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Testing and Spot-Checking of Data Streams1

J. Feigenbaum,2 S. Kannan,3 M. Strauss,4 and M. Viswanathan5

Abstract. We consider the tasks of testing and spot-checking for data streams. These testers and spot-
checkers are potentially useful in real-time or near real-time applications that process huge data sets. Crucial
aspects of the computational model include the space complexity of the testers and spot-checkers (ideally much
lower than the size of the input stream) and the number of passes that the tester or spot-checker must make
over the input stream (ideally one, because the original stream may be too large to store for a second pass).

A sampling-tester [GGR] for a property P samples some (but usually not all) of its input and, with high
probability, outputs PASS if the input has property P and FAIL if the input is far from having P , for an
appropriate sense of “far.” A streaming-tester for a property P of one or more input streams takes as input one
or more data streams and, with high probability, outputs PASS if the streams have property P and FAIL if the
streams are far from having P . A sampling-tester can make its samples in any order; a streaming-tester sees
the input from left to right.

We consider the groupedness property (a natural relaxation of the sortedness property). We also revisit the
sortedness property, first considered in [EKK+] in the context of sampling spot-checkers, and the property
of detecting whether one stream is a permutation of another (either directly or via the SORTED-SUPERSET
property, a technical property that is equivalent to PERMUTATION under some conditions). We show that
there are properties efficiently testable by a streaming-tester but not by a sampling-tester and other (promise)
problems for which the reverse is true.
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1. Introduction. Massive data sets are increasingly important in a wide range of ap-
plications, including observational sciences, product marketing, and monitoring and
operations of large systems. In network operations, raw data typically arrive in streams,
and decisions must be made by algorithms that make one pass over each stream, throw
much of the raw data away, and produce “synopses” or “sketches” for further processing.
The enormous scale, distributed nature, and one-pass processing requirement on the data
sets of interest must be addressed with new algorithmic techniques.
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Two programming paradigms for massive data sets are sampling and streaming.
Rather than take time even to read a massive data set, a sampling algorithm extracts
a small random sample and computes on it. By contrast, a streaming algorithm takes
time to read all the input, but little more time and little total space. Input to a streaming
algorithm is a sequence of items; the streaming algorithm is given the items in order,
lacks space to record more than a small amount of the input, and is required to perform
its per-item processing quickly in order to keep up with the unbuffered input. UNIX
pipelines and applications monitoring high-bandwidth network connections are practi-
cal examples of streaming algorithms. Formulations of models for streaming algorithms
can be found in, e.g., [HRR], [FKSV1].

Recently spot-checkers [EKK+] and, earlier, property-testers [GGR] have been pro-
posed. These are sampling programs that perform variants of program checking [BK],
[BLR]. A property-tester TP for a property P gets as input a data set x purported to have
P . The program TP samples a small portion of x , runs quickly, and, with high probability,
outputs PASS if x has P and outputs FAIL if x is far from any x ′ with P (for an appro-
priate sense of “far”). A spot-checker Cf for a function f gets (x, y) purported to satisfy
f (x) = y; Cf samples a small portion of its input and outputs PASS or FAIL depending
on whether the pair (x, y) indeed satisfies f (x) = y or is far from any satisfying pair.
A property-tester might be run before a primary program in order to validate input for
the latter; a spot-checker might be run after a primary program to ensure that the latter
did not fail egregiously. The small runtime of checkers/testers is especially important
when the primary program uses little time—for example, if the primary program is itself
a sampling program. This is less important if the primary program takes time to read all
its input.

