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Abstract. Existing authorization mechanisms fail to provide powerful
and robust tools for handling security at the scale necessary for today’s
Internet. These mechanisms are coming under increasing strain from the
development and deployment of systems that increase the programma-
bility of the Internet. Moreover, this “increased flexibility through pro-
grammability” trend seems to be accelerating with the advent of propos-
als such as Active Networking and Mobile Agents.
The trust-management approach to distributed-system security was de-
veloped as an answer to the inadequacy of traditional authorization
mechanisms. Trust-management engines avoid the need to resolve “iden-
tities” in an authorization decision. Instead, they express privileges and
restrictions in a programming language. This allows for increased flexi-
bility and expressibility, as well as standardization of modern, scalable
security mechanisms. Further advantages of the trust-management ap-
proach include proofs that requested transactions comply with local poli-
cies and system architectures that encourage developers and administra-
tors to consider an application’s security policy carefully and specify it
explicitly.
In this paper, we examine existing authorization mechanisms and their
inadequacies. We introduce the concept of trust management, explain its
basic principles, and describe some existing trust-management engines,
including PolicyMaker and KeyNote. We also report on our experience
using trust-management engines in several distributed-system applica-
tions.

1 Introduction

With the advent of the Internet, distributed computing has become increasingly
prevalent. Recent developments in programming languages, coupled with the
increase in network bandwidth and end-node processing power, have made the



Web a highly dynamic system. Virtually every user of the Internet is at least
aware of languages such as Java [GJS96], JavaScript, Active-X, and so on. More
“futuristic” projects involve computers running almost exclusively downloaded
interpreted-language applications (Network PC), or on-the-fly programmable
network infrastructures (Active Networks). On a more mundane level, an in-
creasing number of organizations use the Internet (or large Intranets) to connect
their various offices, branches, databases, etc.

All of these emerging systems have one thing in common: the need to grant or
restrict access to resources according to some security policy. There are several
issues worth noting.

First, different systems and applications have different notions of what a re-
source is. For example, a web browser may consider CPU cycles, network band-
width, and perhaps private information to be resources. A database server’s
notion of “resource” would include individual records. Similarly, a banking ap-
plication would equate resources with money and accounts. While most of these
resources can be viewed as combinations of more basic ones (such as CPU cy-
cles, I/O bandwidth, and memory), it is often more convenient to refer to those
combinations as single resources, abstracting from lower-level operations. Thus,
a generic security mechanism should be able to handle any number and type of
resources.

What should also be obvious from the few examples mentioned above is
that different applications have different access-granting or -restricting policies.
The criteria on which a decision is based may differ greatly among different
applications (or even between different instances of the same application). The
security mechanism should be able to handle those different criteria.

One security mechanism often used in operating systems is the Access Control
List (ACL). Briefly, an ACL is a list describing which access rights a principal has
on an object (resource). For example, an entry might read “User Foo can Read
File Bar.” Such a list (or table) need not physically exist in one location but may
be distributed throughout the system. The UnixTM -filesystem “permissions”
mechanism is essentially an ACL.

ACLs have been used in distributed systems, because they are conceptually
easy to grasp and because there is an extensive literature about them. How-
ever, there are a number of fundamental reasons that ACLs are inadequate for
distributed-system security, e.g.,

– Authentication: In an operating system, the identity of a principal is well
known. This is not so in a distributed system, where some form of authenti-
cation has to be performed before the decision to grant access can be made.
Typically, authentication is accomplished via a username/password mecha-
nism. Simple password-based protocols are inadequate in networked comput-
ing environments, however, even against unsophisticated adversaries; simple
eavesdropping can destroy security. Other recently developed mechanisms
include:

• One-Time passwords, which do not secure the rest of the session.



• Centralized ticket-based systems, such as Kerberos [MNSS87]. Problems
with such systems include the necessity for an authentication server (and
for frequent communication with it) and implicit trust assumptions.

• Public-key based authentication protocols, which are considered the “sta-
te of the art” for scalable authentication systems.

– Delegation is necessary for scalability of a distributed system. It enables de-
centralization of administrative tasks. Existing distributed-system security
mechanisms usually delegate directly to a “certified entity.” In such systems,
policy (or authorizations) may only be specified at the last step in the dele-
gation chain (the entity enforcing policy), most commonly in the form of an
ACL. The implication is that high-level administrative authorities cannot
directly specify overall security policy; rather, all they can do is “certify”
lower-level authorities. This authorization structure leads easily to inconsis-
tencies among locally-specified sub-policies.

– Expressibility and Extensibility: A generic security mechanism must be able
to handle new and diverse conditions and restrictions. The traditional ACL
approach has not provided sufficient expressibility or extensibility. Thus,
many security policy elements that are not directly expressible in ACL form
must be hard-coded into applications. This means that changes in security
policy often require reconfiguration, rebuilding, or even rewriting of applica-
tions.

– Local trust policy: The number of administrative entities in a distributed
system can be quite large. Each of these entities may have a different trust
model for different users and other entities. For example, system A may trust
system B to authenticate its users correctly, but not system C; on the other
hand, system B may trust system C. It follows that the security mechanism
should not enforce uniform and implicit policies and trust relations.

