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Abstract

A (t; n)-locally random reduction maps a problem instance x into a set of problem instances
y1; : : : ; yn in such a way that it is easy to construct the answer to x from the answers to

y1; : : : ; yn, and yet the distribution on t-element subsets of y1; : : : ; yn depends only on jxj. In
this paper we formalize such reductions and give improved methods for achieving them. Then
we give a cryptographic application, showing a new way to prove in perfect zero knowledge

that committed bits x1; : : : ; xm satisfy some predicate Q. Unlike previous techniques for such
perfect zero-knowledge proofs, ours uses an amount of communication that is bounded by a
�xed polynomial in m, regardless of the computational complexity of Q.

1 Introduction

We develop and apply a new type of reduction, which we call a locally random reduction. We

begin with some historical motivation and context for our work. Next, we present an improved

construction of locally random reductions. Finally, we apply these reductions to zero-knowledge

proofs on committed bits.

1.1 Motivation and historical context

The notion of reducibility among computational problems has long had a pervasive in
uence on

the theory of computation. To analyze the average case complexity of a problem, it often su�ces

to reduce an arbitrary instance of the problem to a random instance. For example, let p be a

prime and � be a generator of Z�
p
. One can reduce the problem of computing log

�
x mod p, where

x 2 Z
�
p
, to that of computing log

�
y mod p, where y is distributed uniformly over Z�

p
. Simply

choose r uniformly at random from f1; : : : ; p � 1g, compute y = �
r
x mod p, and let log

�
x =
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(log
�
y)� r mod (p� 1). Thus, one can generate a \hard" instance of x by choosing x at random:

If computing log
�
x were easy for a randomly chosen x, then it would be easy for any value of x.

More generally, suppose one could randomly reduce computing f(x), where jxj = m, to com-

puting g(y), such that y is distributed according to some probability measure Rm. Then the

average-case complexity of computing g(y), where the average is computed with respect to Rm, is

as high as the worst-case complexity of computing f(x).

Unfortunately, this approach is limited, because of the following result. Suppose that �P3 6= �P3 ,

and that f is NP-hard. Then there is no polynomial-time random reduction from f to any function

g such that the distribution on random instances y depends only on jxj (cf. [1]). This result holds for

a generalized notion of random reductions, known as single-oracle instance-hiding schemes. These

schemes have a probabilistic polynomial-time bounded player P and an unbounded player O that

always answers correctly. P wishes to compute f(x) for some function f and an input x. P is

allowed to 
ip coins and to interact with O for an arbitrary number of rounds but is not allowed

to reveal anything more than jxj to O. Here, \revealing only jxj to O" means that if jx1j = jx2j,

then O's views of the conversation when x = x1 and when x = x2 are identically distributed. A

more precise and general formulation of this idea may be found in [1].

Rivest [17, 1] proposed the more general notion of multi-oracle instance-hiding schemes, in

which P is allowed to interact with a number of oracles O1; : : : ; On. P is not allowed to reveal more

than jxj to any single oracle Oi, but two or more oracles together may have enough information

to reconstruct x completely. Whereas schemes with only one oracle appear relatively weak, Beaver

and Feigenbaum proved the following theorem for multi-oracle schemes.

Theorem: [3] For any function f , there exists an (jxj + 1)-oracle instance-hiding scheme that

reveals at most jxj.

Because any function f : f0; 1gm �! f0; 1g can be trivially reduced to a function g : f0; 1gm�c �!

f0; 1g2
c

, the factor of jxj+ 1 may be reduced to a factor of jxj � c lg jxj. In fact, we will later show

how to reduce this to jxj=c lg jxj.

Lipton [15] translated the arguments of [3] into the language of multivariate polynomials and

applied them to the area of program testing. This framework is much easier to work with than the

original framework, which involved multi-party computations on shared secrets, and furthermore

allows one to prove useful program-testing results for multivariate polynomials of low degree. It

has been observed that Lipton's program-testing reductions imply average-case complexity results,

such as the following theorem on computing permanents over �nite �elds.

Theorem: [15] Let F be a �nite �eld with more than m + 1 elements. Suppose that, for some

probabilistic polynomial-time algorithm P , and for M chosen uniformly from m�m matrices,

Pr[P (M) = perm(M)] > 1�
1

3(m+ 1)
:

Then there exists a probabilistic polynomial-time algorithm Q such that, for all m �m matrices

M ,

Pr[Q(M) = perm(M)] > 1� 2�m:

Taking the contrapositive, if computing permanents over large �nite �elds is di�cult in the worst

case, it must also be di�cult for an 
(1=m) fraction of the instances. Since the results of
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Beaver-Feigenbaum [3] and Lipton [15] appeared, a number of researchers have used random-self-

reducibility properties of multivariate polynomials to show, among other things, that P#P � IP

(cf. [16]), IP = PSPACE (cf. [19]), and MIP = NEXPTIME (cf. [2]). A detailed overview of the

relationship of locally random reductions to other basic concepts in complexity theory can be found

in [9].

1.2 Our results

In this paper, we provide a formal de�nition of locally random reductions, exhibit an improved gen-

eral construction of such reductions, and apply them to zero-knowledge proof systems. Informally,

a (t; n)-locally random reduction from a function f to a function g works as follows. To compute

f(x), we use x and a string r of \random coin-
ips" to generate y1; : : : ; yn. Here n, as well as t, de-

pends only on m = jxj. We recover f(x) by computing simple function of x; r, and g(y1); : : : ; g(yn).

Moreover, for any x0 and x1 of the same length m, for any i1; : : : ; it, the distribution y
0
i1
; : : : ; y

0
it

induced by x0 is identical to the distribution y
1
i1
; : : : ; y

1
it
induced by x1. We prove the following

theorem, which is stated informally here; a formal statement and proof are given in Section 3.

Theorem 1: For any function f : f0; 1gm ! f0; 1g and any constant c > 0, there is a function g

such that f is (t; tm=c lgm)-locally random reducible to g.

This improves on the results of [3, 15] mentioned above.