In this paper we introduce streaming-property-testers and streaming-spot-checkers.
A streaming-property-tester TP for a property P takes as input a read-once data stream x ,
uses little space and little time per item, and, with high probability, outputs PASS if x has
P and outputs FAIL if x is far from any x ′ with P . A streaming-spot-checker for a function
f has a similar definition. A streaming-property-tester may be used to validate input for
a primary pipeline of streaming algorithms; a streaming-spot-checker can ensure that
the pipeline did not fail egregiously. (We assume that invalid input is rare. Thus, we are
content with a property-tester that catches invalid input eventually, even if the primary
program performs work before the bad input is caught.) A collection of primary programs
might be written as a pipeline (rather than as a sequence of programs, each idling until the
previous program terminates) when (1) it is acceptable or necessary to expend enough
time to read the input, and (2) it is not acceptable to store intermediate results from
individual primary programs. In a context suited for pipelines, the guarantees given
about (sampling) spot-checkers and property-testers are inappropriate because (1) the
significantly sublinear time guarantees of the sampling-checkers and sampling-testers are
useless because the checkers/testers can be run at the same time as the primary program
anyway, and, (2) a sampling-checker/tester may require storage of the input or output
(or even storage of the input until the output is finished, for example, to sample from
the input using a distribution determined by the output), whereas a streaming-checker
or streaming-tester is guaranteed not to increase significantly the space requirements
of the primary program. Furthermore, for some properties (such as GROUPEDNESS,
discussed below), it is easier and more natural to design streaming-testers, which are



Testing and Spot-Checking of Data Streams 69

sensitive to all the input, rather than sampling-testers, which are sensitive to a small
sample only. Thus, designing a streaming-tester is sometimes easier than designing and
modifying a sampling-tester, and, even though some sampling-checkers and sampling-
testers can be modified to work well in a streaming context, it is important to analyze
them in a streaming context in order to establish appropriate performance guarantees.

We consider whether every property that can be efficiently tested by a sampling-
tester can also be efficiently tested by a streaming-tester, and vice versa. The notions
of efficiency for sampling-testers and streaming-testers are not directly comparable, but
there are still interesting comparisons to make. There are useful, non-trivial sampling-
checkers and sampling-testers (for two different problems) that, respectively, run in
time O(log n) [EKK+] and O(

√
n log(n)) [here]. Both are the best possible up to a

log factor. Thus, even though a runtime of Õ(
√

n) represents substantial savings over
any algorithm that reads all of its input, it is not the best one can achieve for spot-
checkers generally. Because there are functions/properties checkable in logO(1) n time,
we reserve the term “efficiently checkable/testable” for that. As for streaming-checkers
and streaming-testers, we call a function/property “efficiently stream-checkable” or
“efficiently stream-testable” if it uses O(log n) space and at most time logO(1) n per
item. We show that there are properties efficiently testable by sampling-testers but not
by streaming-testers and other properties for which the reverse is true. We do this by
considering the SORTEDNESS property, the PERMUTATION property that one half
of the input is a permutation of the other half, and the GROUPEDNESS property. (A
sequence σ1, . . . , σn is called grouped if σi = σj and i < k < j imply σi = σk = σj ,
i.e., for each type T , all occurrences of T are in a single (contiguous) run.)

1.1. Summary. Our main technical contribution is showing that a sampling-tester can
test whether a sequence of length n is grouped, making only O(

√
n) samples using

O(
√

n log(n)) time and O(
√

n) space. (The proof is given in Section 3.) This, along
with related and complementary results proved here or elsewhere, is important because
it (1) gives a non-trivial property-tester for a property—groupedness—that is important
for algorithms for massive data sets, (2) demonstrates that the guarantees given by the
paradigm of sampling-checkers and sampling-testers are inappropriate for streaming
algorithms, while the paradigm of streaming-checking and testing that we introduce
gives more useful guarantees, and (3) demonstrates that there are properties efficiently
testable by sampling-testers but not by streaming-testers and other properties for which
the reverse holds.