We believe that these points constitute a forceful argument that Authenti-
code, X.509, and, generally, the use of identity-based public-key systems in con-
junction with ACLs1 are inadequate solutions to distributed (and programmable)
system-security problems. Even modern ACL-based systems like DCE fall some-
what short of satisfyingly addressing the extensibility, expressibility, and dele-
gation issues, despite some work in these directions [CS96].

Furthermore, one finds insecure, inadequate, or non-scalable authentication
mechanisms (such as username/password, One-Time passwords, and hardware
token authentication) used in conjunction with ACLs. Finally, many policy prob-
lems are left unsolved by the “binary” authorization model employed widely in
Web security (and elsewhere): access is granted on the condition that the re-
questing principal has a certificate by a particular Certification Authority (CA).
We call this a binary authorization model because it means essentially “all-or-
nothing” access. While this is sufficient in a small number of cases (e.g., when
1 Sometimes the public keys are hardcoded into the application, which deprives the
environment of even the limited flexibility provided by ACLs. Such an example is
the under-development IEEE 1394 Digital Content Protection standard.



read-only access to a web page is the only decision that need be made), it is
obvious that this approach neither scales nor is extensible.

We believe that these unintuitive and in many ways problematic mechanisms
are in use simply because of the lack of alternatives that are better suited to
distributed systems. Developers have tried to adapt existing tools to their se-
curity model or vice versa, and neither strategy has worked particularly well.
Accordingly, misconfiguration and unexpected component interactions are caus-
ing security breaches and, inevitably, loss of confidence in the security tools.

We also believe that the new Internet services now emerging as a result of
increased programmability will require powerful and expressive authorization
mechanisms without the problems present in ACL-based systems2. Naturally,
existing services and protocols can also make good use of such mechanisms.

Trust Management, introduced by Blaze et al. [BFL96], is a unified approach
to specifying and interpreting security policies, credentials, and relationships
that allows direct authorization of security-critical actions. In particular, a trust-
management system combines the notion of specifying security policy with the
mechanism for specifying security credentials. Credentials describe specific del-
egations of trust among public keys; unlike traditional certificates, which bind
keys to names, trust-management credentials bind keys directly to authoriza-
tions to perform specific tasks. Trust-management systems support delegation,
and policy specification and refinement at the different layers of a policy hier-
archy, thus solving to a large degree the consistency and scalability problems
inherent in traditional ACLs. Furthermore, trust-management systems are by
design extensible and can express policies for different types of applications.

Section 2 gives an overview of Trust Management and briefly describes two
tools that we have developed (PolicyMaker and KeyNote). Section 3 presents
some applications of Trust Management. Finally, Section 4 discusses future work
and concludes this paper.

2 Trust Management

This section explains the essence of the trust-management approach, describes
PolicyMaker [BFL96, BFS98] and KeyNote [BFIK98], and ends with a brief
discussion of related trust-management work.

2.1 Basics

A traditional “system-security approach” to the processing of a signed request
for action treats the task as a combination of authentication and access control.
The receiving system first determines who signed the request and then queries
an internal database to decide whether the signer should be granted access to
the resources needed to perform the requested action. We believe that this is the
2 For the purposes of this discussion, we consider the traditional capability systems as
ACLs, as they exhibit most of the weaknesses we mention.



wrong approach for today’s dynamic, internetworked world. In a large, hetero-
geneous, distributed system, there is a huge set of people (and other entities)
who may make requests, as well as a huge set of requests that may be made.
These sets change often and cannot be known in advance. Even if the question
“who signed this request?” could be answered reliably, it would not help in de-
ciding whether or not to take the requested action if the requester is someone
or something from whom the recipient is hearing for the first time.

The right question in a far-flung, rapidly changing network becomes “is the
key that signed this request authorized to take this action?” Because name-
key mappings and pre-computed access-control matrices are inadequate, one
needs a more flexible, more “distributed” approach to authorization. The trust-
management approach, initiated by Blaze et al. [BFL96], frames the question as
follows: “Does the set C of credentials prove that the request r complies with
the local security policy P?” Each entity that receives requests must have a
policy that serves as the ultimate source of authority in the local environment.
The policy may directly authorize certain keys to take certain actions, but more
typically it will delegate this responsibility to credential issuers that it trusts
to have the required domain expertise as well as relationships with potential
requesters. The trust-management engine is a separate system component that
takes (r, C, P ) as input, outputs a decision about whether compliance with policy
has been proven, and may also output some additional information about how
to proceed if it hasn’t.

An essential part of the trust-management approach is the use of a general-
purpose, application-independent algorithm for checking proofs of compliance.
Why is this a good idea? Since any product or service that requires some form
of proof that requested transactions comply with policies could use a special-
purpose algorithm implemented from scratch, what do developers, administra-
tors, and users gain by using a general-purpose compliance checker?

