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Abstract

We investigate the diameter problem in the streaming and sliding-

window models. We show that, for a stream of n points or a sliding

window of size n, any exact algorithm for diameter requires Ω(n) bits

of space. We present a simple ε-approximation6 algorithm for com-

puting the diameter in the streaming model. Our main result is an

ε-approximation algorithm that maintains the diameter in two dimen-

sions in the sliding-window model using O( 1

ε
3/2

log3 n(log R+log log n+

log 1

ε
)) bits of space, where R is the maximum, over all windows, of

the ratio of the diameter to the minimum non-zero distance between

any two points in the window.
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1 Introduction

In recent years, massive data sets have become increasingly important in a

wide range of applications. In many of these applications, the input can be

viewed as a data stream [3, 19, 9] that the algorithm reads in one pass. The

algorithm should take little time to process each data element and should

use little space in comparison to the input size.

In some scenarios, the input stream may be infinite, and the application

may only care about recent data. In this case, the sliding-window model [8]

may be more appropriate. As in the streaming model, a sliding-window

algorithm should go through the input stream once, and there is not enough

storage space for all the data, even for the data in one window.

In this paper, we investigate the two-dimensional diameter problem in

these two models. Given a set of points P , the diameter is the maximum,

over all pairs x, y in P , of the distance between x and y. There are efficient

algorithms to compute the exact diameter [6, 25] or to approximate the di-

ameter [1, 2, 4, 5]. However, little has been done for computational-geometry

problems in the streaming or sliding-window models. In particular, little is

known about the diameter problem in these two models.

Geometric data streams arise naturally in applications that involve mon-

itoring or tracking entities carrying geographic information. For example,

Korn et al. [24] discuss applications such as decision-support systems for

wireless-telephony access. The customers using the service generate streams

of data about their locations, and the cell-phone company may want to

process and query the streams for various decision-support purposes. Data
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streams generated by sensor nets and other observatory facilities provide

another example [7]. In these applications, the data streams consist of the

records of geographically dispersed events, and computing extent measures

(such as the diameter) is an important component of monitoring the spatial

extent of these events.

In this work, we show that computing the exact diameter for a set of

n points in the streaming model or maintaining it in the sliding-window

model (with window width n) requires Ω(n) bits of space. However, when

approximation is allowed, we present a simple ε-approximation algorithm

in the streaming model that uses O(1/ε) space and processes each point in

O(log(1/ε)) time. We also present an approximate sliding-window algorithm

to maintain the diameter in 2-d using O( 1
ε3/2

log3 n(log R+log log n+log 1
ε ))

bits of space, where R is the maximum, over all windows, of the ratio of

the diameter to the minimum non-zero distance between any two points in

the window. All of our algorithms make only one-sided error. That is, the

output D̂ of our algorithms ε-approximates the true diameter D in that

D ≥ D̂ ≥ (1 − ε)D.

2 Models and Related Work

The streaming model was introduced in [3, 19, 9]. A data stream is a se-

quence of data elements a1, a2, . . . , an. We denote by n the number of data

elements in the stream. In this paper, the data elements are points in two-

dimensional Euclidean space.

A streaming algorithm is an algorithm that computes some function over
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a data stream and has the following properties:

1. The input data are accessed in sequential order.

2. The order of the data elements in the stream is not controlled by the

algorithm.

The sliding-window model was introduced in [8]. In this model, one is

only interested in the n most recent data elements. Suppose ai is the current

data element. The window then consists of elements {ai−n+1, ai−n+2, . . . , ai}.

When new elements arrive, old elements are aged out. A sliding-window al-

gorithm is an algorithm that computes some function over the window for

each time instant. Note that the window is a contiguous subset of the data

elements in the stream. Properties (1) and (2) above hold in the sliding-

window model as well as the streaming model.

Because n (the stream length in the streaming model or the window

width in the sliding window model) is large, we are interested in sub-linear

space algorithms, especially those using polylog(n) bits of space.

Previous work in the streaming model focuses on computing statistics

over the stream. There are streaming algorithms for estimating the num-

ber of distinct elements in a stream [11] and for approximating frequency

moments [3]. Work has been done on approximating Lp differences or Lp

norms of data streams [9, 12, 21]. There are also algorithms to compute his-

tograms [17, 14] and wavelet approximations [15] for the data elements in a

stream. Computing quantiles has been studied [16] in the streaming model,

too. Previous work in the sliding-window model [8] addresses the mainte-

nance of the sum of the data elements in the window. The same work also
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shows how to maintain Lp norms in the window. Later, Gibbons et al. [13]

improved the counting results of [8] and extended the sliding-window model

to distributed streams.

However, at the time of this work, aside from the stream-clustering algo-

rithm in [18]7 and the study of the reverse-nearest-neighbor problem in [24],

little is known about computational-geometry problems in the streaming or

sliding-window models. Note that a streaming or sliding-window version of

a computational-geometry problem is a dynamic problem, i.e., the set of

geometric objects under consideration may change. There are additions and

deletions to the current set of geometric objects as the computation pro-

ceeds. However, the difference between a dynamic computational-geometry

algorithm and a streaming/sliding-window geometry algorithm is that, in

the streaming/sliding-window model, the algorithm only has limited space

and cannot store all the geometric objects in its memory. Thus, most dy-

namic computational-geometry algorithms cannot be applied directly in the

streaming/sliding-window model. The study of stream algorithms for basic

problems in computational geometry is an interesting new research area.

