
all k, the worst-case efficiency loss of M on instances of size
k is at most γ times the worst-case efficiency loss of SH on
instances of size k.
Progress has been made on the network complexity of

approximate SH mechanisms, but the problem has not been
solved completely. The SSF (for “scaled step function”)
mechanism given in [5] is group-strategyproof and fails to
achieve exact budget balance and exact minimum worst-case
efficiency loss by bounded amounts, but the bounds are not
constant factors; therefore, SSF is not an approximation to
SH by the definition given above, but it is a step towards
such an approximation.

Open Problem 5. Is there an approximate SH mecha-
nism whose network complexity is as good as that of SSF? Is
there one that achieves the network-complexity lower bound
given in [18] for group-strategyproof, approximately budget-
balanced mechanisms? If not, is there another group-strategy-
proof, budget-balanced mechanism that can be approximated
in a manner that meets this lower bound?

The notion of “approximating a mechanism M” that we
have discussed so far (and that is used in [5] to study the
SH mechanism) is, roughly, “retain the strategic properties
of M but approximate the other mechanism-design goals.”
In what follows, we will call these strategically faithful ap-
proximations – they retain the strategic properties of the
original mechanism exactly and approximate one or more of
its other properties. This type of approximation is studied
in the economics literature as well (e.g., [37]), but not for the
purpose of reducing computational or communication costs.
An important and open research issue is to explore alter-

native notions of approximation, as well as to design com-
putationally tractable, strategically faithful approximations
for more DAMD problems. Several alternative notions have
been put forth, and we briefly review three of them here.
Approximation of equilibria is considered in the game-

theory literature independent of distributed-algorithmic con-
cerns.13 For example, Schummer [60] and Parkes et al. [56]
consider ε-dominance. A strategy vector (s1, . . . , sn) is an ε-
dominant equilibrium if, for every agent i, every strategy ti,
and every set of other players’ strategies (t1, . . . , ti−1, ti+1,
. . . , tn), the inequality ui(M(t1, . . . , ti−1, si, ti+1, . . . , tn)) +
ε ≥ ui(M(t1, . . . , ti−1, ti, ti+1, . . . , tn)) holds – so, si may not
be a best possible strategy, but it is always within ε of best
possible, regardless of what other agents do. In the AMD
context, one also insists that, for all i, the computation of si
is tractable, given the information available to agent i, and
that the computation of M(·) is tractable, given a strategy
vector (s1, . . . , sn).

13One can consider the virtual implementation literature [39,
1], in which mechanisms produce lotteries over outcomes,
to be a form of approximation. We don’t discuss virtual
implementation here.

Nisan and Ronen [53] were the first to address the ques-
tion of approximate computation in AMD. They considered
VCG mechanisms in which optimal outcomes are NP-hard
to compute (as they are in combinatorial auctions). They
pointed out that, if an optimal outcome is replaced by a
computationally tractable, approximately optimal outcome,
the resulting mechanism may no longer be strategyproof.
The above discussion of how we should define “approximat-
ing the SH mechanism” and why approximating the pair
of functions (σ, x) is not sufficient is based on the anal-
ogous observation in the DAMD context. Nisan and Ro-
nen [53] develop the notion of feasibly dominant strategies
and feasibly strategyproof mechanisms. For each agent i in
such a mechanism, there may exist instances in which there
is a strategy si that would be better for him than truth
telling; however, in all instances, computational or informa-
tional limitations (or both) make it infeasible for agent i
to find any such si. Because all agents are unable to find
any strategies that are better than truth telling, the mecha-
nism is “feasibly strategyproof.” A broad class of situations
in which NP-hard VCG mechanisms have feasibly strate-
gyproof approximations is given in [53]. This approach is
not directly applicable to SH-mechanism approximation for
two basic reasons. First, SH is not a VCG mechanism.
Second, the issue in SH-approximation is not polynomial-
time approximation of an NP-hard optimization problem in
a centralized computational model but rather low-network-
complexity approximation of an intrinsically high-network-
complexity (but polynomial-time computable) mechanism
in a distributed computational model. However, the no-
tion of feasible strategyproofness may have a distributed-
computational analog and/or an analog that is applicable
to non-VCG mechanisms.
A third approach to approximation is suggested by one of