We apply locally random reductions in a novel protocol for zero-knowledge proofs on committed

bits. Zero-knowledge proof systems, as originally formulated by Goldwasser, Micali, and Rack-

o� [13], are two-party protocols in which the parties have a common input x, and one party (the

prover) convinces the other (the veri�er) that, say, f(x) = 1, without revealing anything about x

except that f(x) = 1. We consider a related setting in which the prover publishes a commitment

to its private input x and then at some later time proves in zero-knowledge to the veri�er that

f(x) = 1. Furthermore, f may be unknown at the time x is committed.

We consider how to implement such proofs in the presence of an ideal commitment scheme. Both

prover and veri�er have unlimited computational power, no complexity-theoretic assumptions are

made, and an ideal bit commitment scheme is assumed as a primitive. A natural question to ask

is whether one can actually perform zero-knowledge proofs on committed bits in this setting. This

question has been answered in the a�rmative by several researchers (e.g., [5, 18]); a written account

of a more recent scheme appears in [6].

It is natural to ask whether an interactive proof system is at all interesting if it requires the

veri�er as well as the prover to have unlimited computational power. The answer is yes, for the

following reason: We are focusing on the communication cost of proving the value of a predicate

on a set of committed bits. It is not at all clear (and might even be counterintuitive) that an

arbitrary predicate f can be proven in a communication-e�cient manner, even if both prover and

veri�er have enough computational power to compute f . All previous schemes for zero-knowledge

proofs on committed bits, including those of [5, 6, 18], have bit complexity proportional to the

circuit complexity of f , where by \bit complexity" we mean the total number of bits committed to

or communicated between the two players. Thus, if f is an arbitrary predicate on m bits, a zero-

knowledge proof that f(x) = 1 will require exponential communication if one uses the protocols

of [5, 6, 18], regardless of the amount of computational power one allows the veri�er. By applying
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locally random reductions, we achieve a protocol whose total communication cost is polynomial,

even if the circuit complexity of f is exponential.

Theorem: Given an ideal commitment scheme, there exist protocols for committing and decom-

mitting bits and a protocol for proving arbitrary predicates on a set of committed bits. The proof

system reveals nothing about the committed bits other than what is implied by the predicate being

true. Furthermore, the bit complexity of the proof system is polynomial in the number of input

bits to the predicate { it is independent of the predicate's computational complexity.

A formal statement and proof of this theorem appears in Section 4.

Although the fact that both prover and veri�er in our protocol have unlimited computational

power does not detract from the theoretical importance of the fact that the protocol's commu-

nication costs are polynomial, it does render the protocol impractical. With respect to practical

applicability, our protocol is not an improvement over those of [5, 6, 18].

The rest of the paper is organized as follows. In Section 2, we formally de�ne locally random

reductions and other notions that we will use later in the paper. In Section 3, we give our improved

construction of locally random reductions. In Section 4, we give our communication-e�cient pro-

tocol for zero-knowledge proofs on committed bits. Open questions are given in Section 5.

These results �rst appeared in our Technical Memorandum [4].

2 Preliminaries

2.1 Locally random reductions

We now formalize the intuition of Section 1.2.

De�nition 1 Let f : D ! f0; 1g�, g : D0 ! f0; 1g�, and t; n : N ! N. We say that f is

(t; n)-locally random reducible to g in time Q(m) if there is a polynomial �(m) and a pair of

Q(m)-time computable functions (scatter ; reconstruct) such that:

� [Correctness] For all m 2 N and x 2 D \ f0; 1gm, for at least 3=4 of all r 2 f0; 1g�(m),

f(x) = reconstruct(x; r; g(y1); : : : ; g(yn(m)));

where hy1; : : : ; yn(m)i = scatter(x; r).

� [Local randomness] For all m 2 N and fi1; : : : ; it(m)g � f1; : : : ; n(m)g, if r is chosen

uniformly at random from f0; 1g�(m), then, for any x1; x2 2 D \ f0; 1g
m, the distribution on

hyi1 ; : : : ; yit(m)
i induced by scatter(x1; r) is identical to that induced by scatter(x2; r).

More succinctly, we will write \f is (t; n)-lrr to g." When we omit mention of Q, it means that

Q(m) is a polynomial but that the speci�c polynomial involved is unimportant for the result under

discussion. In the special case in which f = g, we say that f is \(t; n)-locally random self-reducible."

Informally, if T is a subset of the target instances fy1; : : : ; yn(m)g, and jT j � t(m), then T leaks

no information about the original instance x, except its length m.
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2.2 Function arithmetization

A powerful technique for dealing with a Boolean function f : f0; 1gm ! f0; 1g is to treat f as a

multivariate polynomial P over some �nite �eld F . In this way, algebraic properties of polynomials

can be directly exploited. Such arithmetization of Boolean functions is an important insight of Ben-

Or, Goldwasser, and Wigderson [7]. The polynomial P is sometimes referred to as a \multilinear

extension of f over F" (e.g., in [2, 16, 19]).

Fix a function f : f0; 1gm! f0; 1g and a �nite �eld F . We use �i

1 to denote the polynomial xi
and �

i

0 to denote the polynomial 1 � xi. (The \1" is the multiplicative identity of F .) Given an

m-bit string a = a1 : : :am, we de�ne the polynomial �a by

�a =
mY
i=1

�
i

ai
:

Now let the polynomial P (x) be given by

P (x) =
X

a2f0;1gm

f(a)�a(x) :

This is the arithmetization of f over F .

Here is an example. Let f(x1x2x3) = x1 � x2 � x3, where � denotes exclusive-or. Then the

arithmetization of f is the polynomial

P (x1; x2; x3) = x1(1� x2)(1� x3) + (1� x1)x2(1� x3) + (1� x1)(1� x2)x3 + x1x2x3:

At this point, we make two observations. First, in the de�nition of �a, each variable can appear

at most once in the product, and so �a is linear in each variable xi. Thus P is also linear in

each variable xi (being the sum of monomials that are linear in xi). Second, for any x 2 f0; 1gm,

P (x) = f(x). This identity may be veri�ed by noting that, in the sum given by the de�nition of

P (x), all the terms are 0 except for one that is equal to f(x).

