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The advent of pervasive computation and the internet has resulted in a world in
which a vast amount of private information resides in computers and networks. Un-
fortunately, recent events have proven that this information is unsafe. In just the
last two years, retailers such as Target and Ebay, government agencies such as the
Internal Revenue Service and the Office of Personnel Management, and companies
as diverse as Ashley Madison (a Canadian dating company specializing in extramar-
ital relationships) and JP Morgan Chase (the largest bank in the US) have all been
hacked. Add in the revelations about large-scale spying by government agencies and
state-sponsored hacking, and our security is very much in doubt.

Secure function evaluation (SFE), also known as secure multi-party computation
(SMPC), allows multiple parties to jointly compute a function while maintaining input
and output privacy. The two-party variant, known as 2P-SFE, was first introduced
by Yao in the 1980s [1] and was largely a theoretical curiosity. 2P-SFE has become
vastly more efficient in recent years, owing to advances in hardware, faster encryp-
tion libraries, and, of course, improved protocols [2,3,4]. Given all of the threats
to our private information, strong cryptography and secure computation should be
ubiquitous. However, various technical, economic, and social factors have resulted in
a situation in which cryptographic and security technology is not nearly as widely
used as it should be.

In this thesis, I present a set of results aimed at making SFE more suitable for

real-life deployment. First, I present Partial GC, which fundamentally changes the



communication pattern of SFE from a complex many-to-many pattern to a simple,
star-like pattern and introduces the ability to save state across multiple secure com-
putations. To facilitate the creation of secure programs, I then present a complete
garbled-circuit compiler for 2P-SFE computations, called Frigate, that is two orders
of magnitude faster than the previous state of the art. Next, I combine these technolo-
gies with Intel’s new Software Guard eXtensions to achieve security guarantees akin
to that of SFE while achieving execution speeds almost as fast as those of privacy-
invasive protocols. Finally, I present a tool that allows naive users to search and
specify their security needs and assumptions and produces a list of known crypto-
graphic protocols suited for the scenario specified or indicates that no such protocols

are known.
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Chapter 1

Introduction

Computers and networks now mediate a tremendous amount of our daily activity,
ranging from shopping to health care to political engagement and even to friendship
and romance. This trend is expected to continue and even to accelerate for the
foreseeable future. The primary currency of the internet — private information used
by advertisers and others to gain insight into our lives — is a dangerous one and
has meant that large companies devote significant resources to the procurement and
analysis of such data. The economic benefits of this system, however, have ensured
that we will continue to create and transmit huge amounts of sensitive data about
individuals and organizations.

Secure Multi-Party Computation (SMPC), also known as Secure Function Eval-
uation (SFE), has long been regarded as a theoretical curiosity. First proposed by
Yao [1], SMPC allows two or more parties to compute the result of a function without
exposing their inputs. The identification of such primitives was groundbreaking, cre-
ating opportunities by which untrusting participants could calculate results of mutual
interest without requiring all individuals to identify a mutually trusted third party.
Unfortunately, it would take more than 20 years before the creation of the first SMPC

compiler, Fairplay [5], demonstrated that these heavyweight techniques were remotely



practical.

The creation of the Fairplay compiler ignited the research community. In the
following decade, SMPC compilers improved performance by multiple orders of mag-
nitude, significantly reduced bandwidth overhead, and allowed for the generation and
execution of circuits composed of tens of billions of gates [3,6,7,8]. These efforts have
brought SMPC from the realm of mere theoretical interest to the verge of practical-
ity; as an indicator of this fundamental change, DARPA is spending $60 million to
support the transition of technologies such as SMPC to practice [9].

In principle, we could obviate the need to transfer our sensitive information to
organizations that may then be hacked by using SMPC protocols. SMPC enables data
owners to use data without revealing them. Specifically, it allows parties Py, ..., P,
with private inputs x1,...,z, to compute a value y = f(xy,...,2,) in such a way
that every P; learns the output y, but no P; learns anything about z;, except what is
implied by y and z;. Thus, customers could purchase items without revealing their
credit-card numbers or get insurance quotes without revealing their health records
by engaging with these companies (and perhaps with other parties, e.g., credit-card
issuers) in SMPC protocols. The customers’ private information could remain on
their personal devices, entirely under their control.

The case for widespread deployment of SMPC has never been stronger. Moreover,
recent advances have made SMPC protocols considerably more efficient. In particular,
there have been striking improvements in the efficiency of secure, two-party protocols,
also known as 2P-SFE (“two-party secure function evaluation”). In this thesis, we
address the question of speeding up and improving SMPC to make it practical for
everyday usage.

Many fast and powerful SMPC platforms exist today [7,8,10,11,12,13,14], and
their performance is improving. Such platforms have been used for scenarios as varied

as those of farmers conducting beet-root auctions [15], inter-domain routing [16], gov-



ernments reporting aggregated salary data [17], and database policy compliance [18].

While it is still true that performing a computation using SMPC is usually much
slower than doing so in a non-privacy-preserving manner, modern SMPC protocols,
especially 2P-SFE protocols, are more than fast enough to solve some real-world
problems, even in scenarios with malicious adversaries. Ideally, SMPC could be used
in any scenario where the parties trust each other enough to want to cooperate in
the first place but not enough to release private data or trust the other parties not
to cheat [19].

Unfortunately, people are reluctant to trust cryptographic mechanisms, preferring
instead to rely on trusted third parties with existing accountability mechanisms [19].
They are far more likely to go with a tried and trusted system rather than a new
(to them) cryptographic protocol, however secure and efficient. In this thesis, we
present a set of tools and protocols intended to make SMPC feasible for real-world
use. To achieve this we describe four lines of research that together create a complete

ecosystem capable of supporting everyday users:

1. First, we introduce “Partial GC,” which fundamentally changes the communica-
tion pattern of SMPC protocols from a complex many-to-many pattern to the
simple, star-like, client-server pattern that is currently used for the vast major-
ity of internet applications. It also introduces the ability to securely save state
across multiple secure computations. This makes it feasible for programmers to
convert privacy-invasive applications to privacy-preserving ones without having
to completely change their product. It also significantly increases the efficiency
of many protocols. To illustrate the speed and power of this system, we build
and demonstrate the first smartphone application capable of running SMPC

protocols. This material appeared in preliminary form in [20].

2. Next, we present “Frigate,” an SMPC compiler that allows programmers to

write code in a C-like language and produces fast, secure applications with-



out requiring that the programmer be knowledgeable in the underlying crypto-
graphic protocols. This means that programmers will not need to undergo spe-
cial training in order to write privacy-preserving applications. Current SMPC
compilers are mostly intended for research use and are often incomplete, incor-
rect, or unstable, leading to demonstrably erroneous results and inefficiencies.
While industry-standard compilers also contain errors, the number and mag-
nitude of problems we found in most popular SMPC compilers makes them
very difficult to use. Frigate has been tested extensively for correctness using
industry-standard compiler testing techniques and is two orders of magnitude
faster than other state of the art SMPC compilers. This material appeared in

preliminary form in [21].

. We then combine these technologies with Intel’s Software Guard Extensions,
“SGX,” to achieve speeds of execution comparable to that of applications built
without privacy in mind, virtually removing the performance overheads involved
in converting an insecure application to one that preserves privacy. This mate-

rial appeared in preliminary form in [22].

. Finally, most users and businesses would find it difficult, if not impossible,
to decide which SMPC protocols to use for their needs, given the huge and
growing size of the field [23]. We present a tool, SysSC-UI, which allows naive
users to search and specify their security needs and assumptions. The tool
produces a list of known cryptographic protocols suited for the scenario specified
or indicates that no such protocols are known. It has also proved to be very
useful to researchers trying to find gaps in the literature, which could indicate
the existence of an unexplored scenario or an as-yet unproven impossibility
result for that scenario. The tool makes use of a systematization of the current

state of SMPC and a corresponding annotated bibliography. This material



appeared in preliminary form in [23].

Together, these innovations will allow individuals and businesses to use powerful
cryptographic technology and build privacy-preserving applications without making
huge investments into security. I believe the eventual aim of all research should be
to better understand and improve the world in which we live. Building technologies
to safeguard the privacy and security of individuals and institutions is essential to a

safe existence in today’s connected world full of sensitive information.



Chapter 2

Background

Secure function evaluation (SFE) addresses scenarios where two or more mutually
distrustful parties Py, ..., P,, with private inputs x4, ..., z,, want to compute a given
function y; = f(z1,...,x,) (y; is the output received by P;), such that no P; learns
anything about any x; or y;, ¢ # j that is not logically implied by z; and y;. Moreover,
there exists no trusted third party —if there was, the P;s could simply send their inputs
to the trusted party, which would evaluate the function and return the y;s.

SFE was first proposed in the 1980s in Yao’s seminal paper [1]. The area has
been studied extensively by the cryptography community, leading to the creation of
the first general purpose platform for SFE, Fairplay [5] in the early 2000s. Today,
there exist many such platforms [7,8,10,11,12,13,14]. While these protocols are
still much slower than their privacy-invasive counterparts, many programs, especially
those operating in the two-party model (called 2P-SFE), are now fast enough to be

deployed in real-world scenarios.

2.1 Garbled Circuits

The classic platforms for 2P-SFE; including Fairplay, use garbled circuits. A garbled

circuit is a Boolean circuit which is encrypted in such a way that it can be evaluated



when the proper input wires are entered. The party that evaluates this circuit does
not learn anything about what any particular wire represents. In 2P-SFE, the two
parties are: the generator, which creates the garbled circuit, and the evaluator, which
evaluates the garbled circuit. Additional cryptographic techniques are used for input
and output; we discuss these later.

A two-input Boolean gate has four truth table entries. A two-input garbled gate
also has a truth table with four entries representing 1s and Os, but these entries are
encrypted and can only be retrieved when the proper keys are used. The values
that represent the 1s and Os are random strings of bits. The truth table entries are
permuted such that the evaluator cannot determine which entry she is able to decrypt,
only that she is able to decrypt an entry. The entirety of a garbled gate is the four
encrypted output values.

For each wire ¢ in the garbled circuit, the generator selects random encryption keys
kY k! to represent the bit values “0” and “1” for each wire in the circuit. Given these
garbled wire labels, each gate in the circuit is represented as a truth table (while
each gate may have an arbitrary number of input wires, we assume each gate has
two inputs without loss of generality). For a gate executing the functionality * with
input wires ¢ and j and output wire k, the generator encrypts each entry in the truth
table as Enc((kl, k:?j ), k:zi*bj ) where b; and b; are the logical bit values of wires i and
j. After permuting the entries in each truth table, the generator sends the garbled
circuit, along with the input wire labels corresponding to his input, to the evaluator.
Given this garbled representation, the evaluator can iteratively decrypt the output
wire label for each gate. Once the evaluator possesses wire labels for each output
wire, the generator can reveal the actual bit value mapped to the output wire labels
received.

To initiate evaluation, the evaluator must hold garbled representations of both

parties” input values. However, since the evaluator does not know the mapping be-



tween real bit values and garbled wire labels, we require something that allows the
evaluator to garble her own input without revealing it to the generator. To achieve
this, we use 1-out-of-2 oblivious transfers (OTs) [24,25,26,27]. In a l-out-of-2 OT,
one party offers up two possible values while the other party selects one of the two
values without learning the other. The party that offers up the two values does not
learn which value was selected. Using this technique, the evaluator gets the wire
labels for her input without leaking information. The only way for the evaluator to
get a correct output value from a garbled gate is to know the correct decryption keys
for a specific entry in the truth table, as well as the location of the value she has to
decrypt.

During the permutation stage, rather than simply randomly permuting the values,
the generator permutes values based on a specific bit in input, and input,, such that,
given input, and input, the evaluator knows that the location of the entry to decrypt
is bit, x 2+ bit,. These bits are called the permutation bits, as they show the evaluator
which entry to select based on the permutation; this optimization, which does not
leak any information, is known as point and permute [5].

This protocol guarantees privacy of both parties’ inputs and correctness of the
output in the semi-honest adversary model, which assumes that both parties will
follow the protocol as specified, and will only try to learn additional information
through passive observation. When adversaries can perform arbitrary malicious ac-
tions, a number of additional checks must be added to ensure that neither party can
break the security of the protocol. These checks are designed specifically to prevent
tampering with the evaluated function, providing incorrect or inconsistent inputs, or

corrupting the values output by the garbled circuit protocol.



2.2 Threat Models and Definitions

Traditionally, there are two threat models discussed in SFE work, semi-honest and
malicious. The above description of garbled circuits is the same in both threat models.
In the semi-honest model users stay true to the protocol but may attempt to learn
extra information from the system by looking at any message that is sent or received.
In the malicious model, users may attempt to change anything with the goal of
learning extra information or giving incorrect results without being detected; extra

techniques must be added to achieve security against a malicious adversary.

Definition 1. Given n parties Pi,..., P, with secret inputs x1,...,x,, we wish to
compute a public function f to get outputs (y1,...,yn) = f(z1,...,2n).

We consider an SFE protocol to be secure and correct if each P; learns y; but
nothing about y;,x;Vj # i beyond what is implied about any x; by the output y;. A

malicious adversary may corrupt all but one party.

For garbled circuits to achieve security against malicious adversaries, the compu-
tation must be performed N times in order to prevent the generator from creating an
incorrect circuit. The security parameter /N sets the upper bound on an adversary’s
successfully cheating at QLN Crucially, because the computation is performed multiple
times, there must be mechanisms to ensure that the same inputs are used each time
and a way to ensure the evaluator does not corrupt the generator’s output. These
are solved problems in the garbled-circuit literature.

There are several well-known attacks a malicious adversary could use against a
garbled circuit protocol. A protocol secure against malicious adversaries must have
solutions to all potential pitfalls. We briefly describe some of the most important
issues below:

Generation of incorrect circuits: If the generator does not create a correct garbled

circuit, he could learn extra information by modifying truth table values to output the



evaluator’s input; he is limited only by the external structure of the garbled circuit
the evaluator expects.

Selective failure of input: If the generator does not offer up correct input wires to
the evaluator, and the evaluator selects the wire that was not created properly, the
generator can learn up to a single bit of information based on whether the computation
produced correct outputs.

Input consistency: If either party’s input is not consistent across all circuits, then
it might be possible for extra information to be retrieved.

Output consistency: In the two-party case, the output consistency check verifies

that the evaluator did not modify the generator’s output before sending it.
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Chapter 3

Related Work

SMPC was first described by Yao in his seminal paper [1] on the subject. The first
general purpose platform for SMPC, Fairplay [5], was created in 2004. Fairplay had
both a compiler and a runtime system and revitalized research in the area. Compu-
tations involving three or more parties have also been examined; one of the earliest
examples is FairplayMP [28]. There have been multiple other implementations since,
in both semi-honest [7,11,12,13,14] and malicious settings [8,10]. Canetti et al. [29]
introduced universally composable security, which guarantees security regardless of
the execution environment or composition with other protocol executions.

In particular, the garbled circuit protocol has been vastly expanded from its origi-
nal capability and applied to various areas [16,18], allowing for security in the presence
of covert [30], malicious [4,10,31,32,33], and other adversaries [34], as well as out-
sourced execution for computationally limited devices [35,36,37,38,39]. Optimizations
for garbled circuits include the free-XOR technique [40], garbled row reduction [41],
rewriting computations to minimize SMPC [42], and pipelining [2]. Pipelining allows
the evaluator to proceed with the computation while the generator is creating gates.
Kreuter et al. [3] included both an optimizing compiler and an efficient runtime sys-

tem using a parallelized implementation of SMPC in the malicious model from [10].
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We use many of these optimizations in later chapters.

There exist many other methods for performing SMPC, such as homomorphic
encryption [43,44], secret sharing [45], and ordered binary decision diagrams [46]. A
general privacy-preserving computation protocol that uses homomorphic encryption
and was designed specifically for mobile devices can be found in [39]. Kamara et
al. [47] showed how to scale server-aided Private Set Intersection to billion-element
sets with a custom protocol.

Despite such advances, SMPC has not seen widespread real-world usage. While
Fairplay and other compilers ignited the research community, the only instances of
SMPC in real life remain limited to sugar-beet auctions in Denmark [48] and the pro-
duction of salary statistics for Estonian government employees [49]. In the following
chapters, we provide a number of tools that, taken together, will hopefully ease the

transition of SMPC from universities and research institutes into the real-world.
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Chapter 4

Partial Garbled Circuits

4.1 Introduction

This chapter presents PartialGC, an SFE system that facilitates the reuse of en-
crypted values generated during a garbled-circuit computation. This allows us to
fundamentally change the communication pattern from the many-to-many commu-
nications required for most privacy-preserving protocols to a traditional client-server
communication pattern common to most everyday applications.

While 2P-SFE has become significantly more feasible, even on resource-constrained
devices, there are still bottlenecks, particularly in the input validation stage of a com-
putation. This means that the move from many-to-many to a client-server model also
significantly reduces this input-validation overhead. Further, saving state across com-
putations means that expensive processing does not have to be repeated if a similar
computation is done again. The reuse of previous inputs to allow stateful evaluation
represents a new way of looking at SFE and further reduces computational barriers.

