
ON THE RANDOM-SELF-REDUCIBILITY OF COMPLETE SETS�

JOAN FEIGENBAUMy
AND LANCE FORTNOWz

Abstract. In this paper, we generalize the previous formal de�nitions of random-self-reducibi-

lity. We show that, even under our very general de�nition, sets that are complete for any level of

the polynomial hierarchy are not nonadaptively random-self-reducible, unless the hierarchy collapses.

In particular, NP-complete sets are not nonadaptively random-self-reducible, unless the hierarchy

collapses at the third level.

By contrast, we show that sets complete for the classes PP and MODmP are random-self-reducible.

Key words. random-self-reductions, complexity classes, interactive proof systems, program

checkers

AMS(MOS) subject classi�cations. 68Q05, 68Q15

1. Introduction. Informally, a function f is random-self-reducible if the evalua-

tion of f at any given instance x can be reduced in polynomial time to the evaluation

of f at one or more random instances yi.

Random-self-reducible functions have many applications, including:

Average-case complexity: A random-self-reduction maps an arbitrary, worst-case

instance x in the domain of f to a set of random instances y1, : : :, yk in such a

way that f(x) can be computed in polynomial-time, given x, f(y1), : : :, f(yk), and

the coin-toss sequence used in the mapping. Thus the average-case complexity of f ,

where the average is taken with respect to the induced distribution on instances yi,

is the same, up to polynomial factors, as the worst-case randomized complexity of

f . An important special case is that in which each random instance yi is uniformly

distributed over all elements in Dom(f) that have length jxj. In this case, f \is as

hard on average as it is in the worst case." For example, it follows from a result in

[21] that the PERM (permanent of integer matrices) function is random-self-reducible.

The PERM function is also #P-complete (cf. [29]); thus, if PERM could be computed

eÆciently on average (with respect to the target distribution of the reduction), then

every function in #P could, with a randomized algorithm, be computed eÆciently

in the worst case. Furthermore, the random-self-reduction for PERM is very simple,

whereas standard average-case hardness proofs are often complicated.

Lower bounds: The random-self-reducibility of the parity function is used in [3]

to obtain a simple proof that a random oracle separates the polynomial hierarchy

(PH) from PSPACE. (An earlier proof of this result in [14] does not use random-self-

reducibility.)

Interactive proof systems and program checkers: Random-self-reductions are

crucial ingredients in many of the original examples of interactive proof systems and

� This work was supported in part by National Science Foundation grant CCR 90-09936. This

is a revised version of the paper \On the Random-Self-Reducibility of Complete Sets," appearing in

Proceedings of the 6th Annual Structure in Complexity Theory Conference, June 30{July 3, 1991,

Chicago, Illinois, c
1991 by IEEE Computer Society.
y AT&T Bell Laboratories, Room 2C473, 600 Mountain Avenue, P. O. Box 636, Murray Hill, NJ

07974-0636, jf@research.att.com
z University of Chicago, Computer Science Department, 1100 East 58th Street, Chicago, IL 60637,

fortnow@cs.uchicago.edu

1



program checkers (cf. [11, 18]). Intuitively, this is because the veri�er/checker interro-

gates the prover/program by comparing its output on the speci�c input of interest to

its outputs on other correlated random instances. Several variations of this relation-

ship between random-self-reducibility and proof systems/checkers are stated formally

in [12, 22, 28]. These ideas play a crucial role in the characterization of the language-

recognition power of interactive proof systems (cf. [5, 22, 25]). Currently, one of the

most important open questions about checkability is whether NP-complete sets are

checkable. The main result that we present in Section 3 implies that, if NP-complete

sets are checkable, their checkers must use radically di�erent techniques from those

used by the existing checkers.

Cryptographic protocols: The fact that certain number-theoretic functions are

random-self-reducible (and hence hard on average if they are hard at all) is used exten-

sively in the theory of cryptography { e.g., to achieve probabilistic encryption (cf. [17])

and cryptographically strong pseudorandom number generation (cf. [13]). Random-

self-reductions also provide natural examples of instance-hiding schemes (cf. [1, 7, 8]),

in which a weak, private computing device uses the resources of a powerful, shared

computing device without revealing its private data.

Although random-self-reducibility had been used for a long time in the design

and analysis of cryptographic protocols (cf., e.g., [17, 13]), it was �rst de�ned formally

and studied from a complexity theoretic point of view by Abadi, Feigenbaum, and

Kilian [1]; they considered reductions that map the given instance x to one random

instance y. It is a corollary of the main result in [1] that no NP-hard function is

random-self-reducible in this sense, unless the polynomial-time hierarchy collapses at

the third level.

Random-self-reductions that produce several, correlated random instances y1, : : :,

yk were de�ned formally by Feigenbaum, Kannan, and Nisan [15]; however, they only

considered reductions that produce yi's that are uniformly distributed over f0; 1gjxj.
Their main result is that self-reductions that map x to two instances y1 and y2, each

of which is uniformly distributed over f0; 1gjxj, do not exist for NP-hard functions,

unless the polynomial-time hierarchy collapses at the third level.

The related idea of mapping an instance x in the domain of f to one or more

random instances y1, : : :, yk in the domain of a di�erent function g is studied in

[1, 7, 8]. For the case of one random y, a negative result for NP-hard functions is

obtained in [1]. If multiple random yi's are allowed, then every function f can be

locally randomly reduced to a related function g; see [7, 8] for a thorough discussion.

