
Compliance Checking in the PolicyMaker Trust

Management System

Matt Blaze Joan Feigenbaum Martin Strauss

AT&T Labs { Research

180 Park Avenue

Florham Park, NJ 07932 USA
fmab,jf,mstraussg@research.att.com

Abstract. Emerging electronic commerce services that use public-key

cryptography on a mass-market scale require sophisticated mechanisms
for managing trust. For example, any service that receives a signed re-

quest for action is forced to answer the central question \Is the key

used to sign this request authorized to take this action?" In some ser-
vices, this question reduces to \Does this key belong to this person?"

In others, the authorization question is more complicated, and resolv-

ing it requires techniques for formulating security policies and security
credentials, determining whether particular sets of credentials satisfy the

relevant policies, and deferring trust to third parties. Blaze, Feigenbaum,

and Lacy [1] identi�ed this trust management problem as a distinct and
important component of network services and described a general tool

for addressing it, the PolicyMaker trust management system.

At the heart of a trust management system is an algorithm for compliance

checking.The inputs to the compliance checker are a request, a policy, and

a set of credentials. The compliance checker returns yes or no, depending

on whether the credentials constitute a proof that the request complies

with the policy. Thus a central challenge in trust management is to �nd

an appropriate notion of \proof" and an e�cient algorithm for checking

proofs of compliance.

In this paper, we present the notion of proof that is used in the current
version of the PolicyMaker trust management system. We show that this

notion of proof leads to a compliance-checking problem that is undecid-

able in its most general form and is NP-hard even if restricted in several
natural ways. We identify a special case of the problem that is solvable

in polynomial time and is widely applicable. The algorithm that we give

for this special case has been implemented and is used in the current
version of the PolicyMaker system.

1 Introduction

Blaze, Feigenbaum, and Lacy [1] identi�ed the trust management problem as a

distinct and important component of security in network services. Aspects of

the trust management problem include formulation of policies and credentials,

deferral of trust to third parties, and a mechanism for \proving" that a request,

supported by one or more credentials, complies with a policy. In [1], the authors

describe a comprehensive approach to trust management that is independent of

the needs of any particular product or service, and a trust management system,

called PolicyMaker, that embodies the approach. They emphasize the following

general principles.

{ Common language: Policies, credentials, and trust relationships are ex-

pressed as programs (or parts of programs) in a \safe" programming lan-

guage. A common language for policies, credentials, and relationships makes

it possible for applications to handle security in a comprehensive, consistent,

and largely transparent manner.
{ Flexibility: PolicyMaker is expressively rich enough to support the complex

trust relationships that can occur in the very large-scale network applications

currently being developed. At the same time, simple and standard policies,

credentials, and relationships can be expressed succinctly and comprehensi-

bly.
{ Locality of contol: Each party in the network can decide in each trans-

action whether to accept the credentials presented by a second party or,

alternatively, which third party it should ask for additional credentials. Lo-

cal control of trust relationships eliminates the need for the assumption of a

globally known, monolithic hierarchy of \certifying authorities." Such hier-

archies do not scale beyond single \communities of interest" in which trust

can be de�ned unconditionally from the top down.
{ General compliance-checking mechanism: The mechanism for check-

ing that a set of credentials proves that a requested action complies with

local policy does not depend on the semantics of the application-speci�c re-

quest, credentials, or policy. This allows many di�erent applications with

widely varying policy requirements to share a credential base and a trust

management infrastructure.

The algorithmic core of trust management is the compliance-checking prob-

lem. The inputs to the compliance checker are a request, a policy, and a set of

credentials. The compliance checker returns yes or no, depending on whether

the credentials constitute a proof that the request complies with the policy.

Thus a central challenge in building a trust management system is to �nd an

appropriate notion of \proof" and an e�cient algorithm for checking proofs of

compliance. In this paper, we present the notion of proof that is used in the Poli-

cyMaker compliance checker. We show that, in general, the PolicyMaker version

of compliance checking is undecidable and that it is NP-hard even if restricted

in a number of natural ways. However, we isolate a polynomial-time solvable

case that is general enough to be useful in a wide variety of applications and is

implemented and available in the current version of the PolicyMaker system.

1.1 Examples

We now give three examples of application-speci�c requests and local policies

with which they may need to comply. Note that these are realistic examples of

the types of transactions that users want to perform; individually, none of them

is very complicated. Collectively, they demonstrate that an expressive,
exible

notion of \proof of compliance" is needed. More examples can be found in [1{3,

9, 10].

Example 1: Signed Email. Consider an email system in which messages arrive

with headers that include, among other things, the sender's name, the sender's

public key, and a digital signature. When a recipient's email reader processes

an incoming message, it uses the public key to verify that the message and

the signature go together, i.e., that an adversary has not spliced a signature

from another message onto this message. The recipient should also be concerned

about whether the name and the public key go together; for example, might

an adversary have taken a legitimate message-signature pair that he produced

with this own signing key and then attached to it his public key and someone

else's name? The recipient needs a policy that determines which name-key pairs

he considers trustworthy. Because signed messages will regularly arrive from

senders whom he has never met, he cannot simply maintain a private database

of name-key pairs. Here is a plausible policy.

(1) He maintains private copies of the name-key pairs (N1; PK1) and (N2,

PK2). (A reasonable interpretation of this part of the policy is that he knows the

people named N1 and N2 personally and can get reliable copies of their public

keys directly from them.)

(2) He accepts \chains of trust" of length one or two. An arc in a chain of

trust is a certi�cate of the form (PKi; (Nj; PKj); S) and is interpreted to mean

that (i) the owner Ni of PKi vouches for the binding between name Nj and

public key PKj, and (ii) Ni attests that Nj is trusted to provide certi�cates of

this form. The party Ni signs (Nj ; PKj) with his private key and the resulting

signature is S.

(3) He insists that there be two disjoint chains of trust from the keys that he

maintains privately to the name-key pair that arrives with a signed message.

Example 2: Banking. Consider a loan request submitted to an electronic

banking system. Such a request might contain, among other things, the name of

the requester and the amount requested. A plausible policy for approval of such

loans might take the following form.

(1) Two approvals are needed for loans of less than $5,000. Three approvals

are needed for loans of between $5,000 and $10,000. Loans of more than $10,000

are not handled by this automated loan-processing system.

(2) The head of the loan division must authorize approvers' public keys. The

division head's public key is currently PK3. This key will expire at 23:59:59 on

December 31, 1998.

Example 3: Web Browsing. A typical request for action in a web-browsing

system is \View URL http://www.coolstuff.org/pictures.gif." In setting

a viewing policy, a user must decide what types of metadata or \labels" he wants

documents to have before he views them, and he must decide whom he trusts to

label documents. If he is concerned about Internet pornography, the user may

insist that documents he views be rated according to the Recreational Software

Advisory Council (RSAC) rating system and that they be rated (S � 2; L �

2; V = 0; N � 2) on the Sex, Language, Violence, and Nudity scales, respectively.