The most important gain is in soundness and reliability of both the defi-
nition and the implementation of “proof of compliance.” Developers who set
out to implement a “simple,” special-purpose compliance checker (in order to
avoid what they think are the overly “complicated” syntax and semantics of a
universal “meta-policy”) may discover that they have underestimated their ap-
plication’s need for proof and expressiveness. As they discover the full extent of
their requirements, they may ultimately wind up implementing a system that
is as general and expressive as the “complicated” one they set out to avoid. A
general-purpose compliance checker can be explained, formalized, proven cor-
rect, and implemented in a standard package, and applications that use it can
be assured that the answer returned for any given input (r, C, P ) depends only
on the input and not on any implicit policy decisions (or bugs) in the design or
implementation of the compliance checker.

Basic questions that must be answered in the design of a trust-management
engine include:

– How should “proof of compliance” be defined?



– Should policies and credentials be fully or only partially programmable? In
which language or notation should they be expressed?

– How should responsibility be divided between the trust-management engine
and the calling application? For example, which of these two components
should perform the cryptographic signature verification? Should the appli-
cation fetch all credentials needed for the compliance proof before the trust-
management engine is invoked, or may the trust-management engine fetch
additional credentials while it is constructing a proof?

In the rest of this section, we survey several recent and ongoing trust-manage-
ment projects in which different answers to these questions are explored.

2.2 PolicyMaker

PolicyMaker was the first example of a “trust-management engine.” That is,
it was the first tool for processing signed requests that embodied the “trust-
management” principles articulated in Section 2.1. It addressed the authoriza-
tion problem directly, rather than handling the problem indirectly via authenti-
cation and access control, and it provided an application-independent definition
of “proof of compliance” for matching up requests, credentials, and policies.
PolicyMaker was introduced in the original trust-management paper by Blaze
et al. [BFL96], and its compliance-checking algorithm was later fleshed out in
[BFS98]. We give a high-level overview of the design decisions that went into
PolicyMaker in this section and some technical details of the PolicyMaker com-
pliance checker in Appendix A below. A full description of the system can be
found in [BFL96, BFS98], and experience using it in several applications is re-
ported in [BFRS97, LSM97, LMB].

PolicyMaker credentials and policies are fully programmable; together cre-
dentials and policies are referred to as “assertions.” Roughly speaking, assertions
are represented as pairs (f, s), where s is the source of authority, and f is a pro-
gram describing the nature of the authority being granted as well as the party
or parties to whom it is being granted. In a policy assertion, the source is always
the keyword POLICY. For the PolicyMaker trust-management engine to be
able to make a decision about a requested action, the input supplied to it by
the calling application must contain one or more policy assertions; these form
the “trust root,” i.e., the ultimate source of authority for the decision about
this request. In a credential assertion, the source is the public key of the issuing
authority. Credentials must be signed by their issuers, and these signatures must
be verified before the credentials can be used.

PolicyMaker assertions can be written in any programming language that
can be “safely” interpreted by a local environment that has to import creden-
tials from diverse (and possibly untrusted) issuing authorities. A safe version of
AWK was developed for early experimental work on PolicyMaker (see Blaze et
al. [BFL96]), because AWK’s pattern-matching constructs are a convenient way
to express authorizations. For a credential assertion issued by a particular au-
thority to be useful in a proof that a request complies with a policy, the recipient



of the request must have an interpreter for the language in which the assertion
is written. Thus, it would be desirable for assertion writers ultimately to con-
verge on a small number of assertion languages so that receiving systems have
to support only a small number of interpreters and so that carefully crafted cre-
dentials can be widely used. However, the question of which languages these will
be was left open by the PolicyMaker project. A positive aspect of PolicyMaker’s
not insisting on a particular assertion language is that all of that work that has
gone into designing, analyzing, and implementing the PolicyMaker compliance-
checking algorithm will not have to be redone every time an assertion language
is changed or a new language is introduced. The “proof of compliance” and
“assertion-language design” problems are orthogonal in PolicyMaker and can be
worked on independently.

One goal of the PolicyMaker project was to make the trust-management en-
gine minimal and analyzable. Architectural boundaries were drawn so that a
fair amount of responsibility was placed on the calling application rather than
the trust-management engine. In particular, the calling application was made
responsible for all cryptographic verification of signatures on credentials and
requests. One pleasant consequence of this design decision is that the applica-
tion developer’s choice of signature scheme(s) can be made independently of his
choice of whether or not to use PolicyMaker for compliance checking. Another
important responsibility that was assigned to the calling application is creden-
tial gathering. The input (r, C, P ) supplied to the trust-management module is
treated as a claim that credential set C contains a proof that request r complies
with Policy P . The trust-management module is not expected to be able to dis-
cover that C is missing just one credential needed to complete the proof and to
go fetch that credential from e.g., the corporate database, the issuer’s web site,
the requester himself, or elsewhere. Later trust-management engines, including
KeyNote [BFIK98] and REFEREE [CFL+97] divide responsibility between the
calling application and the trust-management engine differently from the way
PolicyMaker divides it.

The main technical contribution of the PolicyMaker project is a notion of
“proof of compliance” that is fully specified and analyzed. We give an overview
of PolicyMaker’s approach to compliance checking here and some details in Ap-
pendix A; a complete treatment of the compliance checker can be found in
[BFS98].