In this paper, we continue the study of random-self-reductions from a complexity-

theoretic point of view. We further generalize the formal de�nition of random-self-

reducibility that is studied in [15]. Speci�cally, we look at reductions that map a given

instance x to a sequence of random instances y1, : : :, yk, with the property that the

induced distribution on each yi depends only on the length of x. We consider both

nonadaptive k-random-self-reductions, in which the k random instances are produced

in one pass, and adaptive k-random-self-reductions, in which the instance yi may

depend not only on x and the coin-toss sequence used in the reduction, but on f(y1),

: : :, f(yi�1) as well. Our main results are:

� If S is complete for �
p
i , for any i � 1, and �S is nonadaptively k(n)-random-

self-reducible, for any polynomially bounded function k, then the polynomial-

time hierarchy collapses at the (i+2)nd level. In particular, if the characteristic

2



function for any NP-complete set has a nonadaptive random-self-reduction,

then the polynomial-time hierarchy collapses at the third level. This strength-

ens the main result in [15].

� If S is complete for PP or for MODmP, for any m > 1, then �S is adap-

tively k(n)-random-self-reducible, for some polynomially bounded function k.

Setting m = 2, we get that �P-complete sets are random-self-reducible.

The rest of this paper is organized as follows. In Section 2, we de�ne our terms

precisely and recall known results that we will use. Section 3 contains our main neg-

ative result about complete sets in the polynomial-time hierarchy. Section 4 contains

the proofs that complete sets for PP and MODmP are random-self-reducible. Open

problems are stated in Section 5.

2. Preliminaries. Throughout this paper, f is a function from f0; 1g� to f0; 1g�,
and x is an arbitrary input for which we would like to determine f(x). We use r to

denote a sequence of fair coin tosses; if jxj = n, then jrj = w(n), where w is a

polynomially bounded function of n. The number of random queries produced by a

reduction, denoted k(n), is also a polynomially bounded function of n.

Definition 2.1. A function f is nonadaptively k(n)-random-self-reducible

(abbreviated \nonadaptively k-rsr") if there are polynomial-time computable functions

� and � with the following properties.

(1) For all n and all x 2 f0; 1gn,

f(x) = �(x; r; f(�(1; x; r)); : : : ; f(�(k; x; r)));

for at least 3=4 of all r's in f0; 1gw(n), and
(2) For all n, all fx1; x2g � f0; 1gn, and all i, 1 � i � k, if r is chosen uniformly

at random, then �(i; x1; r) and �(i; x2; r) are identically distributed.

Feigenbaum, Kannan, and Nisan [15] use the term \k(n)-random-self-reduction"

to describe a special case of De�nition 2.1, i.e., the case in which each of the random

variables �(i; x; r) is distributed uniformly over f0; 1gn.
Next we generalize De�nition 2.1 to allow a multiround, adaptive strategy for

choosing random queries.

Definition 2.2. The function f is adaptively k(n)-random-self-reducible

(abbreviated \adaptively k-rsr") if there is a probabilistic, polynomial-time oracle ma-

chine � that, on input x of length n, produces k(n) rounds of f -oracle queries. The

query yi(x; r) produced in round i may depend on all queries and answers in rounds 1

through i� 1.

The reduction � must have the following properties.

(1) For all x, it outputs the correct answer f(x) for at least 3=4 of all r 2
f0; 1gw(n).

(2) For all n and all i, 1 � i � k, if jx1j = jx2j = n and r is chosen uniformly from

f0; 1gw(n), then the random variables yi(x1; r) and yi(x2; r) are identically distributed.

Note that condition (2) is not required to hold for yi(x; r) if wrong answers are given

in earlier rounds.

We say that a function f is poly-rsr (or simply rsr) if there is some polynomially

bounded function k such that f is either nonadaptively or adaptively k-rsr. The

reductions themselves are also referred to as poly-rsr's or rsr's. A set S is poly-rsr if

its characteristic function �S is poly-rsr.

3



Locally random reductions (lrr's) are a generalization of nonadaptive random-self-

reductions. In a (t; k)-lrr from f to g, an instance x in the domain of f is mapped

(nonadaptively) to k instances y1, : : :, yk in the domain of a di�erent function g. For

any fi1; : : : ; itg � f1; : : : ; kg, the distribution induced on target queries yi1 , : : :, yit is

the same for input instances x1 and x2 if jx1j = jx2j. Thus a nonadaptive k-rsr for f is a
(1; k)-lrr from f to f . Instance-hiding schemes (ihs's) provide a further generalization

of this notion. In a t-private, k-oracle ihs for f , the querier may use a multiround,

adaptive strategy to query k physically separated, arbitrarily powerful oracles; the

oracles may also use an adaptive strategy and may 
ip coins. The view of any set of

at most t of the oracles (i.e., the transcript of queries and answers together with the

coin 
ips of the oracles) depends only on the length of the input instance. One-oracle

ihs's were studied by Abadi, Feigenbaum, and Kilian [1], who showed that NP-hard

functions do not have one-oracle ihs's unless the polynomial-time hierarchy collapses

at the third level. The question of whether multioracle ihs's exist was posed by Rivest

[1] and answered by Beaver and Feigenbaum [7]: Every function f has a 1-private,

(n + 1)-oracle ihs. In fact, the general ihs construction of [7] uses only one round of

queries and does not require the oracles to 
ip coins; so, in current terminology, it is

a (1; n + 1)-lrr. The term lrr was subsequently introduced and formally de�ned by

Beaver, Feigenbaum, Kilian, and Rogaway [8], who also gave an improvement of the

Beaver-Feigenbaum construction: For every polynomially bounded t = t(n) and every

function f , there is a function g such that f is (t; (tn= log n) + 1)-lrr to g.