the questions studied in [5]. The MC mechanism is strategy-
proof, but it is not group-strategyproof, as is the SH mech-
anism to which it is being compared. How serious a draw-
back is this? This question is formalized in [5] as follows: (1)
For which instances of the MC mechanism (i.e., which trees,
link costs, and valuation-vectors (v1, . . . , vn)) can the agents
collude successfully? (2) On the instances that are subject
to manipulation by coalitions, what forms do the successful
coalitions take? (3) What is the effect of this strategic ma-
nipulation, e.g., how many agents receive the transmission
that would not have received it in the absence of collusion,
and how many wind up paying less than they would have
in the absence of collusion? The results in [5] are negative;
essentially, most instances of MC are subject to devastat-
ing manipulation by a wide class of coalitions. However, the
approach warrants further study, because it may be applica-
ble to other mechanism-design problems. Informally, we say
that a mechanism is tolerably manipulable with respect to
group strategyproofness if it is not group-strategyproof, but
the groups that can strategize successfully are fully char-
acterizable, and their effects on the overall performance of
the system are deemed to be tolerable. Similarly, one can
consider mechanisms that are tolerably manipulable with re-
spect to other relevant solution concepts. Tolerably manipu-
lable mechanisms may offer significant practical advantages
in terms of network complexity.

Open Problem 6. Thoroughly investigate the notion of
approximation in the DAMD context. In particular, ex-
plore the applicability and the limitations of computation-
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ally tractable ε-dominance, strategically faithful approxima-
tion, feasible strategyproofness, and tolerable manipulability,
and formulate new definitions of approximation if they are
needed.

Open Problem 7. Devise approximations for the canon-
ically hard DAMD problems identified in the answer to Open
Problem 3.

Finally, there are approximation questions in mechanism de-
sign that are not computational in nature. Recall that there
are no strategyproof multicast cost-sharing mechanisms that
are both efficient and budget-balanced [27, 58]. One could
conclude from the results in [20, 18, 47] that MC is the only
strategyproof mechanism that can be practically deployed
on the Internet. This is a disheartening conclusion, because
MC can be arbitrarily budget-imbalanced.
Instead of abandoning budget balance altogether, one could

seek a compromise via a strategically faithful mechanism.
That is, although it is known that no strategyproof mech-
anism can achieve both exact efficiency and exact budget
balance, it is conceivable that one could be exactly effi-
cient and approximately budget-balanced, exactly budget-
balanced and approximately efficient14, or approximately
both. Unfortunately, this more modest goal is also unattain-
able; it is shown in [18] that no strategyproof multicast
cost-sharing mechanism that satisfies NPT, VP, and CS can
be both approximately efficient and approximately budget-
balanced. Thus, the most promising approach to practically
deployable cost-sharing mechanisms appears to be SH ap-
proximation, as discussed above.
This discussion suggests a more general question that de-

serves further study.

Open Problem 8. How do the characterization results
for strategyproof mechanisms change if the nonstrategic de-
sign goals need only be approximated?

Characterization results that should be considered include
the Moulin-Sprumont characterization of strategyproof mech-
anisms with single-peaked utilities [45, 63] and the Barbera-
Jackson characterization of strategyproof exchange markets [8].

6. STRATEGIC MODELS
In this section, we look more carefully at an aspect of

DAMD that we have thus far oversimplified. It need not be
the case that all parties in a distributed, algorithmic mecha-
nism are simply selfish maximizers. In many realistic scenar-
ios, there are (at least) four types of entities that participate
in the protocol:

• Obedient nodes are correctly functioning computers.
They have no independent strategic goals and simply
do what they are programmed to do.