Agarwal et al. [1] presented an algorithm that maintains approximate

extent measures of moving points. Among these extent measures is the di-

ameter of the set of the points. In [1], this algorithm is not presented as a

streaming algorithm. However, it can be simply adapted to compute the di-

ameter in the streaming model. Our streaming computation of the diameter

takes a different approach, reducing the amount of time required to process

7Note that the stream-clustering algorithm can be applied in any metric space, not
just in the Euclidean space.
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each point while using more space. Note that the moving-points model

and the sliding-window model are different and thus that the results for

maintaining the diameter in the moving-points model in [1] are not directly

comparable to our results in the sliding-window model.

A preliminary version of this work was presented in [10]. Since then,

more work has been done on geometric problems in the streaming model.

In [20], Hershberger et al. provide a streaming algorithm that ε-approximates

the diameter using O( 1√
ε
) space and O(log( 1

ε )) time per point, thus improv-

ing the space upper bound given by our approximation. The heart of their

algorithm is the computation of the convex hull of the adaptively sampled

extrema. The same convex hull is also used in [20] to approximate other

properties, such as enclosure and linear separation, of a stream of points.

Using a technique similar to ours, Cormode et al. [7] devised the radial

histogram to estimate the diameter, furthest neighbor, and convex hull of a

stream of points. Furthermore, spatial joints and spatial aggregation such as

reverse-nearest neighbors can be estimated using multiple radial histograms.

Although all of the above work addresses computational-geometry prob-

lems in low dimensions in the streaming model, we remark that the set

of problems in high dimensions are also important. For example, there

are problems in information retrieval that are modeled as high-dimensional

computational-geometry problems. A streaming algorithm presented in [22]

c-approximates the diameter (for c >
√

2) in a d-dimensional space using

O(dn1/c2−1) space. However, most high-dimensional geometric problems re-

main open in the streaming model.
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3 Sector-Based Diameter Approximation in the

Streaming Model

In this section, we provide a streaming algorithm for approximating the

diameter of a set of points in the plane.

A simple streaming adaptation of the algorithm of [1] gives an ε-approximation

of the diameter using O(1/
√

ε) space and time. Let l be a line and p, q ∈ P

be two points that realize the diameter. Denote by πl(p), πl(q) the projec-

tion of p, q on l. Clearly, if the angle θ between l and the line pq is smaller

than
√

2ε, |πl(p)πl(q)| ≥ |pq| cos θ ≥ (1 − θ2

2 )|pq| ≥ (1 − ε)|pq|. By using a

set of lines such that the angle between pq and one of the lines is smaller

than
√

2ε, the algorithm can approximate the diameter with bounded error.

The adaptation can go through the input in one pass, project the points

onto each line, and maintain the extreme points for the lines. Thus, it is a

streaming algorithm.

However, the time taken per point by this algorithm is proportional to

the number of lines used, which is Ω(1/
√

ε). We now present an almost

equally simple algorithm that reduces the running time to O(log(1/ε)). Our

basic idea is to divide the plane into sectors and compute the diameter of P

using the information in each sector. Sectors are constructed by designating

a point x0 as the center and dividing the plane using an angle of θ. We show

two sectors in Figure 1.
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Figure 1: Two Examples of Sectors
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Algorithm Streaming-Diameter

1. Take the first point of the stream as the center, and divide the
plane into sectors according to an angle θ = ε

2(1−ε) , where ε is
the error bound. Let S be the set of sectors.

2. While going through the stream, for each sector, record the
point in that sector that is the furthest from the center. Also
keep track of the maximum distance, Rc, between the center
and any other point in P .

3. Let |ab| be the distance between points a and b. Define D ij
max =

max |uv| for u ∈ boundary arc of sector i and v ∈ boundary
arc of sector j, and define Dij

min = min |uv| for u ∈ boundary
arc of sector i and v ∈ boundary arc of sector j. Output
max{Rc, maxi,j∈S Dij

min} as the diameter of the point set P .

The sectors have outer boundaries (the arcs aa′ and bb′ in the figure) that

are determined by the distance between the center and the farthest point

from the center in that sector. The algorithm records the farthest point for

each sector while it goes through the input stream. The full description of

the algorithm is given in algorithm “Streaming-Diameter.” The algorithm’s

space complexity is determined by the sector angle θ.

Claim 1. The distance between any two points in sector i and sector j is

no larger than max{Rc, Dij
max}. (Here i could be equal to j.)

Proof. Consider sectors in figure 1. Let u be a point in sector i and v be

a point in sector j. Extend x0u until it reaches the arc aa′. Denote the

intersection point u′. Also extend x0v until it reaches the arc bb′. De-

note the intersection point v′. Then we have |uv| ≤ max{|x0v|, |vu′|} ≤
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max{Rc, |x0u
′|, |u′v′|} ≤ max{Rc, D

ij
max}. (In the two inequalities above we

have used (twice) the fact that, if a, b, c occur in that order on a line and d

is some point, then |db| ≤ max(|da|, |dc|).

