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Abstract.

We survey recent results about game-theoretic characterizations of com-

putational complexity classes. We also show how these results are used

to prove that certain natural optimization functions are as hard to ap-

proximate closely as they are to compute exactly.
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1 Introduction

Game theory provides a framework in which to model and analyze conict and

cooperation among independent decision makers. Many areas of computer science

have bene�tted from this framework, including arti�cial intelligence, distributed

computing, security and privacy, and lower bounds. Games are particularly impor-

tant in computational complexity, where they are used to characterize complexity

classes, to understand the power and limitations of those classes, and to interpret

the complete problems for those classes.

This paper surveys three sets of results in the interplay of games and com-

plexity. First, we present several characterizations (some old, some new) of the

complexity class PSPACE that show that it is extremely robustly characterized by

zero-sum, perfect-information, polynomial-depth games. Next, we explain how the

more recent of these characterizations of PSPACE are used to show that certain

natural maximization and minimization functions, drawn from domains such as

propositional logic, graph searching, graph reliability, and stochastic optimization,

are as hard to approximate closely as they are to compute exactly. Finally, we

present some connections between complexity classes and imperfect information

games; some tight characterizations of exponential-time classes are known, but no

set of imperfect-information games is as robustly identi�ed with any complexity

class as zero-sum, perfect-information, polynomial-depth games are with PSPACE.

We assume familiarity with basic computational complexity theory, especially

with the complexity classes P, NP, PSPACE, EXP, and NEXP, with the notions

of reduction and completeness, and with the concept of an \approximation algo-

rithm" for an NP-hard or PSPACE-hard optimization function. Among the books
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that cover this material and are accessible to all mathematically educated readers

are those by Garey and Johnson [10] and Papadimitriou [16]. We also assume

familiarity with elementary game theory, in particular with the notions of \perfect

information" and \perfect recall." The few game-theoretic notions that we use are

de�ned precisely in, e.g., [9]

2 Alternation and Randomized Players

Chandra et al. [5] proved a fundamental result about the connection between games

and complexity that serves as the starting point for most of the results surveyed

in this paper. In the Alternating Polynomial Time computational model, there

are two computationally unbounded players P1 and P0 and a polynomial-time

referee V . There is an input string x written on a common tape readable by P1,

P0, and V , and the goal of the computation is to determine whether x is in the

language L. P1 claims that x 2 L, and P0 claims that x 62 L. They \argue"

for polynomially many rounds, and then V decides who's right. More precisely,

there are two functions m and l such that, on inputs x of length n, P1 and P0 take

turns for m(n) rounds (P1 moving in odd rounds and P0 in even rounds), writing a

string of length l(n) in each round. Both m(n) and l(n) are polynomially bounded

(abbreviated poly(n)). After the entire \game transcript" of length m(n) � l(n)

has been written, V reads it, does a polynomial-time computation, and outputs

\ACCEPT" or \REJECT," depending on whether it thinks the winner is P1 or P0.

For (P1; P0; V ) to be an Alternating Polynomial Time machine for the language

L, it must have the property that, if x 2 L, V always outputs ACCEPT (i.e.,, P1
has a winning strategy), and, if x 62 L, V always outputs REJECT (i.e.,, P0 has a

winning strategy). The fundamental result of Chandra et al. [5] is that Alternating

Polynomial Time is equal to PSPACE: Languages that correspond to zero-sum,

perfect-information, polynomial-depth games are exactly those recognizable by

Turing Machines that use polynomial space.

The fundamental correspondence between PSPACE and perfect-information

games is clearly illustrated by the well-known PSPACE-complete language of

true quanti�ed Boolean formulas. Consider quanti�ed Boolean formulas in 3CNF

(\three conjunctive normal form"); that is, those of the form

� = Q1x1Q2x2 : : :Qnxn�(x1; x2; : : : ; xn);

where each Qi 2 f9; 8g, each xi is a Boolean variable, and � is a formula in conjunc-

tive normal form, each clause of which has exactly three literals. Let Q3SAT be

the set of true quanti�ed formulas in 3CNF. To obtain a perfect-information game,

let the variables of the formula be chosen by P1 and P0, in order of quanti�cation,

where P0 chooses the universally quanti�ed variables and P1 chooses the existen-

tially quanti�ed variables. By de�nition, the formula is true (i.e., in Q3SAT) if

and only if P1 has a winning strategy for this game. The classical paper of Schae-

fer [18] provides many more examples of PSPACE-complete perfect-information

games.