We show that using Partial GC can reduce computation time by as much as 96%
and bandwidth by as much as 98% in comparison with previous outsourcing schemes

for secure computation. We demonstrate the feasibility of our approach with two
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sets of experiments, one in which the garbled circuit is evaluated on a mobile device
and one in which it is evaluated on a server. We also use PartialGC to build a
privacy-preserving “friend finder” application for Android. This is the first non-trivial
SFE-application capable of running on a smartphone.

As mobile devices become more powerful and ubiquitous, users expect more ser-
vices to be accessible through them. When SFE is performed on mobile devices
(where resource constraints are tight), it is extremely slow — if the computation can
be run at all without exhausting the memory, which can happen for non-trivial input
sizes and algorithms [36]. One way to allow mobile devices to perform SFE is to use a
server-aided computational model [35,36], allowing the majority of an SFE computa-
tion to be “outsourced” to a more powerful device while still preserving privacy. Past
approaches, however, have not considered the ways in which mobile computation dif-
fers from the desktop. Often, the mobile device is called upon to perform incremental
operations that are continuations of a previous computation.

Consider, for example, a friend finder application where the location of users is
updated periodically to determine whether a contact is in proximity. Traditional
applications disclose location information to a central server. A privacy-preserving
friend finder could perform these operations in an oblivious fashion. However, every
incremental location update would require a full re-evaluation of the function with
fresh inputs in a standard SFE solution. Our examination of an outsourced SFE
scheme for mobile devices by Carter et al. [36] (hereon CMTB), determined that the
cryptographic consistency checks performed on the inputs to an SFE computation
can themselves be the greatest bottleneck to performance.

Additionally, many other applications require the ability to save state, a feature
that current garbled circuit implementations do not possess. The ability to save state
and reuse an intermediate value from one garbled circuit execution to another would

be useful in many other ways, e.g., we could split a large computation into a number
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of smaller pieces. Combined with efficient input validation, this becomes an extremely
attractive proposition.

In this chapter, we show that it is possible to reuse an encrypted value in an
outsourced SFE computation (we use a cut-and-choose garbled circuit protocol) even
if one is restricted to primitives that are part of standard garbled circuits. Our system,
Partial GC, which is based on CMTB, provides a way to take encrypted output wire
values from one SFE computation, save them, and then reuse them as input wires
in a new garbled circuit. Our method vastly reduces the number of cryptographic
operations compared to the trivial mechanism of simply XOR’ing the results with
a one-time pad, which requires either generating inside the circuit, or inputting, a
very large one-time pad, both complex operations. Through the use of improved
input validation mechanisms proposed by shelat and Shen [4] (hereon sS13) and new
methods of partial input gate checks and evaluation, we improve on previous proposals.
There are other approaches to the creation of reusable garbled circuits [50,51,52], and
previous work on reusing encrypted values in the ORAM model [53,54,55], but these
earlier schemes have not been implemented. By contrast, we have implemented our
scheme and found it to be both practical and efficient; we provide a performance
analysis and a sample application to illustrate its feasibility (Section 4.5), as well as
a simplified example execution (Appendix A.3).

By breaking a large program into smaller pieces, our system allows interactive
I/O throughout the garbled circuit computation. To the best of our knowledge this
is the first practical protocol for performing interactive I/O in the middle of a cut-
and-choose garbled circuit computation.

Our system comprises three parties - a generator, an evaluator, and a third party
(“the cloud”), to which the evaluator outsources its part of the computation. Our
protocol is secure against a malicious adversary, assuming that there is no collusion

by either party with the cloud. We also provide a semi-honest version of the protocol.
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Figure 4.1: PartialGC Overview. E is evaluator and G is generator. The blue box
is a standard execution that produces partial outputs (garbled values); yellow boxes
represent executions that take partial inputs and produce partial outputs.
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************* > | Generator

N N

o

Outsourced SFE Computation 1 Outsourced SFE Computation 2

Figure 4.2: Our system has three parties. Only the cloud and generator have to
save intermediate values - this means that we can have different phones in different
computations.

Figure 4.1 shows how PartialGC works at a high level: First, a standard SFE
execution (blue) takes place, at the end of which we “save” some intermediate output
values. All further executions use intermediate values from previous executions. In
order to reuse these values, information from both parties — the generator and the
evaluator — has to be saved. In our protocol, it is the cloud — rather than the evaluator
— that saves information. This allows multiple distinct evaluators to participate in a
large computation over time by saving state in the cloud between different garbled
circuit executions. For example, in a scenario where a mobile phone is outsourcing
computation to a cloud, PartialGC can save the encrypted intermediate outputs to
the cloud instead of the phone (Figure 6.2). This allows the phones to communicate
with each other by storing encrypted intermediate values in the cloud, which is more
efficient than requiring them to directly participate in the saving of values, as required
by earlier 2P-SFE systems. Our friend finder application, built for an Android device,

reflects this usage model and allows multiple friends to share their intermediate values
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in a cloud. Other friends use these saved values to check whether or not someone is
in the same map cell as themselves without having to copy and send data.

By incorporating our optimizations, we give the following contributions:

1. Reusable Encrypted Values — We show how to reuse an encrypted value, using

only garbled circuits, by mapping one garbled value into another.

2. Reduced Runtime and Bandwidth — We show how reusable encrypted values can
be used in practice to reduce the execution time for a garbled-circuit compu-
tation; we get a 96% reduction in runtime and a 98% reduction in bandwidth

over CMTB.

Impressively, we can reduce the amount of bandwidth required by the mobile
party arbitrarily when no input checks have to be performed on the partial

(intermediate) inputs in our protocol.

3. Outsourcing Stateful Applications and Client-Server Communication Pattern —
We show how our system increases the scope of SFE applications by allow-
ing multiple evaluating parties over a period of time to operate on the saved
state of an SFE computation without the need for these parties to know about
each other. This also allows us to operate using a traditional client-server com-
munication pattern common to most everyday applications as opposed to the

many-to-many communications required for most privacy-preserving protocols.

The remainder of this chapter is organized as follows: Section 4.2 introduces the
concept of partial garbled circuits in detail. The Partial GC protocol and its imple-
mentation are described in Section 4.3, while its security is analyzed in Section 4.4.
Section 4.5 evaluates Partial GC and introduces the friend finder application. Finally,
Section 4.6 discusses related work.

The material in this chapter appeared in preliminary form in [20].
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4.2 Partial Garbled Circuits

We introduce the concept of partial garbled circuits (PGCs), which allows the en-
crypted wire outputs from one SFE computation to be used as inputs to another.
This can be accomplished by mapping the encrypted output wire values to valid input
wire values in the next computation. In order to better demonstrate their structure
and use, we first present PGCs in a semi-honest setting, before showing how they can

aid us against malicious adversaries.

4.2.1 PGCs in the Semi-Honest Model

In the semi-honest model, for each wire value, the generator can simply send two
values to the evaluator, which transforms the wire label the evaluator owns to work
in another garbled circuit. Depending on the point and permute bit of the wire label
received by the evaluator, she can map the value from a previous garbled circuit
computation to a valid wire label in the next computation.

Specifically, for a given wire pair, the generator has wires wé_l and w!™, and
creates wires wf and w}. Here, ¢ refers to a particular computation in a series, while
0 and 1 correspond to the values of the point and permute bits of the ¢ — 1 values.
The generator sends the values wf ' @ wf and w! ' @ w! to the evaluator. Depending
on the point and permute bit of the wf’l value she possesses, the evaluator selects

the correct value and then XORs her w!™" with the (w!™ @ w!) value, thereby giving

her w!, the valid partial input wire.

4.2.2 PGCs in the Malicious Model

In the malicious model we must allow the evaluation of a circuit with partial inputs
and verification of the mappings, while preventing a selective failure attack. The

following features are necessary to accomplish these goals:
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Figure 4.3: This figure shows how we create a single partial input gate for each input
bit for each circuit and then link the partial input gates to the remainder of the circuit.

Verifiable Mapping: The generator G is able to create a secure mapping from a saved
garbled wire value into a new computation that can be checked by the evaluator
E, without E being able to reverse the mapping. During the evaluation and check
phase, F must be able to verify the mapping G sent. G' must have either committed
to the mappings before deciding the partition of evaluation and check circuits, or

never learned which circuits are in the check versus the evaluation sets.

Partial Generation and Partial Evaluation: G creates the garbled gates necessary for
FE to enter the previously output intermediate encrypted values into the next garbled
circuit. These garbled gates are called partial input gates. As shown in Figure 4.3 each
garbled circuit is made up of two pieces: the partial input gates and the remainder

of the garbled circuit.

Revealing Incorrect Transformations: Our last goal is to let E inform G that incorrect
values have been detected. Without a way to limit leakage, G could gain information
based on whether or not F informs G that she caught him cheating. This is a selective

failure attack and is not present in our protocol.

4.3 PartialGC Protocol

We start with the CMTB protocol and add cut-and-choose operations from sS13

before introducing the mechanisms needed to save and reuse values. We defer to
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the original papers for full details of the outsourced oblivious transfer [36] and the
generator’s input consistency check [4] sub-protocols that we use as primitives in our
protocol.

Our system operates in the same threat model as CMTB (see Section 4.4): we
are secure against a malicious adversary under the assumption of non-collusion. A

description of the CMTB protocol is available in Appendix A.1.

4.3.1 Preliminaries

There are three participants in the protocol:

Generator — As in standard garbled circuits, the generator is the party that generates
the garbled circuit for the 2P-SFE.

Evaluator — As in standard garbled circuits, the evaluator is the other party in the
2P-SFE; it outsources computation to the cloud.

Cloud — We introduce a third party, the cloud, which executes the garbled circuit

outsourced by the evaluator.

Notation
C; - The ith circuit.

CKey; - Circuit key used for the free XOR optimization [40]. The key is randomly
generated and then used as the difference between the 0 and 1 wire labels for a circuit
C;.

CSeed; - This value is created by the generator’s PRNG and is used to generate a

particular circuit Cj.

POut#;; - The partial output values are the encrypted wire values output from an
SFE computation. These are encrypted garbled circuit values that can be reused in
another garbled circuit computation. # is replaced in our protocol description with

either a 0, 1, or x, signifying whether it represents a 0, 1, or an unknown value (from
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the cloud’s point of view). ¢ denotes the circuit the POut value came from and j

denotes the wire of the POut; circuit.

PIn#,; ; - The partial input values are the re-entered POut values after they have been
obfuscated to remove the circuit key from the previous computation. These values

are input to the partial input gates. #, v, and j, are the same as above.

GIn#;; - The garbled circuit input values are the results of the partial input gates
and are input into the remaining garbled circuit, as shown in Figure 4.3. #, ¢, and j,

are the same as above.
Partial Input Gates - These are garbled gates that take in PIn values and output

GIn values. Their purpose is to transform the PIn values into values that are under

C Key; for the current circuit.

Algorithm 0: PartialComputation

Input : Circuit_File, Bit_Security, Number_of_Circuits, Inputs, Is_First_Execution

Output: Circuit File Output

Cut_and_Choose (is_First_Ezecution)

Eval_Garbled_Input < Evaluator_Input(Fval_Select_Bits, Possible_Eval_Input)
Generator_Input_Check(Gen_Input)

Partial_ Garbled_Input < Partial_Input (Partial Outputiime—1)

Garbled_Output, Partial Output - Circuit_Execution(Garbled_Input (Gen, Eval, Partial))
Circuit_Output (Garbled_Output)

Partial_Output (Partial-Output)

4.3.2 Protocol

Each computation is self-contained; other than what is explicitly described as saved in
the protocol, each value or property is only used for a single part of the computation

(i.e. randomness is different across computations).

Common Inputs: The program circuit file, the bit level security K, the circuit level

security (number of circuits) S, and encryption and commitment functions.
Private Inputs: The evaluator’s input eviInput and generator’s input genInput.
Outputs: The evaluator and generator can both receive garbled circuit outputs.

Phase 1: Preparation and Cut-and-choose
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Algorithm 1: Cut_and_Choose

Input : is_First_Execution
if is_First_Ezecution then
L circuitSelection < rand() // bit-vector of size S

N+ %S // Number of evaluation circuits
//Generator creates his garbled input and circuit seeds for each circuit
for i < 0 to S do
CSeed; < rand()
garbledGenInput; + garble(genInput,rand())
//generator creates or loads keys
if is_First_Ezecution then
checkKey; < rand()
evlKey; < rand()
else
loadKeys();
checkKey; < hash(loadedCheckKey;)
evlKey; < hash(loaded EvlKey;)

// encrypts using unique one-time XOR pads
encSeedlIn; < CSeed; ® evlKey;
encGarbledIn; < garbledGenInput; @ checkKey;

if is_First_Execution then
// generator offers input OR keys for each circuit seed
selectedKeys < OT (circuitSelection, {evlKey, checkKey})

else
L loadSelectedKeys()

for i < 0 to S do
L genSendToEval(hash(checkKey;), hash(evaluationKey;))

for i <~ 0 to S do
L cloudSendToEval(hash(selectedKey;), isCheckCircuit;)

// If all values match, the evaluator learns split, else abort.
for i + 0 to S do

j « isCheckCircuit;

correct < (recievedGen; j == recievedEvl;)

if !correct then

L abort()

Preparation:

The generator creates two seeds for each circuit Cy...Cg_1, CSeed; = {0, 1}5 .

We prepare our circuits such that any output to the generator or evaluator is
output under a one-time pad, encrypted inside of the circuit. That is we augment
all circuits such that out., = oute, © output Keye, and outyen, = out gey, © 0oUt K €Ygen,
where out.,; and out g, is the initial output.

The generator and evaluator’s input is extended to include the corresponding
output Key and a K-bit secret key for a MAC.

Using the same technique as CMTB for input encoding to split the evaluator’s in-

put in K bits, where bit; o®- - -Dbit; k1 = evlInput; for the jth bit of the evaluator’s

22



input. The generator then creates the possible evaluator’s input for each circuit C;.
To create the evaluator’s input, the generator creates a key I Key; = {0,1}% for the
ith circuit, and a set of seeds, eviInputSeeds0; = {0,1}* and evlInputSeedsl; =
{0,1}%, where for 0 <= j < len(eviInput). Two seeds are created for each bit,

representing 0 and 1. The garbled input values are then created:

garbledInput Evl0;; = hash(evlInputSeeds0;, I Key;)

garbledInput Evll;; = hash(evlInputSeedsl;, I Key;)

As with CMTB, the possible evaluator’s inputs are permuted for each different
circuit to prevent the cloud from understanding what the evaluator’s input maps to.
The generator commits to each input value so the cloud will be able to verify he did

not swap values.

Cut-and-choose:

Unlike some other GC protocols we do not commit to the various circuits before
we execute the cut-and-choose. We modify the cut-and-choose mechanism described
in sS13 as we have an extra party involved in the computation. In this cut-and-choose,
the cloud selects which circuits are evaluation circuits and which circuits are check

circuits,

circuitSelection = {0,1}°

where 0 is an evaluation circuit and 1 is a check circuit. N evaluation circuits and
S — N check circuits are selected (like sS13, we use N = %S ). The generator does not
learn the circuit selection.

The generator generates garbled versions of his input and circuit seeds for each

circuit. He encrypts these values using unique one-time XOR pad key for each circuit.
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He also encrypts the evaluator’s possible input. For 0 <i < S,

garbledGenlInput; = garbleInput(genInput)
checkKey; = {0,1}*

eviKey; = {0, 1}

encGarbledIn; = garbledGenInput; ® evl Key;

encSeedIn; = CSeed; ® check K ey;

encInput Evl = garbledInput Evl ® check K ey;

where garbleInput() takes in the input, and produces a vector of {0, 1}¥ bit strings,

one for each bit of the generator’s input for a given C; and garbledInput Evl is the

garbled input

(garbledInput Evl0; || .. .||garbledInput Evi0; jen—1

||garbledInputEvll; g || ... ||garbledInput Evll; je,—1) and len is the length of evlInput.
The cloud and generator perform an oblivious transfer where the generator offers

up decryption keys for his input and decryption keys for the circuit seed and possible

evaluator’s input for each circuit. The cloud can select the key to decrypt the gener-

ator’s input or the key to decrypt the circuit seed and possible evaluator’s input for

a circuit but not both.

selectedKeys = OT (circuitSelection, {evlKey, checkKey})

For each circuit, if the cloud selects the decryption key for the circuit seed and possible
evaluator’s input in the oblivious transfer, then the circuit is used as a check circuit.
If the cloud selects the key for the generator’s input then the circuit is used as an

evaluation circuit.
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The generator sends the encrypted garbled inputs and check circuit information
for all circuits to the cloud. The cloud decrypts the information he can decrypt using
its keys. Both the cloud and generator save the decryption keys so they can be used

in future computations, which use saved values.