Claim 2. With notation as in Figure 1 and in the description of the algo-

rithm, Dij
max ≤ Dij

min + length(aa′) + length(bb′) ≤ Dij
min + 2Rc · θ.

Proof. Consider sectors in Figure 1. Let |uv| = Dij
max and |u′v′| = Dij

min.

Because u, u′ ∈ arc aa′ and v, v′ ∈ arc bb′, there is a path from u to v, namely

u ∼ u′ ∼ v′ ∼ v. Therefore Dij
max ≤ |uu′|+Dij

min+ |vv′| ≤ Dij
min+2Rc ·θ.

Assume that the true diameter diamtrue is the distance between a point

in sector i and another point in sector j. Let diam be the diameter computed

by our algorithm. We observe the following:

max{Rc, Dij
min} ≤ max{Rc, max

m,n∈S
Dmn

min} = diam ≤ diamtrue ≤ max{Rc, Dij
max}

Depending on the relationship between Rc and Dij
min, we consider two cases:

In the case where Rc ≥ Dij
min, we want Rc ≥ (1− ε)Dij

max in order to bound

the error. This leads to θ ≤ ε
2(1−ε) . In the case where Rc < Dij

min, we want

Dij
min ≥ (1 − ε)Dij

max. Again, this leads to θ ≤ ε
2(1−ε) . We will have O( 1

ε )

sectors. Given the center and another point, it takes O(log(1/ε)) time to

identify the sector where the point is located. We then have the following

theorem.

Theorem 1. There is an algorithm that ε-approximates the 2-d diameter in

the streaming model using storage for O( 1
ε ) points. In order to process each

point, it takes O(log(1/ε)) time.
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The above algorithm does not work in the sliding-window model. In the

streaming model, the boundaries of sectors only expand. This nice property

allows us to keep only the extreme points. However, in the sliding-window

model, the diameter may decrease with different windows. One may need

more information in order to report the diameter for each window.

4 Maintaining the Diameter in the Sliding-Window

Model

In this section, we present a sliding-window algorithm that maintains the

diameter of a set of points in the plane. Note that by applying the projec-

tion technique used in the diameter algorithm of [1], we can transform the

problem of maintaining the diameter in two-dimensional Euclidean space to

the problem of maintaining the diameter in one-dimensional space. Hence,

we first consider the problem on a line.

In the sliding-window model, each point has an age indicating its location

in the current window. We call the recently arrived points new points and

the expiring points old points. We denote by |ab| the distance between point

a and point b. We also say that the distance r = |ab| is realized by points a

and b. We may further say that r is realized by a when it is not necessary to

mention b or when b is clear in context. In particular, we denote by diama

the diameter realized by a.

Our main algorithm employs a subroutine that we call the rounding sub-

routine. When invoked on a set of points, the rounding subroutine produces

a space-efficient representation for the set of points. We call this represen-
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tation a cluster. Once the cluster is constructed, the diameter of the set

of points can be approximated by computing the diameter of this cluster.

We now describe the rounding subroutine in detail. (Note that, for simplic-

ity, we describe here the rounding subroutine invoked on one set of points.

In our main algorithm that maintains the diameter in the sliding-window

model, the rounding subroutine will be invoked on different subsets of points

in the window, as well as on the clusters, which essentially are also sets of

points.)

Given three points a, b, c and an approximation error of ε̂, if we treat

point c as a center (the coordinate zero), we can “round” point b to point

a if |ac| ≤ |bc| ≤ (1 + ε̂)|ac|. For a set of points, we can pick some point in

the set as the center and round the other points in the same manner. Let c

be the point in the set picked as the center. Let d be the minimum distance

between c and any other point in the set. Consider the distance intervals

[c, t0), [t0, t1), [t1, t2), . . . , [tk−1, tk], such that |cti| = (1 + ε̂)id. The rounding

subroutine rounds down (moves) each point in the interval [ti, ti+1) to the

location ti (Figure 2).
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Figure 2: Rounding Points in Each Interval
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If multiple points are rounded to the same location, the subroutine dis-

cards the older ones and keeps only the newest one. There is at most one

point in each of these intervals. The cluster for this set of points consists of

the center c and the points that are kept by the subroutine after rounding

them. Note that the points in a cluster are different from the points in the

original set. We say a point a in the cluster represents a point b in the

original set if b is rounded to the location of a by the rounding subroutine,

regardless of whether b is discarded. (We call the point a the representative

point of the original point b.) Note that a point a in the cluster may repre-

sent several points in the original set that are rounded to its location. The

location of the representative point in the cluster may not be the same as

the location of the point in the original set.