He may trust self-labeling by the Disney Corporation and any labels by a labeler

that is approved by Good Housekeeping.

1.2 Related Work

While the concept of a \trust management system" per se originated in [1], there

is previous work on \protection systems" that is loosely related. We brie
y recall

two examples of such work here; more recent work that is similarly related to

ours can be found in, e.g., [12].

The main thrust of the work we present in this paper is twofold: We de�ne

a general \proof-of-compliance problem" that is intractable, and we isolate a

special case of the problem that is both tractable and useful. Protection systems,

as described by Denning [4], address a similar (but not identical) problem to the

one we address, and a similar type of result is sometimes obtained.

Harrison, Ruzzo, and Ullman [7] analyze a general protection system based

on the access matrix model. In matrix A, indexed by subjects and objects, cell

Aso records the rights of subject s over object o; a set of transition rules describes

the rights needed as preconditions to modify A and the speci�c ways in which

A can be modi�ed, by creating subjects and objects or by entering or deleting

rights at a single cell.

Harrison, Ruzzo, and Ullman showed that given

{ an initial state A0

{ a set � of transition rules

{ a right r

it is undecidable whether some sequence �i0 � � � �it 2 � transforms A0 such that

�it enters r into a cell not previously containing r, i.e., whether it is possible for

some subject, not having right r over some object, ever to gain that right. On the

other hand, Harrison, Ruzzo, and Ullman identify several possible restrictions

on � and give decision algorithms for input subject to one of these restrictions.

One restriction they consider yields a PSPACE-complete problem.

Independently, Jones, Lipton, and Snyder [8] de�ne and analyze take-grant

directed-graph systems. Subjects and objects are nodes; an arc a from node n1
to n2 is labeled by the set of rights n1 has over n2. If subject n1 has the take

right over n2, and n2 has some right r over n3, then a legal transition is for

n1 to \take" right r over n3. Similarly, if subject n1 has the grant right over

n2, and n1 has some right r over n3 then a legal transition is for n1 to \grant"

right r over n3 to n2. Besides these transitions, subjects can create new nodes

and remove their own rights over their immediate successors. Although rights

are constrained to
ow only via take-grant paths, take-grant systems do model

nontrivial applications [4].

Jones, Lipton, and Snyder asked whether a right r over a node x possessed by

node n1 but not possessed by n2 could ever be acquired by n2. They showed that

this question can be decided in time linear in the original graph by depth-�rst

search. Thus Denning [4] concludes that, although safety in protection systems

is usually undecidable, the results in, e.g., [7, 8] demonstrate that safety can be

decided feasibly in systems with sets of transition rules from a restricted though

nontrivial set. The related results on compliance checking that we present in

Section 5 provide additional support for Denning's conclusion.

Having reviewed the basics of \protection systems," we can now explain

why they address a similar but not identical problem to the one addressed by

the PolicyMaker compliance-checking algorithm. In the protection-system world,

there is a relatively small set of potentially dangerous actions that could ever be

performed, and this set is agreed upon in advance by all parties involved. A data

structure, e.g., an access matrix, records which parties are allowed to take which

actions. This data structure is precomputed o�ine, and, as requests for action

arrive, their legitimacy is decided via a lookup operation in this data structure.

\Transition rules" that change the data structure are applied infrequently, and

they are implemented by a di�erent mechanism and in a separate system module

from the ones that handle individual requests for action.

In the \trust management system" world, the set of potentially dangerous

actions is large, dynamic, and not known in advance. A system such as Poli-

cyMaker provides a general notion of \proof of compliance" for use by diverse

applications that require trust policies. The users of these applications and the

semantics of their actions and policies are not even known to the PolicyMaker

compliance-checking algorithm; hence it is not possible for all parties to agree

in advance on a domain of discourse for all potentially dangerous actions. The

compliance-checking question \is request r authorized by policy P and creden-

tial set C?" is analogous to the question \can subject s eventually obtain right r

by transition rules �" in the protection-system world. Part of the novelty of the

PolicyMaker system [1] and of its analysis as given here is the realization that

a single instance of request processing, especially one that involves deferral of

trust, can require a moderately complex computation and not just a lookup in

a precomputed data structure. The work in this paper, for the �rst time to our

knowledge, formalizes and analyzes the complexity of a general-purpose, working

system for processing requests of this nature.

In summary, a general-purpose \trust management system" such as Policy-

Maker is, very roughly speaking, a meta-system in the protection-system frame-

work.

1.3 Outline of Paper

In the next section, we explain why an application-independent notion of compli-

ance checking can be useful and can enhance security. Terminology and notation

are given in Section 3, followed by a formal statement of the compliance-checking

problem in Section 4. Negative and positive results are give in Sections 5.1 and

5.2, respectively. A brief discussion of our formulation of the problem and how

it might be extended appears in Section 6.

2 Need for a General Compliance Checker

We now explain why we believe that a general, highly expressive, application-

independent compliance checker is a good thing. Readers already familiar with

these arguments as put forth in [1, 2, 9, 10] should skip to the next section.

Clearly, any product or service that requires some form of proof that re-

quested transactions comply with policies could implement a special-purpose

compliance checker from scratch. So what advantage does a developer gain by

using a general-purpose compliance checker?

One important advantage is soundness and reliability of both the design and

the implementation of the compliance checker. As will become clear in the fol-

lowing sections, formalizing the notion of \credentials' proving that a request

complies with a policy" involves a lot of subtlety and detail. It is very easy to

get wrong, and an application developer who sets out to implement something

special-purpose and \simple" in order to avoid what he thinks is the overly

\complicated" syntax and semantics of a general-purpose compliance checker is

likely to �nd either that he has underestimated the complexity of his applica-

tion's needs for expressiveness and proof or that his special-purpose compliance

checker is not turning out to be as \simple" as he expected it to be. A general-

purpose notion of \proof of compliance" can be explained, formalized, proven

correct, and implemented in a standard package (such as PolicyMaker), thus free-

ing developers of individual applications from the need to reinvent the wheel.

Applications that use a standard compliance checker can be assured that the

answer returned for any given input (i.e., a request, a policy, and a set of cre-

dentials) depends only on the input, and not on any implicit policy decisions

(or bugs) in the design or implementation of the compliance checker. As policies

and credentials become more diverse and complex, the issue of assuring correct-

ness will become especially important, and modularity of function with a clean

separation between the role of the application and the role of the compliance

checker will make further development more manageable.