1.2. Relevance to Network Data

1.2.1. Streams. Data streams are a pervasive and important fact of life in communi-
cation-network operations, monitoring, and research. Basic Internet routing is itself a
ubiquitous example of a streaming algorithm: A packet arrives at a router and is sent
immediately on to the next hop in the path from its source to its destination; the router
cannot wait and make next-hop decisions based on related packets that may arrive later,
even if such decisions would lead to more efficient traffic management overall. The
sampling approach to efficiency of massive-data-set processing is not relevant, because
the data set is never available in its entirety to be sampled.
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Data packets form the primary streams handled by an IP network, but they are not
the only streams of interest. Network-monitoring tools often produce output that is suf-
ficiently voluminous to warrant processing as a stream. For example, Cisco routers can
now be instrumented with the NetFlow feature [C]. As packets travel through the router,
the NetFlow software produces summary statistics on each flow.6 The fields of a flow
record include source IP address, destination IP address, total number of packets in the
flow, and total number of bytes of data in the flow. Algorithms for space-efficient compu-
tation on streams of NetFlow records can play important roles in a network-monitoring
toolkit. For example, in [FKSV1], we give a one-pass, space-efficient algorithm for ap-
proximating the L1 difference between two streams 〈(x, ft (x))〉, t = 1, 2, where x is a
source–destination pair, and ft (x) is the total number of bytes sent from the source to
the destination during a time interval t ; this difference is one good way to approximate
the extent to which traffic patterns changed between time intervals. The key point for
purposes of this discussion is that NetFlow records, although they are summary data,
have to be processed as streams: Each WorldNet gateway router now generates more
that 10 Gb of NetFlow records each day.

Finally, note that networking researchers receive data streams from which they build,
update, and analyze abstract models of network behavior and user behavior. The best
known example of such a data stream comes from telephony: “Call-detail” records, the
fields of which include originating number, terminating number, time and date of call,
duration of call, and tariff- and calling-plan data for billing, are used by AT&T Labs
researchers to build and analyze “call graphs”; these are massive, sparse multigraphs in
which each node represents a phone number and each arc A → B represents a call from
A to B, and their structural properties are both challenging to compute and useful for
marketing and infrastructure planning [ABW], [ACL], [F]. Call-detail data feeds must
be processed as streams because of their size: The network handles between 200 million
and 300 million calls a day and generates over 7 GB of call-detail data.

1.2.2. Stream Checking and Testing. Because network-data collection is currently dy-
namic, distributed, and unreliable in nature, “sanity checks” should be performed on
streams both before and after they undergo processing of various sorts. By “distributed,”
we mean that collection points are located at several (sometimes many) points in the
network and may produce streams that are supposed to be aggregated somewhere in
the network, e.g., for warehousing, billing, or research purposes; for example, NetFlow
records can be produced by any router in a network, web-service statistics and web-link
structure can be gathered by many concurrently running crawlers, and call-detail records
are produced by many telephone-network switches. Unreliability of network-generated
data arises for at least two reasons. One is that network operators will typically require
that monitoring data such as NetFlow records be sent from collection points to usage
points only when customer demand is low and, even during these non-peak intervals,
will assign lower priority to monitoring data than to customer traffic; thus, collection

6 Roughly speaking, a “flow” is a semantically coherent sequence of packets sent by the source and reassembled
and interpreted at the destination. Any precise definition of “flow” would have to depend on the application(s)
that the source and destination processes were using to produce and interpret the packets. From the router’s
point of view, a flow is just a set of packets with the same source and destination IP addresses whose arrival
times at the routers are close enough, for a tunable definition of “close.”



Testing and Spot-Checking of Data Streams 71

points must be prepared to deal with scheduling uncertainty, delays, and errors in moni-
toring data streams. Another major cause of unreliability or inconsistency is third-party
data sources; telephone bills, for example, are often produced by numerous different
third-party billing companies, and telephone service providers often use billing records
to build call graphs.

1.2.3. Groupedness. We study groupedness primarily because, like sortedness, it is
a fundamental property that one may want a massive data set to have and because it
illustrates that some properties are efficiently testable by sampling algorithms but not
streaming algorithms and vice versa. However, it is also worth noting that groupedness is
a particularly desirable property for network data that must be processed in a streaming
fashion, because many common uses of network-generated massive data streams require
computing maxima. For example, suppose, on a specific day, a network router routes ai

packets to destination i and needs to report the number of packets routed to the most
popular destination. This computation is trivial if the packets are guaranteed to be grouped
by destination, but, if they are not grouped, even approximating the desired value with
substantial probability requires space essentially sufficient to store the entire data stream
[AMS]. Similarly, grouped data streams facilitate reporting most frequently accessed web
pages, most frequently called 800 numbers, most frequently used services, etc. Finally,
we remark that grouping algorithms are a key enabler of recent improvements in the
I/O complexity of semi-external graph algorithms [ABW]. Semi-external computation
of basic graph structures, e.g., connected components, minimum spanning trees, and
matchings, is necessary when dealing with call graphs, web graphs, and other massive,
sparse graphs arising from communications networks.