Papadimitriou [17] considers an interesting variation on the Alternating Poly-

nomial Time model. In a \Game Against Nature," the input x is still given to P1,
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who claims that x 2 L, to P0, who claims that x 62 L, and to the polynomial-time

referee V . However, P0 is now a \random" player; in even-numbered moves of the

game, P0 just tosses fair coins to select a string of the appropriate length uniformly

at random. Thus, instead of playing against a strategic opponent, P1 is playing

against \nature." If P1 is truthful in his claim that x 2 L, then V must accept with

probability at least 1=2. If x 62 L, then V must accept with probability less than

1=2. (The probability is computed over the coin tosses of P0.) The main result

of [17] is that Games Against Nature recognize exactly the languages in PSPACE

{ or, at least for perfect-information, polynomial-depth games, playing against

\nature" is just as hard for P1 as playing against an evenly-matched opponent!

Babai and Moran [3] consider \Arthur-Merlin Games." These are de�ned in

the same way as Games Against Nature, except that there must be a \gap" in

acceptance probabilities: If x 2 L, then V must accept with probability at least

2=3, and, if x 62 L, then V must accept with probability at most 1=3. One of the

most highly acclaimed results in computational complexity theory, proved by Lund

et al. [14] and Shamir [19], is that the (seemingly very stringent) requirement of

this (1=3; 2=3) gap does not change the class of languages accepted: poly(n)-round

Arthur-Merlin Games also recognize exactly PSPACE.

3 Probabilistically Checkable Debate Systems

In the Alternating Polynomial Time, Games Against Nature, and Arthur-Merlin

Game models, the referee reads the entire transcript of a played game before

deciding the winner. In this Section, we consider models in which the referee

reads only a randomly selected subset of the game transcript but can still decide

the winner correctly, because the players encode their moves in a clever way that

makes refereeing easy. The results obtained are the PSPACE analogue of the

probabilistically checkable proof system theory developed for NP (see, e.g., [1, 20]).

A probabilistically checkable debate system (PCDS) for a language L consists

of a player P1, who claims that the input x is in L, a player P0, who claims that

x is not in L, and a probabilistic polynomial-time referee V . The language L is in

the complexity class PCD(r(n); q(n)) if V ips at most O(r(n)) coins on inputs x

of length n and reads at most O(q(n)) bits of the game transcript produced by P1
and P0. On inputs x 2 L, V always declares P1 to be the winner, and on inputs

x 62 L, V declares P0 to be the winner with probability at least 2=3. An RPCDS is

a PCDS in which player P0 follows a very simple strategy: In each even round of

the game, P0 simply chooses uniformly at random from the set of all legal moves.

The class RPCD(r(n); q(n)) is de�ned by analogy with PCD(r(n); q(n)).

The characterizations of PSPACE presented in Section 2 are those in which

r(n) = 0 and q(n) is an arbitrary polynomial. Speci�cally, Alternating Polynomial

Time is, by de�nition, PCD(0, poly(n)), and poly(n)-round Arthur-Merlin Games

are RPCD(0, poly(n)).

Condon et al. [6, 7] study the potential tradeo� between random bits and

query bits. If the referee V is allowed to ip coins, might it still be able to determine

the winner of the game without reading the entire transcript? The results in [6, 7]

show that, as in the PCP characterization of NP, the best possible tradeo� between
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r(n) and q(n) is obtainable. Furthermore, this tradeo� is obtainable both when

the opponents are two strategic players (a PCDS) and when they are a strategic

player and a random player (an RPCDS). Speci�cally, it is shown in [6, 7] that

PSPACE = PCD(logn; 1) = RPCD(logn; 1):