The PolicyMaker runtime system provides an environment in which the pol-
icy and credential assertions fed to it by the calling application can cooperate
to produce a proof that the request complies with the policy (or can fail to pro-
duce such a proof). Among the requirements for this cooperation are a method
of inter-assertion communication and a method for determining that assertions
have collectively succeeded or failed to produce a proof.

Inter-assertion communication in PolicyMaker is done via a simple, write-
only data structure on which all participating assertions record intermediate re-
sults. Specifically, PolicyMaker initializes the proof process by creating a “black-
board” containing only the request string r and the fact that no assertions have



thus far approved the request or anything else. Then PolicyMaker runs the var-
ious assertions, possibly multiple times each. When assertion (fi, si) is run, it
reads the contents of the blackboard and then adds to the blackboard one or
more acceptance records (i, si, Rij). Here Rij is an application-specific action
that source si approves, based on the partial proof that has been constructed
thus far. Rij may be the input request r, or it may be some related action that
this application uses for inter-assertion communication. Note that the meanings
of the action strings Rij are understood by the application-specific assertion pro-
grams fi, but they are not understood by PolicyMaker. All PolicyMaker does is
run the assertions and maintain the global blackboard, making sure that the as-
sertions do not erase acceptance records previously written by other assertions,
fill up the entire blackboard so that no other assertions can write, or exhibit any
other non-cooperative behavior. PolicyMaker never tries to interpret the action
strings Rij .

A proof of compliance is achieved if, after PolicyMaker has finished run-
ning assertions, the blackboard contains an acceptance record indicating that
a policy assertion approves the request r. Among the nontrivial decisions that
PolicyMaker must make are (1) in what order assertions should be run, (2) how
many times each assertion should be run, and (3) when an assertion should
be discarded because it is behaving in a non-cooperative fashion. Blaze et al.
[BFS98] provide:

– Amathematically precise formulation of the PolicyMaker compliance-checking
problem.

– Proof that the problem is undecidable in general and is NP-hard even in
certain natural special cases.

– One special case of the problem that is polynomial-time solvable, is useful
in a wide variety of applications, and is implemented in the current version
of PolicyMaker.

Although the most general version of the compliance-checking problem al-
lows assertions to be arbitrary functions, the computationally tractable version
that is analyzed in [BFS98] and implemented in PolicyMaker is guaranteed to
be correct only when all assertions are monotonic. (Basically, if a monotonic
assertion approves action a when given evidence set E, then it will also approve
action a when given an evidence set that contains E; see Appendix A for a formal
definition.) In particular, correctness is guaranteed only for monotonic policy as-
sertions, and this excludes certain types of policies that are used in practice, most
notably those that make explicit use of “negative credentials” such as revocation
lists. Although it is a limitation, the monotonicity requirement has certain ad-
vantages. One of them is that, although the compliance checker may not handle
all potentially desirable policies, it is at least analyzable and provably correct
on a well-defined class of policies. Furthermore, the requirements of many non-
monotonic policies can often be achieved by monotonic policies. For example,
the effect of requiring that an entity not occur on a revocation list can also be
achieved by requiring that it present a “certificate of non-revocation”; the choice



between these two approaches involves trade-offs among the (system-wide) costs
of the two kinds of credentials and the benefits of a standard compliance checker
with provable properties. Finally, restriction to monotonic assertions encourages
a conservative, prudent approach to security: In order to perform a potentially
dangerous action, a user must present an adequate set of affirmative credentials;
no potentially dangerous action is allowed “by default,” simply because of the
absence of negative credentials.

2.3 KeyNote

KeyNote [BFIK98] was designed according to the same principles as Policy-
Maker, using credentials that directly authorize actions instead of dividing the
authorization task into authentication and access control. Two additional design
goals for KeyNote were standardization and ease of integration into applica-
tions. To address these goals, KeyNote assigns more responsibility to the trust-
management engine than PolicyMaker does and less to the calling application; for
example, cryptographic signature verification is done by the trust-management
engine in KeyNote and by the application in PolicyMaker. KeyNote also requires
that credentials and policies be written in a specific assertion language, designed
to work smoothly with KeyNote’s compliance checker. By fixing a specific and
appropriate assertion language, KeyNote goes further than PolicyMaker toward
facilitating efficiency, interoperability, and widespread use of carefully written
credentials and policies.

A calling application passes to a KeyNote evaluator a list of credentials, poli-
cies, and requester public keys, and an “Action Environment.” This last element
consists of a list of attribute/value pairs, similar in some ways to the UnixTM

shell environment. The action environment is constructed by the calling applica-
tion and contains all information deemed relevant to the request and necessary
for the trust decision. The action-environment attributes and the assignment of
their values must reflect the security requirements of the application accurately.
Identifying the attributes to be included in the action environment is perhaps the
most important task in integrating KeyNote into new applications. The result
of the evaluation is an application-defined string (perhaps with some additional
information) that is passed back to the application. In the simplest case, the
result is something like “authorized.”

The KeyNote assertion format resembles that of e-mail headers. An example
(with artificially short keys and signatures for readability) is given in Figure 1.