• Faulty nodes are incorrectly functioning computers.
They also have no independent strategic goals, but
they suffer from, e.g., hardware- or software-bugs or
misconfigurations.

14Approximately efficient has the obvious meaning: There is
a constant γ, O < γ < 1, such that the mechanism always
chooses a receiver set R′ with NW (R′) ≥ γNW (R), where
R is the net-worth-maximizing set chosen by MC.

• Strategic nodes are the selfish agents of game theory.
Each has utility maximization as its goal.

• Adversarial nodes are the various sorts of “enemies”
found in cryptographic-protocol theory; they range from
“honest but curious” enemies (who follow the protocol
when called upon to send messages to other parties
but may use what they learn from the protocol, possi-
bly in collusion with other cheaters, to learn something
that they are not supposed to know) to Byzantine en-
emies (who may deviate from the prescribed protocol
in arbitrary ways). In particular, mechanism design-
ers cannot assume that the goals of an adversarial node
are captured by a utility function; in economic terms,
such a node may be “irrational.”

Collusion is another important aspect of the strategic
model. In some contexts the faulty, adversarial, or strate-
gic behaviors of nodes are coordinated. Thus, one must ask,
e.g., whether or not various subsets of the agents can collude
before or during the execution of the protocol and whether
the coalitions are static or dynamic. For simplicity, we do
not discuss collusion explicitly in the rest of this section,
but it is an important issue about which many open issues
remain.
Recall that there are two aspects to mechanisms: The

strategic aspect involves the choice of inputs to the mecha-
nism (the strategies), and the computational aspect involves
the calculation of the mechanismM (that is a function of the
strategies). These two aspects are cleanly separated in sce-
narios in which the computations are carried out on obedient
nodes, and the strategic nodes merely supply their inputs to
this computational infrastructure. This is the case in, e.g.,
[52, 30], where the mechanism is executed on an obedient,
centralized computational device that is distinct from the
strategic agents who supply the inputs; similarly, it is the
case for previous work on distributed multicast cost-sharing
mechanisms [5, 3, 18, 20, 22, 33, 41], where the mechanism is
executed on an obedient, distributed computational device
(i.e., the multicast tree) that is distinct from the strategic
agents (who are resident at various nodes of the tree but not
in control of those nodes).
However, the situation is significantly more complicated

when the computational and strategic aspects become inter-
twined. For instance, an important issue not resolved in [19]
is the need to reconcile the strategic model with the compu-
tational model. On the one hand, the problem formulation
in [19] captures the fact that ASs may have incentives to
lie about costs in order to gain financial advantage and pro-
vides a strategyproof mechanism that removes these incen-
tives. On the other hand, it is these very ASs that carry out
the distributed algorithm designed to compute this mech-
anism; even if the ASs input their true costs, what is to
stop them from running a different algorithm that computes
prices more favorable to them?
Mitchell et al. [43] have observed that, if ASs are required

to sign all of the messages that they send and to verify all
of the messages that they receive from their neighbors, then
the protocol in [19] can be modified so that all forms of
cheating are detectable. Remaining open problems include:

Open Problem 9. Can the protocol in [19] be modified
to detect all forms of cheating without the addition of public-
key infrastructure (or any other substantial new infrastruc-
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tural or computational capability) to the BGP-based compu-
tational model?

Open Problem 10. Can digital signatures (or, more gen-
erally, cryptographic protocol-design techniques) always be
used to convert a distributed algorithmic mechanism in which
some of the parties must be assumed to be obedient into one
with a more realistic strategic model?

Mitchell and Teague [44] have used cryptographic tech-
niques for multicast cost-sharing protocols. For example,
they consider the case in which the nodes of the multicast
tree are strategic rather than obedient, and the strategic
goal of a node is to obtain the transmission for its resident
agents at lower prices than those agents would have to pay
if the nodes obediently executed the protocol given in [20]
for the MC mechanism.