Two important sources of complexity that are often underestimated are del-

egation and cryptography. Products and services that need a notion of \creden-

tial" almost always have some notion of \delegation" of the authority to issue

credentials. The simplest case, i.e., unconditional delegation, is easily handled

by a special-purpose mechanism. However, if the product or service grows in

popularity and starts to be used in ways that were not foreseen when it was

originally deployed, delegation can quickly become more complex, and a special-

purpose language that restricts the types of conditional delegation that can be

expressed becomes an impediment to widespread and imaginative use. The gen-

eral framework that we develop for compliance checking avoids this by allowing

delegation to be described by ordinary programs. Similarly, digital signatures

and other cryptographic functions may not seem crucial when an application is

�rst designed; for instance, web browsers may be designed to accommodate \safe

sur�ng" policies con�gurable by Internet-aware parents but may not initially in-

volve cryptographic functions. If the application is subsequently integrated into

the wider world of electronic commerce, however (as web browsers have been),

the need to accommodate increased use of cryptography will be pressing, and

cryptographic credentials (such as public-key certi�cates) will need to be incor-

porated into the application's notion of proof of compliance. If the application is

already using a general-purpose notion of proof of compliance, this can be done

without having to rethink and recode the compliance-checker.

Finally, note that a general-purpose compliance checker facilitates interop-

erability. Requests, policies, and credentials, if originally written in the native

language of a speci�c product or service, must be translated into a standard

format understood by the compliance checker. Because a wide variety of appli-

cations will each have translators with the same target language, policies and

credentials originally written for one application can be used by another. The

fact that the compliance checker can serve as a locus of interoperability may

prove particularly useful in e-commerce applications and, more generally, in all

settings in which cryptographic credentials are needed.

3 Notation and Terminology

The general problem we are concerned with is Proof of Compliance (POC). The

question is whether a request r complies with a policy. The policy is simply a

function f0 encoded in some well understood programming system or language

and labeled by the keyword POLICY. In addition to the request and the policy,

a POC instance contains a set of credentials, also general functions, each labeled

by its source. Policies and credentials are collectively referred to as assertions.

Credentials are issued by sources. Formally, a credential is a pair (fi; si)

of function fi and source-ID si, which is just a string over some appropriate

alphabet. Important examples of source-IDs include public keys of credential

issuers, URLs, names of people, and names of companies. With the exception of

the keyword POLICY, the interpretation of source-IDs is part of the application-

speci�c semantics of an assertion, and it is not the job of the compliance checker.

From the compliance checker's point of view, the source-IDs are just strings,

and the assertions encode a set of (possibly indirect and possibly conditional)

trust relationships among the issuing sources. Associating each assertion with

the correct source-ID is the responsibility of the calling application, and it takes

place before the POC instance is handed to the compliance checker; the rationale

for this architectural decision is given in the original paper on the PolicyMaker

trust management system [1].

The request r is a string encoding an action for which the calling applica-

tion seeks a proof of compliance. In the course of deciding whether the creden-

tials (f1; s1); : : : ; (fn�1; sn�1) constitute a proof that r complies with the policy

(f0;POLICY), the compliance checker's domain of discourse may need to include

other action strings. For example, if POLICY requires that r be approved by

credential issuers s1 and s2, the credentials (f1; s1) and (f2; s2) may want a way

to say that they approve r conditionally, where the condition is that the other

credential also approve it. A convenient way to formalize this is to use strings

R, R1, and R2 over some �nite alphabet �. The string R corresponds to the

requested action r. The strings R1 and R2 encode \conditional" versions of R

that might be approved by s1 and s2 as intermediate results of the compliance-

checking procedure.

More generally, for each request r and each assertion (fi; si), there is a set

fRijg of action strings that might arise in a compliance check. By convention,

there is a distinguished string R that corresponds to the input request r. The

range of assertion (fi; si) is made up of acceptance records of the form (i; si; Rij),

the meaning of which is that, based on the information at its disposal, asser-

tion number i, issued by source si, approves action Rij. A set of acceptance

records is referred to as an acceptance set. It is by maintaining acceptance sets

and making them available to assertions that the compliance checker manages

\inter-assertion communication," giving assertions the chance to make decisions

based on conditional decisions by other assertions. The compliance checker will

start with initial acceptance set f(�;�;R)g, in which the one acceptance record

means that the action string for which approval is sought is R and that no as-

sertions have yet signed o� on it (or anything else). The checker will run the

assertions (f0;POLICY); (f1; s1); : : : ; (fn�1; sn�1) that it has received as input,

not necessarily in that order and not necessarily once each, and see which ac-

ceptance records are produced. Ultimately, the compliance checker approves the

request r if the acceptance record (0;POLICY; R), which means \policy approves

the initial action string," is produced.

Thus, abstractly, an assertion is a mapping from acceptance sets to accep-

tance sets. Assertion (fi; si) looks at an acceptance set A encoding the actions

that have been approved so far and the numbers and sources of the assertions

that approved them. Based on this information about what the sources it trusts

have approved, (fi; si) outputs another acceptance set A
0.

We close this section by providing two concrete examples that show why we

chose to allow assertions to approve multiple action strings for each possible

request. That is, for a given input request r, why do assertions need to do

anything except say \I approve r" or refuse to say it?

First, we
esh out the \conditional approval" example given earlier. Consider

the following \co-signing required" assertion (f0;POLICY): \All expenditures of

$500 or more require approval by A and B." Suppose that A's policy is to approve

such expenditures if and only if B approves them and that B's is to approve them

if and only if A approves them. Our acceptance record structure makes such ap-

provals straightforward. The credential (f1;A), can produce acceptance records

of the form (1; A;R) and (1; A;RB), where R corresponds to the input request

r; the meaning of the second is \I will approve R if and only if B approves it."

Similarly, the credential (f2;B), can produce records of the form (2; B;R) and

(2; B;RA). On input f(�;�;R)g, the sequence of acceptance records (1; A;RB),

(2; B;RA), (1; A;R), (2; B;R), (0;POLICY; R) would be produced if the asser-

tions were run in the order (f1;A), (f2;B), (f1;A), (f2;B), (f0;POLICY), and

the request r would be approved. If assertions could only produce binary ap-

prove/disapprove decisions, no transactions would ever be approved, unless the

trust management system had some way of understanding the semantics of the

assertions and knowing that it had to ask A's and B's credentials explicitly for

a conditional approval. This would violate our goal of having a general-purpose,

trust management system that processes requests and assertions whose seman-

tics are only understood by the calling applications and that vary widely from

application to application.