The gist of De�nitions 2.1 and 2.2 is that, for any �xed value of i, the distribution

of random queries to the ith oracle depends only on the length n of the input x. In

keeping with the terminology in [1, 7], we say that an rsr \leaks at most n to each

oracle." In cryptographic applications, it is often natural to consider reductions that

leak at most some other function L; De�nitions 2.1 and 2.2 have natural generalizations

that �t these applications { see [1, 7] for details.

In several proofs, we will use the following Cherno� bounds on the binomial dis-

tribution, which are taken directly from [26, Lecture 4, p. 29].

Fact 2.3. Let Y1, : : :, Yn be independent with Pr(Yj = 1) = pj and Pr(Yj =

0) = 1 � pj, and normalize by setting Xj = Yj � pj. Set p = (p1 + � � � pn)=n and

X = X1 + � � �Xn. Then

Pr(X > a) < e�2a
2=n(1)

and

Pr(X < �a) < e�a
2=2pn(2)

Lemma 2.4. If a function f is nonadaptively (resp. adaptively) k(n)-rsr, then

f is nonadaptively (resp. adaptively) 24t(n)k(n)-rsr where condition (1) holds for at

least 1� 2�t(n) of the r's in f0; 1g24t(n)w(n).
Proof. Let r = r1 : : : r24t(n) with each ri 2 f0; 1gw(n). De�ne �ij = �(i; x; rj) for

1 � i � k and 1 � j � 24t(n). Let �j = �(x; rj ; f(�1j); : : : ; f(�kj)). Let the new �

choose the plurality of the �j 's, handling ties arbitrarily. Now apply Inequality (2)

from Fact 2.3 with p = 3=4, n = 24t, a = �n=4, and Yj = 1 if and only if �j = f(x).

We now recall some de�nitions and known results that will be used in Sections 3

and 4.

4



Let f : f0; 1g� ! f0; 1g be an arbitrary boolean function, and let fn : f0; 1gn !
f0; 1g be the restriction of f to inputs (x1; : : : ; xn) 2 f0; 1gn. For any �nite �eld Kn,

there is a unique multilinear polynomial gn 2 Kn[X1; : : : ;Xn] that represents fn over

Kn { i.e., gn agrees with fn on all inputs (x1; : : : ; xn) in f0; 1gn. In the context of

random-self-reducibility, we always take Kn to be a �eld of size at least n + 1. The

polynomial gn has a standard explicit formula; we give the formula here and discuss

some computational aspects of it in Section 4 below. Let x = (x1; : : : ; xn) be an

arbitrary element of Kn
n and y = (y1; : : : ; yn) be an arbitrary element of f0; 1gn.

gn(x) =
X

y2f0;1gn

Æy(x)fn(y)(3)

Æy(x) =
nY

i=1

(xi � (1� yi))(�1)(1�yi)(4)

For x 2 f0; 1gn, the monomial Æy(x) is 1 if y = x, and it is 0 otherwise. We call

gn the arithmetization of fn over Kn and g = fgngn�1 the arithmetization of f over

fKngn�1.
Fact 2.5. (the \low-degree polynomial trick") If gn 2 Kn[X1; : : : ;Xn] has degree

dn and jKnj > dn, then g = fgngn�1 is nonadaptively (dn + 1)-rsr. In particular, if

gn is the arithmetization over Kn of a boolean function fn, then g is nonadaptively

(n+ 1)-rsr.

Proof. Let �1, : : :, �dn+1 be distinct elements of Kn. Choose coeÆcients c1,

: : :, cn independently and uniformly at random from Kn, and let �(i; x1; : : : ; xn) =

(c1�i + x1; : : : ; cn�i + xn) for 1 � i � dn + 1. Let

G(Z) = gn(c1Z + x1; : : : ; cnZ + xn):

Then G is a one-variable polynomial of degree at most dn that satis�es

G(0) = gn(x1; : : : ; xn):

The function � of the rsr interpolates the dn + 1 values (�1; G(�1)); (�2; G(�2));

: : : ; (�dn+1; G(�dn+1)) to recover the polynomial G and outputs the constant term.

The random-self-reducibility of multivariate polynomials is the key to some of the

results stated above. Beaver and Feigenbaum's general construction of multioracle

ihs's [7], which they described in terms of arithmetic circuits, can be described in cur-

rent terminology as follows: Every boolean function is (1; n+1)-lrr to its arithmetiza-

tion over fKngn�1, where Kn is any �nite �eld of size greater than n. Lipton [21] later

used the same construction to show that multivariate polynomials are, in his terms,

randomly testable; his was the �rst paper to state the construction in terms of poly-

nomials instead of arithmetic circuits. In current terminology, Lipton's observation is

that multivariate polynomials are nonadaptively rsr, provided the degree is polyno-

mially bounded in the number of variables. Lipton also pointed out that the function

that computes the permanent of a matrix over a �nite �eld is a low-degree multivari-

ate polynomial and thus randomly testable. Finally, Beaver, Feigenbaum, Kilian, and

Rogaway [8] showed how to represent fn as a degree-(n= log n) polynomial hn over Kn

5



by performing a simple change of variables, thus obtaining a (1; (n= log n)+1)-lrr from

f to h.