The volume of a cluster is the number of the points in the original set

that are represented by the cluster. We say a cluster is at level ` if the

volume of the cluster is 2`. The size of a cluster is the number of points in

the cluster. Let D be the diameter of a set of points. The size of the cluster

constructed by invoking the rounding subroutine on this set is at most:

k ≤ 2 log1+ε̂
D

d
= 2

log D/d

log e ln(1 + ε̂)
≤ 4

ε̂ log e
log

D

d

Hence, given a set of points with diameter D and an arbitary point c in the

set, if the non-zero minimal distance between c and any other point in the set

is d and if the approximation allows an error of ε̂, the rounding subroutine

constructs a cluster. The diameter of the set of points can be approximated

by the diameter of this cluster. The size of the cluster is upper bounded by
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4
ε̂ log e log D

d . Also, we observe that there may be a displacement between an

original point in the set and its representative point in the cluster. In this

case, the representative point is always closer to the center than the original

point. Thus, we say that the point in the original set is rounded (moved)

“toward the center”.

Claim 3. When invoked on a set of points, the rounding subroutine con-

structs a cluster that can be used to approximate the diameter of the set of

points. If there is a displacement between a point in the set and its repre-

sentative point in the cluster, the point will only be rounded (moved) toward

the center of the cluster.

We now proceed to describe our main algorithm that maintains the di-

ameter in the sliding-window model. A cluster constructed for a set of points

may not be useful for approximating the diameter if, after the construction

of the cluster, some of the points in the set have been deleted and some new

points have been added. For a static set of points, by constructing the clus-

ter, we are able to represent a point, say b, by another point, say a, because

there is some distance (for example |bc|) realized by b that promises a lower

bound for any diameter that may be realized by b, and the displacement (if

any) because of rounding is at most ε̂|bc|. In the sliding-window model, such

a promise provided by the point c may be broken when c expires. On the

other hand, a cluster is essentially a set of points too. If we have a cluster

that represents all the points in the current window, each time a new point

arrives, we may delete the expired point from the cluster and view the new

point and the remaining points in the cluster as a new set of points. A

14



center can be selected, and the rounding subroutine can be applied on this

set to construct a new cluster. However, this approach will result in too

many roundings and introduce too much error in the approximation.

To overcome these problems, we maintain multiple clusters with the

following properties:

1. A cluster represents an interval of points in the window (the continu-

ous subsequence of points within a time interval of the window). The

newest point in the interval is picked to be the center. The round-

ing subroutine is invoked on this interval of points, and the resulting

cluster represents these points in the window interval.

2. The clusters are at level 1, 2, . . . , blog nc.

3. We allow at most two clusters at each level.

4. When the number of clusters at level i exceeds 2, the oldest two clusters

(where the age of a cluster is determined by the age of its center) at

that level are merged to form a cluster at level i + 1.

Imagine a tree built on the original input points in a window. The points

are the leaves. Two consecutive points can form a node (a cluster) at level

1. Two consecutive level-1 clusters can merge to form a node (a cluster)

of level 2. This can be repeated recursively until we reach the top level.

In this structure, the original input points represented by a cluster are the

leaves of the subtree rooted at the node corresponding to that cluster. Note

that, at each level, we only keep at most 2 nodes (clusters). The original

input points represented by all the clusters that we keep form a cover of the
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window. Thus, the whole window can be represented by O(log n) clusters.

Figure 3 shows an example of the clusters built on a window.
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Figure 3: Clusters built for the First Window
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When the window slides forward, new points are added to the window

and new clusters are formed. To maintain the required number of clusters

at each level, clusters are merged whenever there are too many clusters at

some level. Once a cluster reaches the top level, it stays at that level. Points

in this cluster will ultimately be aged out until the whole cluster is gone.

In order to merge clusters c1 centered at Ctr1 and c2 centered at Ctr2 to

form cluster c3, we go through the following steps: (We can assume, w.l.o.g.

c2 is newer than c1.),

1. Use Ctr2 as the center of newly formed cluster c3.

2. Discard the points in c1 that are located between the centers of c1 and

c2.

3. After step (2), if any point p in c1 satisfies |pCtr2| < |pCtr1| ≤ (1 +

ε̂)|Ctr1Ctr2|, discard p.

4. Let Pmerge consist of the remaining points of c1 and the points in c2.

Invoke the rounding subroutine on Pmerge with Ctr2 as the center.

Note that the new value of d is the non-zero minimal distance from

Ctr2 to any other point in Pmerge. It may be different from the one

used in building the cluster c2. The rounding subroutine may round

down the points in cluster c2 too.

From step (4), we know that the new value of d is the non-zero minimal

distance between Ctr2 and any other point in Pmerge. Let pmin be this

minimal distance point. If pmin belongs to cluster c1, the distance |Ctr2pmin|

may be much smaller than the distance between the point Ctr2 and the

18



original point(s) represented by pmin. This happens because when the points

are rounded to form the cluster c1, the rounding is based on the distance

between these points and the center Ctr1, not the point Ctr2. Thus we can’t

lower bound the value of d for the new cluster c3 by the minimal distance

between its center and any other original point whose representative point

is in the cluster. However, step (2) and (3) assure that |Ctr2pmin| is at least

ε̂ · |Ctr1Ctr2|. Otherwise, pmin will be discarded. We know that the two

points Ctr1 and Ctr2 are at their original locations. Thus, d is bounded

by ε̂ times the minimal distance between the cluster center and any other

original points whose representative point is in the cluster. The lower bound

for the whole window will then be the minimum over all the clusters.