Second, consider the issue of \delegation depth." A very natural construction

to use in assertion (f0;POLICY) is \I delegate authority to A. Furthermore, I

allow A to choose the parties to whom he will re-delegate the authority I've

delegated to him. For any party B involved in the approval of a request, there

must be a delegation chain of length at most two fromme to B." Various \domain

experts" B1, : : :, Bt could issue credentials (f1; B1), : : :, (ft; Bt) that directly

approve actions in their areas of expertise by producing acceptance records of

the form (i; Bi; R
i
0). An assertion (gj; sj) that sees such a record and explicitly

trusts Bi could produce an acceptance record of the form (j; sj ; R
i
1), the meaning

of which is that \Bi approved Ri directly, I trust Bi directly, and so I also

approve Ri." More generally, if an assertion (gl; sl) trusts sk directly and sees an

acceptance record of the form (k; sk; R
i
d), it can produce the acceptance record

(l; sl; R
i
d+1). The assertion (f0;POLICY) given above would approve an action

Ri if and only if it were run on an acceptance set that contained a record of

the form (k;A; Ri
1), for some k. Note that (f0;POLICY) need not know which

credential (fi; Bi) directly approved Ri by producing (i; Bi; R
i
0). All it needs to

know is that it trusts A and that A trusts some Bi whose credential produced

such a record.

4 Problem Statement

The most general version of the compliance-checking problem is:

Proof of Compliance (POC):

Input : A request r and a set f(f0;POLICY), (f1; s1), : : :, (fn�1, sn�1)g of

assertions.

Question : Is there a �nite sequence i1; i2; : : : ; it of indices such that each ij is

in f0; 1; : : :; n� 1g, but the ij's are not necessarily distinct and not necessarily

exhaustive of f0; 1; : : : ; n� 1g and such that

(0;POLICY; R) 2 (fit ; sit) � � � � � (fi1 ; si1)(f(�;�;R)g);

where R is the action string that corresponds to the request r?

This most general version of the problem is clearly undecidable. A compliance

checker cannot even decide whether an arbitrary assertion (fi; si) halts when

given an arbitrary acceptance set as input, much less whether some sequence

containing (fi; si) produces the desired output. In what follows, we consider

various special cases of POC and ultimately obtain one that is both useful and

computationally tractable.

When we say that \f(f0;POLICY); (f1; s1); : : : ; (fn�1, sn�1)g contains a

proof that r complies with POLICY," we mean that (r; f(f0;POLICY), (f1; s1),

: : :, (fn�1; sn�1)g) is a yes-instance of this unconstrained, most general form

of POC. If F is a (possibly proper) subset of f(f0;POLICY), (f1; s1), : : :,

(fn�1; sn�1)g that contains all of the assertions that actually appear in the

sequence (fit ; sit) � � � � � (fi1 ; si1), then we say that \F contains a proof that r

complies with POLICY."

In order to obtain a useful restricted version of POC, we consider adding

various pieces of information to the problem instances. Speci�cally, we consider

augmenting the instance (r, f(f0, POLICY), (f1; s1), : : :, (fn�1; sn�1)g) in one

or more of the following ways:

Global runtime bound: An instance may contain an integer d such that a

sequence of assertions (fi1 , si1), : : :, (fit , sit) is only considered a valid proof

that r complies with POLICY if the total amount of time that the compliance

checker needs to compute (fit ; sit) � � � � � (fi1 ; si1)(f(�;�;R)g) is O(N
d). Here

N is the length of the original problem instance, i.e., the number of bits needed

to encode r, (f0;POLICY), : : :, (fn�1; sn�1), and d in some standard fashion.

Local runtime bound: An instance may contain an integer c such that (fi1 ,

si1), : : :, (fit , sit) is only considered a valid proof that r complies with POLICY if

each (fij ; sij) runs in time O(N c). Here N is the length of the actual acceptance

set that is input to (fij ; sij) when it is run by the compliance checker. Note

that the length of the input fed to an individual assertion (fij ; sij) in the course

of checking a proof may be considerably bigger than the length of the original

problem instance (r; f(f0;POLICY); (f1; s1); : : : ; (fn�1; sn�1)g; c), because the

running of assertions (fi1 ; si1), : : :, (fij�1
; sij�1

) may have caused the creation

of many new acceptance records.

Bounded number of assertions in a proof: An instance may contain an

integer l such that (fi1 ; si1), : : :, (fit ; sit) is only considered a valid proof if t � l.

Bounded output set: An instance may contain integers m and s such that an

assertion (fi; si) can only be part of a valid proof that r complies with POLICY if

there is a set Oi = fRi1; : : : ; Rimg of m action strings, such that (fi; si)(A) � Oi

for any input set A, and the maximumsize of an acceptance record (i; si; Rij) is s.

Intuitively, for any user-supplied request r, the meaningful \domain of discourse"

for assertion (fi; si) is of size at most m | there are at most m actions that it

would make sense for (fi; si) to sign o� on, no matter what the other assertions

in the instance say about r.

Monotonicity: Important variants of POC are obtained by restricting atten-

tion to instances in which the assertions have the following property: (fi; si) is

monotonic if, for all acceptance sets A and B, A � B) (fi; si)(A) � (fi; si)(B).

Thus, if (fi; si) approves action Rij when given a certain set of \evidence" that

Rij is ok, it will also approve Rij when given a superset of that evidence | it

does not have a notion of \negative evidence."

Any of the parameters l, m, and s that are present in a particular instance

should be written in unary so that they play an analogous role to n (the number

of assertions) in our calculation of the total size of the instance. The parameters

d and c are exponents in a runtime bound and hence can be written in binary.

Any subset of the parameters d, c, l, m, and s may be present in a POC

instance, and each subset de�nes a POC variant, some of which are more natural

and interesting than others. Including a global runtime bound d obviously makes

the POC problem decidable, as does including parameters c and l.

5 Results

In stating and proving results about the complexity of POC, we use the notion

of a promise problem [5]. In a standard decision problem, a language L is de�ned

by a predicate R in that x 2 L , R(x). In a promise problem, there are two

predicates, the promise Q and the property R. A machineM solves the promise

problem (Q;R) if, for all inputs x for which the promise holds, the machine M

halts and accepts x if and only if the property holds. Formally, 8x[Q(x)) [M

halts on x and M (x) accepts , R(x)]]. Note that M 's behavior is unconstrained

on inputs that do not satisfy the promise, and each set of choices for the behavior

of M on these inputs determines a di�erent solution. Thus predicates Q and R

de�ne a family of languages, namely all L such that L = L(M) for someM that

solves (Q;R).

The class NPP consists of all promise problems with at least one solution in

NP. A promise problem is NP-hard if it has at least one solution and all of its

solutions are NP-hard. To prove that a promise problem (Q;R) is NP-hard, it

su�ces to start with an NP-hard language L and construct a reduction whose

target instances all satisfy the promise Q and satisfy the property R if and only

if they are images of strings in L.