Definition 2.6. A complexity class C is #P-robust if FPC = #PC
, where FP

denotes the class of all polynomial-time computable functions.

In Section 4, we will use the following generalized version of #P.

Definition 2.7. (cf. [16]): A function f : f0; 1g� ! Z is in the complexity

class Gap-P if there is an NP machine M such that, for all x, f(x) is the di�erence

between the number of accepting computations of M on input x and the number of

rejecting computations of M on input x. Equivalently, a function f is in Gap-P if it

is the di�erence of two #P functions.

By analogy with De�nition 2.6, we have the following.

Definition 2.8. A complexity class C is Gap-P-robust if FPC = Gap-PC
.

Fact 2.9. A complexity class C is Gap-P-robust if and only if it is #P-robust.

Let h�; �i be a one-to-one, onto, polynomial-time computable, polynomial-time

invertible pairing function from f0; 1g� � f0; 1g� to f0; 1g�. Gap-P has the following

closure properties.

Fact 2.10. (cf. [16]): If a function f(hx; yi) 2 Gap-P then the following functions

are also in Gap-P for any polynomial p:

1. g(hx; yi) = �f(hx; yi)
2. g(x) =

P
jyj�p(jxj) f(hx; yi)

3. g(x) =
Q
1�y�p(jxj) f(hx; yi)

In particular, Gap-P is closed under subtraction.

Definition 2.11. Let m be a positive integer greater than 1. A set S is in

MODmP if there is an NP machine M with the following property: If x 2 S, then the

number of accepting computations of M on input x is not equal to 0 modm; if x 62 S,

then the number of accepting computations of M on input x is equal to 0 mod m.

Thus the class �P, de�ned in [23], is MOD2P in the notation used here.

Fact 2.12. (cf. [9, 20]): If m1 and m2 are relatively prime, then S 2MODm1m2
P

if and only if there are sets S1 2 MODm1
P and S2 2 MODm2

P such that S = S1[S2.
Fact 2.13. (cf. [9, 20]): If pe11 � � � pett is the prime factorization of m, then

MODmP = MODp1���ptP.

We use the following class of straight-line programs of multivariate polynomials

over Z to prove that sets complete for MODmP are rsr.

Definition 2.14. (cf. [4]): A positive retarded arithmetic program with

binary substitutions (PRAB) is a sequence P = fp1; : : : ; psg of instructions such

that, for every k, one of the following holds.

(1) pk is one of the constant polynomials 0 or 1.

(2) pk = xi for some i � k.

(3) pk = 1� xi for some i � k.

(4) pk = pi + pj for some i; j < k.

(5) pk = pipj for some i+ j � k.

(6) pk = pj(xi = 0) or pj(xi = 1) for some i; j < k. Here pj(xi = �) refers to the

polynomial obtained from pj by replacing the variable xi by the value �.

We say that the program P computes the polynomial ps.

Definition 2.15. (cf. [4]): A sequence P1, P2, : : : of PRAB's is uniform if there

is a deterministic polynomial-time machine that, on input 1n, outputs the instruction

sequence Pn.

6



Fact 2.16. (cf. [4]): A set S is in MODmP if and only if there is a uniform

sequence fPngn�1 of PRAB's such that, for every x 2 f0; 1g�,

�S(x) � Pjxj(x) mod m:

We use AMpoly to denote the class of sets accepted by bounded-round Arthur-

Merlin games (cf. [6]) in which Arthur is given polynomial-length advice in addition

to probabilistic polynomial time. Note that this class is not necessarily the same as

AM=poly, because AMpoly requires proper probabilities of acceptance only when the

advice is correct. Because the main results of [6, 19] relativize, we have:

Fact 2.17. AMpoly
= NP=poly.

Finally we use the following known relationship between levels of the polynomial-

time hierarchy and the corresponding nonuniform classes.

Fact 2.18. (cf. [30]): If �P
i � �P

i =poly, then the polynomial-time hierarchy

collapses to �P
i+2. This fact relativizes: For any O, if �

P;O
i � �

P;O
i =poly, then PHO �

�
P;O
i+2 .

3. Complete Sets in the Polynomial-Time Hierarchy.

Theorem 3.1. If S is in NP and is nonadaptively poly-rsr, then S is in AMpoly
.

Proof. Let �, � be a nonadaptive k-rsr for S, where k = k(n) is a polynomially

bounded function. By Lemma 2.4, we can assume � gives an incorrect value for the

characteristic function of S with probability at most 2�n.

Consider instances x of length n. The veri�er's advice is the k-tuple (p1; : : : ; pk),

where pi is the probability that a target instance �(i; x; r) is in S. The probability is

computed over all coin-toss sequences r.

We denote by Trans(x; r) the transcript of the reduction �, � on input x and

random string r. That is, if yi = �(i; x; r) and bi = �S(yi), then Trans(x; r) =

(y1; b1; : : : ; yk; bk). Fix a speci�c NP machine M that accepts S. Let ATrans(x; r),

an augmented transcript, be (y1; b1; w1; : : : ; yk; bk; wk), where yi and bi are as before,

wi = NIL if bi = 0, and wi is a witness, with respect to M , that yi 2 S if bi = 1.

The following is an AMpoly protocol for S. Let m = 9k3.

Interactive proof system for S:

The quanti�ers \for all 1 � i � k" and \for all 1 � j � m" are implicit whenever

the subscripts i and j are used. For each j 6= j0, rj is independent of rj0.

V : Choose rj.