One surprising aspect of these results is that, while the number of rounds of

the game is poly(n), the number of bits of the game examined by the referee is

O(1). Thus, most of the moves of both players are never looked at, and yet the

referee still decides the winner correctly. In order to encode games to permit such

e�cient refereeing, Condon et al. [6, 7] exploit and extend the probabilistically

checkable coding techniques developed in the PCP characterization of NP [1, 20],

In conclusion, the results of [5, 6, 7, 14, 17, 19] demonstrate that the identi�ca-

tion of PSPACE with zero-sum, perfection-information, polynomial-depth games

is extremely robust. Numerous variations on the computational model of a game

between two strategic players that is judged after it is played by a polynomial-

time referee have been studied, e.g., replacing one strategic player by a random

player, putting a sharp threshold between yes-instances and no-instances precisely

at acceptance probability 1=2, requiring a (1=3; 2=3) gap in acceptance probability

between yes-instances and no-instances, and only allowing the referee to examine

a constant number of bits of the played game before making a decision. All of

these variations on perfect-information games (and several combinations thereof)

cause the same class of languages to be accepted, namely PSPACE. As the results

surveyed below in Section 5 demonstrate, there is no complexity class known to

be as robustly identi�able with a class of imperfect-information games.

4 Nonapproximability

The game-theoretic characterizations of PSPACE presented in Sections 2 and 3

can be used to prove that many optimization functions that are PSPACE-hard

to compute exactly are also PSPACE-hard to approximate closely. This use of

the debate-system characterizations in Section 3 was inspired by the use of the

PCP(logn, 1) characterization of NP to prove nonapproximability results for NP-

hard optimization functions; see Arora and Lund [2] for an overview of these results

on NP.

The basic proof structure of the nonapproximability results surveyed in this

Section is as follows. First, a characterization of PSPACE is used directly to show

that a particular function F is hard to approximate within a certain factor; then

approximability-preserving, polynomial-time reductions are given from F to other

functions of interest. Note that these reductions must be constructed with some

care, because the mere fact that two optimization problems are equivalent under

polynomial-time reductions does not mean that they are equivalent with respect

to approximability. A canonical example of a polynomial-time reduction that

does not appear to preserve approximability is the one from VERTEX COVER to

INDEPENDENT SET (see Section 6.1 of Garey and Johnson [10]).

Throughout this section, we say that \algorithmA approximates the function

f within ratio �(n)," for 0 < �(n) < 1, if, for all x in the domain of f , �(jxj) �
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A(x)=f(x) � 1=�(jxj). If �(n) > 1, then \algorithm A approximates the function

f within ratio �(n)" means that 1=�(jxj) � A(x)=f(x) � �(jxj).

4.1 Reductions from PCD(logn, 1)

From the characterization PSPACE = PCD(logn, 1), we obtain a nonapprox-

imability result for one optimization version of the PSPACE-complete language

Q3SAT de�ned in Section 2. Let the variables of the formula be chosen by P0
and P1, in order of quanti�cation, where P0 chooses the universally quanti�ed

variables and P1 chooses the existentially quanti�ed variables. If P1 can guarantee

that k clauses of � will be satis�ed by the resulting assignment, regardless of what

P0 chooses, we say that k clauses of � are simultaneously satis�able. Let MAX

Q3SAT be the function that maps a quanti�ed 3CNF formula � to the maximum

number of simultaneously satis�able clauses.

Theorem: There is a constant 0 < � < 1 such that approximating MAX Q3SAT

within ratio � is PSPACE-hard.

Nonapproximability results for other PSPACE-hard functions can now be

obtained via approximability-preserving reductions from MAX Q3SAT. The fol-

lowing two are given by Condon et al. [6]:

MAX FA-INT: The language FA-INT consists of all sets fA1; A2; : : : ; Amg of de-

terministic �nite-state automata having the same input alphabet � such that there

is a string w that is accepted by all of them. FA-INT plays a key role in the �eld

of \computer-aided veri�cation" of devices and protocols (see, e.g., Kurshan [12])

and was shown to be PSPACE-complete by Kozen [11]. The PSPACE-hard func-

tion MAX FA-INT maps each set fA1; A2; : : : ; Amg to the largest integer k such

that there is a string w accepted by k of the Ai's.