5.1 NP-Hardness

The following are natural POC variants that we can show to be computationally

intractable.

Locally Bounded Proof of Compliance (LBPOC):

Input : A request r, a set f(f0;POLICY); (f1; s1); : : : ; (fn�1; sn�1)g of assertions,

and integers c, l, m, and s.

Promise : Each (fi; si) runs in time O(N c). On any input set that contains

(�;�;R), where R is the action string corresponding to request r, for each (fi; si)

there is a set Oi of at most m action strings such that (fi; si) only produces

output from Oi, and s is the maximum size of an acceptance record (i; si; Rij),

where Rij 2 Oi.

Question : Is there a sequence i1; : : : ; it of indices such that

1. Each ij is in f0; 1; : : :; n� 1g, but the ij need not be distinct or collectively

exhaustive of f0; 1; : : :; n� 1g,

2. t � l, and

3. (0;POLICY; R) 2 (fit ; sit) � � � � � (fi1 ; si1)(f(�;�;R)g)?

Globally Bounded Proof of Compliance (GBPOC):

Input : A request r, a set f(f0;POLICY); (f1; s1); : : : ; (fn�1; sn�1)g of assertions,

and an integer d.

Question : Is there a sequence i1; : : : ; it of indices such that

1. Each ij is in f0; 1; : : :; n� 1g, but the ij need not be distinct or collectively

exhaustive of f0; 1; : : :; n� 1g,

2. (0;POLICY; R) 2 (fit ; sit)�� � ��(fi1 ; si1)(f(�;�;R)g), where R is the action

string corresponding to request r, and

3. The computation of (fit ; sit)� � � �� (fi1 ; si1)(f(�;�;R)g) runs in (total) time

O(Nd)?

Monotonic Proof of Compliance (MPOC):

Input : A request r, a set f(f0;POLICY); (f1; s1); : : : ; (fn�1; sn�1)g of assertions,

and integers l and c.

Promise : Each assertion (fi; si) is monotonic and runs in time O(N c).

Question : Is there a sequence i1; : : : ; it of indices such that

1. Each ij is in f0; 1; : : :; n� 1g, but the ij need not be distinct or collectively

exhaustive of f0; 1; : : :; n� 1g,

2. t � l, and

3. (0;POLICY; R) 2 (fit ; sit)�� � ��(fi1 ; si1)(f(�;�;R)g), where R is the action

string corresponding to request r?

Each version of POC can be de�ned using \agglomeration" (f2; s2) ? (f1; s1)

instead of composition (f2; s2) � (f1; s1). The result of applying the sequence

of assertions (fi1 ; si1), : : :, (fit ; sit) agglomeratively to an acceptance set S0 is

de�ned inductively as follows: S1 � (fi1 ; si1)(S0) [S0 and, for 2 � j � t,

Sj � (fij ; sij)(Sj�1) [Sj�1. Thus, for any acceptance set A, A � (fit ; sit) ?

� � �? (fi1 ; si1)(A). The agglomerative versions of the decision problems are iden-

tical to the versions already given, except that the acceptance condition is

\(0;POLICY; R) 2 (fit ; sit) ? � � �? (fi1 ; si1)(f(�;�;R)g)?" We refer to \agglom-

erative POC," \agglomerative MPOC," etc., when we mean the version de�ned

in terms of ? instead of �.

A trust management system that de�nes \proof of compliance" in terms of

agglomeration makes it impossible for an assertion to \undo" an approval that

it or any other assertion has already given to an action string during the course

of constructing a proof. This de�nition of proof makes sense if it is important for

the trust management system to guard against a rogue credential-issuer's ability

to thwart legitimate proofs. Note that the question of whether the compliance

checker combines assertions using agglomeration or composition is separate from

the question of whether the assertions themselves are monotonic.

In proving that certain POC variants, while decidable, are computationally

intractable, we use the fact that the Bounded Post Correspondence Problem is

NP-complete [6, Problem SR11].

Bounded Post Correspondence (BPCP):

Input : A �nite alphabet �, two sequences a = (a1, a2, : : :, an) and b =

(b1; b2; : : : ; bn) of strings from ��, and a positive integer K � n.

Question : Is there a sequence i1; i2; : : : ; ik of k � K (not necessarily distinct)

positive integers, each between 1 and n, such that the two strings ai1ai2 � � �aik
and bi1bi2 � � �bik are identical?

Theorem 1. The Locally Bounded Proof of Compliance promise problem is in

NPP and is NP-hard.

Proof. LBPOC is clearly in NPP, because the obvious nondeterministic polyno-

mial-time procedure works on all instances that satisfy the promise: Guess a se-

quence i1; : : : ; it of indices, simulate the assertions (fij ; sij) in the order speci�ed

by the sequence, and accept if and only if the acceptance record (0;POLICY; R)

is in the �nal acceptance set.

We now give a reduction from BPCP to LBPOC all of whose target instances

satisfy the promise; this shows that LBPOC is NP-hard. Let (�; (a1; : : : ; aq); (b1;

: : : ; bq);K) be a BPCP instance. In the corresponding LBPOC instance, the

request r and equivalent action string R do not play a signi�cant role and can

be taken to be �, for any �xed � 2 �. Similarly, the only value of si that matters

is s0 = POLICY; we can put si = �, for all i 6= 0. The number of assertions is

n = q + 1. For 1 � i � q, assertion (fi; �) produces action strings of the form

(ai; bi; e), where ai and bi are identical to the strings in the BPCP instance, and e

is a positive integer. (The integer e is only needed because the inputs and outputs

of assertions are unordered sets, rather than ordered lists.) Speci�cally, when

fed acceptance set S as input, (fi; �) outputs S [f(i; �; (ai; bi; jSj))g. Let c = 2,

l = K, and m = K. The parameter s, which should be an upper bound on the

size of an acceptance record produced by the assertions in the LBPOC instance,

can be taken to be 2(log2(q + 1) + log2 j�j+max1�i�q(jaij+ jbij) + log2K).

The policy assertion (f0;POLICY) behaves as follows on input S.

{ If S is not of the form f(�;�;R); (j1; �; (aj1; bj1; e1)); : : : ; (jt; �; (ajt; bjt; et))g,

for some 1 � t � l, output the empty set.

{ Sort f(�;�;R); (j1; �; (aj1, bj1 , e1)), : : :, (jt, �, (ajt , bjt, et))g into increasing

order with respect to the ej 's. Let i1; : : : ; it be the resulting sorted sequence

of �rst coordinates of acceptance records.

{ If ai1 � � �ait = bi1 � � � bit, then output f(0;POLICY; R)g. Else output the

empty set.