V ! P : frjg.
P ! V : A claimed value (y1;j; b1;j ; w1;j ; : : : ; yk;j; bk;j; wk;j) for ATrans(x; rj).

V : Accept i�

(1) �(x; rj ; b1;j ; : : : ; bk;j) = 0,

(2) More than pim� 2
p
km of the yi;j's are in S according to P , and

(3) If wi;j 6= NIL, then it is a correct witness that yi;j 2 S.

Suppose that x is not in S and P is honest. Then acceptance condition (1) is

met with probability at least 1 � m=2n > 11=12 for all n > log 12m. Condition (3)

is of course always met if P is honest. We need only show that condition (2) is met

with probability at least 3=4 to have all three conditions met with probability at least

7



2=3. Let Zi;j be an indicator variable that is 1 if yi;j is in S and 0 otherwise, and let

Zi =
Pm

j=1 Zi;j. Acceptance condition (2) is met if Zi > pim�2
p
km for all i. Because

r1, : : :, rm are pairwise independent, so are Zi;1, : : :, Zi;m. Clearly E(Zi) = pim and

V ar(Zi) = pi(1� pi)m < m. So Chebyshev's inequality suÆces to show that

Prob(Zi � pim� 2
p
km)

� Prob(jZi � pimj � 2
p
km)

= Prob(jZi �E(Zi)j � 2
p
km)

� V ar(Zi)

4km
<

1

4k
;

for each i. Thus the probability that at least one Zi is too small (i.e., the probability

that condition (2) is not met) is at most 1=4.

Now suppose that x is in S. We wish to show that the probability that V accepts

is at most 1=3. If V accepts, condition (1) is satis�ed, and so either

(a) Given correct answers bi;j, � says x is not in S for some j, or

(b) P � must have lied about bi;j for at least one yi;j for each j.

(The optimal cheating prover would never violate condition (3).) Event (a) can only

happen with probability at most m=2n < 1=12 for all n > log 12m. Thus we need only

show that event (b) can happen with probability at most 1=4.

If P � tells a total of m lies, there must be an i for which he claims that at least

m=k of the yi;j's that are in S are not in S. It suÆces to show that, for each i, he

can do this with probability at most 1=4k and still satisfy acceptance condition (2).

The probability that P � can tell m=k lies and still claim that more than pim� 2
p
km

of the yi;j's are in S is just the probability that more than pim +m=k � 2
p
km of

the yi;j's are in S. This probability is at most e�2(m=k2�4
p

m=k+4k) = e�2k < 1=4k for

m = 9k3 and all positive integers k. We obtain this bound by using Inequality (1)

from Fact 2.3, with a = m=k � 2
p
km and n = m.

The technique of showing that a particular type of random-self-reduction for S

implies a type of interactive proof system for S was �rst used by Feigenbaum, Kannan,

and Nisan [15, Theorem 4.4]. There it is shown that if S has what they call a \one-

sided 1-rsr," then S 2 AMpoly. These reductions are much more restricted than the

type of rsr's considered here; a precise de�nition can be found in [15].

In fact, the following stronger statement can be made. This observation is due to

Mario Szegedy.

Corollary 3.2. If S is in NP and is nonadaptively poly-rsr, then S is in AMlog
.

Proof. Let �, � be a nonadaptive rsr for S. De�ne a new nonadaptive rsr �0,

�0 as follows. On input x and random string r0, �rst choose a uniformly random

permutation � on f1; : : : ; kg. Let r be the unused portion of r0. For 1 � i � k, let

�0(i; x; r0) � �(�(i); x; r). Let �0(x; r0; b1; : : : ; bk) � �(x; r; b��1(1); : : : ; b��1(k)). Now

all of the random variables �0(1; x; r0), : : :, �0(k; x; r0) are identically distributed. The

proof system for S is essentially the same as the one given in the proof of Theorem

3.1. The probabilities p1, : : :, pk are all equal, because �0(1; x; r0), : : :, �0(k; x; r0) are

identically distributed. Let p = p1 = � � � = pk. The integer dpm� 2
p
kme is suÆcient

advice for the veri�er on inputs of length n, and it can be written down in O(log n)

bits.

Corollary 3.3. If any NP-complete set is nonadaptively poly-rsr, then the

polynomial-time hierarchy collapses at the third level.

8



Proof. This follows directly from Theorem 3.1 and Facts 2.17 and 2.18.

Corollary 3.4. If S is complete for �
p
i or �

p
i , i � 1, and S is nonadaptively

poly-rsr, then the polynomial-time hierarchy collapses at the (i+ 2)nd level.

Proof. The proofs of Theorem 3.1, Fact 2.18 and thus Corollary 3.3 relativize. If

we relativize them with respect to an oracle O such that O is �
p
i�1-complete, we get

Corollary 3.4.

We end this section with a partial negative result about adaptive rsr's for NP-

complete sets.

Theorem 3.5. If S is NP-complete and is adaptively O(log n)-rsr, then the

polynomial-time hierarchy collapses at the third level.

Proof (sketch): We give the structure of the proof in some detail but omit the prob-

ability calculations. All of the calculations involve Cherno� bounds and are analogous

to the ones used in the proof of Theorem 3.1.

As in the nonadaptive case, we will show that the hypothesis implies that S 2
AMpoly. Suppose that S is adaptively k-rsr, where k(n) = O(logn). In the augmented

transcript (y1; b1; w1; : : : ; yk; bk; wk) of an adaptive reduction, yi denotes the oracle

query asked in the ith round.