The evaluator must also learn the circuit split. The generator sends a hash of each
possible encryption key the cloud could have selected to the evaluator for each circuit

as an ordered pair. For 0 <i < S,

genSend(hash(check Key;), hash(evaluation K ey;))

The cloud sends a hash of the value received to the evaluator for each circuit. The
cloud also sends bits to indicate which circuits were selected as check or evaluation

circuits to the evaluator. For 0 <17 < .S,

cloudSend(hash(selectedK ey;), isCheckClircuit;)

The evaluator compares the hash the cloud sent to one of the hashes the generator

sent, which is selected by the circuit selection sent by the cloud. For 0 <1 < .S,

j = isCheckClircuit;

correct = (receivedGen; ; == received Evl;)

If all values match, the evaluator uses the isCheckCircuit; to learn the split between
check and evaluator circuits. Otherwise, abort.

We only perform the cut-and-choose oblivious transfer for the initial computa-
tion. For any subsequent computations, the generator and evaluator hash the saved
decryption keys and use those hashes as the new encryption and decryption keys. The

circuit split selected by the cloud is saved and stays the same across computations.
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At the conclusion of this step (1) the cloud has all the information to evaluate
the evaluation circuits when they are sent by the generator, i.e. the generator’s input
for each evaluation circuit, (2) the cloud has all the information to validate the check
circuits when the generator sends those over, i.e., each circuit seed and the possible
evaluator’s input for the check circuits (3) the cloud and evaluator know the check

and evaluation circuit split, (4) the generator does not know the circuit split.

Phase 2: Evaluator’s Input and Oblivious Transfer

Algorithm 2: Evaluator_Input

Input : Eval_Select_Bits, Possible_Eval_Input
Output: Eval Garbled_Input
// cloud gets selected input wires // generator offers both possible input wire values for each input wire;
evaluator selects its input
outSeeds = BaseOOT (bits Evl, possibleInputs).
// the generator sends unique IKey values for each circuit to the evaluator
for i <+ 0 to S do
L genSendToEval(IKey;)

// the evaluator sends IKey values for all evaluation circuits to the cloud
for i < 0 to S do
if lisCheckClircuit(i) then

L EvalSendToCloud(IKey;)
// cloud uses this to learn appropriate inputs
for i < 0 to S do
for j < 0 to len(evlInputs) do

if lisCheckCircuit(i) then

L input Evl;; < hash(IKeys;, outSeeds;)

return inputEvl

We use the base outsourced oblivious transfer (OOT) of CMTB. In CMTB’s OOT,
the evaluator enters in the inputs buts and the generator enters in both possible
inputs. The evaluator and generator perform a single OT operation before extending
it, using the Ishai OT extension, to all the input bits. After extending it across
each input bit it is then extend across each garbled circuit using the same technique
described in the algorithm. After the OOT is finished, the cloud has the selected
input wire values, which represent the evaluator’s input.

As with CMTB, which uses the results from a single OOT as seeds to create the
evaluator’s input for all circuits, the cloud in our system also uses seeds from a single

base OT (called “BaseOOT” below) to generate the input for the evaluation circuits.
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The cloud receives the seeds for each input bit selected by the evaluator.

outSeeds = BaseOOT (evlInput, evlInputSeeds).

where outSeeds are the seeds selected by the evaluator’s input.

The generator sends the [ Key; keys (from phase 1) to the evaluator for each

circuit. The evaluator sends the keys for the evaluation circuits to the cloud. The

cloud then uses these keys and the outSeeds to attain the evaluator’s input.

0<i<S, for 0<j<len(evllnputs) where lisCheckCircuit(i),

input Evl;; = hash(IKey;, outSeeds;)

Phase 3: Generator’s Input Consistency Check

For

Algorithm 3: Generator_Input_Check

Input : Generator_Input
// The cloud takes a hash of the generator’s input or each evaluation circuit for ¢ - 0 to S do
if isCheckCircuit(i) then
L L t; < UHF (garbledGenInput;)

//1f a single hash is different then the cloud knows the generator tried to cheat.
correct <— ((t() == tl)&(to == tg)& . &(to == thl))
if Icorrect then

L abort()

We use the input consistency check of sS13. In this check, a universal hash is used

to prove consistency of the generator’s input across each evaluation circuit (attained

in phase 1). Simply put, if any hash is different in any of the evaluation circuits,

we know the generator did not enter consistent input. More formally, a hash of the

generator’s input is taken for each circuit. For 0 < i < .S where lisCheckCircuit(i),

t; = UH F(garbledGenInput;, C;)

The results of these universal hashes are compared. If a single hash is different then
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the cloud knows the generator tried to cheat.

correct = ((tg == t1)&(to == t2)& ... &(tg ==tn_1))

Phase 4: Partial Input Gate Generation, Check, and Evaluation

Algorithm 4: Partial Input

Input : Partial Output
Output: Partial_Garbled_Input
// Generation: the generator creates a partial input gate, which transforms a wire’s saved values, POut0; ;
and POutl; ;, into values that can be used in the current garbled circuit execution, GIn0; ; and GInl; ;.
for i <~ 0 to S do
R; < PRNG.random()
for j < 0 to len(savedWires) do
t0 hash(POutOi,j (&) Rz)
t1 < hash(POutl; j & R;)
PIn0; j, PInl; j < setPPBitGen(t0,t1)
Glnoi,j — TTOZ'J' D PITLO»L'J'
GITLLL'J' «— TTL;,]' D Plnli,j
GenSendToCloud( Permute([T'T0; ;, TT1;,;]), permute_bit_locations )

GenSendToCloud(R;)

// Check: The cloud checks the gates to make sure the generator didn’t cheat
for i < 0 to S do
if isCheckCircuit(i) then
for j < 0 to len(savedWires) do
// the cloud has received the truth table information, TT0; ;, TT1; ;, bit locations from
setPPBitGen, and R;
correct < (generateGateFromInfo() == receivedGateFromGen())
// If any gate does not match, the cloud knows the generator tried to cheat.
if /correct then

L abort();

// Evaluation
for i <~ 0 to S do
if lisCheckCircuit(i) then
for j < 0 to len(savedWires) do
//The cloud, using the previously saved POutxz; ; value, and the location (point and permute)
bit sent by the generator, creates PInz; ;
PlInz; j < setPPBitEval(hash(R; & POutx; ), location)
// Using PInx; ;, the cloud selects the proper truth table entry TTw; ; from either TT0; ; or
TT1;,; to decrypt
// Creates GInx; j to enter into the garbled circuit
GInxi,j — TTCE»L‘J‘ (<) POutIiyj

return Gln;

Generation:

For 0 <i < S, for 0 < j < len(savedWires) the generator creates a partial input
gate, which transforms a wire’s saved values, POut0;; and POutl,;, into values
that can be used in the current garbled circuit execution, GIn0;; and GInl; ;. For

each circuit 0 < i < S, the generator creates a pseudorandom transformation value
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R; = {0,1}¥, to assist with the transformation.

For each set of POut0;; and POutl, ;, the generator XORs each value with R;.

INE
Both results are then hashed, and put through a function to determine the new

permutation bit, as hashing removes the old permutation bit.

t0 = hash(POut0; ; ® R;)
t1 = hash(POutl; ; ® R;)

PIn0; ;, PInl;; = setPPBitGen(t0,t1)

ivjo
This function, setPPBitGen, pseudo-randomly finds a bit that is different between
the two values of the wire and notes that bit to be the permutation bit. setPPBitGen
is seeded from C'Seed;, allowing the cloud to regenerate these values for the check
circuits.

For each PIn0;;, PInl;; pair, a set of values, GIn0;; and GInl;;, are created
under the master key of C; — where C'Key; is the difference between 0 and 1 wire
labels for the circuit. In classic garbled gate style, two truth table values, 770; ; and

TT1, ., are created such that:

0,9

TTOi’j D P]n()z-,j == GInOl-,j

TTli’j D P]nli’j = G]nlm

The truth table, T7T0;; and TT1;;, is permuted so that the permutation bits of
PIn0;; and PInl,; tell the cloud which entry to select. Each partial input gate,
consisting of the permuted T7°0; j, TT'1; j values, the bit location from set PP BitGen,
and each R;, is sent to the cloud.

Check:

For all the check circuits, (i.e., 0 < i < S where isCheckCircuit(i) is true), for 0 <
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J < len(savedWires), the cloud receives the truth table information, 770, ;, 771, ;,
and bit location from set PP BitGen, and proceeds to regenerate the gates based on
the check circuit information. The cloud uses R; (sent by the generator), POut0; ; and
POutl;; (saved during the previous execution), and C'Seed; (recovered during the
cut-and-choose) to generate the partial input gates in the same manner as described
previously. The cloud then compares these gates to those the generator sent. If any

gate does not match, the cloud knows the generator tried to cheat.

Evaluation:

For 0 < i < § where lisCheckCircuit(i), for 0 < j < len(savedWires) the cloud
receives the truth table information, T7T'a; j, T'T'b; ; and bit location from set PP BitGen.
a and b are used to denote the two permuted truth table values. The cloud, using

the previously saved POutz; ; value, creates the PInx; ; value

PInx;; = setPPBitEval(hash(R; ® POutx; ;), location)

where location is the location of the point and permute bit sent by the generator.
Using the point and permute bit of PInx;;, the cloud selects the proper truth table
entry T7'z; ; from either TT'a; ; or T'Tb; ; to decrypt, creates GInx;; and then enters

GInz, ; into the garbled circuit.

GInz,; ; =TTz, ; © POutx; j

Phase 5: Circuit Generation and Evaluation
Circuit Generation:

The generator generates every garbled gate for each circuit and sends them to
the cloud. Since the generator does not know the check and evaluation circuit split,

nothing changes between the generation for check and evaluation circuits. For 0 <
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Algorithm 5: Circuit_Execution

Input : Generator_Input, Evaluator_Input, Partial_Input
Output: Partial_Output, Garbled_Output
// The generator generates each garbled gate and sends it to the cloud. Depending on whether the circuit is
a check or evaluation circuit, the cloud verifies that the gate is correct or evaluates the gate.
for i < 0 to S do
for j < 0 to len(circuit) do
g < genGate(C;, j)
send(g)

// the cloud receives all gates for all circuits, and then checks OR evaluates each circuit
for i <+ 0 to S do
for j < 0 to len(circuit) do
g + recvGate()
if isCheckCircuit(i) then
if ! verifyCorrect(g) then

L abort()

else

L eval(g)

return Partial_Output, Garbled_Output

i < S, For 0 <j < len(circuit),

g = garbleGate(C;, j)

send(qg)

Circuit Fvaluation and Check:

The cloud receives garbled gates for all circuits. For evaluation circuits the cloud
evaluates those garbled gates. For check circuits the cloud generates the correct gate,
based on the circuit seed, and is able to verify it is correct. For 0 < i < S, For

0 < j < len(circuit),

g = recvGate()
if(isCheckCircuit(i)) wverifyCorrect(g)

else eval(g)

If a garbled gate is found not to be correct, the cloud informs the evaluator and

generator of the incorrect gate and safely aborts.
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Phase 6: Output and Output Consistency Check

Algorithm 6: Circuit_Output

Input : Garbled_Output
// a MAC of the output is generated inside the garbled circuit, and both the resulting garbled circuit output
and the MAC are encrypted under a one-time pad.
out EvlComplete = out Evl|| M AC (out Evl)
result = (out EvIM AC == M AC(outEvl))
if Iresult then
L abort() // output check fail

As the final step of the garbled circuit execution, a MAC of the output is generated

inside the garbled circuit, based on a k-bit secret key entered into the function.

out EvlComplete = out Evl||M AC (out Evl)

Both the resulting garbled circuit output and the MAC are encrypted under the
one-time pad (from phase 1 before) leaving the garbled circuit.
To receive output from the garbled circuit for any particular output bit x, a major-

ity vote is taken across all evaluation circuits. For 0 < i < S where lisCheckCircuit(i),

result = majority(COuty,, ... COut;_1 )

Where COut; ; is the output bits, 4 is the ith circuit and j is the jth output bit
from circuit .

The cloud sends the corresponding encrypted (under the one-time pad introduced
in phase 1) output to each party.

The generator and evaluator then decrypt the received ciphertext by using their
one-time pad keys and perform a MAC over real output to verify the cloud did not
modify the output by comparing the generated MAC with the MAC calculated within

the garbled circuit.

result = (out EvlM AC' == M AC(out Evl))
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Both parties, the generator and evaluator, now have their output.

Phase 7: Partial Output

Algorithm 7: Partial Output

Input : Partial_Output

for i <~ 0 to S do

for j < 0 to len(Partial_-Output) do
//The generator saves both possible wire values
GenSave(Partial_Output0; ;)
GenSave(Partial_Outputl; ;)

for i <~ 0 to S do
for j < 0 to len(Partial_Output) do
if isCheckClircuit(i) then
EvlSave(Partial_Output0; ;)
EvlSave(Partial Outputl; ;)
else
| // circuit is evaluation circuit EvlSave(Partial OutputX; ;)

The generator saves both possible wire values for each partial output wire. For
each evaluation circuit the cloud saves the partial output wire value. For check circuits

the cloud saves both possible output values.

4.3.3 Implementation

As with most garbled circuit systems there are two stages to our implementation.
The first stage is a compiler for creating garbled circuits, while the second stage is an
execution system to evaluate the circuits.

We modified the compiler from Kreuter et al. [3] (hereon KSS12 compiler) to allow
for the saving of intermediate wire labels and loading wire labels from a different SFE
computation. By using the KSS12 compiler, we have an added benefit of being able
to compare circuits of almost identical size and functionality between our system and
CMTB, whereas other protocols compare circuits of sometimes vastly different sizes.

For our execution system, we started with the CMTB system and modified it
according to our protocol requirements. Partial GC automatically performs the output
consistency check, and we implemented this check at the circuit level. We became

aware and corrected issues with CMTB relating to too many primitive OT operations
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(S*inputs instead inputs) performed in the outsourced oblivious transfer when using
a high circuit parameter and too low a general security parameter (logs(input) instead

of 80). The fixes reduced the run-time of the OOT, though the exact amount varied.

4.4 Security of PartialGC

In this section, we provide a proof of the Partial GC protocol, showing that our proto-
col preserves the standard security guarantees provided by traditional garbled circuits
- that is, none of the parties learns anything about the private inputs of the other
parties that is not logically implied by the output it receives. That is, we show that
our outsourced 2P-SFE protocol computes a function f(zy,xs) securely (as described
in Definition 1 for n = 2 parties) in the presence of a third party, the cloud, which
does not learn any of the inputs or outputs, and does not collude with any other party.
More detailed defintions are available in Kamara et al. [35] and also in Appendix A 4.

Section 4.4.1 provides a high-level overview of the proof. Section 4.4.2 goes over
models and definitions, followed by security guarantees in Section 4.4.3; a full proof
is provided in Appendix A.4.

Note on Non-collusion. CMTB assumes non-collusion, as quoted below:

“The outsourced two-party SFE protocol securely computes a function f(a,b) in the
following two corruption scenarios: (1)The cloud is malicious and non-cooperative
with respect to the rest of the parties, while all other parties are semi-honest, (2)All

but one party is malicious, while the cloud is semi-honest.”

This is the standard definition of non-collusion used in server-aided works such
as Kamara et al. [35]. Non-collusion does not mean the parties are trusted; it only
means the two parties are not working together in order to cheat. In CMTB, any
individual party that attempts to cheat to gain additional information will still be

caught, but collusion between multiple parties could leak information. For instance,
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the generator could send the cloud the keys to decrypt the circuit and see what the

intermediate values are of the garbled function.

4.4.1 Proof Overview

We know that the protocol described in CMTB allows us to garble individual circuits
and securely outsource their evaluation. Here, we modify certain portions of the
protocol to allow us to transform the output wire values from a previous circuit
execution into input wire values in a new circuit execution. These transformed values,
which can be checked by the evaluator, are created by the generator using circuit
“seeds.”

We also use some aspects of sS13, notably their novel cut-and-choose technique
which ensures that the generator does not learn which circuits are used for evaluation
and which are used for checking - this means that the generator must create the
correct transformation values for all of the cut-and-choose circuits.

Because we assume that the CM'TB garbled circuit scheme can securely garble any
circuit, we can use it individually on the circuit used in the first execution and on the
circuits used in subsequent executions. We focus on the changes made at the end of
the first execution and the beginning of subsequent executions which are introduced
by Partial GC.

The only difference between the initial garbled circuit execution and any other
garbled circuit in CMTB is that the output wires in an initial Partial GC circuit are
stored by the cloud, and are not delivered to the generator or the evaluator. This
prevents them from learning the output wire labels of the initial circuit, but cannot
be less secure than CMTB, since no additional steps are taken here.

Subsequent circuits we wish to garble differ from ordinary CMTB garbled circuits
only by the addition, before the first row of gates, of a set of partial input gates.