As in PolicyMaker, policies and credentials (collectively called assertions)
have the same format. The only difference between policies and credentials is
that a policy (that is, an assertion with the keyword POLICY in the Authorizer
field) is locally trusted (by the compliance-checker) and thus needs no signature.

KeyNote assertions are structured so that the Licensees field specifies ex-
plicitly the principal or principals to which authority is delegated. Syntactically,
the Licensees field is a formula in which the arguments are public keys and the
operations are conjunction, disjunction, and threshold. The semantics of these
expressions are specified in [BFIK98].



KeyNote-Version: 1

Authorizer: rsa-pkcs1-hex:"1023abcd"

Licensees: dsa-hex:"986512a1" ||

rsa-pkcs1-hex:"19abcd02"

Comment: Authorizer delegates read

access to either of the

Licensees

Conditions: ($file == "/etc/passwd" &&

$access == "read") ->

{return "ok"}

Signature: rsa-md5-pkcs1-hex:"f00f5673"

Fig. 1. Sample KeyNote assertion

The programs in KeyNote are encoded in the Conditions field and are essen-
tially tests of the action environment variables. These tests are string compar-
isons, numerical operations and comparisons, and pattern-matching operations.

We chose such a simple language for KeyNote assertions for the following
reasons:

– AWK, one of the first assertion languages used by PolicyMaker, was criticized
as too heavyweight for most relevant applications. Because of AWK’s com-
plexity, the footprint of the interpreter is considerable, and this discourages
application developers from integrating it into a trust-management compo-
nent. The KeyNote assertion language is simple and has a minimal-sized
interpreter.

– In languages that permit loops and recursion (including
AWK), it is difficult to enforce resource-usage restrictions, but applications
that run trust-management assertions written by unknown sources often
need to limit their memory- and CPU-usage.
We believe that for out purposes a language without loops, dynamic memory
allocation, and certain other features is sufficiently powerful and expressive.
The KeyNote assertion syntax is restricted so that resource usage is propor-
tional to the program size. Similar concepts have been successfully used in
other contexts [HKM+98].

– Assertions should be both understandable by human readers and easy for
a tool to generate from a high-level specification. Moreover, they should be
easy to analyze automatically, so that automatic verification and consistency
checks can done. This is currently an area of active research.

– One of our goals is to use KeyNote as a means of exchanging policy and
distributing access control information otherwise expressed in an applica-
tion-native format. Thus the language should be easy to map to a number
of such formats (e.g., from a KeyNote assertion to packet-filtering rules).

– The language chosen was adequate for KeyNote’s evaluation model.

This last point requires explanation.



In PolicyMaker, compliance proofs are constructed via repeated evaluation
of assertions, along with an arbitrated “blackboard” for storage of intermediate
results and inter-assertion communication.

In contrast, KeyNote uses a depth-first search (DFS) algorithm that attempts
(recursively) to satisfy at least one policy assertion. Satisfying an assertion entails
satisfying both the Conditions field and the Licensees key expression. Note that
there is no explicit inter-assertion communication as in PolicyMaker; the accep-
tance records returned by program evaluation are used internally by the KeyNote
evaluator and are never seen directly by other assertions. Because KeyNote’s
evaluation model is a subset of PolicyMaker’s, the latter’s compliance-checking
guarantees are applicable to KeyNote. Whether the more restrictive nature of
KeyNote allows for stronger guarantees to be made is an open question requiring
further research.

Ultimately, for a request to be approved, an assertion graph must be con-
structed between one or more policy assertions and one or more keys that signed
the request. Because of the evaluation model, an assertion located somewhere
in a delegation graph can effectively only refine (or pass on) the authorizations
conferred on it by the previous assertions in the graph. (This principle also holds
for PolicyMaker.) For more details on the evaluation model, see [BFIK98].

It should be noted that PolicyMaker’s restrictions regarding “negative cre-
dentials” also apply to KeyNote. Certificate revocation lists (CRLs) are not built
into the KeyNote (or the PolicyMaker) system; these however could be provided
at a higher (or lower) level, perhaps even transparently to KeyNote3. The prob-
lem of credential discovery is also not explicitly addressed in KeyNote. We hope
that the fact that KeyNote provides an explicit, descriptive credential format
will facilitate research on both credential discovery and revocation.

Finally, note that KeyNote, like other trust-management engines, does not
directly enforce policy; it only provides advice to the applications that call it.
KeyNote assumes that the application itself is trusted and that the policy asser-
tions are correct. Nothing prevents an application from submitting misleading
assertions to KeyNote or from ignoring KeyNote altogether.

2.4 Related Work on Trust Management

We close with a brief discussion of two general-purpose trust-management sys-
tems that share much of the basic approach initiated by PolicyMaker but depart
from it in some notable ways.