In both the rounding subroutine and the merging process, we may dis-

card points. We now show that if any of the discarded points has the poten-

tial of realizing the diameter, it is represented by some representative point

in the resulting cluster.

Lemma 1. In the rounding subroutine or in the merging process, if a point is

discarded, either it will not realize any diameter or it is represented (by some

representative point) in the cluster resulting from the rounding subroutine or

the merging process.

Proof. The case with the rounding subroutine is clear because a point b is

discarded only if there is already a representative point a in the cluster for

b and the age of a is smaller than that of b.

In the merging process, we discard two types of points. For two clusters

c1 and c2 with centers Ctr1 and Ctr2, the first type of points we discard are
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the points in c1 that are located between Ctr1 and Ctr2. Let p0 be such a

point. Note that for any distance realized by p0 and some other points p,

there is a point p′ ∈ {Ctr1, Ctr2} such |pp′| > |pp0|. Hence, the first type of

points we discard will not realize any diameter. The second type of points

we discard are the set of points S = {p : p ∈ c1 and |pCtr2| < |pCtr1| ≤

(1+ ε̂)|Ctr1Ctr2|}. For the points in S, Ctr2 is their representative point in

the new cluster resulting from the merging process.

Define a boundary point in a cluster to be an extreme point. (Because

here the points are on a line, the extreme point is the point having the

largest(smallest) coordinate.) We keep track of the boundary points for each

cluster as well as the boundary points for the whole window. Points may

expire from the oldest cluster, and this may require updating the bound-

ary points of this cluster. The whole process is summarized in algorithm

“sliding-window diameter”.

Call the time during which an original point is within some sliding win-

dow the lifetime of that point. Let’s trace a point p through its lifetime.

For simplicity, in what follows, instead of saying that the original point p is

represented by some point in some cluster, we will just say p is contained

or included in that cluster. When clusters merge, if the new representative

point of p is located at a different location from the location of the old repre-

sentative point of p, we will just say p has been rounded (“moved”) to a new

location and there is a displacement between the new and the old locations

of p.

Let p0 be the original location of the point p and Ctr0 be the center
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Algorithm Sliding-Window Diameter

Update: when a new point arrives:

1. Check the age of the boundary points of the oldest cluster. If
one of them has expired, remove it and update the boundary
point.

2. Make the newly arrived point a cluster of size 1. Go through
the clusters from the most recent to the oldest and merge clus-
ters whenever necessary according to the rules stated above.
Update the boundary points of the clusters resulting from
merges.

3. Update the boundary points of the window if necessary.

Query Answer: Report the distance between the boundary points
of the window as the window diameter.

of the first cluster that includes the point p. When this cluster and some

other cluster merge, p could be rounded to a new location p1. Let Ctr1 be

the center of the newly formed cluster. If we continue this process, before p

expires or is no longer represented by any representative point in the window,

we will have a sequence of p’s locations p0, p1, . . . and corresponding sequence

of centers Ctr0, Ctr1, . . .. Assume at certain time t, p realizes the diameter

diamp. Let p0, p1, . . . , pt be the sequence of p’s locations up to the time t

and Ctr0, Ctr1, . . . Ctrt the corresponding sequence of centers. We have the

following claim:
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Figure 4: Point may be moved in each rounding but all the displacement
are in the same direction.
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Claim 4. If a point is rounded multiple times during its lifetime, all the

displacement because of rounding are in the same direction(Figure 4). That

is, for all the locations pi and all the corresponding centers Ctri, |p0Ctri| ≥

|piCtri|. Furthermore, if a point realizes the diameter at certain time, the

distance between the original point and any of its cluster centers up to that

time is at most the distance of this diameter. That is, for i = 1, 2, . . . , t,

|p0Ctri| ≤ diamp.

Proof. Suppose that the first time p is rounded, it is rounded to the right.

If now p is rounded to the left for the first time on step i, then by Claim 3,

Ctri−1 lies to the right of p while Ctri lies to the left. Further, p belonged

to the cluster of Ctri−1 before the merge. Hence, by our rules it would have

been discarded, because it lies between the two centers, and it belongs to

the older cluster. Furthermore, as shown in the proof of Lemma 1, such a

point p will not realize the diameter and would no longer be represented by

any representative point in the clusters in the window.

Note that diamp is the true diameter realized by the point p. p0 is the

original location of p and for i = 1, 2, . . . , t, the center Ctri is also at its

original location. Further, these centers are no older than the point p in the

window. Hence, for i = 1, 2, . . . , t, the diameter realized by p is at least the

distance |p0Ctri|.

We bound the error in the rounding process by showing that, for all i,

|p0pi| is at most an ε fraction of the diameter realized by p.

Each time we round a point, we may introduce some displacement or

error. Let erri+1 = |pipi+1| be the displacement introduced in the i + 1th
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merging. We have the following lemma:

Lemma 2. The total rounding error of a point p, before it expires or is

no longer represented by any representative point in the window, is at most

ε̂ log n · diamp.