MAX GGEOG: Instances of the game \generalized geography" consist of pairs

(G; s), where G is a directed graph and s is a distinguished start node. A marker

is initially placed on s, and P0 and P1 alternatively play by moving the marker

along an arc that goes out of the node it is currently on. Each arc can be used at

most once; the �rst player that is unable to move loses. The language GGEOG

consists of all pairs (G; s) for which P1 has a winning strategy; GGEOG is one

of the many perfect-information games shown to be PSPACE-complete by Schae-

fer [18]. We say that (G; s) \can be played for k rounds" if P1 has a strategy that

causes the marker to be moved along k arcs, no matter what P0 does, even if P1
ultimately loses. The PSPACE-hard function MAX GGEOG maps pairs (G; s) to

the maximum number of rounds for which they can be played.

In fact, the lower bounds for MAX FA-INT and MAX GGEOG are stronger

than the one for MAX Q3SAT: In both cases, there is a constant � > 0 such that

approximating the function to within a factor of n� is PSPACE-hard. Additional

nonapproximability results from the domains of modal logic and system speci�ca-

tion and analysis are given, respectively, by Lincoln et al. [13] and by Marathe et

al. [15].
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4.2 Reductions from RPCD(0, poly(n))

The PSPACE-complete language SSAT is de�ned as follows by Papadimitriou [17].

An instance is a 3CNF formula � over the set of variables fx1; x2; : : : ; xng. The

instance is in SSAT if there is a choice of Boolean value for x1 such that, for

a random choice (with True and False each chosen with probability 1=2) for x2,

there is a choice for x3, etc., for which the probability that � is satis�ed is at least

1=2. Think of SSAT as a game between an existential player and a random player;

on odd moves i, the existential player chooses an optimal value for xi (where

\optimal" means \maximizes the probability that � will be satis�ed") and, on

even moves i, the random player chooses a random value for xi. Yes-instances of

SSAT are those in which the existential player wins with probability at least 1=2.

The function MAX-PROB SSAT maps each SSAT instance to the probability

that � is satis�ed if the existential player plays optimally; so yes-instances of the

decision problem are those on which the value of MAX-PROB SSAT is at least

1=2. The proof that PSPACE = RPCD(0, poly(n)) (see Lund et al. [14] and

Shamir [19]) yields the following strong nonapproximability result.

Theorem: For any language L in PSPACE and any � < 1, there is a polynomial-

time reduction f from L to SSAT such that

x 2 L)MAX-PROB SSAT(f(x)) = 1; and

x 62 L)MAX-PROB SSAT(f(x)) < 2�n
�

;

where n is the number of variables in f(x).

Condon et al. [7] and Papadimitriou [17] give approximability-preserving re-

ductions from MAX-PROB SSAT to the following three functions.

MIN DMP: An instance of Dynamic Markov Process (DMP) is a set S of states

and an n � n stochastic matrix P , where n = jSj. Associated with each state si
is a set Di of decisions, and each d 2 Di is assigned a cost c(d) and a matrix Rd.

Each row of Rd must sum to 0, and each entry of P + Rd must be nonnegative.

The result of making decision d when the process is in state si is that a cost of c(d)

is incurred, and the probability of moving to state sj is the (i; j)
th entry of P +Rd.

A strategy determines which decisions are made over time; an optimal strategy is

one that minimizes the expected cost of getting from state s1 to state sn. The

language DMP, shown to be PSPACE-complete by Papadimitriou [17], consists of

tuples (S; P; fDig; c; fRdg; B) for which there is a strategy with expected cost at

most B. The optimization function MIN DMP maps (S; P; fDig; c; fRdg) to the

expected cost of an optimal strategy.

Coloring Games: An instance of a coloring game (see Bodlaender [4]) consists

of a graph G = (V;E), an ownership function o that speci�es which of P0 and P1
owns each vertex, a linear ordering f on the vertices, and a �nite set C of colors.

This instance speci�es a game in which the players color the vertices in the order

speci�ed by the linear ordering. When vertex i is colored, its owner chooses a

color from the set of legal colors, i.e., those in set C that are not colors of the

colored neighbors of i. The game ends either when all vertices are colored, or

when a player cannot color the next vertex in the linear ordering f because there
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are no legal colors. P1 wins if and only if all vertices are colored at the end of

the game. The length of the game is the number of colored vertices at the end of

the game. In a stochastic coloring game (SCG), P0 chooses a color uniformly at

random from the set of legal colors at each stage. Two corresponding optimization

problems are to maximize the following functions: MAX-PROB SCG(G; o; f; C),

which is the maximum probability that P1 wins the game (G; o; f; C), and MAX-

LENGTH SCG(G; o; f; C), which is the maximum expected length of the game.