The REFEREE system of Chu et al. [CFL+97] is like PolicyMaker in that
it supports full programmability of assertions (policies and credentials). How-
ever, it differs in several important ways. It allows the trust-management engine,
while evaluating a request, to fetch additional credentials and to perform crypto-
graphic signature-verification. (Recall that PolicyMaker places the responsibility
for both of these functions on the calling application and insists that they be

3 Note that the decision to consult a CRL is (or should be) a matter of local policy.



done before the evaluation of a request begins.) Furthermore, REFEREE’s no-
tion of “proof of compliance” is more complex than PolicyMaker’s; for example,
it allows non-monotonic policies and credentials. The REFEREE proof system
also supports a more complicated form of inter-assertion communication than
PolicyMaker does. In particular, the REFEREE execution environment allows
assertion programs to call each other as subroutines and to pass different argu-
ments to different subroutines, whereas the PolicyMaker execution environment
requires each assertion program to write anything it wants to communicate on
a global “blackboard” that can be seen by all other assertions.

REFEREE was designed with trust management for web browsing in mind,
but it is a general-purpose language and could be used in other applications.
Some of the design choices in REFEREE were influence by experience (reported
in [BFRS97]) with using PolicyMaker for web-page filtering based on PICS labels
[RM96] and users’ viewing policies. It is unclear whether the cost of building and
analyzing a more complex trust-management environment such as REFEREE
is justified by the ability to construct more sophisticated proofs of compliance
than those constructible in PolicyMaker. Assessing this tradeoff would require
more experimentation with both systems, as well as a rigorous specification and
analysis of the REFEREE proof system, similar to the one for PolicyMaker given
in [BFS98].

The Simple Public Key Infrastructure (SPKI) project of Ellison et al. [EFR+97]
has proposed a standard format for authorization certificates. SPKI shares with
our trust-management approach the belief that certificates can be used directly
for authorization rather than simply for authentication. However, SPKI certifi-
cates are not fully programmable; they are data structures with the following
five fields: “Issuer” (the source of authority), “Subject” (the entity being au-
thorized to do something), “Delegation” (a boolean value specifying whether
or not the subject is permitted to pass the authorization on to other entities),
“Authorization” (a specification of the power that the issuer is conferring on
the subject), and “Validity dates.” The SPKI certificate format is compatible
with the Simple Distributed Security Infrastructure (SDSI) local-names format
proposed by Rivest and Lampson [LR97], and Ellison et al. [EFR+97] explain
how to integrate the two.

The SPKI documentation [EFR+97] states that

The processing of certificates and related objects to yield an authoriza-
tion result is the province of the developer of the application or system.
The processing plan presented here is an example that may be followed,
but its primary purpose is to clarify the semantics of an SPKI certificate
and the way it and various other kinds of certificate might be used to
yield an authorization result.

Thus, strictly speaking, SPKI is not a trust-management engine according to
our use of the term, because compliance checking (referred to above as “process-
ing of certificates and related objects”) may be done in an application-dependent
manner. If the processing plan presented in [EFR+97] were universally adopted,



then SPKI would be a trust-management engine. The resulting notion of “proof
of compliance” would be considerably more restricted than PolicyMaker’s; es-
sentially, proofs would take the form of chains of certificates. On the other hand,
SPKI has a standard way of handling certain types of non-monotonic policies,
because validity periods and simple CRLs are part of the proposal.

3 Applications of Trust Management

In this section, we give a brief overview of experiences with the trust-management
approach in mobile-code security, active networking, nd distributed access-control.

3.1 Active Networks

There has been a great deal of interest in the problem of exposing the ability
to control of network infrastructure. Much of this interest has been driven by a
the desire to accelerate service creation. Sometimes services can be created using
features of existing systems. One of the most aggressive proposals is the notion
of programmable network infrastructure or “active networking.” In an active
network, the operator or user has facilities for directly modifying the operational
semantics of the network itself. Thus, the role of network and endpoint become
far more malleable for the construction of new applications. This is in contrast to
the “service overlay model” as employed, for example, in present-day Internet,
where service introduction at the “edge” of the virtual infrastructure is very easy,
but changes in the infrastructure itself have proven very difficult (e.g., RSVP
[BZB+97] and multicasting [Dee89]). A number of active network architectures
have been proposed and are under investigation [AAH+98, WGT98, HKM+98,
WLG98, CSAA98, PJ96].

A programmable network infrastructure is potentially more vulnerable to
attacks since a portion of the control plane is intentionally exposed, and this
can lead to far more complex threats than exist with an inaccessible control
plane. For example, a denial-of-service attack on the transport plane may also
inhibit access to the control plane. Unauthenticated access to the control plane
can have severe consequences for the security of the whole network.

It is therefore especially necessary for an active network to use a robust and
powerful authorization mechanism. Because of the many interactions between
network nodes and switchlets (pieces of code dynamically loaded on the switches,
or code in packets that is executed on every active node they encounter), a
versatile, scalable, and expressive mechanism is called for.

We have applied KeyNote [BFIK98] in one proposed active network secu-
rity architecture, in the Secure Active Network Environment (SANE) [AAKS98]
[AAKS99] developed at the University of Pennsylvania as part of the SwitchWare
project [AAH+98].

In SANE, the principals involved in the authorization and policy decisions
in the security model are users, programmers and administrators and network
elements. The network elements are presumed to be under physical control of



an administrator. Programmers may not have physical access to the network
element, but may possess considerable access rights to resources present in the
network elements. Users may have access to basic services (e.g., transport), but
also resources that the network elements are willing to export to all users, at an
appropriate level of abstraction. Users may also be allowed to introduce their
own services, or load those written by others. In such a dynamic environment,
KeyNote is used to supply policy and authorization credentials for those compo-
nents of the architecture that enforce resource usage and access control limits.