2. Definitions and Computational Models. Our model is closely related to that of
Henzinger et al. [HRR], but variants of our model also incorporate features of spot-
checking [EKK+] and property-testing [GGR].

2.1. The Streaming Model. As in [FKSV1] and [HRR], a data stream is a sequence
of data items σ1, σ2, . . . , σn that, on each pass through the stream, are read once in
increasing order of their indices. In this computational model, we assume that the input
is one or more data streams. Again, as in [HRR], we focus on two resources—the
workspace required and the maximum number of passes through any input stream. A
point of departure from [HRR] is that we implicitly assume that the time complexity of
each pass is at most linear in input size. When we deviate from this assumption, we will
explicitly state our time bounds. Often only constant time is used between reading the
i th and (i + 1)st items in a stream.

We now describe the spot-checking and property-testing framework, because we
would like to situate our model within this framework.

Spot-checking is a variant of program checking that ensures in sublinear time that
the output of a program is approximately correct. Assume that D is a distance function
on the space of pairs, the first element of which is in the domain of f and the second of
which is in the range of f .
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DEFINITION 1. An ε-spot-checker for function f under distance function D is itself a
probabilistic algorithm C that, on input 〈x, y〉, has the following properties:

1. If f (x) = y, then C outputs PASS with high probability.
2. If D(〈x, y〉, 〈x ′, f (x ′)〉) ≥ ε, for all 〈x ′, f (x ′)〉, then C outputs FAIL with high

probability.
3. The checker C runs in time o(|x | + |y|).

A property-tester is similar in spirit to a spot-checker. Assume that D is a distance
function on the space of inputs to a property P .

DEFINITION 2. An ε-property-tester for property P under distance function D is itself
a probabilistic algorithm T that, on input x , has the following properties:

1. If x ∈ P , then T outputs PASS with high probability.
2. If D(x, x ′) ≥ ε, for all x ′ ∈ P , then T outputs FAIL with high probability.
3. The tester T runs in time o(|x |).

REMARK 1. A spot-checker for the function f : X → Y is a property-tester for f
viewed as a property on X × Y with the same distance function, D.

REMARK 2. In [GGR], a property-tester is always defined with respect to the Hamming
distance.

The non-triviality requirement that spot-checkers run in sublinear time ensures that
they do not merely duplicate the computation of the function f being checked. Because
spot-checkers run in sublinear time for each choice of random bits, the checker sees less
than all the input and output of f . For our analysis, it is convenient to force a checker
to access f ’s input and output via an explicit query operation, so that we can count
the number of queries made and thereby define the query complexity or, synonymously,
the sample complexity of problems. As in [GGR], we are interested both in the query
complexity and the runtime, but, generally, we give no explicit bound on the workspace.
(Note that the workspace used is bounded by the runtime, which is often much less than
linear.)

Our goal here is to define a model of streaming checking that allows spot-checking and
property-testing for inputs that are streamed. While existing spot-checkers are bounded
in their runtime, streaming-spot-checkers will be bounded in their workspace. Because
runtime and one-way workspace are resources with different characteristics, there are
functions that have [EKK+]-spot-checkers but not streaming-spot-checkers, and vice
versa. (We give examples in Section 3.) The same remark applies also to streaming-
property-testers, mutatis mutandis.

We can now define the idea of streaming-property-testing, a variant of property-testing
in which the input is a data stream. Assume as before that there is a distance function D
defined on the space of inputs.
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DEFINITION 3. An ε-streaming-property-tester for a property P under distance D is
a probabilistic algorithm that takes an input stream S and behaves as follows:

1. If S has property P , then the checker outputs PASS with high probability.
2. If D(S, S′) ≥ ε for any stream S′ that has property P , then the tester outputs FAIL

with high probability.
3. The space complexity of the tester is o(|S|).

Similarly we can define the notion of a streaming-spot-checker. Let f be a transducer
that takes in a stream x and outputs a stream y. Let D be a distance function on input–
output pairs 〈x, y〉.