Proof. We examine the two cases where there may be a displacement be-

tween pi and pi+1. In the rounding case, we maintain |piCtri+1| ≤ (1 +

ε̂)|pi+1Ctri+1|. Hence, erri+1 = |pipi+1| ≤ ε̂|pi+1Ctri+1| ≤ ε̂|p0Ctri+1|,

where the last inequality is by Claim 4. The second case is step (3) of the

merging process. If pi satisfies the condition, it will be discarded. As stated

in the proof of Lemma 1, in this case, Ctri+1 becomes the new representative

point of p. Hence, pi+1 is Ctri+1 and erri+1 = |pipi+1| ≤ ε̂|CtriCtri+1| ≤

|piCtri|. By Claim 4, erri+1 ≤ ε̂|p0Ctri|.

A point may participate in at most log n merges. The total amount of

displacement is then at most
∑

i erri ≤ ε̂ log n · maxi |p0Ctri|. By Claim 4,

we also have diamp ≥ maxi |p0Ctri|. The lemma follows.

To bound the error by 1
2ε, we make ε̂ ≤ ε

2 log n . The number of points

in a cluster after rounding will then be O( 1
ε log n log D

d ). Note that for each

cluster, d is bounded by ε̂ times the minimal distance between the center of

the cluster and any other original point whose representative point is in the

cluster. Denote by R the maximum, over all windows, of the ratio of the

diameter to the minimum non-zero distance between any two original points

in that window. Then log D
d ≤ log R + log 1

ε̂ = O(log R + log log n + log 1
ε ).

The number of points in a cluster can then be bounded by O( 1
ε log n(log R+

log log n + log 1
ε )).
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Theorem 2. There is an ε-approximation algorithm for maintaining diam-

eter in one dimension in a sliding window of size n, using O( 1
ε log3 n(log R+

log log n+log 1
ε )) bits of space, where R is the maximum, over all windows, of

the ratio of the diameter to the minimum non-zero distance between any two

points in that window. The algorithm answers the diameter query in O(1)

time. Each time the window slides forward, the algorithm needs a worst case

time of O( 1
ε log2 n(log R + log log n + log 1

ε )) to process the incoming point.

With a slight modification, the algorithm can process incoming points with

O(log n) amortized time using O( 1
ε log2 n(log n + log log R + log 1

ε )(log R +

log log n + log 1
ε )) bits of space.

Proof. By Lemma 1, any point that may realize the diameter for some win-

dow has a representative point in one of the clusters we maintain. We

now calculate the error in reporting the diameter using these representative

points. Set ε̂ ≤ ε
2 log n . By Lemma 2, for a point p and the diameter diamp

realized by p, the displacement between the original location of p and the

location of its representative points is at most ε̂ log n · diamp ≤ ε
2diamp.

Because our algorithm reports the diameter realized by the representative

points, such a displacement causes error in our diameter approximation.

Note that each of the two representative points that realize the reported

diameter may introduce an error at most ε
2 of the true diameter. Hence,

the diameter reported by our algorithm is at least (1 − ε) of the true di-

ameter. Also note that the reported diameter is at most the true diame-

ter. Otherwise, let p and p′ be the two original points whose representative

points R(p) and R(p′) realize the diameter reported by our algorithm. Then
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|pp′| < |R(p)R(p′)|. By Claim 3, the displacement between the location of p

(or p′) and the location of R(p) (or R(p′)) is caused by rounding (multiple

times) p (or p′) toward some center(s). Hence, there exists at least one center

c such that |R(p)c| or |R(p′)c| is larger than |R(p)R(p′)|. This contradicts

the fact that |R(p)R(p′)| is the diameter reported by our algorithm.

We now analyze the time and space requirement of our algorithm. For

each cluster, we maintain the following information:

1. The exact location of the center and the exact location of the point

closest to (but not located at) the center.

2. The age of all the points.

3. The relative positions of all the points other than the center.

The relative positions of all the point in a cluster can be encoded by a bit

vector. We may need log n bits of space to record the age in the current win-

dow for each point. Thus, we need O(log n) bits for each cluster point except

the center. There are at most O( 1
ε log n(log R + log log n + log 1

ε )) points in

each cluster. The space requirement for storing the information in items (2)

and (3) for the whole cluster is then O( 1
ε log2 n(log R + log log n + log 1

ε )).

Because we assumed that this space is much larger than the space required

to store two points, we can neglect the latter (the space for information in

item (1)). Given that there are O(log n) clusters, the total space requirement

will be O( 1
ε log3 n(log R + log log n + log 1

ε )) to maintain the diameter.

In order to report the diameter at any time, we maintain the two bound-

ary points for the window while we maintain the clusters. For each cluster,
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we only need to look at its boundary points, and thus the process of updating

the sliding window’s boundary points will only cost O(log n) time.

However, while updating the clusters, we may face a sequence of cascad-

ing merges. In the worst case, we may need to merge O(log n) clusters with

O(1
ε log n(log R + log log n + log 1

ε )) points in each. This requires time

O(1
ε log2 n(log R + log log n + log 1

ε )).