Open Problem 11. Thoroughly investigate the interplay
between strategic models and computational models in DAMD.
In particular, develop realistic strategic models for a vari-
ety of DAMD problems, including problems in which one or
more of the players are adversarial or faulty. If possible,
develop general techniques for converting distributed algo-
rithmic mechanisms in which some of the parties must be
assumed to be obedient into ones in which all parties are
realistically strategically modeled.

Web caching may be a particularly interesting DAMD chal-
lenge with respect to Open Problem 11, because all types of
agents may be present.

7. INDIRECT MECHANISMS
Most of the work to date on algorithmic mechanisms in

the TCS community has focused on strategyproof, direct
mechanisms. The underlying premise of this approach is
that agents will voluntarily reveal their private information
if it can be proven that lying does them no good in the situa-
tion addressed by this particular mechanism-design exercise.
We question this premise. Indeed, the TCS community gen-
erally questions this premise, which it did not invent but
rather inherited from the economics community. Revelation
of private information may be in an agent’s best interest in
the particular game at hand, but it may be unacceptable in
the broader context.
For example, in the interdomain-routing mechanism of

[19] discussed in Section 3.2 above, ASs are expected to re-
veal their internal per-packet transit costs, and conventional
economic wisdom would have it that they’d be willing to do
so, because the mechanism is strategyproof. However, this
seems unrealistic: Revealing its true transit costs may reveal
details about an AS’s internal network that it wants to keep
private for reasons that have nothing to do with near-term
transit-traffic revenues.
More fundamentally, the real mechanism-design goal is

not to convince agents to reveal their private inputs but
rather to compute the desired result that depends on these
inputs. The economics literature does not emphasize the
fact that these are distinct goals, but the distinction a major
focus of the TCS literature. The theory of secure, multiparty
function evaluation (SMFE), developed by the cryptographic-
research community, shows that functions can often be com-
puted in such a way that nothing about agent i’s private
input need be revealed to agent j (except what is logically

implied by the outcome and agent j’s private input). In
economic terms, the SMFE approach would lead to indirect
mechanisms, because agents would not be revealing their
utilities but instead would be using strategies drawn from
some other strategy space. For an overview of SMFE, see
Goldreich [26].
One cannot always apply SMFE techniques “off the shelf”

to DAMD. In particular, one often cannot “compose” a
direct distributed algorithmic mechanism with a standard
SMFE protocol, for several fundamental reasons:

• The strategic models may be different. Some standard
SMFE techniques (e.g., [9, 11]) apply to networks in
which at least a constant fraction of the agents are
obedient; the other agents are often assumed to be
Byzantine adversaries. Although one usually does not
have to design distributed mechanisms for Byzantine
adversarial agents, one often has to assume that all of
the agents will act strategically – none can be assumed
to be obedient.

• Standard SMFE techniques for transforming an arbi-
trary multi-agent protocol into one that keeps agents’
inputs private and computes the same output produce
protocols with unacceptably high network complexity.
In particular, the required total number of messages
may grow quadratically (or worse) as a function of the
total number of agents. Sometimes special-purpose,
SMFE protocols with low network complexity are ob-
tainable, but, if these are to be found for DAMD pro-
blems of interest, they will have to be designed on a
case-by-case basis; no general SMFE results guarantee
their existence.

• Some of the standard building blocks of protocols in
the SMFE literature (notably secret sharing) assume
that each agent knows the set of all agents partici-
pating in the protocol and can refer to each of them
using a unique ID. Clearly this is not the case in all
DAMD problems; in particular, it is not the case in
the multicast cost-sharing problem, where two agents
resident at different nodes of the multicast tree must
be assumed to be ignorant of each other’s existence.

The agent-privacy issue was first raised in an early paper
of Nisan [50], as was the potential applicability of SMFE
techniques. However, there has not yet been substantial
progress toward a general theory of distributed algorithmic
mechanisms that keep agents’ inputs private. Thus, it re-
mains an important open problem.