In particular, KeyNote policies and credentials are used to:

– Authorize principals to load code on active routers. This happens as a result
of an authentication mechanism, further described in [AAKS98].

– Intimately related to the previous item, KeyNote sets resource limits (e.g.,
memory allocated, CPU cycles consumed, memory bandwidth) that the ex-
ecution environment4 enforces. The KeyNote evaluator is initially invoked
just before a switchlet begins execution, and is provided with the switchlet
owner’s credentials and the node’s policies. It then determines whether the
switchlet is allowed to execute on the node (addressing the previous item),
and what the initial resource limits are. If these are exceeded, another call
to the KeyNote system is made, whereupon the decision may be to grant
more resources, kill the switchlet, or raise an exception.

– Fine-grained control of what actions a switchlet may take on the active
node. In our current approach, loaded code may call other loaded or resident
functions (resembling inter-process communication and system call invoca-
tion respectively). Which of these calls are allowed by policy to occur is (or
rather, can optionally be) controlled by KeyNote. For performance reasons,
and since the switchlet language used lends itself to some degree of static
analysis, this authorization step happens at link time (when a newly-loaded
switchlet is dynamically linked in the runtime system). An alternative way
of achieving this would be to trap into the KeyNote evaluator every time
an external (to the switchlet) function was called, by generating appropri-
ate function stubs at link time. This could lead to considerable performance
problems, especially for time-critical applications (such as real-time content
processing and distribution). Such functionality, however, is necessary if one
needs to restrict the range of arguments that may be passed to external
functions. This is currently an area of open research.

– KeyNote credentials can be used by “active firewalls” to notify nodes behind
the firewall that a particular piece of active code should (or should not) be
allowed to perform specific tasks [KBIS98]. In this context, KeyNote defines
trust relations between active nodes (e.g., “firewall”, “protected host”, etc.)

Trust management for active networks is an area of continuing research.

4 In the case of SANE, the execution environment is a modified and restricted runtime
of the Caml [Ler] programming language.



3.2 Mobile Code Security

Another area of broad recent interest is the security and containment of un-
trusted “mobile” code. That is, executable content or mobile code is received
by a host with a request to a execute it; lacking any automatic mechanisms for
evaluating the security implications of executing such a piece of code, the host
needs to find some other way of determining the trustworthiness of that code.

Failure to properly contain mobile code may result in serious damage or
leakage or information resident on the host. Such damage can be the result of
malicious intent (e.g., industrial or otherwise espionage or vandalism), or un-
intentional (e.g., programming failures or unexpected interactions with other
system components or programs). Other consequences of failing to contain mo-
bile code include denial-of-service attacks (the now familiar phenomenon of Java
and JavaScript applets using all the system memory or CPU cycles, usually
because of bugs), or infiltration of a company network through a downloaded
trojan horse or virus.

Of course, these threats existed long before mobile code, such as Java applets,
became popular. Downloading software from a bulletin board service or through
the Internet and then executing it without any form of code review or execution
restrictions has almost exactly the same security implications. The problem,
however, has been made more prominent because of the scale and ease with which
attacks to individuals and hosts can be carried out, especially in environments
where mobile code is run automatically.

As we mentioned in the introduction, various proposals exist that tie code
“trustworthiness” to the existence of a digital signature or other form of authen-
tication. Such mechanisms, however, do not address the underlying problem; a
signature has value only to the extent that the verifier can evaluate the signer’s
trustworthiness (which may be a result of poorly-defined, or incorrectly under-
stood, social factors, technical competence, personal knowledge, etc.). In that
respect, signature-based mobile code schemes do not scale. Furthermore, some
programs may be “safe” to run under restricted environments or a small set
of platforms. Simple digital signature schemes as have been proposed cannot
readily accommodate such conditions.

Trust Management has at least two different roles in mobile code security:

– Express trust relations between code-certifying entities, and the conditions
under which their certification has meaning. So, for example, code-certifier
A could state that his certification of safety of a particular piece of code
is predicated by some set of conditions (presumably the conditions under
which the code evaluation took place, or the assumptions made by the code
that may have security implications if violated). Trust management could
also be used to express the local user’s (or corporate) policy on executing
mobile code (e.g., “must be signed by the company security officer or must
be accompanied by a PCC proof” [NL96, Nec97]).

– Trust-management credentials could be used to describe the minimal set of
capabilities the host environment must grant to enable the code to perform



its tasks. This would then be combined with the relevant local policy5 to
restrict the system interface presented to the mobile code. This is similar
in concept to the approach mentioned in Section 3.1. We are also investi-
gating the application of this method in a traditional UnixTM kernel, in an
environment where language-based protection is not available.

3.3 Access Control Distribution

An indirect, but architecturally very important, benefit of trust management
involves the distribution of traditional access control list (ACL) databases. Some
applications lend themselves naturally to a well-defined ACL-style interface for
describing their security characteristics that do not obviously require the rich
expressiveness of a trust-management approach. For example, it may be natural
to describe who is allowed to log in to a computer according to a standard list of
login accounts. Even when an ACL provides sufficient expressiveness, however,
it is often architecturally beneficial to implement the ACL on top of a trust-
management system.