If a bit vector is used to specify the relative locations of the points in

a cluster, when we process the cluster during merging we may need to go

through the zero entries in the vector . This could be a waste of time if

the vector is sparse. We can directly specify the relative location of a point

instead. Because there are O( 1
ε log n(log R + log log n + log 1

ε )) different lo-

cations, we need an additional O(log 1
ε + log log n + log log R) bits, besides

the O(log n) bits stated above, for each point in a cluster. The space re-

quirement for each point in a cluster will then be O(log n+log log R+log 1
ε ).

With this modification, when merging two clusters, we are free of overhead

other than processing the points in the clusters. During a point’s lifetime,

it will take part in at most log n merges. Thus, a simple analysis can show

that the amortized cost for updating is now only O(log n).

To extend the algorithm to 2-d, we can apply the projection technique.

We use a set of lines and project the points in the plane onto the lines. We

guarantee that, for any pair of points, they will project to a line with angle

θ such that 1 − cos θ ≤ ε
2 . This will require O( 1√

ε
) lines. We then use our

diameter-maintenance algorithm on lines to maintain the diameter in the

2-d case.
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Theorem 3. There is an ε-approximation algorithm for maintaining diame-

ter in 2-d in a sliding window of size n using O( 1
ε3/2

log3 n(log R+log log n+

log 1
ε )) bits of space, where R is the maximum, over all windows, of the ratio

of the diameter to the minimum non-zero distance between any two points

in that window.

5 Lower Bounds

It is well-known that the set-disjointness problem has linear communication

complexity [23] and thus a linear-space lower bound in the streaming model.

(These lower bounds apply to randomized protocols and algorithms as well.)

One can map the set elements to points on a circle such that the diameter

of the circle will be realized if and only if the corresponding element is

presented in both sets. This reduction gives the following theorem.

Theorem 4. Any streaming algorithm that computes the exact diameter

of n points, even if each point can be encoded using at most O(log n) bits,

requires Ω(n) bits of space.

Proof. We reduce the set-disjointness problem to a diameter problem. The

set-disjointness problem is defined as follows: Given a set U of size n and

two subsets x ⊆ U and y ⊆ U , the function disj(x, y) is defined to be “1”

when x∩ y = φ and “0” otherwise. The corresponding language DISJ is the

set {(x, y)|x ⊆ U, y ⊆ U, x ∩ y = φ}.

The set-disjointness problem has a linear communication complexity

lower bound. Because a streaming algorithm can be easily transferred into

a one-round communication protocol, the linear communication complexity

28



lower bound gives a linear space lower bound for set-disjointness problem in

the streaming model.

Consider points on a circle in the plane. For a given point pi, there is

exactly one other point on the circle such that the distance between it and

pi is exactly equal to the diameter of the circle. Denote this antipodal point

p′i. The distance between pi and all other points on the circle is smaller

than the distance between pi and p′i. We map each element i ∈ U onto

one such antipodal pair. We further make the appearance of one point in

the pair correspond to the appearance of the element i in subset x and the

appearance of the other point correspond to the element i in y. We will

have both points pi and p′i only if the element i is in both subsets x and y.

Given an instance (x, y) of DISJ, we construct an instance of the diameter

problem according to the above principle. We give an example in Figure 5
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30



The solid squares in the figure are the points we put into the diameter

instance. The DISJ instance in Figure 5 is x, y, where x = 1011 and y =

1100. The diameter instance contains p1, p3, p4, because x = 1011, and

p′1, p′2, because y = 1100. The dashed circles in the figure show the location

for p2, p
′
3, p

′
4. Because x2 = 0 and y3 = y4 = 0, these points are not presented

in the stream.

In the example, element 1 is in both x and y. The diameter of the point

set constructed is |p1p
′
1| and is exactly the diameter of the circle. On the

other hand, if x∩y = φ, the diameter of the point set will be strictly smaller

than the diameter of the circle. Thus, an exact algorithm for the diameter

problem could be used to solve the set-disjointness problem.

We remark that in the above construction, each point in the input stream

may be encoded using at most O(log n) bits. Hence, Theorem 4 gives a space

lower bound of Ω(n) bits for a stream of length O(n log n) bits.

For a positive number ε ≤ 1
π2 , consider the same construction with a set

of at most 1√
ε

points. Let xε and yε be the two sets represented by these

points and let the diameter of the circle used in the construction be 1. If

xε ∩ yε 6= φ, the diameter of the set of points is 1 while if xε ∩ yε = φ, the

diameter would be at most cos(π
√

ε). Because 1 − cos(x) ≥ 1
2x2 − 1

24x4 ≥
11
24x2, 1 − cos(π

√
ε) ≥ 11π2

24 ε ≥ 3ε, a streaming algorithm that can (1 ± ε)-

approximate the diameter will be able to distinguish the two cases and

thus solve the set-disjointness problem on the two sets xε and yε. Such a

streaming algorithm requires Ω( 1√
ε
) bits of space.

In the sliding-window case, we have a similar bound even for points on
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a line. Obviously the lower bound holds for higher dimensions as well.

Theorem 5. To maintain, in a sliding window of size n, the exact diameter

of a set of points on a line, even if each point in the set can be encoded using

O(log n) bits, requires Ω(n) bits of space.