Throughout this paper, we assume that the �nite �eld F has characteristic two. This allows us

to choose an element of F uniformly at random simply by 
ipping coins. All of our de�nitions and

results can be stated for F of characteristic greater than two as well. Certain protocols that work

with probability one when F has characteristic two may fail with exponentially small probability

when F has higher characteristic, because a sequence of coin 
ips may fail to yield an element of

F . Otherwise, everything that we present is the same for all �nite �elds.

3 Improved locally random reductions

We now show how to improve the results of Beaver-Feigenbaum [3] and Lipton [15]. We �rst exhibit

a parameterized family of random-self-reductions for multivariate polynomials over su�ciently large

�nite �elds. We then give, for any constant c > 0 and anym-bit function f , a (t; tbm=c lgmc)-locally

random reductions from f to some other function g.

Lemma 1 There is a polynomial Q(m) having the following property. Let d and t be numbers, and

let F be a �nite �eld of at least dt+ 2 points. Let P (x1; : : : ; xm) be a polynomial in F [x1; : : : ; xm]
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of total degree at most d. Then P is locally random self-reducible in time Q(m + d + t + lg jF j).

Furthermore, there is a single pair of functions (scatter ; reconstruct) that serves as a locally random

self-reduction for any P satisfying the above conditions.

Proof: Our proof proceeds along the lines of [3], using the polynomial framework of [15]. First,

we de�ne scatter(X; r). Let X = (x1; : : : ; xm) 2 F
m, and regard r as a set of mt random elements

of F , denoted fci;jg, where 1 � i � m and 1 � j � t. Let �1; : : : ; �dt+1 denote distinct nonzero

elements of F . De�ne pi(z) by

pi(z) = ci;tz
t + � � �+ ci;1z + xi:

Finally, de�ne

scatter(X; fci;jg) = (Y1; : : : ; Ydt+1);

where Yk = (p1(�k); : : : ; pm(�k)).

Before describing reconstruct, we explain our de�nition of scatter . De�ne P̂ (z) by

P̂ (z) = P (p1(z); : : : ; pm(z)):

Because P is of total degree at most d, and each pi(z) is of degree t in z, the curve P̂ (z) is of degree

at most dt. By de�nition,

P (Yk) = P̂ (�k); and

P (X) = P̂ (0) (because pi(0) = xi).

We now de�ne reconstruct . Recall that computing P (X) is equivalent to computing P̂ (0).

Because P̂ is a univariate polynomial of degree at most dt, P̂ (0) may be recovered from P̂ (�1), : : :,

P̂ (�dt+1) by Lagrangian interpolation. More explicitly, we de�ne scatter by

scatter(P (Y1); : : : ; P (Ydt+1)) =
dt+1X
k=1

tkYk ;

where t1; : : : ; tdt+1 2 F are constants de�ned by

tk =
Y
j 6=k

��j

�k � �j

:

Thus, (scatter ; reconstruct) has the correctness property required by De�nition 1, and both

scatter and reconstruct can be computed in the stated polynomial number of steps. Thus it su�ces

to show that, for anyX1; X2 2 F
m and any sequence (i1; : : : ; it), the distribution on (Yi1 ; : : : ; Yit) in-

duced by scatter(X1; r) is the same as that induced by scatter(X2; r), i.e., that (scatter ; reconstruct)

has the local randomness property also required by De�nition 1. We show this by using the fol-

lowing well known fact about polynomial interpolation: Given points (x1; y1); : : : ; (xt; yt), where

all the xi's are distinct and nonzero, and �xing c0, there is exactly one polynomial of the form

ctz
t + � � �+ c1z + c0 that agrees with all of these points. Thus, the fact that the ci;j 's are chosen

independently and uniformly at random, combined with our de�nition of scatter , implies that, for

any distinct �k1
; : : : ; �kt

2 F � f0g, and any X; Yk1 ; : : : ; Ykt 2 F
m, there is exactly one consistent
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value of C. Therefore, the distribution on (Yk1 ; : : : ; Ykt) is uniform over (Fm)t, for any value of

X 2 Fm.

Beaver and Feigenbaum showed that for, any m-bit boolean function f , there is a function g such

that f is (1; m+ 1)-locally random reducible to g. We now show how to reduce the total number

of queries from m+ 1 to bm=c lgmc, for any constant c > 0.

Theorem 1 Fix a constant c > 0 and a function t : N ! N. Then there is a polynomial Q(m)

having the following property: For any function f : f0; 1gm! f0; 1g there is a function g such that

f is (t; tbm=c lgm)c)-locally random reducible to g in time Q(m).

Proof: Let F be a �nite �eld of the form GF(2l), where l � dmte. We �rst show how to reduce

the computation of the arithmetization P (x1; : : : ; xm) of f over F to the computation of another

multivariate polynomial P �(y1; : : : ; yv) over F of total degree at most bm=c lgmc. We then apply

Lemma 1 to complete our proof. Partition the set f1; : : : ; mg into disjoint subsets S1; : : : ; Sd, each

of size at most c lgm+ 1. For any i and any nonempty T � Si, we de�ne a new variable yT , given

by

yT =
Y
i2T

xi:

Let I = fi1; : : : ; ikg be any subset of the indices f1; : : : ; mg and axi1 � � �xik a monomial in which

each variable appears at most once. We can transform this degree k � mmonomial into a monomial

of degree � d via the mapping

axi1 � � �xik �! a

dY
i=1

yI\Si :

It is easy to verify that the values of the two monomials are equal, given the above change of

variables. Because the arithmetization P of f is a sum of monomials in which each variable appears

once, transforming each monomial of P as above yields a new polynomial P � of degree at most d.