These gates don’t change the output along a wire, but differ from normal garbled
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gates in that the two possible labels for each input wire are not chosen randomly by
the generator, but are derived by using the two labels along each output wire of the
initial garbled circuit.

This does not reduce security. In Partial GC, the input labels for partial input gates
have the same property as the labels for ordinary garbled input gates: the generator
knows both labels, but does not know which one corresponds to the evaluator’s input,
and the evaluator knows only the label corresponding to its input, but not the other
label. This is because the evaluator’s input is exactly the output of the initial garbled
circuit, the output labels of which were saved by the evaluator. The evaluator does
not learn the other output label for any of the output gates because the output of
each garbled gate is encrypted. If the evaluator could learn any output labels other
than those which result from an evaluation of the garbled circuit, the original garbled
circuit scheme itself would not be secure.

The generator, which also generated the initial garbled circuit, knows both possible
input labels for all partial evaluation gates, because it has saved both potential output
labels of the initial circuit’s output gates. Because of the outsourced oblivious transfer
used in CMTB, the generator did not know which input labels to use for the initial
garbled circuit, and therefore will not have been able to determine the output labels
for that circuit. Therefore, the generator will likewise not know which input labels

are being used for subsequent garbled circuits.

4.4.2 Model and definitions

Throughout our protocol, we assume that none of the parties involved ever collude
with the cloud. It is known that theoretical limitations exist when considering col-
lusion in secure multiparty computation, and other schemes considering secure com-
putation with multiple parties require similar restrictions on who and how many

parties may collude while preserving security. If an outsourcing protocol is secure
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when both the generator and the cloud are malicious and colluding, this implies a
secure two-party scheme where one party has sub-linear work with respect to the
size of the circuit, which is currently only possible with fully homomorphic encryp-
tion [35]. However, making the assumption that the cloud will not collude with the
participating parties makes outsourcing securely a theoretical possibility.

While it is unlikely that a reputable cloud provider would allow external parties to
illegally control or modify computations within their systems, we cannot assume the
cloud will automatically be semi-honest. For example, our protocol requires a number
of consistency checks to be performed by the cloud that ensure the participants do not
cheat. Without mechanisms to force the cloud to make these checks, a “lazy” cloud
provider could save resources by simply returning that all checks verified without
actually performing them.

The work of Kamara et al. [35] formalizes the idea of a non-colluding cloud based
on the ideal-model /real-model security definitions common in secure multiparty com-
putation. We apply their definitions to our protocol (for the two-party case in partic-
ular) as described below. These definitions are also used for the full proof presented

in Appendix A.4.

Real-model execution. The protocol takes place between two parties (P, P) ex-
ecuting the protocol and a server P3, where each of the executing parties provides
input x;, auxiliary input z;, and random coins r;. The server provides only auxil-
iary input z3 and random coins r3. There exists some subset of independent parties
(A1, .. Ap),m < 3 that are malicious adversaries. Each adversary corrupts one ex-
ecuting party and does not share information with other adversaries. For all hon-
est parties, let OUT; be its output, and for corrupted parties let OUT; be its view
of the protocol execution. The " partial output of a real execution is defined as
REALY(k,z;r) = {OUT; : j € H} UOUT;, where H is the set of honest parties and

r is all random coins of all players.
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Ideal-model execution. In the ideal model, the setup of participants is the same
except that all parties are interacting with a trusted party that evaluates the function.
All parties provide inputs z;, auxiliary input z;, and random coins r;. If a party is
semi-honest, it provides its actual inputs to the trusted party, while if the party is
malicious or non-colluding, it provides arbitrary input values. In the case of the
server Pj, this means simply providing its auxiliary input and random coins, as no
input is provided to the function being evaluated. Once the function is evaluated
by the trusted third party, it returns the result to the parties P, and P», while the
server P53 does not receive the output. If a party aborts early or sends no input, the
trusted party immediately aborts. For all honest parties, let OUT; be its output to
the trusted party, and for corrupted parties let OUT; be some value output by P;.
The *" partial output of an ideal execution in the presence of some set of independent
simulators is defined as IDEAL® (k, x;r) = {OUT; : j € H} UOUT; where H is the

set of honest parties and r is all random coins of all players.

Definition 2. A protocol securely computes a function fif there exists a set of prob-
abilistic polynomial-time (PPT) simulators {Sim;}ic[3) such that for all PPT adver-
saries (Ay, ..., As),x, z, and for all i € [3], we have

{REALY (k,z;7)}pen =~ {IDEALYD (K, z;7) }ren
Where S = (S1,...,53),5; = Sim;(4;), and r is random and uniform.

4.4.3 Security Guarantees

Generator’s Input Consistency Check

During the cut-and-choose, multiple copies of the garbled circuit are constructed
and then either checked or evaluated. A malicious generator may provide inconsis-
tent inputs to different evaluation circuits. For some functions, it is possible to use

inconsistent inputs to extract information of Eval’s input [32].
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Claim 1. The generator in our protocol cannot trick the evaluator into using different

inputs for different evaluation circuits with greater than negligible probability.

We use the generator’s input consistency check from [4], and defer to the proof
provided in that paper, noting that simulators S; and S5 can be constructed such
that any malicious generator (resp. evaluator) cannot tell whether it is working with
S1 (resp. S3) in the ideal model, or with an honest evaluator (resp. generator) in the
real model.

We further note there is no problem with allowing the cloud to perform this check;
for the generator’s inconsistent input to pass the check, the cloud would have to see
the malicious input and ignore it, which would violate the non-collusion assumption.
Validity of Evaluator Inputs

To ensure that the generator cannot learn anything about the evaluator’s inputs
by corrupting the garbled values sent during the OT, we use from CMTB the ran-
dom input encoding technique by Lindell and Pinkas [32]. This technique allows the
evaluator to encode each input bit as the XOR of a set of input bits. Thus, if the
generator corrupts one of those input bits as in a selective failure attack, it reveals
nothing about the evaluator’s true input. Additionally, we use the commitment tech-
nique employed by Kreuter et al. [3] to ensure that the generator cannot swap garbled
input wire labels between the zero and one value. To accomplish this, the generator
commits to the wire labels before the cut and choose. During the cut and choose, the
input labels for the check circuits are opened to ensure that they correspond to only
one value across all circuits. Then, during the OOT, the commitment keys for the
labels that will be evaluated are sent instead of the wire labels themselves. Because
our protocol implements this technique directly from previous work, we do not make
any additional claims of security.

Correctness of Saved Values

Scenarios where either party enters incorrect values in the next computation re-
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duce to previously solved problems in garbled circuits. If the generator does not use
the correct values, then it reduces to the problem of creating an incorrect garbled
circuit. If the evaluator does not use the correct saved values then it reduces to the
problem of the evaluator entering garbage values into the garbled circuit execution;
this would be caught by the output consistency check.
Garbled Circuit Generation

To ensure the evaluated circuits are generated honestly, we require two properties.
First, we limit the generator’s ability to trick the evaluator into evaluating a corrupted
circuit using a cut-and-choose technique similar to a typical, two-party garbled circuit
evaluation. Second, we ensure that a lazy Cloud attempting to conserve system

resources cannot bypass the circuit checking step without being discovered.

Claim 2. Security: Assuming that the hash function UHF (x) (as used in phase 3)
s a one-way, collision-resistant hash and that the commitment scheme used is fully
binding, then the generator has at best a 2% probability of tricking the evaluator
into evaluating a magority of corrupted circuits, where k is the number of circuits

generated.

This claim follows directly from sS13. The probability of the generator finding a
hash collision and thus fooling the evaluator is at most 1/|B|, where B is the range

of the hash function.

Claim 3. Proof-of-work: Assuming the hash function is one-way and collision resis-
tant, the Cloud has a negligible probability of producing a check hash that passes the

seed check without actually generating the check circuit.

As previously stated, before the circuit check begins the generator sends the eval-
uator k hashed circuit values Hy(GC;). Once the evaluation circuits are selected, the
cloud must generate some circuits and hash them into check hashes H;(GCY). If the

cloud attempts to skip the generation of the check circuits, it must generate hash
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values H] = H; for i € Chk. Based on security guarantees of the hash, and the
non-collusion property, the cloud has a negligible probability of correctly generating
these hash values.
Abort on Check Failure

If any of the check circuits fail, the cloud reports the incorrect check circuit to
both the generator and evaluator. At this point, the remaining computation and any
saved values must be abandoned. However, as is standard in SFE, the cloud cannot
abort on an incorrect evaluation circuit even when it is known to be incorrect.
Concatenation of Incorrect Circuits

If the generator produces a single incorrect circuit and the cloud does not abort,
the generator learns that the circuit was used for evaluation, and not as a check
circuit. This leaks no information about the input or output of the computation;
to do that, the generator must corrupt a majority of the evaluation circuits without
modifying a check circuit. An incorrect circuit that goes undetected in one execution
has no effect on subsequent executions as long the total amount of incorrect circuits
is less than the majority of evaluation circuits.
Using Multiple Evaluators

One of the benefits of our outsourcing scheme is that the state is saved at the
generator and cloud allowing the use of different evaluators in each computation.
Previously, it was shown a group of users working with a single server using 2P-SFE
was not secure against malicious adversaries, as a malicious server and last k& parties,
also malicious, could replay their portion of the computation with different inputs
and gain more information than they can with a single computation [56]. However,
this is not a problem in our system as at least one of our servers, either the generator
or cloud, must be semi-honest due to non-collusion, which obviates the attack stated
above.

Threat Model
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As we have many computations involving the same generator and cloud, we have to
extend the threat model for how the parties can act in different computations. There
can be no collusion in each singular computation. However, the malicious party can
change between computations as long as there is no chain of malicious users that link

the generator and cloud — this would break the non-collusion assumption.

4.5 Performance Evaluation

We now demonstrate the efficacy of Partial GC through a comparison with the CMTB
outsourcing system. Apart from the performance gains from using cut-and-choose
from sS13, Partial GC provides other benefits through generating partial input values
after the first execution of a program. On subsequent executions, the partial inputs
act to amortize overall costs of execution and bandwidth.

We demonstrate that the evaluator in the system can be a mobile device outsourc-
ing computation to a more powerful system. We also show that other devices, such
as server-class machines, can act as evaluators, to show the generality of this system.
Our testing environment includes a 64-core server containing 1 TB of RAM, which we
use to model both the Generator and Outsourcing Proxy parties. We run separate
programs for the Generator and Outsourcing Proxy, giving them each 32 threads.
For the evaluator, we use a Samsung Galaxy Nexus phone with a 1.2 GHz dual-core
ARM Cortex-A9 and 1 GB of RAM running Android 4.0, connected to the server
through an 802.11 54 Mbps WiFi in an isolated environment. In our testing we also
use a single server process as the evaluator. For these tests we create that process on
our 64-core server as well. We ran the CMTB implementation for comparison tests

under the same setup.
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4.5.1 Execution Time

The Partial GC system is particularly well suited to complex computations that re-
quire multiple stages and the saving of intermediate state. Previous garbled circuit
execution systems have focused on single-transaction evaluations, such as computing
the “millionaires” problem (i.e., a joint evaluation of which party inputs a greater
value without revealing the values of the inputs) or evaluating an AES circuit.

Our evaluation considers two comparisons: the improvement of our system com-
pared with CMTB without reusing saved values, and comparing our protocol for
saving and reusing values against CM'TB if such reuse was implemented in that pro-
tocol. We also benchmark the overhead for saving and loading values on a per-bit
basis for 256 circuits, a necessary number to achieve a security parameter of 275 in
the malicious model. In all cases, we run 10 iterations of each test and give timing
results with 95% confidence intervals. Other than varying the number of circuits our
system parameters are set for 80-bit security.

The programs used for our evaluation are exemplars of differing input sizes and
differing circuit complexities:

Keyed Database: In this program, one party enters a database and keys to it while
the other party enters a key that indexes into the database, receiving a database entry
for that key. This is an example of a program expressed as a small circuit that has a
very large amount of input.

Matrix Multiplication: Here, both parties enter 32-bit numbers to fill a matrix.
Matrix multiplication is performed before the resulting matrix is output to both
parties. This is an example of a program with a large amount of inputs with a large
circuit.

Edit (Levenstein) Distance: This program finds the distance between two strings
of the same length and returns the difference. This is an example of a program with

a small number of inputs and a medium sized circuit.
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CMTB PartialGC
KeyedDB 64 6,080 20,891
KeyedDB 128 12,160 26,971
KeyedDB 256 24,320 39,131
MatrixMult8x8 3,060,802 | 3,305,113
Edit Distance 128 1,434,888 | 1,464,490
Millionaires 8192 49,153 78,775
LCS Incremental 128 | 4,053,870 87,236
LCS Incremental 256 | 8,077,676 160,322
LCS Incremental 512 | 16,125,291 306,368
LCS Full 128 2,978,854 -
LCS Full 256 13,177,739 -

Table 4.1: Non-XOR gate counts for the various circuits. In the first 6 circuits, the
difference between CMTB and Partial GC gate counts is in the consistency checks.
The explanation for the difference in size between the incremental versions of longest
common substring (LCS) is given in Reusing Values.

Millionaires: In this classic SFE program, both parties enter a value, and the result
is a one-bit output to each party to let them know whether their value is greater or
smaller than that of the other party. This is an example of a small circuit with a
large amount of input.

Gate counts for each of our programs can be found in Table 4.1. The only difference
for the programs described above is the additional of a MAC function in PartialGC.
We discuss the reason for this check in Section 4.5.4.

Table 4.2 shows the results from our experimental tests. In the best case, execution
time was reduced by a factor of 32 over CMTB, from 1200 seconds to 38 seconds, a
96% speedup over CMTB. Ultimately, our results show that our system outperforms
CMTB when the input checks are the bottleneck. This run-time improvement is due
to improvements we added from sS13 and occurs in the keyed database, millionaires,
and matrix multiplications programs. In the other program, edit distance, the input
checks are not the bottleneck and Partial GC does not outperform CMTB. The total
run-time increase for the edit distance problem is due to overhead of using the new

s513 OT cut-and-choose technique which requires sending each gate to the evaluator
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16 Circuits

CMTB Partial GC | Improvement
KeyedDB 64 18 £ 2% 3.5 £ 3% 5.1x
KeyedDB 128 33 £ 2% 4.4 + 8% 7.5x
KeyedDB 256 65 + 2% 4.6 £ 2% 14x
MatrixMult8x8 48 + 4% 46 + 4% 1.0x
Edit Distance 128 | 21 £ 6% 22 + 3% 0.95x
Millionaires 8192 35 + 3% 7.3 £ 6% 4.8x

64 Circuits

CMTB Partial GC | Improvement
KeyedDB 64 72 + 2% 8.3 £ 5% 8.7x
KeyedDB 128 140 £ 2% | 9.5 + 4% 15x
KeyedDB 256 270 + 1% 12 £ 6% 23x
MatrixMult8x8 110 £ 8% | 100 £ 7% 1.1x
Edit Distance 128 | 47 £ 7% 50 + 9% 0.94x
Millionaires 8192 140 + 2% 20 + 2% 7.0x

256 Circuits

CMTB Partial GC | Improvement
KeyedDB 64 290 + 2% 26 + 2% 11x
KeyedDB 128 580 &+ 2% 31 +£ 3% 19x
KeyedDB 256 1200 + 3% | 38 + 5% 32x
MatrixMult8x8 | 400 + 10% | 370 + 5% 1.1x
Edit Distance 128 | 120 + 9% | 180 £ 6% 0.67x
Millionaires 8192 | 580 + 1% 70 + 2% 8.3x

Reusing Values
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expand upon this use case later in this section.

Table 4.2: Timing results comparing PartialGC to CMTB without saving any values.
All times in seconds.

for check circuits and evaluation circuits. This is discussed further in Section 4.5.4.
The typical use case we imagine for our system, however, is more like the keyed

database program, which has a large amount of inputs and a very small circuit. We

For a test of our system’s wire saving capabilities we tested a dynamic program-
ming problem, longest common substring, in both Partial GC and CMTB. This pro-
gram determines the length of the longest common substring between two strings.
Rather than use a single computation for the solution, our version incrementally adds

a single bit of input to both strings each time the computation is run and outputs
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Figure 4.4: Results from testing our largest common substring (LCS) programs for
Partial GC and CMTB. This shows when changing a single input value is more effi-
cient under Partial GC than either CMTB program. CMTB crashed on running LCS
Incremental of size 512 due to memory requirements. We were unable to complete
the compilation of CMTB Full of size 512.

the results each time to the evaluator. We believe this is a realistic comparison to a
real-world application that incrementally adds data during each computation where
it is faster to save the intermediate state and add to it after seeing an intermediate
result than rerun the entire computation many times after seeing the result.