This reduction shows that LBPOC is NP-hard, because (�; (a1; : : : ; aq); (b1;

: : : ; bq);K) is a yes-instance of BPCP if and only if (r, (f0;POLICY), : : :,

(fn�1; �), c, l, m, s) is a yes-instance of LBPOC. The parameter c is set to two

so that (f0;POLICY) has (more than enough) time to sort. The other assertions

run in linear time. ut

Theorem 2. The Globally Bounded Proof of Compliance problem is NP-com-

plete.

Proof. It is clear that GBPOC is in NP, because a nondeterministic machine

can guess a sequence of assertions and then simulate them in polynomial time

to verify that conditions 1 through 3 are met.

The reduction given in the proof of Theorem 1 can be modi�ed to yield a

reduction from BPCP to GBPOC. In an LBPOC instance, each assertion can

output an acceptance set of size at most ms. The total number of assertions

run is at most l, and thus the size of the input to any assertion is at most

lms. The running time of any assertion is thus at most � � (lms)2, for some

constant � > 0, and the total running time of the entire simulation is at most

� � l � (lms)2. In the de�nition of GBPOC, N is de�ned to be the total length of

the GBPOC instance. To get a reduction from BPCP to GBPOC, choose d so

that Nd � � � l � (lms)2. ut

Theorem 3. The Monotonic Proof of Compliance promise problem is NP-hard.

It remains NP-hard if the requirement that t be bounded by l is omitted.

Proof. Consider the following assertion (fa; sa): If the input set contains action

strings encoding i for all i, 1 � i � 2b
2

, then output the union of the acceptance

records in the input set and a set of acceptance records with action strings

encoding 2b
2

+ 1; : : : ; 2(b+1)
2

, assertion number a, and source-ID sa. Otherwise,

just return the input set. This assertion is monotonic and runs in time polynomial

in the size of its input.

An instance of BPCP of size n can be mapped in polynomial time to an

instance of MPOC consisting of n assertions that produce no output, the asser-

tion (fa; sa) described above that counts to 2(b+1)
2

, the parameter l = n, and a

monotonic policy assertion (f0;POLICY) that solves the BPCP problem from

scratch. The compliance checker solves the target instance by running (fa; sa)

n = l times, thereby producing
(2n
2

) acceptance records. Because its input

has size
(2n
2

), the assertion (f0;POLICY) has time 2c(n
2) at its disposal, and

this is su�cient to solve BPCP from scratch for some choice of the parameter c

in the MPOC instance. Note that the size of the MPOC instance is linear in n.

Because the reduction just sets the parameter l to n, the problem becomes

no easier if the parameter l is omitted.

Note that this reduction produces a language that is NP-hard but is not

known to be in NP. It is not known whether this promise problem is in NPP. ut

Corollary 1. The agglomerative versions of LBPOC, GBPOC, and MPOC are

also NP-hard.

Proof. Essentially the same reductions from BPCP that work for the composi-

tion versions of these problems work for the agglomerative versions, too. In the

agglomerative cases of LBPOC and GBPOC, the credential assertion (fi; �) can

map input S to f(i; �; (ai; bi; jSj))g instead of S [f(i; �; (ai; bi; jSj))g, because

the compliance checker maintains the agglomeration. A similar, straightforward

modi�cation works for the hardness proof for MPOC. ut

5.2 Polynomial-time Algorithm

We now present the compliance-checking algorithm that is used in the current

version of the PolicyMaker trust management system. We describe the special

case of the POC problem that our algorithm is guaranteed to solve and, just as

importantly, what the algorithm does when given a POC instance not of this

special form. The promise that de�nes this special case includes some conditions

that we have already discussed, namely monotonicity and bounds on the run-

time of assertions and on the total size of acceptance sets that assertions can

produce. For a working algorithm, however, we need to consider another condi-

tion, which we call \authenticity," that we could ignore when proving hardness

results. An authentic assertion (fi; si) only produces acceptance records of the

form (i; si; Rij), i.e., it does not \impersonate" another assertion by producing

an acceptance record of the form (i0; si0 ; Ri0j).

PolicyMaker constructs proofs in an agglomerative fashion, and hence we

use ? in the following problem statement. This variant of POC could be de�ned

using � as well, but the algorithm given in this section would not work for the �

version.

Locally Bounded, Monotonic, and Authentic Proof of Compliance

(LBMAPOC):

Input : A request r, a set f(f0;POLICY); (f1; s1); : : : ; (fn�1; sn�1)g of assertions,

and integers c, m, and s.

Promise : Each assertion (fi; si) is monotonic, authentic, and runs in timeO(N c).

On any input set that contains (�;�;R), where R is the action string correspond-

ing to request r, for each (fi; si) there is a set Oi of at most m action strings,

such that (fi; si) only produces output from Oi, and s is the maximum size of

an acceptance record (i; si; Rij), such that Rij 2 Oi.

Question : Is there a sequence i1; : : : ; it of indices such that each ij is in f0; 1; : : : ;

n�1g, but the ij need not be distinct or collectively exhaustive of f0; 1; : : :; n�1g,

and (0;POLICY; R) 2 (fit ; sit) ? � � � ? (fi1 ; si1)(f(�;�;R)g).

We present an algorithm called CCA1, for \compliance-checking algorithm,

version 1," to allow for the evolution of PolicyMaker, and for improved algorithms

CCAi, i � 1.

We call (fi; si) \ill-formed" if it violates the promise. If CCA1 discovers in the

course of simulating it that (fi; si) is ill-formed, CCA1 ignores it for the remain-

der of the computation. Note that an assertion (fi; si) may be undetectably ill-

formed; for example, there may be sets A � B such that (fi; si)(A) 6� (fi; si)(B),

but such that A and B do not arise in this run of the compliance checker. The

CCA1 algorithm checks for violations of the promise every time it simulates

an assertion. We don't include pseudocode for these checks in the statement of

CCA1 displayed above, because it would not illustrate the basic structure of the

algorithm; the predicate IllFormed() is included in the main loop to indicate

that the checks are done for each simulation.

Like the nondeterministic algorithms presented in Section 5.1, CCA1 accepts

if and only if the acceptance record (0;POLICY; R) is produced when it sim-

ulates the input assertions. Unlike the previous algorithms, however, it cannot

nondeterministically guess an order in which to do the simulation; it must have

an algorithmic method of �nding an order. CCA1 must also ensure that, if a

proper subset F of the input assertions contains a proof that r complies with

POLICY and every (fi; si) 2 F satis�es the promise, then the remaining as-

sertions do not destroy all or part of the acceptance records produced by F

during the simulation and thus destroy the proof, even if these remaining as-

sertions do not satisfy the promise. CCA1 achieves this by maintaining one set

of approved acceptance records, from which no records are ever deleted (i.e., by

agglomerating), and by discarding assertions that it discovers are ill-formed.