Finally, one can rename the subscripts taken by our variables yT to be integers instead of sets. This

purely syntactic transformation will sometimes be made for notational reasons, allowing us to say

y1; : : : ; yv when convenient, but it is otherwise unnecessary. We can easily bound v, the number of

variables in P
�, by

v �

�
m

c lgm

�
� 2c lgm+1

�
2mc+1

c lgm
:

Here is a simple example of the change of variables, with m = 6 and d = 3. Suppose that

P (x1; : : : ; x6) = x1x2x3x4x5x6 � x2x3x6 + 2x1x2x3x6:

First, let S1 = f1; 2g, S2 = f3; 4g, and S3 = f5; 6g, yielding variables

yf1g; yf2g; yf1;2g; yf3g; yf4g; yf3;4g; yf5g; yf6g; yf5;6g:

The polynomial P � is given by

P
�(yf1g; : : : ; yf5;6g) = yf1;2gyf3;4gyf5;6g� yf2gyf3gyf6g + 2yf1;2gyf3gyf6g:
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Note that it may be infeasible to write down P or P �, because the number of terms in one of both

may be exponential in m. However the reduction from P to P
� only requires computing the new

variables fyTg, which can be done with a small number of multiplications in our �eld. For example,

yf3;4g is computed by multiplying x3 and x4.

We now de�ne our reduction (scatter ; reconstruct). On input X = x1; : : : ; xm, scatter(X; r) �rst

computes x1; : : : ; xm 2 F , where boolean 0's are transformed into the 0 element in F , and boolean

1's are transformed into the 1 element in F . This trivial transformation e�ects the reduction from

f to P . Next, scatter computes the variables fyTg, e�ecting the reduction from P to P �. Note that

P
�(y1; : : : ; yv) = f(x1; : : : ; xm), where 0 and 1 �eld elements are identi�ed with 0 and 1 boolean

values. Finally, scatter performs the mapping used by the (t; dt+ 1)-locally random self-reduction

given in Lemma 1, for v-variable polynomials over F of degree d = bm=c lgmc.

We de�ne reconstruct to be the same as in Lemma 1, except that it interprets 0 and 1 �eld

elements as their boolean equivalents.

By Lemma 1, our reduction (scatter ; reconstruct) always give the correct answer. Furthermore,

the number of algebraic operations performed by reconstruct and scatter is bounded by some

polynomial in v and t. Because v is bounded by some polynomial in m (depending on c), and the

requisite �eld operations can be implemented in time polynomial in m and t, the total number of

bit operations performed by reconstruct and scatter is polynomial in m and t.

4 Zero-knowledge proofs on committed bits

In this section, we formally de�ne ideal bit commitment schemes and review the notion of zero-

knowledge proofs on committed bits. In the protocols we will describe, there is one party (the

\prover") who commits to a set of bits and later proves assertions about these committed bits, and

there is another party (the \veri�er") who veri�es the proofs on the committed bits.

Intuitively, we think of an ideal commitment scheme as having physical envelopes that the

prover can �ll with information and place on the table. If the prover later opens an envelope, the

veri�er knows its contents have not been changed.

We are interested in the notion of zero-knowledge proofs on committed bits. Such commitments

have also been referred to as notarized envelopes. That is, one would like to commit to a set of

bits b1; : : : ; bm and at some later time prove some predicate Q(b1; : : : ; bm) on these bits, without

revealing the values of b1; : : : ; bm or other information not implied by Q(b1; : : : ; bm).

Ideal commitment schemes were used in the construction of zero-knowledge proofs for predicates

in NP (cf. [11]) and IP (cf. [14]). Zero-knowledge proofs on committed bits were �rst used in the

study of multi-party secure computation [12] and were based on complexity theoretic assumptions.

Simple schemes for basing zero-knowledge proofs on committed bits on ideal commitment schemes

were developed not long thereafter (e.g., [5, 18]) but did not appear in the literature until [6].

These schemes allowed one to prove arbitrary predicates on k committed bits using a total amount

of communication that was potentially exponential in k.

This exponential communication cost is sometimes acceptable. For example, one can transform

any NP predicate Q(b1; : : : ; bm) into a predicate of the form

(9y1; : : : ; yl)Q
0(b1; : : : ; bm; y1; : : : ; yl);

where, Q0 = ^i Q
0
i
and each Q

0
i
is a predicate on just three variables, then prove Q(b1; : : : ; bm) in
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zero knowledge by committing to suitable values for y1; : : : ; yl and proving each of the predicates

Q
0
i
in zero-knowledge. However, such a transformation cannot be applied to arbitrary predicates

and can be very unwieldy even for NP predicates. This technique also leaves open the question of

whether the communication cost of zero-knowledge proofs on committed bits depends intrinsically

on the computational complexity of the predicate to be proven. In the remainder of this section,

we answer this fundamental question in the negative.

4.1 Formal de�nitions

In this section we describe the model of computation for interactive proofs in the presence of an

ideal commitment scheme. We then go on to de�ne (perfect) zero-knowledge proofs in this model.

4.1.1 Ideal commitment schemes

An ideal commitment scheme (ICS) can be thought of as a special type of channel that connects

the prover P to the veri�er V . When we run the protocol speci�ed by P and V , any string that

V writes down for P will be delivered (unmodi�ed) to P ; but messages sent from P to V are

transmitted in the following way. Initialize S  ; and then:

1. When P transmits on its channel to V a message

commit(x; t);

if there is no ordered pair (x0; t) 2 S, then we set S  S [ f(x; t)g and deliver to V the

message t. If there is already an (x0; t) 2 S then the empty string is delivered to V .

2. When P transmits on its channel to V a message

decommit(t);

if there is some pair (x; t) 2 S then we deliver to V the message (x; t). If there is no such

pair (x; t) 2 S, then the empty string is delivered to V .

We could have provided P a \direct" channel to V , but this is trivially simulated with the channel

above.

We say that P commits to x = x1 : : : xm if P transmits in the course of the protocol:

commit(x1; x-bit-1); : : : ; commit(xm; x-bit-m); (0; length-x=m) :

We say that P reveals x if it sends the corresponding decommitments.