Both maxima are computed over all strategies of P1.

For each of MIN DMP and MAX-PROB SGC, there is a constant � > 0 such

that it is PSPACE-hard to approximate the function within ratio 2�n
�

. For MAX-

LENGTH SGC, the ratio within which approximation is PSPACE-hard is n��, for

a constant � > 0.

4.3 Reductions from RPCD(logn, 1)

The starting point for this set of nonapproximability results is the function MAX-

CLAUSE SSAT, whose value on the 3CNF formula � is the expected number of

clauses of � that are satis�ed if P1 chooses the values of the existentially quanti�ed

variables, the other variables are assigned random values, and P1 plays optimally

with the goal of maximizing the number of satis�ed clauses. Using their result

that PSPACE = RPCD(logn, 1), Condon et al. [7] prove the following.

Theorem: There is a constant 0 < � < 1 such that approximatingMAX-CLAUSE

SSAT within ratio � is PSPACE-hard.

They then reduce MAX-CLAUSE SSAT to many other optimization func-

tions, using reductions that preserve approximability. Two examples include:

MAX SGGEOG: Consider the variation of the game GGEOG de�ned in Sec-

tion 4.2 in which P0 plays randomly; that is, at every even-numbered move, P0
simply chooses an unused arc out of the current node uniformly at random and

moves the marker along that arc. The goal of P1 is still to maximize the length

of the game, and the function MAX SGGEOG maps an instance (G; s) to the

expected length of the game that is achieved when P1 follows an optimal strategy.

MAX-PROB DGR: The Graph Reliability problem is de�ned as follows by

Valiant [21]: Given a directed, acyclic graph G, source and sink vertices s and

t, and a failure probability p(v; w) for each arc (v; w), what is the probability that

there is a path from s to t consisting exclusively of arcs that have not failed? Pa-

padimitriou [17] de�nes Dynamic Graph Reliability (DGR) as follows: The goal

of a strategy is still to traverse the digraph from s to t. Now, however, for each

vertex x and arc (v; w), there is a failure probability p((v; w); x); the interpretation

is that, if the current vertex is x, the probability that the arc (v; w) will fail before

the next move is p((v; w); x). The PSPACE-complete language DGR consists of

those digraphs for which there exists a strategy for getting from s to t with prob-

ability at least 1=2. A natural optimization function is MAX-PROB DGR, which

maps a graph, vertices s and t, and a set fp((v; w); x)g of failure probabilities to

the probability of reaching t from s under an optimal strategy.
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It is PSPACE-hard to approximate MAX SGGEOG within ratio n��, for any

constant 0 < � < 1=2, where n is the number of vertices in the graph. It is

also PSPACE-hard to approximate MAX-PROB DGR within ratio 2�n
�

, for some

constant � > 0. See Condon et al. [7] for proofs of these results and for a related

result about a stochastic version of the board game Mah-Jongg.

5 Imperfect Information Games

Feigenbaum et al. [9] develop a framework in which to generalize the connections

between game classes and complexity classes. A polynomially de�nable game sys-

tem (PDGS) for a language L consists of two arbitrarily powerful players P0 and

P1 and a polynomial-time referee V . The referee may be probabilistic, but there

are some interesting cases in which V does not need randomness. P0 and P1 and

the referee V have a common input tape. On input x, P1 claims that x is in L,

P0 claims that x is not in L, and V 's job is to decide which of these two claims is

true.

Each input x to a PDGS determines a polynomially de�nable game Gx as

follows. The game is essentially run by the referee V . The moves in the game

are relayed by the players to V . Neither player sees V 's communication with the

other, but V can transmit information about the current status of the game to

one or both players. This reects the fact that the players can have imperfect

information to varying degrees. When the interaction is �nished, V either accepts

or rejects x. Because the referee is polynomial-time, Gx lasts for poly(n) moves,

and each move can be written down in poly(n) bits, where n = jxj. The resulting

game Gx clearly de�nes a two-person, zero-sum game tree in which the length of

each path is polynomial. If V is probabilistic, then his coin tosses correspond to

chance moves in the game tree.

It is essential to the PDGS framework that P0 and P1 use mixed strategies.