DEFINITION 4. An ε-streaming-spot-checker for function f under distance function
D is itself a probabilistic algorithm C that, on input 〈x, y〉, has the following properties:

1. If f (x) = y, then C outputs PASS with high probability.
2. If D(〈x, y〉, 〈x ′, f (x ′)〉) ≥ ε, for all 〈x ′, f (x ′)〉, then C outputs FAIL with high

probability.
3. The space complexity of the checker is o(|x | + |y|).

Thus, a streaming-spot-checker takes as input two streams. One can consider a model
in which, at each computation step, the streaming algorithm specifies which of the two
or more input stream pointers to advance; alternatively, an adversary may advance the
streams and not be under the control of the algorithm. We will specify the model further
as we consider specific problems.

Finally, we can generalize streaming-spot-checkers and streaming-property-testers to
multipass algorithms in the natural way.

In [HRR], the authors propose a study of the streaming model under several
dichotomies—one pass versus multipass, deterministic versus randomized, and exact
versus approximate. In this paper, our focus on property testing and spot-checking leads
naturally to the study of randomized and approximate algorithms. We will separate func-
tions checkable by space-bounded streaming-spot-checkers (that can see all the input)
and functions checkable by traditional, random-access, time-bounded spot-checkers (that
can see only a portion of the input but can see it adaptively).

3. Testers for Grouped Sequences. In this section, we give upper and lower bounds
for the sampling and streaming complexity of testing and checking groupedness. These
results, together with known results ([EKK+] and elsewhere) about the related sortedness
problem, highlight differences between the streaming and sampling models.

DEFINITION 5. A sequence of elements σ = σ1σ2 · · · is said to be grouped if, for all
i < k < j , if σi = σj , then σi = σk = σj .

In other words, a sequence is grouped if all the elements of each kind occur consecutively
in the sequence.
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Input: Sequence σ of length n

Initialize:
Pick t = 	(k

√
n) indices uniformly at random from the set {0, . . . , n − 1},

where k = 1/
√

2ε.
Let the sorted sequence of these indices be i1, i2, . . . , it .
Pick an index uniformly at random between i j and i j+1 for each j .
(Choose all the indexes, then make all the samples.)

If there is a violating triple in the sample, i.e., there are indices i < j < 
 in the
chosen sample such that σi = σ
 and σi �= σj , then

return FAIL
else return PASS

Fig. 1. A sampling-tester for groupedness.

DEFINITION 6. The distance of a sequence σ from a grouped sequence is the minimum
fraction of elements of σ that need to be moved in order to get a grouped sequence.

This notion of distance is comparable with the one used in [EKK+] for sorting. There, a
sequence σ of length n is at distance ε from being sorted if the longest sorted subsequence
has length (1−ε)n. Observe that the length of the longest sorted subsequence is (1−ε)n
if and only if the minimum fraction of elements that need to be changed in order to get
a sorted sequence is ε (i.e., σ is at Hamming distance εn from sorted). A transformation
moving the minimal number of elements is called optimal.

3.1. A Sampling-Tester. An ε-sampling-property-tester for groupedness is given in
Figure 1.

THEOREM 7. Let σ be a sequence of n elements from [m] = {0, . . . , m − 1}. There is
a single-pass ε-sampling-property-tester for groupedness of σ . It uses O(

√
n) space,

makes O(
√

n) samples, and runs in O(
√

n log n) time (assuming a single item from [m]
can be processed in constant time and space).

The proof makes use of the following definition and lemma.

DEFINITION 8. A pair of indices (i, j), where i < j , is said to be bad for a sequence σ

if σi = σj and, for at least half the positions k strictly between i and j , σk �= σi .

LEMMA 9. Let σ be a sequence of length n that is at distance ε from being grouped,
i.e., at least εn elements of σ need to be moved in order to get a grouped sequence. Then
there are at least εn/2 bad pairs in σ , no two of which share even one endpoint.