We will use the notation ChannelS
P!V

(x) to denote the message delivered when x is transmitted

on the P ! V channel, which is currently in state S. Note that this operation has a side e�ect

on S.
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4.2 ICS protocol execution

We model players P and V as f0; 1g�-valued functions on initial input s 2 f0; 1g�, (veri�er) view

z 2 f0; 1;#g�, and coins 
ips r 2 f0; 1g1. An R(m)-round execution (P (s1); V (s2)) is de�ned by

the following experiment: set z  �; set S  ;; choose random strings r1; r2 2 f0; 1g
1; then:

for i 1 to R(jxj) do

z  z # Channel
S

P!V
(P (s1; z; r1))

z  z # V (s2; z; r2)

We say that an execution of (P (s1); V (s2)) accepts (or simply V accepts) if the last bit of the �nal

value of z is 1; else we say it rejects. The (veri�er's) view is the random variable that gives s2, r2,

and the �nal value of z. The communication complexity of an execution is the length of the �nal

value of z.

4.2.1 Zero-knowledge proofs on committed bits

A zero-knowledge proof that predicate Q holds on committed bits x1; : : : ; xm is a like a neutral

third party that does nothing but check that Q(x1; : : : ; xm) = 1, reporting the answer back to V .

Nothing else is revealed.

As in the more customary setting of Goldwasser, Micali and Racko� [13], we can formalize this

idea by using a simulator: We require of any (possibly cheating) veri�er that there be an algorithm

that produces a distribution on (fake) views that coincides with the distribution on (real) views

received by that veri�er (when interacting with the prover who has initial input x, where Q(x) = 1).

By e�ectively demonstrating that the veri�er could have computed its view on its own (knowing

nothing but Q(x) = 1), the existence of the simulator assures us that the veri�er learns no more

than it should.

Another way to model potential information leakage follows the notion of \witness indistin-

guishability" of Feige and Shamir [8]. In particular, for any equal length x and x
0 that satisfy

predicate Q, the views that the veri�er gets in these cases should be identical. This approach

concerns itself more with hiding the input than with leaking extraneous information.

In the formalization we now give, we follow the second approach. Equivalent de�nitions can be

formulated using simulators.

De�nition 2 An R(m)-round, �(m)-error ICS proof system for predicate Q is a pair of players

(P; V ) such that:

� (Completeness) For any x such that Q(x) = 1, an R(jxj)-round execution (P (x); V (jxj))

accepts, and in it P commits to x.

� (Soundness) For any player ~P that commits to its initial input x, if Q(x) = 0, then the

R(jxj)-round execution ( ~P (x); V (jxj)) accepts with probability at most �(jxj).

When R(m) is polynomial and �(m) < 1=2 is constant we omit mention of these parameters. If the

communication complexity is bounded by a polynomial in m, we say that (P; V ) is communication-

e�cient.
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De�nition 3 An ICS proof system (P; V ) for predicate Q is zero-knowledge if, for all ~V and all

x1; x2 such that jx1j = jx2j and Q(x1) = Q(x2) = 1, the view of (P (x1); ~V (jx1j)) is identical to the

view of (P (x2); ~V (jx2j)).

4.3 A communication-e�cient protocol for proofs on committed bits

We now present a new protocol, based on an ICS, for performing zero-knowledge proofs on com-

mitted bits. In our protocol, a computationally unbounded prover P can prove arbitrary predicates

in zero-knowledge to a computationally unbounded veri�er V . Unlike the previous protocols, our

protocol requires communication that is only polynomial in the number of committed bits, re-

gardless of the circuit complexity of the predicate being proven. Note that the veri�er must be

computationally unbounded, because it must verify arbitrary predicates.

For our discussion, we will often blur the distinction between boolean values and the 0 and 1

elements of a �nite �eld. First, we use a standard trick of representing each bit to be committed as

a random exclusive-or of two bits (equivalently, a random sum over GF (2)). The following simple

protocols are used to commit and reveal bits.

Protocol commit(x1; : : : ; xm) For 1 � i � m, P uniformly chooses x0
i
; x

1
i
2 f0; 1g, subject to

xi = x
0
i
� x

1
i
, and commits to x0

i
and x

1
i
using the ICS.

Protocol reveal(i) The prover reveals x0
i
and x

1
i
using the ICS. V computes xi = x

0
i
� x

1
i
.

It is easy to veri�er that the value of a bit recovered during the reveal protocol must be the same

as that during the commit protocol. Furthermore, as soon as P has committed to x
0
i
and x

1
i
, he

has implicitly committed to a bit xi that is guaranteed to be well de�ned. The issue of committed

bits' being well de�ned will arise later but can be safely ignored at this point.

Our protocol for performing zero-knowledge proofs on a set of committed bits is based on the

reduction given in the proof of Lemma 1, where t = 1. In order to prove the boolean predicate

Q(x1; : : : ; xm), P and V �rst arithmetize Q, as in the proof of Theorem 1 (treating Q(X) as a

boolean function that is 1 i� Q(X) is true). For the rest of the protocol, P must show that

Q
�(x1; : : : ; xm) = 1, where Q� is a degree � m multivariate polynomial over a �nite �eld F . F

must have at least m+ 1 distinct nonzero elements, denoted �1; : : : ; �m+1.

The zero-knowledge proof proceeds in two phases. In the commitment phase, P generates a

run of the (1; m+ 1)-locally random self-reduction on Q
�, \breaks" the computation into random

pieces, and commits to these pieces. In the challenge phase, V randomly chooses to see certain

pieces of the reduction and uses this glimpse to verify probabilistically that the self-reduction was

honest.

In the commitment phase, P uniformly generates fci 2 Fg and then follows the reduction in

Lemma 1 to generate fyi;jg. He then computes

Yj = (y1;j; : : : ; ym;j)

zj = Q
�(Yj);

and �nally reconstructs the �nal answer,

w =
m+1X
j=1

tjzj ;

11



Protocol prove(x1; : : : ; xm; Q) [Commitment Stage]
Let F be a �nite �eld with at least m + 2 element, and let Q� be the arithme-
tization of Q over F . Let �1; : : : ; �m+1 2 F be distinct and nonzero. De�ne

t1; : : : ; tm+1 2 F by tj =
Y
i6=j

��i

�j � �i

.