For our testing, PartialGC uses our technique to reuse wire values. In CMTB,
we save each desired internal bit under a one-time pad and re-enter them into the
next computation, as well as the information needed to decrypt the ciphertext. We
use a MAC (the AES circuit of KSS12) to verify that the party saving the output
bits did not modify them. We also use AES to generate a one-time pad inside the
garbled circuit. We use AES as this is the only cryptographically secure function used
in CMTB. Both parties enter private keys to the MAC functions. This program is
labeled CMTB-Inc, for CMTB incremental. The size of this program represents the
size of the total strings. We also created a circuit that computes the complete longest

common substring in one computation labeled CMTB-Full.

46



The resulting size of the Partial GC and CMTB circuits are shown in Table 4.1, and
the results are shown in Figure 4.4. This result shows that saving and reusing values
in Partial GC is more efficient than completely rerunning the computation. The input
consistency check adds considerably to the memory use on the phone for CMTB-Inc
and in the case of input bit 512, the CMTB-Inc program will not complete. In the
case of the 512-bit CMTB-Full, the program would not complete compilation in over
42 hours. In our CMTB-Inc program, we assume the cloud saves the output bits so
that multiple phones can have a shared private key.

Note that the growth of CMTB-Inc and CMTB-Full are different. CMTB-Full
grows at a larger rate (4x for each 2x factor increase) than CMTB-Inc (2x for each
2x factor increase), implying that although at first it seems more efficient to rerun
the program if small changes are desired in the input, eventually this will not be the
case. Even with a more efficient AES function, CMTB-Inc would not be faster as the
bottleneck is the input, not the size of the circuit.

The overhead of saving and reusing values is discussed further in Appendix A.2.
Outsourcing to a Server Process

Partial GC can be used in other scenarios than just outsourcing to a mobile device.
It can outsource garbled circuit evaluation from a single server process and retain
performance benefits over a single server process of CMTB. For this experiment the
outsourcing party has a single thread. Table 4.3 displays these results and shows
that in the KeyedDB 256 program, Partial GC has a 92% speedup over CMTB. As
with the outsourced mobile case, keyed database problems perform particularly well in
Partial GC. Because the computationally-intensive input consistency check is a greater
bottleneck on mobile devices than servers, these improvements for most programs are
less dramatic. In particular, both edit distance and matrix multiplication programs
benefit from higher computational power and their bottlenecks on a server are no

longer input consistency; as a result, they execute faster in CMTB than in Partial GC.
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16 Circuits
CMTB PartialGC | Improvement
KeyedDB 64 6.6 &+ 4% 1.4+ 1% 4.7x
KeyedDB 128 13 + 3% 1.8 £ 2% 7.2x
KeyedDB 256 25 + 4% 2.5+ 1% 10x
MatrixMult8x8 42 + 3% 41 + 4% 1.0x
Edit Distance 128 | 18 £ 3% 18 4+ 3% 1.0x
Millionaires 8192 13 £ 4% 3.2+ 1% 4.1x
64 Circuits
CMTB PartialGC | Improvement
KeyedDB 64 27 + 4% 51+ 2% 5.3x
KeyedDB 128 54 + 4% 58 £ 2% 9.3x
KeyedDB 256 110 £ ™% 7.3 + 2% 15x
MatrixMult8x8 94 + 4% 79 + 3% 1.2x
Edit Distance 128 | 40 £ 8% 40 + 6% 1.0x
Millionaires 8192 52 + 3% 8.5 £ 2% 6.1x
256 Circuits
CMTB PartialGC | Improvement
KeyedDB 64 110 +£ 2% | 24.9 + 0.3% 4.4x
KeyedDB 128 220 + 5% | 27.9 £ 0.5% 7.9x
KeyedDB 256 420 + 4% | 33.5 + 0.6% 13x
MatrixMult8x8 | 300 + 10% | 310 + 1% 0.97x
Edit Distance 128 | 120 + 9% 150 + 3% 0.8x
Millionaires 8192 | 220 + 5% | 38.4 £ 0.9% 5.7x

Table 4.3: Timing results from outsourcing the garbled circuit evaluation from a
single server process. Results in seconds.

4.5.2 Bandwidth

Since the main reason for outsourcing a computation is to save on resources, we give
results showing a decrease in the evaluator’s bandwidth. Bandwidth is counted by
making the evaluator to count the number of bytes Partial GC sends and receives to
either server. Our best result gives a 98% reduction in bandwidth (see Table 4.4).
For the edit distance, the extra bandwidth used in the outsourced oblivious transfer
for all circuits, instead of only the evaluation circuits, exceeds any benefit we would

otherwise have received.
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256 Circuits

CMTB | PartialGC
KeyedDB 64 64992308 3590416 18x
KeyedDB 128 129744948 3590416 36x
KeyedDB 256 259250228 3590416 72x
MatrixMult8x8 71238860 | 35027980 | 2.0x
Edit Distance 128 2615651 4108045 | 0.64x
Millionaires 8192 | 155377267 | 67071757 | 2.3x

Table 4.4: Bandwidth comparison of CMTB and Partial GC. Bandwidth counted by
instrumenting Partial GC to count the bytes it was sending and receiving and then
adding them together. Results in bytes.

4.5.3 Secure Friend Finder

Many privacy-preserving applications can benefit from using Partial GC to cache val-
ues for state. As a case study, we developed a privacy-preserving friend finder appli-
cation, where users can locate nearby friends without any user divulging their exact
location. In this application, many different mobile phone clients use a consistent gen-
erator (a server application) and outsource computation to a cloud. The generator
must be the same for all computations; the cloud must be the same for each compu-
tation. The cloud and generator are two different parties. After each computation,
the map is updated when Partial GC saves the current state of the map as wire labels.
Without Partial GC outsourcing values to the cloud, the wire labels would have to be
transferred directly between mobile devices, making a multi-user application difficult
or impossible.

We define three privacy-preserving operations that comprise the application’s
functionality:
MapStart - The three parties (generator, evaluator, cloud) create a “blank” map
region, where all locations in the map are blank and remain that way until some
mobile party sets a location to his or her ID.

MapSet - The mobile party sets a single map cell to a new value. This program
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Figure 4.5: Run time comparison of our map programs with two different map sizes.

takes in partial values from the generator and cloud and outputs a location selected
by the mobile party.

MapGet - The mobile party retrieves the contents of a single map cell. This program
retrieves partial values from the generator and cloud and outputs any ID set for that
cell to the mobile.

In the application, each user using the Secure Friend Finder has a unique ID that
represents them on the map. We divide the map into “cells”, where each cell is a
set amount of area. When the user presses “Set New Location,” the program will
first look to determine if that cell is occupied. If the cell is occupied, the user is
informed he is near a friend. Otherwise the cell is updated to contain his user ID and
remove his ID from his previous location. We assume a maximum of 255 friends in
our application since each cell in the map is 8 bits.

Figure 4.5 shows the performance of these programs in the malicious model with
a 2780 security parameter (evaluated over 256 circuits). We consider map regions
containing both 256 and 2048 cells. For maps of 256 cells, each operation takes about

30 seconds.! As there are three operations for each “Set New Location” event, the

1. Our 64-cell map, as seen in figure 4.5, also takes about 30 seconds for each operation.
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Figure 4.6: Screenshots from our application. (a) shows the map with radio buttons
a user can select to indicate position. (b) show the result after “set new position”
is pressed when a user is present. The application is set to use 64 different map
locations. Map image from Google Maps.

total execution time is about 90 seconds, while execution time for 2048 cells is about
3 minutes. The bottleneck of the 64 and 256 cell maps is the outsourced oblivious
transfer, which is not affected by the number of cells in the map. The vastly larger
circuit associated with the 2048-cell map makes getting and setting values slower
operations, but these results show such an application is practical for many scenarios.
Example - As an example, two friends initiate a friend finder computation using
Amazon as the cloud and Facebook as the generator. The first friend goes out for a
coffee at a café. The second friend, riding his bike, gets a message that his friend is
nearby and looks for a few minutes and finds him in the café. Using this application
prevents either Amazon or Facebook from knowing either user’s location while they

are able to learn whether they are nearby.
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4.5.4 Discussion

Analysis of improvements

We analyzed our results and found the improvements came from three places:
the improved sS13 consistency check, the saving and reusing of values, and the fixed
oblivious transfer. In the case of the sS13 consistency check, there are two reasons
for the improvement: first, there is less network traffic, and second, it uses symmetric
key operations instead of exponentiations. In the case of saving and reusing values,
we save time with the faster input consistency check and by not requiring a user to
recompute a circuit multiple times. Lastly, we reduced the runtime and bandwidth
by fixing parts of the OOT. The previous outsourced oblivious transfer performed
the primitive OT S (S being the number of circuits) times instead of a single time,
which turn forced many extra exponentiations. Each amount of improvement varies
depending upon the circuit.
Output check

Although the garbled circuit is larger for our output check, this check performs
less cryptographic operations for the outsourcing party, as the evaluator only has to
perform a MAC on the output of the garbled circuit. We use this check to demonstrate
using a MAC can be an efficient output check for a low power device when the
computational power is not equivalent across all parties.
Commit Cut-and-Choose vs OT Cut-and-Choose

Our results unexpectedly showed that the sS13 OT cut-and-choose used in Par-
tialGC is actually slower than the KSS12 commit cut-and-choose used in CMTB in
our experimental setup. Theoretically, sS13, which requires fewer cryptographic op-
erations, as it generates the garbled circuit only once, should be the faster protocol.
The difference between the two cut-and-choose protocols is the network usage — in-
stead of £ of the circuits (CMTB), all the circuits must be transmitted in s513. The

sS13 cut-and-choose is required in our protocol so that the cloud can check that the
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generator creates the correct gates.

4.5.5 Implementation Optimizations

We proceeded to optimize our system in light of the slowdown we saw when compared
to CMTB for circuits with large amounts of gates. We made the following changes:
(1) turn AES-NI on, as it was not turned on by default in CMTB (or [3], which CMTB
is based on), (2) hand-optimize the garbled gate generation and evaluation to remove
excess memory operations, (3) remove the need for network 1/0 for XOR gates from
the underlying implementation (previously, 4 bytes were spuriously transmitted for
each XOR gate), (4) batch process gates to reduce the overhead of networking for
each gate, and (5) remove unnecessary hash calls that existed in PartialGC as an

artifact of being built on CMTB.

4.5.6 Corrections of Underlying Implementation

We made two corrections to the implementation of Partial GC that are artifacts of
the underlying implementations. The first error was from KSS and while the other
was from CMTB. We performed the following changes: (1) further correct the OT
phase of CMTB and (2) add a missing input encoding phase that was supposed to
exist in KSS. The first error was straightforward: rather than performing a single set
of OTs and then extending it to all circuits, after the single set of OTs in CMTB,
a matrix transformation was performed for each circuit (instead of a single matrix
transformation). We removed this error and added the necessary correction, i.e. after
the single set of OTs were performed, the results from the OTs were extended in the
same manner as in our protocol description. To correct the second error, we added
the missing input encoding step for the evaluator’s input. Note that KSS and all
subsequent systems built from it do not have this input encoding. Without the input

encoding, a selective failure attack can be performed easily by the generator in order
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16 Circuits
New Original | Improvement
KeyedDB 64 4+10% | 3.5+ 3% 0.92x
KeyedDB 128 3.8+ 10% | 4.4 £ 8% 1.1x
KeyedDB 256 40+ 4% | 4.6 £ 2% 1.1x
MatrixMult8x8 | 21 + 2% | 46 + 4% 2.2x
EditDist 128 78+ 4% | 22 £ 3% 2.8x
Millionaires 8192 | 24 &+ 5% | 7.3 £ 6% 0.30x
64 Circuits
New Original | Improvement
KeyedDB 64 4.4+ 5% | 83+ 5% 1.9x
KeyedDB 128 45+ 8% | 9.5+ 4% 2.1x
KeyedDB 256 4.7+ 9% | 12 £ 6% 2.7x
MatrixMult8x8 29 + 4% | 100 £ ™% 3.5x
EditDist 128 10 + 4% 50 + 9% 4.8x
Millionaires 8192 | 30 + 3% | 20 + 2% 0.68x
256 Circuits
New Original | Improvement
KeyedDB 64 76 £ 6% | 26 £ 2% 3.4x
KeyedDB 128 81+ 4% | 31 +3% 3.8x
KeyedDB 256 9.3+ 4% | 38 + 5% 4.0x
MatrixMult8x8 69 + 2% | 370 £ 5% 5.4x
EditDist 128 21 £ 2% | 180 £ 6% 8.9x
Millionaires 8192 | 78 + 3% 70 + 2% 0.89x

Table 4.5: Comparing the original Partial GC and the improved version of Partial GC.
Results in seconds.

to gain information about a single bit of the evaluator‘s input.

4.5.7 Results from Optimal Implementation

In Table 4.5 we present results from the corrected and more optimal implementation
of Partial GC. We observe the following: (1) the program that has a large evaluator’s
input and very little gates is slightly slower due to the fixed OT error and added input
encoding (Millionaires). (2) The program with a large circuit size when compared with
the input sizes of both the generator and evaluator has improved runtime performance
(Edit distance). (3) The program we tested that has high input and also has a high

gate count is improved (Matrix Mult). (4) The program that relies mostly on the
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generator’s input size with a low amount of gates is largely unaffected by the OT
change or the added input encoding but is still improved by the optimizations to the

garbled gate runtime (Keyed DB).

4.5.8 SFE Engineering Insights

Given our experience from building on other frameworks, we provide our insights:

1. We found that if the running time is not as expected then there is most likely
something incorrect in the implementation, rather than an error in the application
code. The latter usually causes a complete failure in our experience. For instance,
we found that if the average time to evaluate garbled gates is greater than the
average time to generate the garbled gates there is most likely a problem in the
garbled circuit evaluation phase.

2. Although comparing the time of garbling and evaluating can be interesting in its
own right, evaluating the total time of full garbled circuit garbling and evaluation
(including network overhead) is also insightful as networking and related operations
can be the bottleneck in a practical system. This includes network usage, the effects
of a cut-and-choose protocol, and the time it takes to get the next gate from the
interpreter or circuit file.

3. When using frameworks or compilers written by other people, check to verify each
protocol step exists in the implementation. We found that a lot of systems skip
vital parts of their (stated) protocols.

4. Implementing checks at the circuit layer that are exposed to an end-user does not
seem to be worth the time saved by not encoding them directly into the garbled
circuit. This comes from our experience with our output consistency check, which
was difficult to create correctly for each test program.

5. Ensure that all the features of a developed compiler and execution system are thor-

oughly unit tested.
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4.6 Related Work

The creation of circuits for SFE in a fast and efficient manner is one of the central
problems in the field. Previous compilers, from Fairplay [5] to KSS12, were based on
the concept of creating a complete circuit and then optimizing it. PAL [6] improved
such systems by using a simple template circuit, reducing memory usage by orders
of magnitude. PCF [8] built from this and used a more advanced representation to
reduce the disk space used. We use similar techniques to produce circuits with sizes
comparable to that of Kreuter et al.. Our system also improves their runtime system
to produce one that is significantly faster and uses much less bandwidth. Of course,
none of these systems provides the ability to save state across computations.

Other methods for performing MPC involve homomorphic encryption [43, 44],
secret sharing [45], and ordered binary decision diagrams [46]. A general privacy-
preserving computation protocol that uses homomorphic encryption and was designed
specifically for mobile devices can be found in [39]. There are also custom proto-
cols designed for particular privacy-preserving computations; for example, Kamara et
al. [47] showed how to scale server-aided Private Set Intersection to billion-element
sets with a custom protocol.

Previous reusable garbled-circuit schemes include that of Brandao [52], which uses
homomorphic encryption, Gentry et al. [51], which uses attribute-based functional
encryption, and Goldwasser et al. [50], which introduces a succinct functional en-
cryption scheme. These previous works are purely theoretical; none of them provides
experimental performance analysis. There is also recent theoretical work on reusing
encrypted garbled-circuit values [53,54,55] in the ORAM model; it uses a variety of
techniques, including garbled circuits and identity-based encryption, to execute the
underlying low-level operations (program state, read /write queries, etc.). Our scheme
for reusing encrypted values is based on completely different techniques; it enables

us to do new kinds of computations, thus expanding the set of things that can be
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computed using garbled circuits.

The Quid-Pro-Quo-tocols system [57] allows fast execution with a single bit of
leakage. The garbled circuit is executed twice, with the parties switching roles in the
latter execution, then running a secure protocol to ensure that the output from both
executions are equivalent; if this fails, a single bit may be leaked due to the selective

failure attack.
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Chapter 5

Frigate

5.1 Introduction

The creation of the Fairplay compiler [5] ignited the research community. In the time
since, SFE compilers have improved performance by multiple orders of magnitude,
reduced bandwidth overhead, and allowed for the generation and execution of circuits
composed of tens of billions of gates [3,6,7,8]. These efforts have brought SFE from
the realm of mere theoretical interest to the verge of practicality; as an indicator of
this fundamental change, DARPA is spending $60 million to support the transition
of technologies such as SFE to practice [9].