PROOF. We start with a maximal endpoint-disjoint collection C of bad pairs. From C ,
we construct a correct transformation τ with a number of moves bounded by at most
2|C |. It follows that an optimal transformation requires at most 2|C | moves.
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Let C be a maximal collection of bad pairs such that no two bad pairs share even one
endpoint. We say that an element of σ is covered if it is in a pair in C . We also abuse
notation and say that elements of σ themselves, rather than pairs, are elements of C . We
let |C | denote the number of bad pairs, so that the number of covered elements is 2|C |.

Let U consist of blocks of uncovered elements of like type. (A block of type A is
terminated either by an element of type other than A or by a covered element of type A.)

Consider the following transformation, which consists of two phases. First, we group
the blocks of uncovered elements in a particular way, then we move all covered elements
to the correct place in the resulting sequence.

Let A be the type of the leftmost block in U . We move all non-A’s out from between
the leftmost and rightmost type-A block in U (if there is more than one such block), to the
appropriate place (specified later). Next, let B be the type of the leftmost block in U to the
right of the rightmost type-A block in U ; move all non-B’s out from between the leftmost
and rightmost type-B blocks to the right of the A blocks. Repeat this procedure, from
left to right, for all dynamically remaining blocks in U . At this point, we know where to
move the elements moved out from between blocks—either to the unmoved elements of
the correct type, if such elements exist, or to an end of the sequence, otherwise. Finally,
move all covered elements to the correct place. By construction, this transformation is
correct.

We assign to each move a unique covered element. If an element moves in the second
phase, because it is covered, we assign it to itself. Now, consider two blocks B1 and B2

in U of like type, A, such that there is no other type-A block between B1 and B2 and such
that all non-A’s between the blocks are moved out. Because the rightmost A of the left
block and the leftmost A of the right block is not a bad pair, at least half of the elements
between these two block-end A’s are also A’s, and must be covered, non-moving A’s.
We assign the moving non-A’s between the block-end A’s to the more-plentiful covered
A’s between the block-end A’s.

Note that the moving covered A’s are assigned themselves (elements of the same
type) and the non-moving covered A’s are assigned only elements of type other than A;
so the assignment to covered A’s is injective.

Finally, note that all moving elements are assigned to some covered element. This
is because an element moves either because it is between two blocks of like types or
because the element itself is covered.

PROOF OF THEOREM 7. If the sequence is grouped, then our tester PASSes the sequence.
Suppose the sequence σ is ε-far from being grouped. From Lemma 9, we know that
there is an endpoint-disjoint collection of at least O(εn) bad pairs. The probability that
a particular bad pair from the collection is picked, in the first step, is at least (k

√
n/n)2,

where k = 1/
√

2ε. The probability of picking a particular bad pair increases slightly,
conditioned on knowing that we failed to pick some other bad pairs. Thus the probability
that no bad pairs are picked in the first step is at most [1−(k

√
n/n)2]εn = [1−(k2/n)]εn .

Now [1 − (k2/n)]εn < 1 − εk2 + ε2k4 = 1 − 1
2 + 1

4 = 3
4 . Hence the probability that

a bad pair is picked in the first step is at least 1/4. Now since, for a bad pair, at least
half the elements in between are different, the probability that we get a witnessing triple
in our sample is at least ( 1

4 )( 1
2 ) = 1

8 . Thus with probability 1/8 our tester detects that
the sequence is not grouped. Note that this success probability can be boosted up to any
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1 − δ by conducting log(1/δ) many such experiments simultaneously and rejecting if
any of those experiments FAIL the sequence.

The algorithm needs O(
√

n) storage space to store the sample indices. After making
samples, the algorithm can then create O(

√
n) triples corresponding to the sample; each

triple has the type of the element, its index in the original sequence, and the index of the
next element in the sample. We impose an arbitrary ordering on the types and then sort this
sequence of triples, first based on type and then on index. Then if, while passing through
the sorted sample, we come across a triple (a, i, j) such that the element immediately
following it, in this sorted sequence, is (a, k, l), where k �= j , we have discovered a
violating triple, namely (i, j, k). Conversely, if there is a violating triple (i, j, k), then,
assuming without loss of generality that i is maximal for these values of j and k, we
will find a violating triple this way. All this takes only O(

√
n log n) time and O(

√
n)

space.