1: For 1 � i � m and 1 � j � m + 1, P uniformly chooses ci 2 F , and
computes:

yi;j = xi + ci�j;

Yj = (y1;j : : : ; ym;j);

zj = Q
�(Yj); and,

w =

m+1X
j=1

tjzj :

2: P uniformly chooses c0
i
; c1

i
2 F , subject to ci = c0

i
+ c1

i
, and z0

j
; z1

j
2 F ,

subject to zj = z0
j
+ z1

j
. P then computes:

y
b

i;j
= x

b

i
+ c

b

i
�j; and,

w
b =

m+1X
j=1

tjz
b

j
;

where b 2 f0; 1g. Note that yi;j = y0
i;j

+ y1
i;j

and w = w0 +w1.

3: For b 2 f0; 1g; 1 � i � m, and 1 � j � m + 1, P commits to cb
i
; yb

i;j
; zb

j

and wb using the ICS.

Figure 1: Commitment stage of the zero-knowledge proof system.

where tj =
Y
i6=j

��i

�j � �i

. After generating this run of the reduction, P breaks up each ci; yi;j ; zj and

w into two halves whose sum (over F ) is equal to the original and then commits to each half. Thus,

we have ci = c
0
i
+ c

1
i
, w = w

0+w
1, etc. We give the commitment stage of the protocol in Figure 1.

In the challenge phase of the protocol, V makes one of three general requests. He can ask P to

reveal the \0 half" or the \1 half" of the self-reduction and verify a number of linear constraints. He

can ask P to reveal Yj and zj for some j (by revealing both halves of all their relevant components)

and verify that zj = Q
�(Yj). Or he can ask P to reveal w (by revealing w0 and w

1) and verify that

w = 1. We give the challenge stage of the protocol in Figure 2.

4.4 Properties of our proof system

In this section, we argue that our protocols have the properties of a zero-knowledge proof system.

We �rst show that our protocol is complete: If both parties behave properly, then V always accepts

12



Protocol prove(x1; : : : ; xm; Q) [Challenge Stage]
V makes one of the following m + 4 challenges, each with equal probability:

1. [For b either 0 or 1] For 1 � i � m and 1 � j � m+ 1, V asks P to reveal

xb
i
; cb

i
; yb

i;j
; zb

j
and wb. V accepts i� yb

i;j
= xb

i
+ cb

i
�j and wb =

P
m+1

j=1
tjz

b

j
.

2. [For 1 � j � m+ 1] For b 2 f0; 1g and 1 � i � m, V asks P to reveal yb
i;j

and zb
j
. V then computes Ŷj = (y01;j+y11;j : : : ; y

0
m;j

+y1
m;j

) and ẑj = z0
j
+z1

j

and accepts i� ẑj = Q�(Ŷj).

3. V asks P to reveal w0 and w1 and accepts i� w0 +w1 = 1.

Figure 2: Challenge stage of the zero-knowledge proof system.

a correct assertion. Next, we show that our protocol is weakly sound: V rejects a false assertion

with probability at least 1=poly(m). Finally, we show that our protocol is zero-knowledge: A proof

that Q(x1; : : : ; xm) = 1 conveys no extra information about x1; : : : ; xm.

Lemma 2 If Q(x1; : : : ; xm) = 1, and P and V follow prove(x1; : : : ; xm; Q), then V always accepts.

Proof: It su�ces to show that V accepts for each of the 3 types of challenges he might make.

The �rst challenge is trivially satis�ed, by the de�nition of yb
i;j

and w
b. To show that the second

challenge is satis�ed, it su�ces to show that the values for ẑj and Ŷj reconstructed by V are truly

equal to those given by P . By construction, zj = z
0
j
+ z

1
j
. The case for Yj follows from the identity

yi;j = y
0
i;j
+ y

1
i;j
, which may be veri�ed by:

y
0
i;j
+ y

1
i;j

=
�
x
0
i
+ c

0
i
�j

�
+
�
x
1
i
+ c

1
i
�j

�

=
�
x
0
i
+ x

1
i

�
+
�
c
0
i
+ c

1
i

�
�j

= xi + ci�j

= yi;j :

To show that the third challenge is satis�ed, it su�ces to show that w = 1 and w = w
0+w

1. That

w = 1 follows from the fact that Q�(x1; : : : ; xm) = 1 and the fact the construction of Lemma 1

always gives the correct answer. To see that w = w
0 + w

1, note that

w
0 + w

1 =

0
@m+1X

j=1

tjz
0
j

1
A+

0
@m+1X

j=1

tjz
1
j

1
A

=
m+1X
j=1

tj

�
z
0
j
+ z

1
j

�

=
m+1X
j=1

tjzj

= w:
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Lemma 3 Suppose that Q(x1; : : : ; xm) = 0. Then for any (possibly malicious) P̂ , if V obeys the

protocol, he rejects with probability at least 1=(m+ 4), regardless of P̂ 's strategy.

Proof: Given committed values for c
b

i
; y

b

i;j
; z

b

j
, and w

b, de�ne ci = c
0
i
+ c

1
i
, yi;j = y

0
i;j

+ y
1
i;j
,

zj = z
0
j
+ z

1
j
, and w = w

0 + w
1. Suppose that, for all i and j,

yi;j = xi + ci�j ;

zj = Q
�(y1;j ; : : : ; ym;j); and

w =
m+1X
j=1

tjzj :

Then, by the proof of Lemma 1, w = Q
�(x1; : : : ; xm) 6= 1, and V rejects if he asks to see w0 and

w
1 (a Type 3 of challenge). If yi;j 6= xi + ci�j for some i; j, then for some b 2 f0; 1g it must hold

that yb
i;j
6= x

b

i
+ c

b

i
�j , and V rejects if he makes a Type 1 challenge, for the appropriate value of b.