Fig. 1. Pseudocode for Algorithm CCA1

CCA1(r, f(f0, POLICY), (f1, s1), : : :, (fn�1, sn�1)g, c, m, s):

f
S f(�, �, R)g
I fg
For j 1 to mn

f
For i n-1 to 0

f
If (fi, si) 62 I, Then S' (fi,si)(S)

If IllFormed((fi,si)), Then I I [f(fi,si)g,
Else S S [S'

g
g
If (0, POLICY, R) 2 S, Then Output(Accept),

Else Output(Reject)

g

Note that CCA1 does mn iterations of the sequence (fn�1; sn�1), : : :, (f1; s1),

(f0;POLICY), for a total of mn2 assertion-simulations. Recall that a set F =

f(fj1 ; sj1); : : : ; (fjt; sjt)g � f(f0, POLICY), : : :, (fn�1, sn�1)g \contains a proof

that r complies with POLICY" if there is some sequence k1; : : : ; ku of the indices

j1; : : : ; jt, not necessarily distinct and not necessarily exhaustive of j1; : : : ; jt,

such that (0;POLICY; R) 2 (fku; sku) ? � � � ? (fk1 ; sk1)(f(�;�;R)g).

Theorem 4. Let (r; f(f0;POLICY); (f1; s1); : : :, (fn�1, sn�1)g, c, m, s) be an

(agglomerative) LBMAPOC instance.

(1) Suppose that F � f(f0;POLICY); (f1; s1); : : : ; (fn�1; sn�1)g contains a

proof that r complies with POLICY and that every (fi; si) 2 F satis�es the

promise of LBMAPOC. Then CCA1 accepts (r; f(f0;POLICY); (f1; s1); : : : ;

(fn�1; sn�1) g; c;m; s).

(2) If f(f0;POLICY); (f1; s1); : : : ; (fn�1; sn�1)g does not contain a proof that

r complies with POLICY, then CCA1 rejects (r; f(f0;POLICY); (f1; s1); : : : ;

(fn�1; sn�1) g; c;m; s).

(3) CCA1 runs in time O(mn2(nms)c).

Proof. The only nontrivial claim is (1). Let F = f(fj1 ; sj1); : : : ; (fjt; sjt)g be a

set that satis�es the hypothesis of (1). Each assertion in F is monotonic, and, as

CCA1 simulates assertions agglomeratively, it never deletes acceptance records

that have already been produced but rather just adds new ones. Therefore, we

may assume without loss of generality that F contains all of the well-formed

assertions in f(f0;POLICY); (f1; s1); : : : ; (fn�1; sn�1)g.

Let k1; : : : ; ku be a sequence of indices, each in fj1, : : :, jtg, but not necessar-

ily distinct and not necessarily exhaustive of fj1, : : :, jtg, such that (0, POLICY,

R) 2 (fku , sku) ? � � �? (fk1 ; sk1)(f(�;�;R)g). Assume without loss of general-

ity that no sequence of length less than u has this property. Let A1; : : : ; Au

be the acceptance sets produced by applying (fk1 ; sk1); : : : ; (fku; sku). Because

k1; : : : ; ku is a shortest sequence that proves compliance using assertions in F ,

each set Ap must contain at least one action string that is not present in any

of A1; : : : ; Ap�1. Thus u iterations of (f0;POLICY) ? (f1; s1) ? � � � ? (fn�1; sn�1)

would su�ce for CCA1: At some point in the �rst iteration, (fk1 ; sk1) would be

run, and, because CCA1 adds but never deletes acceptance records, A1 or some

superset of A1 would be produced. At some point during the second iteration,

(fk2 ; sk2) would be run, and because A1 would be contained in its input, A2 or

some superset of A2 would be produced. And so forth.

Each (fjh ; sjh) 2 F satis�es the local boundedness promise and thus pro-

duces at most m distinct action strings in any computation that begins with

f(�;�;R)g, regardless of the behavior of other assertions, even ill-formed ones.

Because jF j = t � n, at most mn distinct action strings could ever be produced

by assertions in F , and at mostmn sets Ap can be produced if each is to contain

a record that is not contained in any set that comes earlier in the sequence.

Thus, u � mn, and mn iterations of (f0;POLICY) ? (f1; s1) ? � � � ? (fn�1; sn�1)

su�ce. ut

Note that cases (1) and (2) do not cover all possible inputs to CCA1. There

may be a subset F of the input assertions that does contain a proof that r

complies with POLICY but that contains one or more ill-formed assertions. If

CCA1 does not detect that any of these assertions is ill-formed, because their

ill-formedness is only exhibited on acceptance sets that do not occur in this com-

putation, then CCA1 will accept the input. If it does detect ill-formedness, then,

as speci�ed here, CCA1 may or may not accept the input, perhaps depending

on whether the record (0;POLICY; R) has already been produced at the time of

detection. CCA1 could be modi�ed so that it restarts every time ill-formedness

is detected, after discarding the ill-formed assertion so that it is not used in the

new computation. It is not clear whether this modi�cation would be worth the

performance penalty. The point is simply that CCA1 o�ers no guarantees about

what it does when it is fed a policy that trusts, directly or indirectly, a source

of ill-formed assertions, except that it will terminate in time O(mn2(nms)c). It

is the responsibility of the policy author to know which sources to trust and to

modify the policy if some trusted sources are discovered to be issuing ill-formed

assertions.

6 Discussion

6.1 The PolicyMaker Notion of Proof

We have shown in this paper that the PolicyMaker system uses a notion of

\proof that a request complies with a policy" that is amenable to de�nition and

analysis. However, the choice of this notion of proof is still a subjective one, and

there is no way to show de�nitively that it is the right notion of proof. We now

brie
y discuss three nontrivial design decisions that went into this choice.

A policy and credential set that are input to the compliance checker can be

regarded as a \distributed policy" with which the request may or may not com-

ply { when the local policy asserts that it trusts a credential issuer to authorize

certain types of requests, it delegates part of its policy-writing responsibility to

that credential issuer. The job of the compliance checker is to have the exe-

cutable assertions in this distributed policy cooperate to produce a proof, and

this cooperation requires a mechanism for \inter-assertion communication" of

intermediate results. For simplicity, we chose to have assertions communicate

just by outputting acceptance records that can be input to other assertions.

More sophisticated interactions, such as allowing assertions to call each other as

subroutines, might be useful but would require a more complex execution envi-

ronment than the one PolicyMaker provides. An open question for future work

on trust management is the trade-o� between the cost of building and analyzing

such an execution environment and the potential power to be gained by using

more sophisticated interactions to construct proofs of compliance. Preliminary

work along those lines can be found in [3].

The choice of this simple communication mechanism implies that an impor-

tant part of constructing a proof of compliance is choosing an order in which

to execute assertions. PolicyMaker assigns the responsibility of choosing this or-

der to the compliance checker and not, for example, to the calling application.