The above tester is, in fact, optimal in terms of the number of samples needed.

THEOREM 10. Any sampling-tester for groupedness makes (
√

n) samples on input of
size n.

PROOF. Suppose, by contradiction, that there is a sampling-tester for groupedness that
makes k = o(

√
n) non-adaptive queries. Consider a universe of {1, . . . , n}. If the tester

gets any permutation of the universe, then it will see k different elements and must answer
PASS because the sequence is grouped. Now, consider a sequence that contains two
each of n/2 symbols, chosen uniformly at random from {1, . . . , n} without replacement,
permuted in a random order. The tester will, with high probability, see a subset of
k different elements, and so will output PASS. With high probability, however, such
sequences are far from grouped. In particular, for each tester T , there exists a far-from-
grouped sequence σT , such that T incorrectly PASSes σT .

Now consider an adaptive tester. Such a tester will also output PASS when its set
of samples has all distinct elements. On the other hand, suppose the tester is given a
non-grouped sequence generated as in the previous paragraph. By induction on k ′ =
1, 2, . . . , k, after seeing k ′ samples, the tester would not have seen a match and could
therefore have made its (k + 1)st sample non-adaptively. It follows that the adaptive
tester is equivalent to a non-adaptive tester and will fail on some far-from-grouped
sequence.

Thus the sampling complexity is (
√

n), ignoring dependence on ε and δ.

3.2. A Streaming-Tester. In Section 3.1 we showed there are no efficient sampling-
testers for groupedness. On the other hand, there are efficient streaming-testers for
groupedness, i.e., streaming-testers that make one pass, use logarithmic space, and poly-
logarithmic time per item.

THEOREM 11. There exists a single-pass ε-streaming-property-tester for groupedness.
It uses O(1) space (ignoring dependence on ε and on the number m of types).
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Input: Sequence σ of length n

Initialize:
Pick t = 	(k) indices uniformly at random from the set {0, . . . , n},
where k = 	(1/ε).
Let the sorted sequence of these indices be i1, i2, . . . , it .

If there is a violating triple whose first component is in the index set, i.e.,
if there are indices i < j < 
, with i in the chosen index set such that
σi = σ
 and σi �= σj , then

return FAIL
else return PASS

Fig. 2. A streaming-tester for groupedness.

The tester is given in Figure 2. In order to prove this theorem, we need the following
definition and lemma.

DEFINITION 12. An index i is said to be streaming-bad for a sequence σ if there exists
j, 
, i < j < 
, such that σi �= σj but σi = σ
.

In the context of this proof, we simply say “bad.”

LEMMA 13. Let σ be a sequence that is ε-far from being grouped, i.e., at least εn
elements of σ need to be moved in order to get a grouped sequence. Then there are at
least εn bad indices for σ .

PROOF. If we remove the bad indices from a sequence, the resulting sequence is
grouped.

PROOF OF THEOREM 11. Clearly, the algorithm PASSes grouped sequences. Suppose
an input sequence is not grouped.

Because the number of bad indices has density ε, we are likely to find one by sampling
O(1/ε) indices. It is straightforward to test each index sampled to see whether or not it
is bad, using just constant space per index (plus O(log m) space per index to store the
name of the index).

3.3. Checkers. Above we considered testers for groupedness, which take as input a sin-
gle sequence, purportedly grouped. By contrast, we now consider checkers for grouped-
ness, which take as input two sequences (an input sequence and an output sequence),
where the output is purported to be a grouped permutation of the input. Thus a checker
for groupedness needs to test the output for groupedness and test whether the output is
a permutation of the input.

For a streaming-checker, we may regard the input and output as concatenated into
a single sequence. Alternatively, we may consider the checker to work on two streams
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simultaneously, while, at each computation step, an adversary chooses which of the
stream pointers to advance.

DEFINITION 14. A sequence of 2n symbols from [m] is said to be a PERMUTATION
if the final n symbols represent the same subset of [m] as the initial n symbols.

We use the Hamming distance for testers of PERMUTATION.

PROPOSITION 15. For any ε > 0, there is an ε-streaming-tester for PERMUTATION
that uses O(log(n)) space.