Similarly, if w 6=
P

m+1
j=1 tjzj , for some j, then for some b 2 f0; 1g, wb 6=

P
m+1
j=1 tjz

b

j
, and V again

rejects if he makes the appropriate Type 1 challenge. Finally, if for some j, zj 6= Q
�(y1;j ; : : : ; ym;j),

then V rejects if he makes a Type 2 challenge, with that value of j. Thus, in all cases, there must

be at least one challenge that causes V to reject, and that challenge is chosen with probability at

least 1=(m+ 4).

Lemmas 2 and 3 show that the protocol is a 1-round, (1� 1
m+4

)-error proof system. We next

show that the protocol is zero-knowledge and then discuss how to reduce the probability that a

false statement is accepted.

Lemma 4 Suppose that Q(x1; : : : ; xm) = Q(�x1; : : : ; �xm) = 1 and that, for some set T � f1; : : : ;

mg, xt = �xt for t 2 T . Let V̂ be an arbitrary computationally unbounded party. Then the distribu-

tion on V̂ 's view induced by running commit(x1; : : : ; xm), prove(x1; : : : ; xm; Q), and reveal(t)

for t 2 T is identical to that induced by running commit(�x1; : : : ; �xm), prove(�x1; : : : ; �xm; Q), and

reveal(t) for t 2 T .

Proof: The bulk of the proof consists of analyzing the information revealed to V̂ during the exe-

cution of the prove protocol. Suppose P commits to x1; : : : ; xm by committing to (x01; x
1
1); : : : ; (x

0
m
;

x
1
m
). We �rst show that, for each possible challenge V̂ can make, there exists b 2 f0; 1g such that

his view can be generated from x
b

1; : : : ; x
b

m
and in no way depends on x

1�b
1 ; : : : ; x

1�b
m

. Indeed, for

Type 1 and Type 3 queries, one can generate V̂ 's view without looking at (x01; x
1
1); : : : ; (x

0
m
; x

1
m
) at

all.

If V̂ makes a Type 1 challenge, for either value of b, his view consists of xb
i
; c

b

i
; y

b

i;j
; z

b

j
and w

b,

for 1 � i � m and 1 � j � m + 1. The values of cb
i
and z

b

j
are uniform over F . Furthermore, yb

i;j

and w
b are functions of only x

b

1; : : : ; x
b

m
, cb1; : : : ; c

b

m
, and z

b

1; : : : ; z
b

m+1 (ignoring the �i's, which are

publicly known). Thus, his view from a Type 1 challenge (with value b) can be generated from

only x
b

1; : : : ; x
b

m
.

If V̂ makes a Type 2 challenge, with a given value of j, his view consists of yb
i;j

and z
b

j
,

for b 2 f0; 1g, and 1 � i � m. First note that the distribution induced on (z0
j
; z

1
j
) depends
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only on the distribution of Yj = (y1;j; : : : ; ym;j). By the properties of our locally random reduc-

tion, y1;j ; : : : ; ym;j are independently and uniformly distributed over F , regardless of the values of

(x01; x
1
1); : : : ; (x

0
m
; x

1
m
). We have the identities

y
b

i;j
= x

b

i
+ c

b

i
�j ;

yi;j = xi + ci�j ; and

xi = x
0
i
+ x

1
i
:

Furthermore, the c
b

i
's are distributed uniformly and independently, subject to ci = c

0
i
+ c

1
i
, and

�j 6= 0. By a simple probability argument, the distribution on

y
0
1;j ; y

1
1;j; : : : ; y

0
m;j

; y
1
m;j

is uniform, subject to yi;j = y
0
1;j + y

1
1;j . Hence, if V̂ makes a Type 2 challenge, his view from this

challenge does not depend on the values of x01; x
1
1; : : : ; x

0
m
; x

1
m
.

Finally, if V̂ makes a Type 3 challenge, then his view consists of w0 and w
1. We claim that w0

and w
1 are uniformly distributed subject to w

0 + w
1 = 1, and thus V̂ 's view does not depend on

(x01; x
1
1); : : : ; (x

0
m
; x

1
m
). First, note that w = 1 = w

0 + w
1. Because w0 =

P
m+1
j=1 tjz

0
j
, z01; : : : ; z

0
m+1

are uniformly and independently distributed, and at least one value of ftjg is nonzero (in fact,

every tj is nonzero), it follows that w
0 is uniformly distributed.

Now, recall that the commit protocol reveals nothing about the values of x1; : : : ; xm and that

the reveal(t) protocol releases the values of x0
t
and x

1
t
. Hence, one can always generate V̂ 's view

by looking at f(x0
t
; x

1
t
)jt 2 Tg and x

b

1; : : : ; x
b

m
, for some value of b that depends only on the type of

V̂ 's challenge. However, if x1; : : : ; xm and �x1; : : : ; �xm are as in the statement of the lemma, then,

for either value of b, the induced distribution on

f(x0
t
; x

1
t
)jt 2 Tg; xb1; : : : ; x

b

m
; and f(�x0

t
; �x1

t
)jt 2 Tg; �xb1; : : : ; �x

b

m

is identical, and hence V̂ 's view is also identical.

We can view the above argument as an algorithm for simulating V̂ 's view, knowing only xt

for t 2 T . During the proof process, the simulator simply talks to V̂ , generating its responses

according to the algorithm given in the proof. At some point, it may need to know x
b

1; : : : ; x
b

m
for

some b 2 f0; 1g, at which point the simulator uniformly generates xb1; : : : ; x
b

m
and continues. When

it comes time to simulate the revelation of xt for t 2 T , the simulator learns these values, computes

x
1�b
t

= xt � x
b

t
for t 2 T (choosing x

b

1; : : : ; x
b

m
uniformly if they have not been chosen before), and

outputs the appropriate values.

One drawback to the scheme given above is the low probability that a veri�er will catch an

incorrect proof. This problem has been dealt with in previous protocols for zero-knowledge proofs

on committed bits; the ideas used there carry over to our protocol without any conceptual alteration,

and thus we simply state without proof the stronger results that we obtain using thses standard

techniques.