Proof. Consider a family
�

of point sequences of length 2n−2. Let {a1, a2, . . . , a2n−2}

be a sequence in
�

. Because ai is a point in one dimension, we denote by

ai the point as well as the coordinate (a real number) of the point. The

sequences in the family
�

have the following properties:

1. For i = n, n+1, . . . , 2n−2, ai is located at coordinate zero, i.e., ai = 0.

Furthermore, an−1 = 1.

2. |a1an| ≥ |a2an+1| ≥ |a3an+2| ≥ . . . ≥ |an−1a2n−2|, i.e., a1 ≥ a2 ≥ a3 ≥

. . . ≥ an−1.

3. The coordinates of the points aj, for j = 1, 2, . . . , n − 2, are picked

from the set {2, 3, . . . , n}.

For a window that ends at point as, the diameter is exactly the distance

|asas+n−1|. Any two members of the family will have different diameters for a

window that ends at as, for some s ∈ {1, 2, . . . , n−2}, where the coordinates

of as differ in the two sequences. Thus, an algorithm that maintains the

diameter exactly has to distinguish any two sequences in
�

.

We need to assign values for the n−2 coordinates a1 ≥ a2 ≥ . . . ≥ an−2.

By Property (3), we have n − 1 possible values to choose. (We may assign

the same value to multiple coordinates.) The number of such assignments
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(and thus the number of sequences in
�

) is
(

n−2+n−2
n−2

)

≥ 2n/2. Hence, the

algorithm needs log | � | = Ω(n) space.

We remark that in this family
�

, the non-zero minimal distance between

any two points in a sequence is at least 1. For each sequence, the ratio of

the diameter over the non-zero minimal distance between any two points

is at most n. Hence, the lower bound holds without the requirement of an

extremely large R.

If we change the form of the coordinates of aj for j = 1, 2, . . . , n − 2 to

(1 + ε)3k while respecting the Property (2) above, a similar family of points

sequences can be constructed for ε-approximation algorithms. We have the

following lower bounds for approximation from this modified family of points

sequences.

Theorem 6. Let R be the maximum, over all windows, of the ratio of the

diameter to the minimum non-zero distance between any two points in that

window. To ε-approximately maintain the diameter of points on a line in

a sliding window of size n requires Ω( 1
ε log R log n) bits of space if log R ≤

3 log e
2 ε ·n1−δ, for some constant δ < 1. The approximation requires Ω(n) bits

of space if log R ≥ 3 log e
2 ε · n.

Proof. Once again consider the family of point sequences in the proof of The-

orem 5. We make the following change: The coordinates of the points aj for

j = 1, 2, . . . , n−2, have the form (1+ε)3k, for some k ∈ {1, 2, . . . , b 1
3 log(1+ε) Rc =

m}. These coordinates are chosen so as to respect Property (2) in the proof

of Theorem 5. Note that 2
3 log e·ε log R ≥ m ≥ 1

3 log e·ε log R, for ε sufficiently
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small, because ε/2 ≤ ln(1 + ε) ≤ ε. Depending on the value of log R, we

consider two cases:

1. log R ≤ 3 log e
2 ε · n1−δ for some constant δ < 1. By a similar argument

to the one given in the proof of Theorem 5, the space requirement will

now be lower bounded by:

log

(

m − 1 + n − 2

m − 1

)

≥ Ω(m log
n

m
) ≥ Ω(

1

ε
log R(δ log n))

= Ω(
1

ε
log R log n)

2. log R ≥ 3 log e
2 ε · n. In this case, m ≥ n

2 . We can always choose from n
2

different values for the coordinates of the points a1, . . . , an−2. (Same

value can be chosen for multiple coordinates.) The space requirement

will be lower bounded by

log

(

n/2 − 1 + n − 2

n/2 − 1

)

≥ Ω(
n

2
· log 2) = Ω(n)

6 Conclusion

In this work, we have initiated the study of computational-geometry prob-

lems in the streaming and sliding-window models. We provided bounds

for approximate and exact diameter computation in these models. Mas-

sive streamed data sets for computational-geometry problems arise nat-

urally in applications that involve monitoring or tracking entities carry-
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ing geographic information. They are also encountered as problems in

areas such as information retrieval and pattern recognition, modeled as

computational-geometry problems by means of embedding. Thus, we be-

lieve that the study of stream algorithms for basic problems in computa-

tional geometry is a promising direction for future research. Indeed, more

computational-geometry problems have been studied since our results were

first presented in preliminary form, and algorithms and lower bounds are

provided in [20, 7, 22]. On the other hand, there are several problems that

are still open, among which is the gap between our space upper bound and

our lower bound for the diameter problem in the sliding-window model. We

conjecture that, for this particular gap, it is the upper bound that can be

improved. Another direction that needs further investigation is the window

size in the sliding-window model. We use a model that has a fixed window

size. In some applications, it is desirable that the window size vary or be

approximated, as in the work on elastic windows by Shasha and Zhu [26].

In general, we believe that it would be interesting to study computational-

geometry problems in models with variable window size.
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