Open Problem 12. Explore agent privacy in specific
DAMD problems of interest. More generally, devise new
building blocks for SMFE protocols that are applicable in the
DAMD context, where all agents can be strategic (i.e., none
need be obedient or adversarial), low network complexity is
crucial, and the set of participating agents is unknown to
each individual agent.

In addition to the standard SMFE literature [26], work that
might be relevant to Open Problem 12 includes but is not
limited to the papers of Naor and Nissim [48], Naor, Pinkas,
and Sumner [49], and Dodis, Halevi, and Rabin [15].
Thus far, our motivation for considering indirect mecha-

nisms has been the desire to preserve agents’ privacy, and
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we have observed that low network complexity and agent
privacy may be hard to achieve simultaneously. It is impor-
tant to note, however, that indirect mechanisms have not
been shown to have inherently higher network complexity
than direct mechanisms.

Open Problem 13. Are there DAMD problems for which
all direct mechanisms have bad network complexity but at
least one indirect mechanism has good network complexity?

Indirect mechanisms might have other advantages as well,
such as enabling one to trade off between agent computation
and mechanism computation or to avoid worst-case running
times on many instances [55]. They might also enable ap-
proximation. These benefits have been demonstrated in the
context of combinatorial auctions and should be explored in
other contexts as well.

8. SOLUTION CONCEPTS
To date, most of the DAMD work in the theoretical com-

puter science community has focused on the dominant-strat-
egy solution concept. One of the justifications for this focus
is that agents resident in different (and possibly competing)
Internet domains would not even necessarily be aware of
each other’s existence, much less be able to observe enough
about each other’s actions to make the best responses needed
for Nash equilibria and other solution concepts that are more
mainstream in the economics literature. This justification
may not be valid for some of the DAMD problems now under
investigation. For example, it may not be valid for interdo-
main routing, where the agents are the domains themselves
and, in the course of running BGP, acquire partial but signif-
icant information about the global AS graph. It is possible
that enough “common knowledge” is acquired by the strate-
gic agents to make dominant-strategy solutions not the only
sensible option for interdomain routing; similar reasoning
may apply to other DAMD problems.

Open Problem 14. Which solution concepts are most
interesting for DAMD? In particular, what is the “right”
solution concept for interdomain routing?

The game-theory literature contains a very rich set of so-
lution concepts to which we cannot possibly do justice here.
For example, one can consider “repeated-play” settings in
which each agent knows its own payoff function but not
those of others; as the game continues, agents learn more
about the payoff functions of others, adapt their own strate-
gies, and reach an equilibrium through repeated play. The
resulting solution concept depends on how the agents learn.
If agents are adaptive learners, according to the Milgrom-
Roberts definition [42], then the play asymptotically heads
towards the serially undominated set. If the learning algo-
rithms are calibrated in the sense of Foster and Vohra [23],
then the solution concept is the set of correlated equilibria.
Internet-based agents typically have very little informa-

tion even about their own payoff functions and know still
less about those of other agents. All they know is which
strategy they played and what the resulting payoff was. In
addition, the payoff functions change over time in unpre-
dictable and sudden ways, reflecting the dynamic nature
of the Internet infrastructure. Furthermore, play is highly
asynchronous, because agents adapt their strategies at dif-
ferent rates. New definitions of learning and new solution

concepts that attempt to capture these aspects of Internet-
based, repeated games have been proposed by, e.g., Erev
and Roth [17] and Friedman and Shenker [24].
Which, if any, of these solution concepts and game-theoretic

definitions of learning will play a central role in the emerg-
ing theory of DAMD is a wide open question. Moreover,
we have yet to understand the relationship between the so-
lution concept and the network complexity of mechanisms
designed for that solution concept. Are there solution con-
cepts that typically lead to mechanisms with lower network
complexity? Are these solution concepts realistic in a net-
work setting?