Despite these improvements, current SFE compilers fail in two critical areas: they
are unstable and incomplete compared to industry-standard compilers. Specifically,
as we demonstrate, these compilers often break, and when they do work, can produce
executables which generate incorrect results. It might also be possible for incorrect
results to be verified as correct by the SFE protocol under such circumstances.

In this chapter, we present Frigate, an SFE compiler developed using design and
testing methods from the compiler community. We name our compiler after the naval

vessel, known for its speed, maneuverability, and adaptability for varying missions.
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Our compiler is modular, extensible, and can support a variety of applications. It
is also significantly faster than anything else currently available. We hope that the
frigate’s use as a convoy-escort ship will parallel the use of our compiler as a facilitator
of future research into SFE systems. In this chapter, we:

e Demonstrate systemic problems in the most popular SFE compilers: We
apply differential testing on five popular and available SFE compilers, and demon-
strate a range of stability and output correctness problems in each of them.

e Design and implement Frigate: Our primary goal in creating Frigate is correct-
ness, which we attempt to achieve through the use of principled and simple design,
careful type checking and comprehensive validation testing. We use lessons learned
from our study to develop principles for others to follow.

e Design Frigate to be extensible: Our secondary goal was to provide a com-
piler that can be extended to provide useful and innovative functionality. After we
completed the compiler we added signed and unsigned types, typed constants, and
three special operators.

e Dramatically improve compiler and interpreter performance: The result
of our efforts is not simply correctness; rather, because of our simple design, we
demonstrate markedly reduced compilation time (by as much as 447x compared
with previous circuit compilers), interpretation time (by over 786x), and execution
time (up to 21x) when compared to currently available systems. As such, our
results demonstrate that principled design can create correct SFE compilers while
still allowing high performance.

Although these SFE compilers may be considered by some to be “research code,”
they are being used extensively within the community and by others as the basis for
developing secure applications and improved primitives. The corpus of compilers we
test represent a large gamut, including the most recently published solutions. In all

cases, we find issues with correctness or efficiency. The implications are considerable,
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as the unreliable nature of many of these compilers makes testing new techniques
extremely difficult. It is imperative that the community learns from these failures
in design and implementation for the field to further advance. A reliable compiler is
critical to this goal.

The remainder of this chapter is organized as follows: Section 5.2 provides a back-
ground in compilers for garbled circuits; Section 5.3 introduces techniques used to val-
idate correctness; Section 5.4 describes our analysis of existing compilers; Section 5.5
defines principles for compiler design; Section 5.6 presents the design of Frigate; Sec-
tion 5.7 presents our performance tests comparing Frigate to five widely-used SFE
compilers; Section 5.8 discusses related work.

The material in this chapter appeared in preliminary form in [21].

5.2 Background

Since SFE was originally conceived, a variety of different techniques for solving SFE
have been developed. Recent work has demonstrated that each technique can out-
perform the others in different setups (e.g., number of participants, available network
connection, type of function being evaluated) [23,58,59,60]. In this chapter, we fo-
cus specifically on compilers for garbled circuits. Garbled-circuit protocols have been
shown to perform optimally for two-party computation of functions that can be ef-
ficiently represented as Boolean circuits. While our experimental analysis examines
the performance of the compiler in the context of garbled circuits, it is critical to note
that this compiler can be used with any SFE technique that represents functions as

Boolean circuits.
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5.2.1 Circuit Compilers

Execution systems for garbled-circuit secure computation require functions repre-
sented as Boolean circuits. Due to this requirement, there have been several compilers
created to generate circuit representations of common functions used to test this type
of computation. These compilers take higher-level languages as input and transform
them into a circuit representation. Writing the circuit files without using a compiler
is tedious, inefficient, and will most likely result in incorrect circuits as they can have
billions of gates.

First, it is possible for the generator to garble a circuit that does not evaluate
the functionality agreed upon by both parties. To prevent this attack, the cut-&-
choose construction requires that the generator garbled many copies of the circuit to
be evaluated. Some fraction of these circuits are then “opened” and checked by the
evaluator to ensure that they were garbled properly. The circuits that are not opened
are then evaluated, and the output of the computation is set to the value output by
a majority of the evaluated circuits.

Second, given multiple evaluation circuits from the cut-&-choose, the generator
can provide inconsistent input values across the different circuits. Several techniques
exist to ensure input consistency, including the claw-free construction [10] or using
auxiliary circuits to hash and compare the generator’s input values [4]. These checks
will alert the evaluator and terminate the protocol if the generator is caught cheating.

Third, the generator may provide incorrect wire labels to the evaluator during the
OT protocol. This attack, known as a selective failure attack, can cause the circuit
to fail evaluation for certain input values, leaking information about the evaluator’s
input to the generator. To prevent this attack, a committing oblivious transfer can
be used to allow the evaluator to check the correctness of her input wire labels. Other
techniques for preventing this attack include encoding the evaluator’s input in such a

way that a selective failure is no longer tied to the evaluator’s actual input value [4,32].
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Finally, the evaluator may tamper with the output of the garbled circuit after she
learns the real bit mappings from the generator. A number of output commitment
protocols have been developed to prevent this attack, allowing the circuit to privately

and securely output separate output values for each participant in the protocol.

5.3 Compiler Correctness

One of our main motivations for developing a principled compiler was the varying
and unstable state of the existing research compiler space. Garbled circuit research
has made significant advances in the past several years, which is largely due to a set
of circuit compilers that have been commonly used to generate test applications for a
significant number of protocols. Given our years of experience, we know the reliability
of these results is suspect in many cases due to common errors we have found in these
compilers. To facilitate continued advances in this research space, a foundational
compiler with reliable performance is a critical tool. Without it, researchers will be
forced to either use existing compilers, which we show are unreliable, or develop their
own compilers, which is time-consuming and slows research progress. To demonstrate
the need for a new and correct compiler that is openly available for the community;,
we examined correctness issues with the most popular and powerful compilers used
in garbled circuit research.

We define the correctness of a complier implementation using two criteria: (1) any
valid program in the language can be successfully compiled, and (2) the compiler cre-
ates the correct output program based on the input file. There are two methods used
to demonstrate compiler correctness: formal methods for validation and verification,

and validation by testing.
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5.3.1 Formal Verification

The concept of a verifying compiler was identified as a grand challenge by Tony
Hoare in 2003 [61] due to the significant complexity in design and implementation.
Since that time, the primary example of a formally verified compiler has been Comp-
Cert [62]. The development and rigorous proof of each formalized component of the
compiler was an immense undertaking. However, despite the amount of time and
formal verification that went into CompCert, it was demonstrated that the formal
verification used in CompCert was only able to ensure correctness in select compo-
nents of the compiler. When tested with Csmith [63], there were still errors found
that demonstrated the limitations of formal verification. In addition, formal verifica-
tion of compiler transformations and optimizations is still very much an open research
area [64,65]. Techniques such as translation validation [66,67,68] focus on the formal
validation of a compiler’s correctness through the use of static analysis techniques to
ensure that two programs have the same semantics, and are designed to attempt to
deal with the reality of legacy compilers. They have their limitations as well, partic-
ularly within the context of secure multi-party computation compilers that have not
adopted any particular standard for intermediate representations. As a result, the
semantic model must be adapted for every compiler implementation, and any changes
in the compiler require changes to the model.

Based on these limitations and the impracticality of applying formal verification,
we instead apply validation techniques that are the standard method for ensuring the

correctness of compilers.

5.3.2 Validation By Testing

Validation by testing attempts to demonstrate the correctness of a compiler through
extensive unit testing. This, we note, is by far the most common technique used

in practice to ensure compiler correctness. While testing for correctness can miss
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some errors in compiling specific cases, it provides a practical level of assurance that
is sufficient for the vast majority of applications. Validation tests are designed by
examining how to rigorously test the largest possible number of programs a compiler
can generate.

There are many existing validation tests [69, 70, 71] and test suites [72,73]. The
validation tests used by ARM [73] and SuperTest [72] provide a description of the
procedures they use to validate the vast majority of possible program cases. However,
these suites are language-specific, often developed to find errors in popular tools such
as gcc and LLVM. To date, there have not been existing validation tools designed
to examine secure computation compilers. As a result, we developed our own set of
validation tests based on the techniques used by these tools. Our tests, like the test
suites of ARM and SuperTest, explore the possible statements and effects of those
statements.

In our case, hand written tests are preferred over automatically generated tests
due to us being able to examine the compiler source directly. This allows us to
examine possible code paths and be more systematic with our tests than a random
fuzzer. In addition, because there are no SMC compiler standards, a different fuzz
generator would have to be created for each compiler input language.

Our tests follow the concept of testing the state space of the compiler starting with
broad examination of operators and expressions, then refining the tests to consider
common special cases. Our tests proceed through five phases:

1. Attempt all possible grammar (syntax) rules and print out the results. This shows
that the compiler reads in programs correctly and demonstrates the internal pro-
gram state is correct.

2. Beginning from the simplest operation to validate correctness (i.e., outputting a
constant) test each operator in the language and each control structure to ensure it

outputs the correct result.
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Test the different possible primitive types and declarations.

Test each operator as to whether it creates the correct output circuit.

Test each control structure by itself.

Test function calls, parameters, and return statements. Verify that parameters

can be used inside of their functions and that return statements work correctly.

Also perform tests for where different types are used as input parameters and

return values.

3. Validate all the different paths for how data can be input into operations. Demon-
strate that different control structures work correctly together. Or, as put by Su-
perTest [72], “Systematically exploring combinations of operators, types, storage
classes and constant values.”

(a) Test if the operator deals correctly with the possible types of data that can be

input as an operand.

(b) Test different types of control structures nested within each other.

(c) Test each operator under if conditionals with emphasis on operators that change
variable values such as assignment (=), increment (++), and decrement (--).

4. Test edge cases in programs.

(a) Verify that empty functions do not crash on definition or call.

(b) Test array access and how arrays (and like operators) deal with edge cases, i.e.,

out of bounds, minimum, and maximum values.
(c¢) Ensure known weaknesses in past compilers are tested to determine whether these
vulnerabilities appear.

5. Perform testing to verify each previously found error was not re-added to the final
implementation.

At the conclusion of these tests we have tested (1) the correctness of each mini-
circuit an operator uses, (2) the ways data can come into each operator, (3) the base

and nested rule for each construct (if statements, for loops, array declarations), (4)
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various edge cases. This set of tests checks the operators, control flow structures,
types, and covers most, if not almost all, of the uses of the operators, control flow

structures, and types.

5.4 Survey of Existing Compilers

Using the test procedures described in the previous section, we set out to quantify the
common problems in existing secure computation compilers. With each compiler, we
found problems that would prevent the compiler from working correctly or corrupt
test applications.

While the compilers we compare ourselves to are research artifacts, such systems
are widely used by the community to test and validate algorithms. Having bugs and
unpredictable behavior stunts the advancement of the field.

Upon acceptance, we informed the authors of each of these compilers about the
issues we found; thus, many of the errors have been corrected in the interim.

While we do outperform many systems, the thrust of our compiler not mere perfor-
mance. We compare ourselves to a number of well-known and widely tested systems
and show that we are less prone to errors and produce good results. We ensured that
our system was similar to current programming languages' and thus easy for new
developers to use, and added descriptive error messages. All of this was designed to

improve the way the community wrote SMC code and reduce complexity.

5.4.1 Comparison Compiler Information

Fairplay: Fairplay [5] was the first compiler to be used for practical research in secure
computation. Fairplay’s input format is SFDL, a custom hardware description, and

the output is SHDL (simply a gate list in ASCII). We selected this compiler since it

1. We explain why we do not use a current programming language in Section 5.6.1.
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initiated extensive practical research. We note some errors in the system, but we do
not include it in our speed or other tests, since Fairplay is much older and slower, and
running many of the test programs we use for the other systems is almost impossible
because of memory usage; it would not be fair to compare it against current, state of
the art compilers.

PAL: We selected PAL [6] as it was the first compiler designed for low-memory devices
using an efficient intermediate representation. It also takes in Fairplay’s [5] SFDL,
a custom hardware description, and outputs SHDL, a gate list. It is dramatically
more memory efficient than Fairplay and is able to compile much larger programs,
but lacks optimizations used in recent work.

KSS: We examined the compiler from Kreuter et al. [3], hereon referred to as KSS.
This compiler takes a hardware specific language as input and outputs a gate list in
binary format. We chose KSS since it forms the basis for multiple recently-published
works.

CBMC: The CBMC-GC compiler [7] (hereon CBMC) used a bounded model checker
to compile a circuit program. This compiler takes a C file as input and outputs a
condensed gate list (in ASCII). Because CBMC can compile programs written in
ANSI C, it is commonly used in other garbled circuit research.

PCF': The PCF compiler [8], was created in order to have a condensed output format
while being efficient. It takes in LCC bytecode as an input language and transforms it
into a PCF file (ASCII). This file describes a circuit in a condensed format; a circuit
interpreter is used to get each gate in turn. We selected PCF since it has been used
to generated some of the largest circuits.

Obliv-C: Obliv-C [74] provides an extension that allows users to compile Obliv-C
programs using a C compiler. These programs are then run in the normal C program
fashion, i.e., the default output is a.out. This has the advantage of being able to use

the —O3 optimization flag.
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Figure 5.1: Summary of the correctness results.

ODbliVM: ObliVM ([75] compiles the input language into a Java file and then compiles
the Java file using the javac Java compiler. The class file is then run using Java. By

using Java, ObliVM is able to take advantage of the Java virtual machine optimizer.

5.4.2 Analyzing Compiler Correctness

We performed an analysis of the compilers to determine whether they work as ex-
pected, which we summarize in Figure 5.1. We do not attempt to find edge case
errors that may only affect a minutiae of programs. Instead, we focus on testing the
main operations and control structures in the input language that most users would
perform.

We separate our analysis of previous compilers into two areas: errors and inef-
ficiencies. We only note an error if the original program was valid; if the compiler
crashes due to an incorrect program we do not consider it to be a compiler error.
However, we found that most of the compilers lacked helpful error messages when
an invalid program was provided as input. We communicated with the creators of
these systems and provided details about the issues we encountered, as well as recom-

mendations on how to correct them; many of the errors and ineffeciencies we outline
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below have since been corrected or mitigated.

Fairplay

Note: We do not include Fairplay in our comparisons; we only list these issues here.
Errors: Fairplay sometimes outputs incorrect results when it encounters single depth
if statements [6]. As if statements are needed in most programs, this may prevent
most programs from working correctly. In addition, it frequently fails to correctly
generate circuits for for loops with nested if statements. Common algorithms, such
as Dijkstra’s algorithm, require using if statements inside for loops.

Inefficiencies and Limitations: Fairplay’s compilation process and circuit repre-
sentation is the most inefficient we tested. The output circuit files are in ASCII,
making them significantly larger than necessary. While this facilitates manual in-
spection of the circuit file, it made the storage requirements for these circuits far too
costly for practical use. These inefficiencies and errors imply that Fairplay is only
capable of compiling very simple programs that are too small to be relevant in the
real world. For example, the AES circuit is a standard benchmark for modern secure
computation systems. Fairplay terminates with an out-of-memory error when trying
to compile AES even when given over 50GB RAM.

Fairplay’s output does not use the most efficient adder sub-circuit circuit. This
means it requires 3n AND gates instead of n. This affects all operations other than
bitwise ones. It also uses a 3 input gate for MUXs. The newer and better MUX,
uses 1 AND gates and 2 XOR gates for a reduction in truth table entries by 50% (for

non-XOR gates).

PAL

Errors: PAL encounters problems when structs are used. This prevents the use of

complex data-types unless each data item is independently defined. This appears to
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be an issue with the compiler’s front-end, and is indicative of insufficient validation
for that function within the language.
Inefficiencies and Limitations: PAL circuits are compiled into ASCII, which re-
sults in much larger file sizes than using a binary format. PAL also has some problem-
size limitations, and fails to compile very large programs. While the templating con-
cept proposed in this work is useful, it is not useful for compiling circuits of practical
size.

PAL does not use the most efficient adder sub-circuit, meaning it requires 3n
non-XOR gates instead of n (XOR gates can be executed for “free” [40]), and uses 3
input gates for MUXs. It also does not provide a complex optimization phase, so the

output is not very optimized.

KSS

Errors: The KSS compiler has a number of areas where it does not function properly.
Nested if statements consistently cause errors in the output circuits. Further, forloops
used within if statements also cause the compiler to fail with regularity. Programs
requiring multiple conditional statements, such as Dijkstra’s algorithm, must be re-
written to use single nested if statements. This is furthered hampered by the lack of
conjunction operators. These shortcomings limit expressivity and the ability to write
certain programs.