(See [9, Section 1] for a discussion of why previous attempts to characterize com-

plexity classes with imperfect-information games in which the players use pure

strategies were unsatisfactory.) That is, for each possible input x, each player has

a probability distribution over the space of his deterministic strategies. At the

beginning of the game, the players examine x and independently choose a pure

strategy using their respective probability distributions; those pure strategies are

then played throughout the game. Since the game tree has exponential size, a pure

strategy also has exponential size. An arbitrary mixed strategy could of course

have size doubly exponential in n.

There are two ways to de�ne acceptance of a language L by a PDGS

(P1; P0; V ). In the \exact model," yes-instances x correspond to games Gx of

value at least 1=2 and no-instances to games of value less than 1=2:

� For all x 2 L, there exists a mixed strategy �1 for P1 such that, for all

strategies �0 for P0, V accepts with probability at least 1=2.

� For all x 62 L, there exists a mixed strategy �0 for P0 such that, for all

strategies �1 for P1, V accepts with probability less than 1=2.
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In the \approximate model," yes-instances x correspond to games Gx of value at

least 2=3 and no-instances to games of value at most 1=3:

� For all x 2 L, there exists a mixed strategy �1 for P1 such that, for all

strategies �0 for P0, V accepts with probability at least 2=3.

� For all x 62 L, there exists a mixed strategy �0 for P0 such that, for all

strategies �1 for P1, V accepts with probability at most 1=3.

In both models, the probability of acceptance is computed over the pure strategies

of both players (if they use mixed strategies) and the coin tosses of V (if any).

The main question addressed in [9] is the relationship between the game-

theoretic properties of P0 and P1 and the class of languages recognizable by

PDGS's. One class of PDGS's studied are those in which at least one player

has imperfect information (i.e., those in which the referee V does not tell P0 ev-

erything about its communication with P1 and/or vice versa) but perfect recall

(i.e., P0 and/or P1 has enough memory to record everything they do and every-

thing they receive from V and can use it in subsequent rounds of the protocol).

Another class are those in which at least one player has imperfect recall: P0 or P1
or both cannot store everything they do and receive and may have to act in the

ith round of the game based on partial or no information about what happened in

the �rst i � 1 rounds.

In the results on PSPACE surveyed in Sections 2 and 3, the computational

models are very special cases of PDGS's, in which the referee's role is trivial while

the game is being played: V simply sends all information about P1's current move

and the entire history of the game to P0 and vice versa. Therefore these results

show that PDGS's in which both players have perfect information recognize exactly

PSPACE, both in the exact model and in the approximate model. Feigenbaum

et al. [9] obtain similarly tight results for PDGS's in which at least one player

has imperfect recall. If P1 has imperfect recall, but P0 has either perfect infor-

mation or perfect recall, then PDGS's accept exactly those languages recognizable

in nondeterministic exponential time (the complexity class NEXP), in both the

exact model and the approximate model. If P0 is the one with imperfect recall,

the class recognized in both models is coNEXP. An almost-tight characterization

is obtained for PDGS's in which both players have imperfect recall (see [9] for

details).

Feigenbaum et al. [9] also proved that, in the exact-value model, the languages

accepted by PDGS's in which P0 and P1 both have perfect recall (but imperfect

information) are exactly those languages recognizable in deterministic exponen-

tial time (the complexity class EXP). They left open the question of whether the

approximate-value model is equivalent to the exact-value model when both play-

ers have perfect recall. This question was subsequently answered by Feige and

Kilian [8]: One-round PDGS's with two perfect-recall players accept PSPACE;

Polynomial-round PDGS's with two perfect-recall players accept EXP.

Thus, perfect-recall games seem to be fundamentally di�erent perfect-

information games and from games in which at least one player has imperfect

recall; in particular, whether or not exact refereeing is equivalent to approximate
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10 Feigenbaum

refereeing seems to depend on the number of rounds of the game. It remains

open whether there are natural explanations or generalizations of these results on

imperfect information games or whether these results have applications to approx-

imability. Also open is the question of whether there are imperfect-information

analogues of the Arthur-Merlin and Games-Against-Nature characterizations of

PSPACE; that is, can a random player replace one of the perfect-recall players

or one of the imperfect-recall players in a class of PDGS's without changing the

language-recognition power of the class.
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