The AMpoly proof system for S is almost identical to the one in Theorem 3.1. The

only di�erences are that we may have to use a di�erent polynomial for m and that the

veri�er, in acceptance condition (3), must also check that yi;j is indeed the query that

the reduction would produce in round i if the input string is x, the random string is rj ,

and the answers in rounds 1 through i�1 are b1;j through bi�1;j. However, it is trickier

to show that the proof system is correct in the adaptive case. The problem arises when

x is in S and P � must lie about at least one bi;j for each j. In the nonadaptive case,

the only way that P � can lie is to claim that yi;j is not in S when it really is. In the

adaptive case, this is not necessarily true.

Consider a k by m matrix whose (i; j) entry is P �'s claimed value for bi;j . In

order to convince V to accept an input x that is really in S, P � must claim that the

number of 1's in row i is greater than pim� 2
p
km, and he must spoil every column

{ i.e., he must lie about at least one bi;j for each j. The problem is that there is a

tradeo� between these two requirements that could work to P �'s advantage. Suppose

that bi0;j is the �rst lie that P
� tells in column j. (If this is so, we say that \column

j is spoiled in row i0.") For this �rst lie, it must be the case that yi;j is in S but P �

claims it isn't. However, this incorrect bi0;j is used in the subsequent computation of

queries yi;j; this may produce yi;j's, i > i0, that are in S where the correct value of

bi0;j would have produced yi;j's that are not in S.

For k = O(log n), we can still choose m = poly(n) so that the proof system works.

We make the following worst-case assumption in our argument: If column j is spoiled

in row i0, then the rest of the column, i.e., all yi;j with i > i0, consists entirely of

elements of S. We now estimate now many columns can be spoiled in each row.

The expected number of y1;j's that are in S is p1m; so, with very high probability,

for these particular choices r1, : : :, rm, the actual number is less than p1m + 2
p
km.

P � must claim that more than p1m � 2
p
km are in S; so, with high probability, he

may spoil at most 4
p
km columns in row 1 without getting caught.

What happens in row 2? With high probability, the actual number of y2;j's in S

is less than p2m + 2
p
km. We assume that the columns spoiled in row 1 contribute

4
p
km additional y2;j's in S. P � must claim that more than p2m � 2

p
km are in S;

so, with high probability, he may spoil at most 8
p
km new columns in row 2.

9



In row 3, the actual number of y3;j's in S is less than p3m + 2
p
km, with high

probability. Columns spoiled in rows 1 and 2 contribute at most 12
p
km additional

y3;j's in S. Thus P � may, with high probability, spoil at most 16
p
km new columns

in row 3 and still claim that p3m� 2
p
km of the y3;j's are in S.

Continuing in this manner, we see that, with high probability, at most 2k+2
p
km

columns are spoiled in all k rows. For k � c log n, we can choose m = n4c, say, and

prevent P � from spoiling all of the columns.

In fact, the conclusion that S is in AMpoly follows from the weaker assumption

that S has an adaptive rsr with O(logn) rounds of queries and polynomially many

queries in each round. Unfortunately, this proof technique does not work unless the

number of rounds is O(log n).

4. Complete Sets Above the Polynomial-Time Hierarchy. We �rst recall

the following known positive result.

Theorem 4.1. If f is #P-complete, then f is poly-rsr.

Proof. This follows easily from the results on low-degree polynomials discussed

in Section 2 above. Let PERM be the #P -complete function that computes per-

manents of integer-matrices. An instance x of PERM can be reduced to the com-

putation of PERM(x) mod pi, for some small collection of primes pi { to recover

PERM(x) from fPERM(x) mod pig, use the Chinese Remainder Theorem. For each

pi, PERM(x) mod pi is just a low-degree polynomial over a �nite �eld. Thus, by Fact

2.5, it can be reduced to the evaluation of a small collection of random instances

fPERM(yij) mod pig. These yij's can be regarded as random instances of PERM

{ from the value of PERM(yij) over the integers, PERM(yij) mod pi can be found

simply by reducing mod pi. In summary, the mapping from x to fyijg is an rsr for

PERM.

Let f be #P-complete. On input x of length n, the rsr for f proceeds as follows.

Reduce x to one or more instances of PERM. Pad these instances if necessary so that

their size depends only on n: For any l � k, a k-by-k matrix M can be \padded" out

to an l-by-l matrix M 0 with the same permanent by letting M 0(i; j) = M(i; j), for

1 � i; j � k, M 0(i; i) = 1, for k < i � l, and M 0(i; j) = 0, for all other values of i and

j. Perform the above rsr of PERM. The random PERM-instances thus produced can

be mapped back to f -instances, because f is #P-complete. These f -instances leak at

most n, because the random PERM-instances leak at most n.

We now proceed to our new positive results. The �rst one is a straightforward

extension of Theorem 4.1.

Corollary 4.2. If S is complete for PP, then S is poly-rsr.

Proof. It is well known that the language classes PPP and P#P are equal. Thus S

and PERM are ptime-equivalent. The rest of the proof is identical to that of Theorem

4.1.

Theorem 4.3. If a complexity class C is #P-robust, then complete sets for C are

poly-rsr.