The basic idea is to run several independent copies of the protocols. Instead of breaking each

xi into a single pair, (x0
i
; x

1
i
), P will break each xi into a sequence of independent pairs,

(x0
i
[1]; x1

i
[1]); : : : ; (x0

i
[l]; x1

i
[l]):
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Similarly, P reveals xi by revealing all l pairs that he previously committed. When P is honest,

x
0
i
[j]�x1

i
[j] will have the same value, xi, for all values of j. With a malicious prover P̂ , there is no

such guarantee. In this case, we de�ne xi to be the majority of x0
i
[j]� x

1
i
[j], for 1 � j � l. Under

this interpretation, even a malicious prover is guaranteed to be committing to some unambiguous

value.

More precisely, recall the following standard protocol that is used in earlier work on zero-

knowledge proofs, e.g., in those of Bennett [5] and Rudich [18]. Given two pairs, (x0
i
[j]; x1

i
[j]) and

(x0
i
[k]; x1

i
[k]), we wish to give a zero-knowledge proof that

x
0
i
[j]� x

1
i
[j] = x

0
i
[k]� x

1
i
[k]:

This is accomplished by using protocol prove-equal on the four committed bits.

Protocol prove-equal(x01; x
1
1; x

0
2; x

1
2) /* Prove that x

0
1 � x

1
1 = x

0
2 � x

1
2 */

1: P sends V the value of x01 � x
0
2.

2: V uniformly chooses b 2 f0; 1g and sends b to P .

3: P reveals xb1 and x
b

2 to V , who accepts i� x
b

1 � x
b

2 is equal to the value sent in Step 1.

The prove-equal protocol is known to have the following properties:

Property 1: If x01 � x
1
1 6= x

0
2 � x

1
2, then V rejects with probability at least 1

2
, regardless of P̂ 's

strategy.

Property 2: Let x 2 f0; 1g and x
0
1; x

1
1; x

0
2; x

1
2 be chosen uniformly subject to

x = x
0
1 � x

1
1 = x

0
2 � x

1
2:

Then, for any V̂ , the induced distribution on V̂ 's view of

prove-equal(x01; x
1
1; x

0
2; x

1
2);

followed by the revelation of x01; x
1
1; x

0
2; x

1
2, may be generated by the following algorithm.

1. Choose v 2 f0; 1g at random and choose y1; y2 2 f0; 1g uniformly subject to v = y1 � y2.

2. Send v to V̂ . On receipt of b from V̂ , set xb1 = y1 and x
b

2 = y2, and send x
b

1 and x
b

2 to V̂ .

3. Set x1�b1 = x� x
b

1 and x
1�b
2 = x� x

b

2, and send x
0
1; x

1
1; x

0
2 and x

1
2 to V̂ .

In particular, Property 2 implies that V̂ 's view through the prove-equal protocol is indepen-

dent of x.

In the protocol of Figure 3, a pair (x0
i
[j]; x1

i
[j]) is called used if it has been chosen in some previous

iteration of the repeat loop and unused if it has not. Straightforward probabilistic arguments

(which we omit) show that the protocol has the following desired properties.

Lemma 5 Suppose that Q(x1; : : : ; xm) is false and that l > 3k. Then, during each iteration of the

repeat loop in the Prove-Many protocol, V rejects with probability at least

1�

�
1�

1

(2m+ 8)

�
k

:
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Protocol prove-many(x1 ; : : : ; xm; Q; k)
I: repeat k times

1: V chooses j1; : : : ; jm such that, for 1 � d � m, (x0
i
[jd]; x

1
i
[jd]) is unused,

and b 2 f0; 1g uniformly.

2: If b = 1, then V and P run prove(x1; : : : ; xm; Q), where the pair
(x0

i
[ji]; x

1
i
[ji]) is used to represent xi.

3: If b = 0, then V chooses j01; : : : ; j
0
m
such that (x0

i
[j0
d
]; x1

i
[j0
d
]) is unused for

1 � d � m. Then, for each d, P and V run

prove-equal

�
x
0
i
[ji]; x

1
i
[ji]; x

0
i
[j0
d
]; x1

i
[j0
d
]
�
:

II: V rejects i� V ever rejected during Steps 2 or 3 of the loop. P aborts the
protocol if ever asked to \reuse" a pair.

Figure 3: Protocol for decreasing the probability of error.

Lemma 6 Suppose that Q(x1; : : : ; xm) = Q(�x1; : : : ; �xm) = 1, and that, for some set T �

f1; : : : ; mg, xt = �xt for t 2 T . Let V̂ be an arbitrary computationally unbounded party. Then the

distribution on V̂ 's view induced by running commit(x1; : : : ; xm), prove-many(x1; : : : ; xm; Q; k),

and reveal(t) for t 2 T is identical to that induced by running commit(�x1; : : : ; �xm), prove-

many(�x1; : : : ; �xm; Q; k), and reveal(t) for t 2 T .

Together Lemmas 2 through 6 give the following:

Theorem 2 Every predicate Q(x1; : : : ; xm) has a 1-round, 2�m-error zero-knowledge ICS proof

system.

5 Open Questions

Open questions abound, including:

Question 1: Can Theorem 1 be improved so that fewer than tbm=c lgmc random instances are

needed? Alternatively, can a lower bound on the required number of random instances be proven?

Currently, it is not even known whether there is a function f that is not (1; 2)-locally random

reducible to any function g. Fortnow and Szegedy [10] show that there is an f that is not (1; 2)-

locally random reducible to a pair of functions (g1; g2), if one insists that the functions gi be boolean

and that the reduction have 0 error probability.

Question 2: Is there a protocol for zero-knowledge proofs of arbitrary predicates on committed

bits that is even more communication-e�cient than the one we have presented?

Question 3: Is there a �xed polynomial mc with the following property: For any polynomial-

time predicate Q(x1; : : : ; xm), there is a zero-knowledge protocol that proves the value of Q on
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committed bits, has bit complexity m
c, and has a prover and veri�er that both run in polynomial

time? That is, if we restrict attention to poly-time Q's, is there a protocol that shares with the

protocol presented in this paper the property that the (polynomial) communication complexity

does not depend on the computational complexity of Q and has the additional property that the

prover and veri�er are poly-time?
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