Although the compliance checker's job could be made easier by requiring the

calling application to give it the correct order as an input, such a requirement

would not be consistent with PolicyMaker's overall goals, some of which are dis-

cussed in Section 2 above. Applications should be able to use credentials issued

by diverse and far-
ung sources, without having to make assumptions about the

order in which these credentials expect to communicate via acceptance records.

In an extreme case, the issuing sources will not be aware of each others' exis-

tence, and no such assumptions by the calling application would be valid; the

compliance checker has to have a way to proceed even in this case.

Although the most general version of the POC problem allows assertions to

be arbitrary functions, the computationally tractable version that is analyzed

in Section 5.2 and implemented in PolicyMaker is guaranteed to be correct only

when all assertions are monotonic. In particular, correctness is guaranteed only

for monotonic policy assertions, and this excludes certain types of policies that

are used in practice, most notably those that make explicit use of \negative cre-

dentials" such as revocation lists. Although it is a limitation, the monotonicity

requirement has certain advantages. One of them is that, although the com-

pliance checker may not handle all potentially desireable policies, it is at least

analyzable and provably correct on a well-de�ned class of policies. Furthermore,

the requirements of many non-monotonic policies can often be achieved by mono-

tonic policies. For example, the e�ect of requiring that an entity not occur on

a revocation list can also be achieved by requiring that it present a \certi�cate

of non-revocation"; the choice between these two approaches involves trade-o�s

among the (system-wide) costs of the two kinds of credentials and the bene�ts of

a standard compliance checker with provable properties. Finally, restriction to

monotonic assertions encourages a conservative, prudent approach to security:

In order to perform a potentially dangerous action, a user must present an ad-

equate set of a�rmative credentials; no potentially dangerous action is allowed

\by default," simply because of the absence of negative credentials.

Thus, we believe that the notion of proof now implemented in PolicyMaker is

quite widely applicable. However, the question of how to handle non-monotonic

policies in a general-purpose trust management system is an important one for

future research.

6.2 A Trade-o� Between Expressiveness and Veri�ability

We have formulated the POC problem in a way that allows assertions to be as ex-

pressive as possible. As a result, well-formedness promises such as monotonicity

and boundedness, while formal and precise, cannot in general be veri�ed. Each

assertion that conditionally trusts an assertion source for application-speci�c ex-

pertise (such as suitability for a loan) must also trust that source only to write

bounded and monotonic assertions and only to trust other similar sources of

assertions. The resulting notion of soundness is that if there is no proof from a

set of trusted, well-formed assertions, then CCA1 will not accept the input.

Full expressiveness, however, is just one goal of a trust management system.

Another goal is the clear separation of the trust relationships of assertions from

programming details. To some extent, these goals are at odds | the compliance

checker cannot be expected to perform veri�cations on fully general programs,

and thus the assertion writers must worry about some programming details.

We note that one can require monotonic assertions actually to be written

as AND-OR circuits and bounded assertions to \declare" the �nite set from

which they will produce output. A compliance-checking algorithm could then

easily detect the ill-formed assertions and discard them. This would free assertion

writers of the burden of deciding when another writer is trusted to write bounded

and monotonic code, just as requiring assertions to be written in a safe (and

therefore restricted) language frees the assertion writer from worrying about

certain application-independent programming details. This veri�ability comes

at a price; listing a �nite output set is relatively inexpensive, but there are

monotonic functions that require exponentially bigger circuits to express over a

basis of AND and OR than they require over a basis of AND, OR, and NOT [11].

In some applications it may be cheaper, on average, to write assertions that are

veri�ably bounded and monotonic than to determine the set of sources trusted

(even indirectly) by a given assertion and to judge whether they are trusted to

be monotonic and bounded.

We mention another possibility for the compliance checker that gives both

expressiveness and veri�cation tools, although only at a possible performance

penalty. Another possible approach that we have not yet explored is for the

compliance checker to make available to assertions reading acceptance records

the original code of the assertions that produced those records. A conservative

policy then, before trusting assertions (f1; s1) and (f2; s2), could require and

check that f1 and f2 be veri�ably monotonic and bounded and that f1 and

f2 each include speci�c standard code to check all assertions whose acceptance

records (f1; s1) and (f2; s2) wish to trust. A complex monotonic assertion that

needs to be written compactly using NOT gates can, if desired, still be used with

the modi�ed compliance algorithm.

References

1. M. Blaze, J. Feigenbaum, and J. Lacy, Decentralized Trust Management, in Pro-
ceedings of the Symposium on Security and Privacy, IEEE Computer Society

Press, Los Alamitos, 1996, pp. 164{173.

2. M. Blaze, J. Feigenbaum, P. Resnick, and M. Strauss, Managing Trust in an

Information-Labeling System, European Transactions on Telecommunications, 8

(1997), pp. 491{501. (Special issue of selected papers from the 1996 Amal� Con-

ference on Secure Communication in Networks.)

3. Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss, REFEREE:
Trust Management for Web Applications, World Wide Web Journal, 2 (1997),

pp. 127{139. (Reprinted from Proceedings of the 6th International World Wide

Web Conference, World Wide Web Consortium, Cambridge, 1997, pp. 227{238.)

4. D. Denning, Cryptography and Data Security, Addison-Wesley, Reading,

1982.

5. S. Even, A. Selman, and Y. Yacobi, The Complexity of Promise Problems with

Applications to Public-Key Cryptography, Information and Control, 61 (1984),

pp. 159{174.

6. M. Garey and D. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman, San Fancisco, 1979.

7. M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, Protection in Operating Systems,

Communications of the ACM, 19 (1976), pp. 461{471.

8. A. K. Jones, R. J. Lipton, and L. Snyder, A Linear Time Algorithm for Deciding

Security, in Proceedings of the Symposium on Foundations of Computer Science,

IEEE Computer Society Press, Los Alamitos, 1976, pp. 33-41.

9. J. Lacy, D. P. Maher, and J. H. Snyder, Music on the Internet and the Intellectual

Property Protection Problem, in Proceedings of the International Symposium on
Industrial Electronics, IEEE Press, New York, 1997, pp. SS77{83.

10. R. Levien, L. McCarthy, and M. Blaze, Transparent Internet E-mail Security,

http://www.cs.umass.edu/~lmccarth/crypto/papers/email.ps

11. E. Tardos, The Gap Between Monotone and Non-monotone Circuit Complexity

is Exponential, Combinatorica, 8 (1988), pp. 141{142.

12. T. Y. C. Woo and S. S. Lam, Authorization in Distributed Systems: A New Ap-

proach, Journal of Computer Security, 2 (1993), pp. 107{36.