Proof. By Fact 2.9, it suÆces to show that Gap-P-robustness of C implies that

complete sets for C are poly-rsr. Suppose that C is Gap-P-robust, and let S be a

complete set for C. For each n � 1, let pn be a prime greater than n, fn : f0; 1gn !
f0; 1g be the characteristic function of S on strings of length n, and g = fgngn�1
be the arithmetization of f = ffngn�1 over fGF(pn)gn�1. By Fact 2.10, we can

compute g (using Equations (3) and (4)), in Gap-PC and thus in FPC . By Fact 2.5,

10



g is (nonadaptively) (n+1)-rsr. On input x, the random-self-reduction of S proceeds

as follows: Generate pn; interpret the input instance x as an element of Dom(g);

apply the low-degree polynomial trick to get random instances y1, : : :, yn+1; reduce

the computation of g(yi) to membership queries about S, which can be done because

g 2 FPC and S is complete for C. The entire reduction leaks at most n, because each

of its components leaks at most n.

Corollary 4.4. Complete sets for PSPACE and EXPTIME are poly-rsr.

Proof. This follows from the fact that PSPACE and EXPTIME are #P-robust.

For example, let FPSPACE denote the set of functions computable in polynomial

space. Then

FPPSPACE � #PPSPACE � FPSPACEPSPACE = FPSPACE

and thus FPPSPACE = #PPSPACE.

Note that is unknown whether #P is itself #P-robust.

Theorem 4.5. If S is complete for MODmP, then S is poly-rsr. In particular,

complete sets for �P are poly-rsr.

Proof. By Facts 2.12 and 2.13, we can assume without loss of generality that

m is prime. The reduction to the case of squarefree m is trivial, by Fact 2.13. If

m = m1 � � �mt, where the mi's are distinct primes, then Fact 2.12 tells us that S =

S1[� � �[St, where Si 2MODmi
P. Thus, a query about membership of x in S reduces

to the disjunction of queries about membership of x in S1, : : :, St. In what follows,

we will show that Si is rsr. Suppose that y is a random query produced by the rsr

for Si on input x. We must show how to compute �Si(y) by making queries to an S

oracle. First note that there is a set Ti in MODmP such that �Si(z) = �Ti(z) for all

z: If the underlying NP machine for Si is Mi, then the underlying NP machine for

Ti is M
0
i , where each computation path (accepting or rejecting) in Mi is replaced by

m=mi distinct paths in M 0
i . Finally, Ti can be reduced to S, because S is complete

for MODmP.

Let S be a complete set in MODmP, where m is prime, and x = (x1; : : : ; xn)

be an element of f0; 1gn for which we would like to determine membership in S.

By Fact 2.16, there is a PRAB Pn = fp1; : : : ; psg for which �s(x) = Pn(x) mod m.

Furthermore Pn can be generated in polynomial time, and it depends only on S and

n (i.e., it leaks nothing about x except its length). We would like to apply Fact 2.5

(the low-degree polynomial trick) to ps and then map the random ps-instances back to

S-oracle queries. However, there are onlym distinct points in Zm, and the degree of ps
is a (polynomially bounded) function of n; thus, there will not be enough interpolation

points to recover ps(x) this way.

We deal with this problem as it is dealt with in the proof that MODmP-complete

sets are checkable (cf. [4]). For every positive integer k, there is a unique �nite �eld

GF(mk), and it is a vector space over Zm. Fix a basis for this vector space. This entails

�nding a polynomial of degree k that is irreducible over Zm, which can be done in

probabilistic polynomial time [10, 24]. (In fact, we could choose k so that all that is

required is a polynomial of degree l, where 
(k= logm) = l � k, that is irreducible over

Zm. Such a polynomial could be generated in deterministic polynomial time [2], but

this is not necessary for our purpose, which is to use the polynomial in a reduction that

is inherently probabilistic.) We can represent each element a of GF(mk) as the k � k

matrixMa denoting the linear transformation x 7! ax of GF(mk) to itself. ThenM0 is

the zero matrix,M1 is the identity matrix,Ma+b =Ma+Mb, andMab =Mba =MaMb.

11



Choose k so that mk > d = degree(ps), and represent the elements computed

by Pn as matrices over Zm. There is another PRAB, say fp1(1; 1); : : : ; p1(k; k), : : :,
ps(1; 1), : : :, ps(k; k)g, where pi(r; c) computes the element in row r, column c of

pi(x1; : : : ; xn). Because mk > d, we can apply Fact 2.5 to ps as follows. Let �1,

: : :, �d+1 be distinct elements of GF(mk). Choose c1, : : :, cn independently and

uniformly at random from the set of all k� k matrices over Zm that encode elements

of GF(mk). Then Pn(c1Z + x1; : : : ; cnZ + xn) is a degree-d, one-variable polynomial

with constant term Pn(x) = �s(x). So evaluate Pn at the d+ 1 uniformly distributed

inputs (c1�1+ x1; : : : ; cn�1+xn), : : :, (c1�d+1+ x1; : : : ; cn�d+1+xn) and interpolate.

It remains to show that the computation of Pn(c1�j + x1; : : : ; cn�j + xn) can be

reduced in polynomial time to a sequence of S-oracle queries. In the matrix rep-

resentation of Pn, each pi(r; c) is an instruction in a PRAB over Zm. Thus it is

polynomial-time reducible to S by Fact 2.16, because S is complete for MODmP.

As in the previous proofs in this section, each S-oracle call leaks at most n, because

each random input (c1�j + x1; : : : ; cn�j + xn) leaks at most n.

5. Open Problems. Open problems abound, including:

� Do NP-complete sets have adaptive k-rsr's for some k � log n?

� Are NP-complete sets checkable in the sense of [11]? Note that all known

checkers for sets that are complete for natural complexity classes use rsr's.