Open Problem 15. Fully explore the relationship between
solution concepts and network complexity.

9. INTERNET APPLICATIONS OF DAMD
In this section, we turn our attention from general and

foundational issues in DAMD to specific mechanism-design
challenges now faced by Internet researchers. For the sake
of brevity, we only discuss four possible application areas
– web caching, peer-to-peer file sharing, overlay networks,
and distributed task allocation – and we do not attempt to
provide complete references to the vast literatures on each
of these subjects.

9.1 Web Caching
Web caches are an important tool for enhancing the per-

formance of web access; they are used to eliminate hot spots
in the network and to reduce access latencies. A web-caching
architecture provides the framework for a set of collaborat-
ing caches to interact with each other and serve a client com-
munity. A wide variety of caching architectures have been
proposed; their common intent is to achieve overall system
efficiency, and their common assumption is that caches are
obedient. This assumption may be valid when the entire
caching infrastructure belongs to the same administrative
entity, but, when the caching infrastructure spans adminis-
trative boundaries, the caches might deviate from the pro-
tocols to maximize their individual welfare.
There are two fundamental incentive issues in caching.

First, when considering a single cache, the utility of the
requesting clients would be maximized by caching the fre-
quently requested pages that provide the highest user util-
ity. However, the only way that a cache can learn about
these valuations is from the clients themselves. One needs
strategyproof mechanisms to elicit truthful valuations from
clients.
Second, caches have limited resources (bandwidth and

storage) and incur a cost for storing a page or serving a
client request. When there are several caches collaborating,
but they are managed by separate economic entities, there
is a question of how to design mechanisms to distribute the
caching load. If the caches are not reimbursed for the cost
of serving pages, they have an incentive to manipulate other
caches into serving the pages and thereby avoid bearing the
operating costs. If the caches receive payments for serving
pages, they might “compete” with each other to serve the
highest-value pages, thereby duplicating each other’s con-
tent, leaving some important pages uncached, and yielding
sub-optimal performance. Thus, the system needs to pro-
vide incentives designed to have the caches report their true
operating costs.
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Open Problem 16. Develop distributed algorithmic mech-
anisms for caching in which clients are induced to reveal
their true preferences, and caches are induced to implement
the optimal resource allocation. Demonstrate that these cach-
ing mechanisms can be built as scalable extensions to exist-
ing distributed caching protocols and provide provable per-
formance guarantees.

Some aspects of this problem are addressed in, e.g., [34].

9.2 Peer-to-Peer File Sharing
Peer-to-peer (P2P) file-sharing networks, e.g., Gnutella,

KaZaA, and Freenet, are the ne plus ultra of autonomous
distributed systems; each machine belongs to a different
user, and there is no central administrative authority. Thus,
incentive issues are likely to be very important to the future
of P2P technology; this provides a great opportunity for
DAMD research.
P2P file-sharing represents a shift from purely commercial

content-distribution systems (e.g., content providers paying
CDNs to distribute their content) to a “gift economy,” in
which individual users offer up their resources – content,
access bandwidth, storage, and CPU – for the greater good.
However, initial studies show that there is a serious “free
rider problem” [2]. It may be that, without some systematic
way of providing incentives for users to share their files, these
P2P systems will become increasingly centralized, with only
a few commercially supported nodes offering to share files.
One initial attempt to provide incentives to participants is

the MojoNation P2P system, which awards users “mojo” for
offering resources [40]. “Mojo” can be used to gain priority
access when the system is overloaded.
While the original P2P systems operate as gift economies,

MojoNation can be thought of as a barter economy, in which
mojo is exchanged in return for services, but no money is
transferred. The exchange of money would allow for a much
wider range of possible economic mechanisms. The ques-
tion is whether this extension to monetary exchanges would
result in superior performance.