PROOF. The algorithm is as follows:
Let F be a finite field with at least n2 elements. Pick x ∈ F uniformly at random.

If type i occurs ai times in the first n positions and bi times in the second n positions,
compute the polynomial P = ∑

(ai − bi )xi . If P = 0 output PASS; else output FAIL.
Note that the algorithm clearly PASSes permutations. If the sequence is not a permu-

tation, then P is a polynomial of degree at most n, and so it has at most n roots. The
probability that we output PASS is the small probability n/n2 that we pick a root x .

Finally, note that P can be computed in the given space by accumulating±xi whenever
an item of type i is seen in the stream.

On the other hand, as suggested in [EKK+], PERMUTATION is difficult for sampling-
testers.

PROPOSITION 16. For m ≥ 2n and ε = 1
2 , any ε-sampling-tester for PERMUTATION

requires (
√

n) samples.

PROOF. Let each of the first and last n elements be a random subset of n distinct items
from [m], for m ≥ 2n. If a checker samples k <

√
n items, it is likely to get k different

values, whether the first and last n elements are permutations, disjoint, or somewhere in
between.

Finally, consider the promise problem SORTED-SUPERSET:

DEFINITION 17. Fix a universe [m]. We consider sequences of the form α0β, where
α and β represent subsets of [m] and α is sorted (the promise). An ε-tester for the
promise problem SORTED-SUPERSET outputs PASS for sequences of this type such
that α ⊇ β, outputs FAIL for sequences of this type such that at least an ε fraction of β

are not elements of α, and may answer arbitrarily if the sequence is of the wrong type
or if the fraction of elements of β outside α is positive but less than ε. (Note that α and
β are subsets of [m], not multisets.)
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Table 1. Summary of groupedness and related testing results. Note that testing PERMUTATION or SORTED-
SUPERSET is part of spot-checking sortedness or groupedness.

GROUPEDNESS SORTEDNESS PERMUTATION SORTED-SUPERSET

Number of samples 	(
√

n) O(log n) (
√

n) O(log n)

by a sampling tester [EKK+] [EKK+]
Streaming space O(log n) trivial O(log n) (n)

[KN]

In [EKK+], the authors point out that a checker for sortedness under a natural no-
tion of distance must test that the output is sorted and that most of the input are ele-
ments of the output, given a promise that the output is sorted. This is essentially the
SORTED-SUPERSET promise problem (for an adaptive sampling-tester, it does not
matter whether or not α precedes β in the input representation). They noted that the
SORTED-SUPERSET promise problem can be done by a sampling-tester whereas su-
perset alone, without the sortedness promise, may be difficult. The authors show that
SORTED-SUPERSET has a tester that makes O(log(n)) (adaptive) samples (it performs
binary search). On the other hand, for any ε < 1, any one-pass ε-streaming-tester for
SORTED-SUPERSET requires (n) space [KN] (consider the case |β| = 1, and note
that it is crucial that α be scanned before β).

3.4. Summary. Table 1 presents a summary of the results discussed and proven in
this section. We consider the case m = 	(n) and constant ε. Note that two different
resources are being measured—the number of samples in one case and the workspace
in the other case. Nevertheless, one can consider a sampling-tester to be “efficient”
if it makes O(log n) samples and a streaming-tester to be efficient if it uses O(log n)

space.7 If one defines efficiency this way, then streaming-testers/checkers and sampling-
testers/checkers are incomparable. Table 1 also contains information about the com-
plexity of groupedness and sortedness checkers, which must also test something like
PERMUTATION or SORTED-SUPERSET. Note that an efficient sampling-checker for
sortedness can test SORTED-SUPERSET but not PERMUTATION, whereas the re-
verse is true for efficient one-pass streaming-checkers. Thus a sampling-checker and a
streaming-checker solve markedly different problems to ensure that the output of the
program being checked is the same as the input.

Acknowledgments. We thank Michael Mitzenmacher and an anonymous referee for
their comments on earlier drafts of this paper.

7 As further justification to compare apples and oranges, note that it is often the case that the number of samples
or space needed is simply the number of parallel repetitions of unit-cost work in the appropriate model.
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