� What other sets do or do not have rsr's? How about incomplete sets? Sets and

functions complete for classes C that satisfy PH � BPPC and PC � PSPACE?

The classes MODmP, PP, and #P all fall between PH and PSPACE in this

sense (cf. [27]).

Acknowledgments. We would like to thank Manuel Blum, Russell Impagliazzo,

Steven Rudich, G�abor Tardos, and the referee for their comments on earlier versions

of this paper.

REFERENCES

[1] M. Abadi, J. Feigenbaum, and J. Kilian, On hiding information from an oracle, Journal of

Computer and System Sciences, 39 (1989), pp. 21{50.

[2] L. Adleman and H. Lenstra, Finding irreducible polynomials over �nite �elds, in Proceedings

of the 16th Symposium on the Theory of Computing, ACM, New York, 1986, pp. 350{355.

[3] L. Babai, Random oracles separate PSPACE from the polynomial-time hierarchy, Information

Processing Letters, 26 (1987), pp. 51{53.

[4] L. Babai and L. Fortnow, Arithmetization: A new method in structural complexity theory,

Computational Complexity, 1 (1991), pp. 41{66.

[5] L. Babai, L. Fortnow, and C. Lund, Non-deterministic exponential time has two-prover

interactive protocols, Computational Complexity, 1 (1991), pp. 3{40.

[6] L. Babai and S. Moran, Arthur-Merlin games: a randomized proof system, and a hierarchy of

complexity classes, Journal of Computer and System Sciences, 36 (1988), pp. 254{276.

[7] D. Beaver and J. Feigenbaum, Hiding instances in multioracle queries, in Proceedings of the

7th Symposium on Theoretical Aspects of Computer Science, vol. 415 of Lecture Notes in

Computer Science, Springer, Berlin, 1990, pp. 37{48.

[8] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway, Security with low communication

overhead, in Advances in Cryptology { Crypto '90, vol. 537 of Lecture Notes in Computer

Science, Springer, Berlin, 1991, pp. 62{76.

[9] R. Beigel and J. Gill, Counting classes: Thresholds, parity, mods, and fewness, Theoretical

Computer Science, 103 (1992), pp. 3{23.

[10] E. Berlekamp, Algebraic Coding Theory, McGraw Hill, New York, 1968.

12



[11] M. Blum and S. Kannan, Designing programs that check their work, in Proceedings of the 21st

Symposium on the Theory of Computing, ACM, New York, 1989, pp. 86{97.

[12] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting, with applications to numerical

problems, in Proceedings of the 22nd Symposium on the Theory of Computing, ACM, New

York, 1990, pp. 73{83.

[13] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random

bits, SIAM Journal on Computing, 13 (1984), pp. 850{864.

[14] J. Cai, With probability one, a random oracle separates PSPACE from the polynomial-time

hierarchy, Journal of Computer and System Sciences, 38 (1989), pp. 68{85.

[15] J. Feigenbaum, S. Kannan, and N. Nisan, Lower bounds on random-self-reducibility, in

Proceedings of the 5th Structure in Complexity Theory Conference, IEEE Computer Society,

Los Alamitos, 1990, pp. 100{109.

[16] S. Fenner, L. Fortnow, and S. Kurtz, Gap-de�nable counting classes, in Proceedings of the

6th Structure in Complexity Theory Conference, IEEE Computer Society, Los Alamitos,

1991, pp. 30{42.

[17] S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and System

Sciences, 28 (1984), pp. 270{299.

[18] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof-

systems, SIAM Journal on Computing, 18 (1989), pp. 186{208.

[19] S. Goldwasser and M. Sipser, Private coins versus public coins in interactive proof systems.,

in Randomness and Computation, ed.: S. Micali, vol. 5 of Advances in Computing Research,

JAI Press, Greenwich, 1989, pp. 73{90.

[20] U. Hertrampf, Relations among MOD-classes, Theoretical Computer Science, 74 (1990),

pp. 325{328.

[21] R. Lipton, New directions in testing, in Distributed Computing and Cryptography,

eds.: J. Feigenbaum and M. Merritt, vol. 2 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, American Mathematical Society, Providence, 1991, pp. 191

{ 202.

[22] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for interactive proof

systems, Journal of the ACM, 39 (1992), pp. 859{868.

[23] C. Papadimitriou and S. Zachos, Two remarks on the power of counting, in Proceedings

of the 6th GI Conference on Theoretical Computer Science, vol. 145 of Lecture Notes in

Computer Science, Springer, Berlin, 1983, pp. 269{276.

[24] M. Rabin, Probabilistic algorithms in �nite �elds, SIAM Journal on Computing, 9 (1980),

pp. 273{280.

[25] A. Shamir, IP = PSPACE, Journal of the ACM, 39 (1992), pp. 869{877.

[26] J. Spencer, Ten Lectures on the Probabilistic Method, vol. 52 of CBMS, SIAM, Philadelphia,

1987.

[27] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM Journal on Computing, 20

(1991), pp. 865{877.

[28] M. Tompa and H. Woll, Random self-reducibility and zero-knowledge interactive proofs of pos-

session of information, in Proceedings of the 28th Symposium on Foundations of Computer

Science, IEEE Computer Society, Los Alamitos, 1987, pp. 472{482.

[29] L. Valiant, The complexity of computing the permanent, Theoretical Computer Science, 8

(1979), pp. 189{201.

[30] C. Yap, Some consequences of nonuniform conditions on uniform classes, Theoretical Computer

Science, 26 (1983), pp. 287{300.

13