We discovered that when a variable is used inside of a function and also outside
(i.e., a global variable defined later in the code), it can lead to incorrect output
circuits. This error can occur when a function and the body of the program might
both use the same name for input. One such case occurred when we used the variable
a both in the program body and in a function. Finally, we found a set of cases that
the generated circuit was incorrect due to what may be an optimization error. This

set of cases each used some of the same functionality.
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Inefficiencies and Limitations: Rather than reduce the output size using an in-
termediate representation, KSS outputs the entire circuit. It also uses a very large
amount of hardware-specific code, which makes porting a extremely difficult task.
While this hardware-specific code provides some efficiency gain on specific platforms,
it makes the task of extending the code very complex.

Like PAL, KSS’s output does not take advantage of the most optimized adder
sub-circuit. As a result, many circuits are about 3x larger (non-XOR gates) than

necessary.

CBMC

Errors: Output variables can cause compilation errors if used more than once, or
if read inside the program. This is a common occurrence when a function returns
different values depending upon conditional statements, e.g., a piecewise function.
These errors can be avoided by careful programming. There is an error where input
cannot be assigned directly to output variables. We also found another error that may
be related to the input-to-output error though its exact cause is a mystery. CBMC
provides an error message if an input variable is written within a program.

CBMC sometimes fails to compile using arrays as input. Without being able to
rely on input arrays, the programmer must enter integers in an unstructured manner,
making operations such as matrix multiplication more difficult.

Inefficiencies and Limitations: CBMC outputs the entire circuit in a ASCII for-
mat, which, while condensed compared to PAL, is still much larger than using binary.
The format also doesn’t map output variables to pins, making developing and debug-

ging the interpreter prone to error.

PCF

This section tests the published version of PCF, PCF1. There is a new version under
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development that, at the time of our testing, was not as efficient as PCF1.

Errors: PCF allows global variables, but if global values are initialized during dec-
laration, it can crash, i.e., the assignment must happen later on in the program. We
discovered this error trying to get AES to work correctly, though this problem affects
any program that uses global variables. When an array is addressed with an out of
bounds index, PCF effectively returned random results (whatever was in memory)
instead of producing an error message for each test we made. This is an extremely
dangerous behavior, as it can lead to hidden and hard-to-detect errors.

By default, the PCF compiler does not update the program labels that keep track
of the number input wires, meaning, by default, the amount of input will not be
correct if these labels are used by an execution system. Furthermore, the programmer
must calculate the input sizes (in bits) of each party in every program. The translate
script provided with PCF, which is used to convert LCC bytecode to PCF, can fail on
valid input files. In addition, PCF has input buffer overflow problems as inputs above
2 bits overflow the input-buffers for the two parties. This means that the circuit
will most likely fail upon execution when more than 2 bits of input are requested in
a program, like the millionaires problem with 65,536 bits as input. These input size
bounds are currently hard-coded into the PCF compiler, not defined by the program
being compiled, and must be edited manually in cases where larger inputs are needed.
Inefficiencies and Limitations: While PCF produces very small output circuits,
the interpreter used to parse these circuits is extremely inefficient. Our tests demon-
strated that the interpreter can require as many as ten operations to read in a single
gate. This overhead is magnified by the fact that each gate is calculated by the in-
terpreter for every circuit that is garbled. For malicious secure execution systems
where many copies of the same circuit must be garbled, it is far more efficient to
parse the gate once, then garble the same functionality as many times as are required

for protocol security. PCF also produces spurious gates, which add to the circuit
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obliv int a=0;
obliv if (inputl>0)
{
for (int i=0;i<3;i++)
a=a+4+ 1;

}

Figure 5.2: Example code from Obliv-C that does not optimize as much as it could.

complexity and should be removed. As with many other compilers studied, PCF uses
ASCII output format, increasing storage size.
As PCF uses C as input, it also does not allow for arbitrary width types. In other

words, it does not support, for instance, native multiplication of two 256-bit numbers.

Obliv-C

Errors: The statement q = q & 0 throws a compiler error; multiplying a variable
by 0 also causes an error. This type of multiplication is useful for eigenvectors. These
operations work successfully if non-zero values are used.

Arrays going out of bounds (both access and modification) often produce no error
messages or warnings, even those that should have been discovered at compile time.
Hugely incorrect accesses (e.g., out of bounds by a few hundred) can produce an
error and crash, but smaller errors are often not detected. Such errors can affect the
gate-count and modify the output in unexpected ways.

Further, the system cannot handle large arrays — the execution system crashed
when we created an unsigned int array of size 32,000 for testing.

Inefficiencies and Limitations: Obliv-C does not always optimize circuits even
when it is easily possible to do so. For example, q = q & q requires n gates, where n
is the bitlength of the operation. In the segment of code seen in Figure 5.2, Obliv-C
requires about 156 non-XOR gates; our compiler requires about 43 non-XOR gates
for the same. It appears Obliv-C does not always keep track of optimizations for wire

states at the gate level. These kinds of statements appear in programs such as the
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edit distance of two strings. The authors suggest having the developer keep track of
the possible range of an integer manually. However, this is not part of their compiler.

There are no arbitrary width types, which reduces the expressivity and increases
gate counts of many programs. Trying to use a smaller type than an int, such
as char produces seemingly strange gate counts, i.e., the multiplication of two 8-bit
chars and stored into an 8-bit char appears to not be an 8-bit multiplication and gives
gate counts of either (1) a 32-bit multiplication or (2) a multiplication of unknown
size (between 32 bits and 8 bits in length). We printed out the CHAR BIT variable
(the number of bits in a char) and used sizeof to verify the char is actually supposed

to be 8 bits in length.

ObliVM

Errors: ObliVM provides a disclaimer on their code repository about the correctness
of their system that it is expected to contain a variety of errors. In our attempt to get
their code working, we encountered a problem with their test script to run their code.
Through conversations with the manager of the code, this problem was resolved.

The typechecking is somewhat loose, i.e., it allows many different lengths of vari-
ables to be used in an expression, i.e., int2 a; int4 b; int8 c; ¢ = b + a. The
operator length appears to depend on the size of the output variable and not the size
of the operands; this can lead to incorrect results if great care if not taken (i.e., int16
t = 4096; int8 q = t % 9; results with q as 0 when 4096 mod 9 should be 1.).
Safer type checking would eliminate this possible problem. We noticed this when we
tried to write a modular exponentiation program. Single bit variables often throw
errors when used; for instance, they cannot be combined with multi-bit variables (it
throws a Java error).

When we tried to return (output) a result of size 2, but passed in a value larger

than 2 bits, we received a result larger than would fit in 2 bits (i.e., it appears the
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int@n a=0;
if (inputl$\char36303\char36$==1)

a=a—+1;

}

Figure 5.3: Example code: @n dictates the length of the variable, $0$ picks the 0"
wire

error: incompatible types: t__T [] cannot be converted to int
—> int __tmpl2 = f_tmp-6;}

Figure 5.4: Example error message from ObliVM.

return size may be ignored for the output).

The use of constants can sometimes be a problem. x = 100+x; throws an error,
but x = x+100; compiles successfully.

When returning the result of an expression (e.g., x + y), storing the value in a

variable and then returning it (where the variable is of the return size) may produce a
different value than returning the expression directly; both should produce the exact
same result.
Inefficiencies and Limitations: ObliVM, like Obliv-C, does not appear to provide
a large amount of gate-level optimization. The statements seen in Figure 5.3 require
approximately 2n non-XOR gates (where n is the length of the variable). However,
gate optimizations should prevent any non-XOR gates from being required in this
segment of code. These kinds of statements appear in programs such as the edit
distance of two strings. Likewise, a statement like a = a & a should require no gates
of any kind, but it requires n AND gates in ObliVM.

Selecting more bits in a variable than exists allows compilation to succeed, but
throws an error at runtime.

The error messages are not always helpful; they are mostly Java errors from the

generated Java program. An example error can be seen in Figure 5.4.
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5.4.3 Summary

PAL, KSS, CMBC, Obliv-C, ObliVM, and PCF crashed on programs that should
correctly compile. KSS, ObliVM, and PCF generated incorrect circuits. These are
important problems. Consider how easy it is for an array to go out of bounds or
the number of programs that benefit from nested conditional statements. Or, if
the expressivity is severely limited by incorrect operators then programs cannot be
written as efficiently as they could otherwise. Principally, if the program files used in
an SMC computation are not correct then the resulting SMC computation will not

be correct either.

5.5 Compiler Development Principles

Given the problematic state of secure computation compilers in the research commu-
nity, we set the primary goal of our work to be the development of structured design
practices for secure computation compilers, and to demonstrate the effectiveness of
these practices with a new compiler implementation. By examining practices used by
the compiler community and combining those best practices with the observed failings
of previous secure computation compilers, we have assembled a set of four principles
to guide the development of our compiler, Frigate. Through this implementation,
we demonstrate that these principles should be considered standard practice when
developing new compilers for secure computation applications.

1. Use standard compiler practices: Use standard methodology from compilers (lex-
ing, parsing, semantic analysis, and code generation). Use data structures that are
described throughout compiler literature (e.g., an abstract syntax tree) [76]. Ap-
plying these standard, well-studied constructs allows for straightforward modular
treatment of the compiler components when extending the functionality. Further-

more, it allows for application of standard compiler debugging practices.
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2. Validate the compiler output: All production compilers rely on proper program
validation to ensure that the compiler functions correctly. A variety of validation
test sets have been developed in both the research community and in industry that
can be applied to newly-developed compilers [72,73,77].

3. Handle errors well with helpful error messages: Many sources describing good com-
piler practices emphasize the need to produce error messages, also known as negative
results (e.g,. [72,76]). While allowing the compiler to crash silently on an incorrect
program does not affect its overall correctness, it severely hampers usefulness.

4. Simplify the design: A standard software engineering principle is to avoid erroneous
code by using simple designs. This allows for more intuitive debugging when errors

do occur, as well as facilitating the addition of future functionality.

5.6 The Frigate Compiler

To demonstrate the practical effectiveness of our compiler design principles, we de-
signed the Frigate compiler and secure computation language. We also created a fast
interpreter to read Frigate’s output files efficiently. Our work demonstrates three ad-
ditional contributions to the state of secure computation compiler research: (1) a new
and simplified C-style language with specifically designed constructs and operators
for producing efficient Boolean circuit representations; (2) a compiler that produces
circuits with orders of magnitude less execution time than previous compilers; and
(3) a novel circuit output format that provides an efficient balance between compact

representation and speed of interpretation.

5.6.1 Input Language

Frigate’s novel input language incorporates the best of what we have seen and used

in the community and partially because of this, we can achieve substantial non-
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XOR gate efficiency. Our novel output format provides a balance between file size
and removing extra instructions necessary in some formats, e.g., PCF. Frigate is
meant to be a well-tested, user-friendly tool, which incorporates well known circuit
optimizations and provides good performance, allowing researchers to easily create
their own special optimizations without having to write their own compilers.

To better facilitate the development of programs that can be efficiently com-
piled into Boolean circuits, we developed a custom C-style language to represent
secure computation programs. The language allows for efficiently defining arbitrary
bit-length variables that translate readily into wire representation, and restricts op-
erations in a manner that allows for full program functionality without excessive
complexity. We do not use C or a common intermediate representation like LLVM’s
bytecode as input, to allow for innovative operators and non-standard bit-width op-
erations.

This minimal set of operations adheres to our fourth design principle of maintain-
ing simplicity to ensure for easier validation. Our language has control structures for
functions, compound statements, for loops, and if/else statements. We include the
ability to define types of arbitrary length and combination as in SFDL, the language
used by Fairplay, combined with an operator that selects some bits from a variable
used in the KSS compiler input language. We allow signed int_t, unsigned wint_t,
and struct struct_t types in our input language (we can handle arrays inside structs).
For modularity, we have #include statements to allow the use of external files and
#define to replace a term with an expression. The list of operators in our language
is in Table 5.1, with an example of our input language in Appendix B.1.

Every program begins with a declaration of the number of parties participating in
the computation. Since not every participant is required to provide input or receive
output, the input and output types for any subset of the participants may then be

specified.
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Operators Description
+ - * / % | arithmetic operators
xx // %% | extending and reducing operators
| ~ & ~ | bitwise operators
= assignment operator
+4+ —— increment and decrement operators

=== equality test operators
> < <= >= | conditional operators
<< >> shift operators
<<> rotate left operator
struct operator
( array operator
{3 {3 wire operators

Table 5.1: A table showing the operators in Frigate’s input language. As data types
are either signed and unsigned, the arithmetic and conditional operations behave
differently depending on whether the operands are signed or unsigned. In the case
signed and unsigned types are used in the same operator, the compiler uses the
unsigned operator (a warning is also issued by the compiler). Extending and reducing
operators are discussed in Appendix B.2.

To further maintain simplicity, only three primitive types are defined in our pro-
gramming language. int_t types are signed numbers defined to a specific bit length,
wint_t types are unsigned numbers defined to a specific bit length, and struct_t types
may consist of wint_t , int_t, and struct_t types. Developers may specify their own
types using these three types and the typedef command. These three types can be
combined to create any complex data type. To formally define the typing of each op-
erator in our language, we give a selection of typing rules in Figure 5.5. The remainder
of these rules are available in Appendix B.4.

One feature we were compelled to omit from our language was global variables.
We removed this feature after we realized the significant overhead they represent
within a Boolean circuit program. Allowing global variables requires keeping track of
whether each function is called under an if statement and adding a MUX gate every
time a global variable wire is assigned a value. Our language is capable of expressing
equally functional programs by passing in “global” variables and returning any new

values for these variables.
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Figure 5.5: Example typing rules for basic operators and control flow statements

Input Analysis and Transformation Output

Includes Circuit Output
( Parsing » »
( Defines ) ( Gate Optimization

Type Check and
Program Errors

Figure 5.6: Overall design of the Frigate compiler. There are six separate blocks of
the compiler separated blocks into three different stages instead of the traditional two
stages.

5.6.2 Compiler Design

With our input language defined, we next examine the design of the Frigate compiler
itself. Written in approximately 25,000 lines of C++, the compiler is designed to be
simple enough to validate each output code path and modular for expansion to fit
specialized secure computation applications. While there are other languages (with
stronger typing, for instance), which would have made it easier to show the correctness
of the compiler, we use C++ for speed and available libraries. Note that Frigate can
handle a variety of security models since we can attach any SMC implementation to

the compiler without affecting the adversarial model.

Compilation stages

Frigate represents programs in the standard compiler data structure, the abstract syn-
tax tree (AST). In accordance with our first design principle, this allows for straight-
forward static analysis and transformation of each program. Each type of operation

has its own node where construction, type checking, and output of its sub-circuit
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(among other functions) takes place.

Compilation of a program follows three phases as shown in Figure 5.6. The in-
put section of Frigate takes in a program and creates an AST representation of the
program. We used Flex [78] and Bison [79] to generate the scanner and parser used
in this phase. In the second phase, any #include statements are replaced with the
included file’s generated AST. All #define statements replace any terms in the AST
with a deep copy of the defined expression tree. To conclude this phase, the type
checker takes the AST and checks that it is a valid program as defined by Frigate’s
input language. The final phase of compilation takes in the AST and outputs the
circuit while performing gate-level optimizations. If a developer wishes to extend the
functionality of Frigate, this modular phase design allows for additional stages to be

inserted in between the existing stages.

Type Checking and Error Output

To satisfy our third design principle, we created our type checker to output detailed
error messages to indicate the location and type of error generated by an incorrect
program (e.g., ./tests/add.wir, Error line:11 Type “mytype” is used but not defined).
To ensure developers do not include unstable functionality in their programs, Frigate
enforces strict type checking that prevents different types from interacting unless those
types are different signed or unsigned integer types of the same length. A warning is

issued in this case.

5.6.3 Circuit Representation

Previous work in compiler development has demonstrated that it is possible to have
either a large yet simple circuit representation that is efficient to parse, or a highly
compact circuit representation that incurs significant cost when interpreted by the

evaluator. To strike a balance between these two extremes, we developed a novel
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circuit representation that is significantly smaller than the simplified circuit represen-
tations while still being efficiently parseable. Our output format represents circuits
using four elements: a set of input and output calls, gate instructions, function calls,
and copy instructions. Our representation of functions, as different files, allows us to
shrink the output size without the need for a costly circuit interpreter (more details
in Section 5.6.3).

To further improve the efficiency of evaluating Frigate circuits, we designed the
compiler to favor XOR gates, as they can be evaluated with fewer operations and

do not consume bandwidth when certain garbled circuit protocol optimizations are

used [40]. We use the four-XOR, one AND-full adder introduced by Boyar et al. [80].

Output Components

Here we present the details of our circuit representation.

Wires: Each variable is composed of many wires that are allocated as needed with
a set address. Each wire exists in either a used wire bin or a free wire bin. Once a
used wire is freed it is placed in the free bin. Order, as defined by the address of a
wire, is not preserved in the free wire bin. Our compiler will free the wires it can
after each operation.

We group wires together by the number requested for a specific variable. This
allows for a massive decrease in the amount of time required for checking whether or
not wires can be placed in the free wire bin, i.e., instead of requiring 100,000 checks
for a variable with 100,000 bits (wires) in length, only a single check is needed.