Open Problem 17. What are the performance charac-
teristics of the equilibria that result from barter P2P sys-
tems? In particular, are they optimal, competitive with op-
timal, or highly suboptimal?

Open Problem 18. Can one design monetary P2P sys-
tems that provide better performance than purely barter P2P
systems? Can one characterize, in simple models, the possi-
ble outcomes achievable with both kinds of P2P economies?

Most of the recent models of P2P systems consider a col-
lection of identical nodes. Although this is theoretically ap-
pealing, it is contradicted by preliminary measurement stud-
ies suggesting that there is a very wide range of node capa-
bilities (in bandwidth, CPU, and disk) in P2P systems [59].
Wide heterogeneities may lead to significantly increased ef-
ficiency in P2P systems; that is, the highly capable nodes
can act as semi-centralized repositories.

Open Problem 19. How does the performance of the
equilibria of P2P systems, both barter and monetary, change
when the user population exhibits extreme variability in node
capability?

The above questions address mostly the extent to which
users share files with other P2P users. But in fully decentral-
ized P2P systems, nodes function both as caches of shared
files and as routers for queries destined for other nodes. In
that sense, the P2P-incentive issues are a union of the is-
sues in routing and caching. However, it isn’t clear how to
model the incentive aspects of P2P routing, and this is also
an open question worthy of study.

9.3 Application-layer overlay networks
Many distributed systems form an application-layer net-

work out of their constituent nodes. For instance, in many
P2P file-sharing systems, each node has a set of neighbors
to whom it forwards queries. There have also been many
proposals for application-layer networks to perform unicast
routing (e.g., [4]) and multicast routing (e.g., [12]). These
overlay networks are formed by algorithms that assume nodes
are obedient and ignore their own incentives. Clearly, obe-
dience may not be in a node’s best interest. In the case
of P2P file sharing, nodes would want to be close to others
who share lots of files (so that their own queries could be
answered quickly) but far away from others that generate
lots of queries (to minimize the time they spend process-
ing them). In routing, a node would want to minimize the
maximal distance to other nodes but would also not want to
carry much traffic, and so it would prefer not to be on many
LCPs. This poses the question of what kinds of networks
would result if users were selfish and chose their neighbors
accordingly.

Open Problem 20. What are the characteristics of over-
lay networks formed by selfish users?

We expect the answer to depend on the particular system,
e.g., selfishly constructed overlay file-sharing networks will
likely be different from selfishly constructed overlay routing
networks.
One of the purposes of these overlay networks is to choose

routes that improve end-to-end latency and availability. The
overlay network can be seen as a “selfish” entity, picking
LCPs for its traffic without concern for the overall network’s
performance. What happens if we have many different over-
lay networks? It may be that the advantages of overlay net-
works are undermined by the result of competition among
them.

Open Problem 21. What is the result of competition
among many “selfish” overlay routing networks? Can a well
designed distributed algorithmic mechanism incentivize be-
havior that preserves the observed benefits of overlays in the
presence of competition?

9.4 Distributed task allocation
Instead of P2P file sharing, in which users share their

storage capacity, or application-layer routing, in which users
share their communication capacity, many users can partic-
ipate in a CPU-intensive task to share their CPU capac-
ity. We have already seen many users work together on
tasks such as integer factoring, signal processing, and pro-
tein folding. However, these examples depend on voluntary
user actions, and therefore many users may not want to par-
ticipate. Furthermore, in the future, many users may use
weak, mobile computational devices, and therefore service
providers may be set up so that users can offload CPU-
intensive tasks to them. For a large task, it may be ben-

11



eficial to collaborate and distribute a task among multiple
“CPU-service providers.” In their original paper [52], Nisan
and Ronen proposed a centralized task-allocation mecha-
nism called MinWork.

Open Problem 22. Design distributed task-allocation
mechanisms for efficient sharing of the CPU resources of
many users or service providers. Take into account the dif-
ferences among the resources, e.g., storage, communication,
and CPU.
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