Wires can exist in one of six states. ZERO and ONE represent a wire’s state
as 0 or 1. The UNKNOWN state represents wires that depend on input values
such that their value cannot be computed at compile time. UNKNOWN_INVERT
represents an unknown wire but at some point was inverted. UNKNOWN_OTHER

and UNKNOWN_INVERT_OTHER are wires whose values are pointers to another
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wire value or the inversion of another wire value. By keeping track of inverted states,
we can optimize away inverts in some cases.

Gate Output: Given two input wires and a truth table, the outputGate function
will output a gate and update the state of the output wire. An additional function is
called to determine whether the gate is needed or whether it can be optimized out.
If the gate cannot be optimized out then the truth table will be adjusted for whether
either of the input wires’ states are inverted. Finally, the gate will be added to the
output.

Function Parameters and Return States: Since we output the gate represen-
tation of each function independently only once, uncorrelated with a single function
call, we cannot take advantage of knowing the state of a wire as it is passed into a
function. Therefore, function parameter states are marked as UNKNOWN. It is pos-
sible to pass wires with “0” and “1” states, but it is not as efficient as the optimizer
cannot use the information that they are “0” and “1” since they must be marked
as UNKNOWN. This inefficiency is necessary since we only output each function a
single time preventing us from taking advantage of specific parameter states. We
could solve this by outputting multiple function files with different wire parameters,

but this would expand our circuit representation.

Circuit Interpreter

Using our circuit output format, the process of interpreting a circuit is reduced to a
highly efficient task. When the interpreter is initially called, it reads an .mfrig file,
which contains information about the number of parties, input and output sizes, and
the number of functions. It then opens the .ffrig function files. After the interpreter
is initialized, it is ready for the first getNextGate command. Each time getNextGate
is called, the compiler reads and executes the next instruction, and returns the ap-

propriate gate to the execution environment.
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Each function occupies a specific set of wire values such that no function’s wires
will overlap. This enables a “stack” of function calls without the need for the push
and pop operations that would be required if our functions used overlapped wire
addresses. This does not affect the output circuit size. The interpreter keeps a
call stack of active functions in its internal state. Each function, rather than being
held completely in memory, is stored as a pointer to the active instruction. When a
function is called, the stack of functions is updated, the active function is set to the

called function, and the called function is set back to the first instruction.

5.6.4 Procedures

While our technique of dividing programs into distinct functions and then compos-
ing the circuit with calls to those functions allows for a significant reduction in the
representation size of many circuits, not all programs can be easily partitioned into
distinct functions. Even if a clean partitioning does exist, the function overhead for
copying parameters and return values can exceed the number of commands inside
the function. Large representation size is commonly encountered with loops, creating
redundant data that expands the size of the circuit representation. To reduce the
output file size in this case, we develop a novel construct called procedures.

A procedure is an area of a loop that can be moved by the compiler to a separate
function so that, instead of unrolling all the instructions for every iteration of the loop,
all that is required is a single function call to the procedure function. Procedure can
be intermixed with other non-procedures inside of the same loop.

As the procedure circuit is exactly the same each iteration, there are limits when
using variables whose values are ONFE or ZERO inside of the procedure and change
between iterations. Most notably, this limitation includes using the value of the loop
variable.

To demonstrate the output file size reduction possible using procedures, we con-
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sider an example program that adds five 32-bit variables to an accumulator 1000
times (the full program is in Appendix B.1). If no procedure is used, this program
requires an output file of about 13MB since each iteration of the main loop must be
unrolled. However, if a procedure is used, then output is one 30 KB file (main) and
one 13KB function file (the procedure), a reduction of the total disk usage by over

300x.

5.7 Experiments

5.7.1 Frigate Validation

During the creation of Frigate, we unit tested each new structure to ensure it func-
tioned properly. Our unit tests comprised checking most, if not all, possible program
paths. We manually checked each operator with sample output. Then, to demon-
strate the correctness of circuits created by Frigate, we ran an extensive validation
test suite consisting of over 17,000 tests and several million additional tests contain-
ing all possible combinations of input using 8-bit types for complex operators. After
hundreds of iterations of development and testing and months of work, Frigate suc-
cessfully passed all validation tests, and produces correct and functioning circuits in
every case where previous compilers failed. For further details on the state space we

examined in Frigate, see Appendix B.3.

5.7.2 Compiler Efficiency Tests

By constructing a compiler using our four development principles, we wanted to
evaluate whether adhering to the principles we laid out would have an adverse effect on
performance. We tested the time that is required to compile circuits in Frigate against
the three compilers (CBMC, PCF, and KSS) that output a complete circuit. We also

tested ObliVM and Obliv-C, but do not include them in the compile-time results as
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Figure 5.7: Comparing the different compilers we tested for compilation time. We
did not succeed in compiling RSA256 with CBMC. Note the y-axis is logscale.

they do not directly output circuits and thus are not directly comparable. We show
some of these results in Appendix B.1. PAL did not give competitive compilation
results, so we omit them from our benchmarks. For Obliv-C and ObliVM, we measure
the efficiency (gate counts) of primitive operations as the runtimes of the compilers
correspond to the C and Java compilers, respectively. All of our benchmarking tests
were performed on a MacBook Pro with an Intel i7 4-core 2.3Ghz with 16GB RAM,
256KB L2/core, and 6MB L3.

Test Programs

To evaluate performance across a wide variety of compilers, we used common test
programs used by the other researchers in this space [3,4,8]. We used the following
test programs: multiplication with matrices of X by X with 32-bit values, AES,
Hamming distance of two X bit numbers, multiplication of two X-bit numbers that

produces a 2*X-bit result (this is in contrast to the program of TinyGarble [81] who
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use X*X=X-bit multiplication), and RSA (modular exponentiation) of X bits, where
the base, exponent, and modulus are all X bits in length. For each test program, we

varied the input size X throughout our testing.

Tests

We summarize the results in Figure 5.7 by comparing the largest input values for each
program that successfully compiled across all compilers. We evaluate the compilers
with their default setup in an attempt to produce the smallest circuit (as opposed
to disabling the circuit optimizers). In every case, Frigate completes compilation the
fastest. In the best case, Mult 256, which computes the multiplication of two 256-bit
numbers, Frigate compiles 447x faster than the next fastest compiler, KSS.

In addition to comparing speed efficiency, we also considered the non-XOR gate
counts of each program compiled. Because the free-XOR optimization for garbled
circuits [40] allows XOR gates to be evaluated with non-cryptographic operations and
without consuming network bandwidth, we consider non-XOR gates the bottleneck
in computation. Frigate greatly reduces the number of non-XOR, gates for the Mult-
4096 program, demonstrating a reduction for the number of non-XOR gates by about
3x. In the case of AES, and RSA-512, the improvement was only slightly better than
existing compilers, reducing the gate count by up to 1.18x. We observed a increase in
gate counts for Matrix Multiplication by 0.8%, Hamming Distance by 2.35x, RSA-256
by 1.19x, and Mult-256 by 1.37x. The full compilation results are in Table B.1, in
the Appendix.

Other than Hamming Distance and AES, our gate counts are similar to the best
gate counts of [81], who wrote programs in behavioral and RTL level Verilog. For the
three test programs given in [81] that use a high level language (C), we are superior.
Table 5.2 gives the exact results.

While TinyGarble produces superior gatecounts in some cases, this is achieved
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| Frigate TinyGarble
’ ProgramName \ C \ Verlog
Hamming-160 719 1,264 158
Sum-1024 1,025 | 3,067 1,023
Compare-16384 16,386 | 52,224 16,384
X-to-X-bit Mult-64 4,035 - 3,925
MatrixMult5x5 128,252 - | 120,125
AES 10,383 - 5,760

Table 5.2: Non-XOR gate count comparison between Frigate and TinyGarble [81]
using HDL and C as inputs. “-” represents results not present in [81]. For accurate
comparison, our multiplication operation in this test produces n-bit output as in [81].

using Verilog, a hardware description language for electronic systems. Thus, the in-
terpreter converts something that is already close to a hardware-level description into
a circuit format, as opposed to dealing with a high level language. It is not surpris-
ing, then, that in a some cases, the Verilog version, which is closer to a handcrafted
circuit, performs better than Frigate.

For Obliv-C and ObliVM, we measure the cost of some primitive operations, shown
in Table 5.3. Frigate, Obliv-C, and ObliVM have similar gatecounts for compare and
sum operations. These operations have O(N) gates, where N is the bitlength of the
operation. In contrast, ObliVM’s multiplication and division templates are larger
than that of both Frigate and Obliv-C, and Frigate’s division template is larger than
that of Obliv-C.

It should be noted that neither Obliv-C nor ObliVM were able to perform the
a = a & a optimization to emit AND gates. We include this optimization to show
that neither of these two systems perform a number of known optimizations that
should have been included. This is a disadvantage of their model of compiling to an
executable instead of a circuit: in order to perform these optimizations, the system
will have to perform them every time the circuit is executed.

To summarize, ObliVM and Obliv-C do not perform known gate-level optimiza-
tions. Without these and many other optimizations implemented in Frigate, they

sometimes produce comparatively inefficient output programs.
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| Frigate | Obliv-C | ObLiVM |

Sum-32 31 31 32
Compare-32 ( >) 32 32 32
X-to-X-bit Mult-8 59 - 120
X-to-2X-bit Mult-8 136 - 176
X-to-X-bit Mult-32 995 993 2,016

X-t0-2X-bit Mult-32 2,082 - 3,008
Div-8 61 - 172
Div-32 1,437 1,210 2,236

a=aka 0 O(N) O(N)

Table 5.3: Non-XOR gate count comparison of different operations for Frigate, Obliv-
C, and ObliVM. For these tests we look at the non-XOR gate counts different primitive
operations require (not gate counts for a specific program). For Obliv-C, we do not
measure 8-bit operations (char variables) as they does not appear to give correct
gatecounts as noted in Section 5.4.2. Using signed types.

5.7.3 Interpreter and Execution Speed

Interpreter Time: Our next set of experiments compares the performance of the
Frigate and PCF interpreters. Figure 5.8 shows our experimental results. The Frigate
output format allows for significant reduction in interpreting time. In the worst-case,
we improve over PCF by 106x, with a reduction of 786x in the best case. We used
the Unix time function to measure the total computation time.

A lot of this speedup comes from the way Frigate and PCF are designed. (1)
Frigate optimizes the circuit a single time in the compiler; PCF has to optimize at
runtime. (2) Frigate’s execution system can take advantage of certain compiler (gcc)
optimizations that PCF cannot due to a design decision requiring each instruction
to use function pointers (i.e., lots of function calls that could be optimized out). (3)
Many instructions in PCF require a malloc due to the interface to the PCF interpreter;
Frigate’s interpreter requires no mallocs after initialization.

Execution: The total execution time is improved by a faster interpreter. We
connected the Frigate interpreter and the PCF interpreter into the same semi-honest
execution system loosely based on the KSS execution implementation but further

optimized and modified to use generic C++ vectors as its primitive type (instead of
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Figure 5.8: Interpreter time per circuit for PCF and Frigate interpreters. Note the
y-axis is logscale. H stands for Hamming Distance.

Intel-only intrinsic data types) to increase portability. Figure 5.9 shows the results.
Total execution time improves by 21x in the best case and by 1.8x at worst.
We can further improve our performance by reducing the overall execution time by
adding in additional optimizations like the half-gate optimization [82] or the fixed-key
blockcipher optimization [83]. The speedup is the result of the amount of extraneous
instructions PCF requires, sometimes up to 18x instructions per gate instruction. The
interface, though elegant, requires malloc on many of these. Here, our novel output

format provides an advantage.

5.7.4 Discussion

Speed of Frigate: During the creation of Frigate, we attempted to speed up Frigate
in many ways. Other than writing efficient code, our separation of functions, output
representation, choice of programming language, efficient data structures, lack of a

global optimization phase, efficient use of circuit templates, and our use of procedures
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Figure 5.9: Execution performance for semi-honest execution system in Frigate and
PCF. In these experiments we only vary the interpreter and circuit format. The
execution system is the same in both cases. H stands for Hamming Distance.

all contribute to why our compiler performed better.

Not Comparing to Other Interpreters: Both Obliv-C and ObliVM compile to
executables and not directly to circuits. For PCF and Frigate, we could easily swap
the interpreter while maintaining the same SMC execution backend.

Extensibility: After the initial creation and implementation of Frigate, we made
additional changes that show extensibility. We enabled constants to be defined with
a specific sign and specific bit-length, which was not in our original specification, and
added three additional operators: extending multiplication, reducing division, and
reducing modulus. These operators are discussed in detail in Appendix B.2.

For developers to extend Frigate with their own functionality, they simply create
or modify an AST node and the parsing rules, modify typing for new or existing
operators, and then define what sub-circuit the operator outputs.

Tools: To demonstrate how Frigate can be used to create useful developer tools, we

created an extension to output the gate counts of program components inline in a
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function int mul(int x, int y)
<1047555,2092036 > {
return x * y;

}

function void main ()
<270270213,540799236 >{
int t = inputl;
for (int i = 0; i < 256; i++)
<268174080,536610048 > {
t = mul(t, inputl);

<1047555,2092036 >{
t =t % inputl;

}

outputl = inputl * input2 + t;

Figure 5.10: Example of Frigate’s gate counts in the program at each compound
statement. Key: (non—XOR gates, free operations)

printout. We implemented this tool to understand where the most costly operations
are in a program. Our tool also maps in the cost of function calls even though they
are not called during compilation. As procedures are not output during each iteration
of a loop, the costs inside a procedure represent only a single iteration, but outside
the procedure, it is counted for every iteration. Figure 5.10 shows an example.
Very Large Circuits: Using our unique output format, we were able to compile
a program that has 2457 non-XOR gates in under 20 minutes (a 1024-bit addition
performed 2000032 times). This is not the limit, but shows Frigate can create very
large programs.

Full Circuit List: Since many systems we have seen and used require the full circuit
as input, we created a tool (via a command-line argument to the interpreter) to output

the complete circuit into an easy to understand text format.

5.8 Related Work

When the garbled circuit protocol was developed by Yao [1], it demonstrated that
secure multiparty computation was possible. However, the protocol remained a theo-
retical novelty until Fairplay [5] demonstrated that the protocol could be feasibly run

for small circuits. In the time since, there have been many other compilers built for
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SMPC [7,11,12,13,14], with steadily improving performance. Our work draws from
many of these to produce a compiler that is significantly faster and more stable than
any other system currently available.

Several optimizations have been developed to reduce the size of garbled circuits.
The free-XOR technique [40,84] allows garbled XOR gates to be evaluated with a
single XOR operation and requires zero bandwidth. Optimizations such as garbled
row-reduction [41] allow for the size of the transmitted AND gates to be reduced
by a constant factor. Other optimizations, such as FleXOR [85], have been shown
to reduce bandwidth and computation time for certain functions. The pipelining
technique developed by Huang et al. [2] generates and transmits the circuit in layers,
allowing large circuits to be handled in a small amount of memory. Most recently, the
Partial GC system [20] allows for garbled wire values to be re-used between protocol
executions. However, while these protocol optimizations allow for constant factor
improvements in speed and bandwidth, they do not optimize the size of the boolean
representation itself, which we do in this work.

Fairplay [5] was the first SMC compiler. While this provided a first step towards
a practical and usable means for representing arbitrary programs as circuits, it suf-
fered from a number of correctness issues. To reduce the size of the unoptimized
circuit representation, the PAL compiler [6] used pre-optimized templates instead of
completely creating each circuit at runtime. The compiler by Kreuter, shelat, and
Shen [3] incorporated some of circuit optimizations. The Portable Circuit Format
compiler (PCF) [8] combined the concept of templating with several circuit opti-
mizations. Another compiler, Wysteria [86], provides support for mixed-mode secure
computation. Frigate combines many such optimizations and is designed to be ex-
tensible, so that future optimizations can be included with ease.

A recent work by Songhori et. al [81] shows how to use hardware tools to create

SMC circuits. These produce significantly smaller output files and often significantly
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smaller non-XOR gate counts when writing in an HDL language.
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Chapter 6

Using Intel Software Guard
Extensions for Efficient Two-Party

Secure Function Evaluation

6.1 Introduction

While significant advances in both the performance of and the security provided by
SMPC protocols and their underlying primitives has improved over the past decade |7,
8,10,11,12,13,14], the costs remain too high for many practical applications.

An emerging hardware primitive may help to dramatically reduce the cost of such
computation. Intel’s Software Guard Extensions (SGX) [87,88] is an extension to
the Intel architecture that enables the creation of secure containers called enclaves.
An enclave is essentially a “reverse sandbox” enforced by hardware. Recall that a
sandbox is an isolated execution environment in which none of the code running
inside the sandbox can modify anything outside of the sandbox. The SGX “reverse
sandbox” has the complementary property that code running outside of it cannot

manipulate anything within it. Specifically, the code, data, and stack within the
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