Architectures based on a trust-management system can be easily extended
if, in the future, it becomes necessary to base access decisions on more complex
rules than are captured by an ACL. For example, it is natural and easy to
add “time-of-day” restrictions as part of a policy or individual user credentials,
even if the need for such restrictions had not been anticipated at the time the
system was first designed. Of course, extensibility is a general benefit of trust
management that is not limited to ACL applications.

More importantly, a trust-management system decouples the specification of
access control policies from the mechanism used to distribute and implement
them. For example, consider a traditional access control list maintained as a
simple database in a computer system. A trust-management tool could convert
ACL entries into credentials automatically, with a general credential (certifi-
cate) distribution mechanism used to ensure that updated credentials are sent
to the appropriate place. Distributed, reliable access control can be a very dif-
ficult problem when implemented by itself, and is greatly simplified using a
credential-based trust-management scheme as a back end to a non-distributed
access control database. Even if the expressive power is limited to simple ACLs,
trust management allows the use of an existing credential distribution scheme
to solve the most difficult aspects of the problem.

4 Conclusion and Future Work

In the time since “trust management” first appeared in the literature in [BFL96],
the concept has gained broad acceptance in the security research community.
Trust management has a number of important advantages over traditional ap-
proaches such as distributed ACLs, hardcoded security policies, and global iden-
tity certificates. A trust-management system provides direct authorization of
5 This would happen automatically, in the process of compliance checking.



security-critical actions and decouples the problem of specifying policy and au-
thorization from that of distributing credentials.

Our work on trust management has focused on designing languages and com-
pliance checkers, identifying applications, and building practical toolkits. There
are important areas that we have not yet addressed. Foremost among those is
automated credential discovery; in our current systems, it is the responsibility of
the requester to submit all necessary credentials, under the assumption that he
holds all credentials relevant to him. Even then, however, intermediate creden-
tials that form the necessary connections between the verifier’s policy and the
requester’s credentials must be acquired and submitted. The various solutions
to this problem range from “leave it to the application” to using distributed
databases and lookup mechanisms for credential discovery. A solution along the
lines of a distributed database can also assist large organizations in auditing
their security and access policies.

Another area of future work is providing functionality similar to that of
certificate revocation lists (CRLs), keeping in mind the constraints about “nega-
tive credentials” mentioned in Section 2.2. While adoption and deployment of a
scheme similar to that of X.509 is fairly straightforward, we are still investigating
the security and operational implications.

Finally, we are examining higher-level policy languages that are even more
human-understandable and capable of higher levels of abstraction. Such high-
level policy would be combined with network- and application-specific infor-
mation and compiled into a set to trust-management credentials. Similarly, a
tool for translating trust-management credentials into application-native forms
would give us all the advantages of trust management (delegation, formal proof
of compliance, etc.) while requiring minimal changes to applications.
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A PolicyMaker Compliance Proofs

We now give some technical details about the PolicyMaker compliance checker.
This discussion is largely excerpted (with the authors’ permission) from the
paper of Blaze et al. [BFS98].

The general problem we are concerned with is Proof of Compliance (POC).
The question is whether a request r complies with a policy. The policy is simply
a function f0 encoded in some well understood programming system or language
and labeled by the keyword POLICY. In addition to the request and the policy,
a POC instance contains a set of credentials, also general functions, each labeled
by its source. Policies and credentials are collectively referred to as assertions.

Credentials are issued by sources. Formally, a credential is a pair (fi, si)
of function fi and source-ID si, which is just a string over some appropriate
alphabet. Important examples of source-IDs include public keys of credential
issuers, URLs, names of people, and names of companies. With the exception of
the keyword POLICY, the interpretation of source-IDs is part of the application-
specific semantics of an assertion, and it is not the job of the compliance checker.
From the compliance checker’s point of view, the source-IDs are just strings, and
the assertions encode a set of (possibly indirect and possibly conditional) trust
relationships among the issuing sources. Associating each assertion with the
correct source-ID is the responsibility of the calling application, as explained in
Section 2.2.

The request r is a string encoding an action for which the calling applica-
tion seeks a proof of compliance. In the course of deciding whether the creden-
tials (f1, s1), . . . , (fn−1, sn−1) constitute a proof that r complies with the policy
(f0,POLICY), the compliance checker’s domain of discourse may need to include
other action strings. For example, if POLICY requires that r be approved by
credential issuers s1 and s2, the credentials (f1, s1) and (f2, s2) may want a way
to say that they approve r conditionally, where the condition is that the other
credential also approve it. A convenient way to formalize this is to use strings
R, R1, and R2 over some finite alphabet Σ. The string R corresponds to the
requested action r. The strings R1 and R2 encode “conditional” versions of R
that might be approved by s1 and s2 as intermediate results of the compliance-
checking procedure.

More generally, for each request r and each assertion (fi, si), there is a set
{Rij} of action strings that might arise in a compliance check. By convention,
there is a distinguished string R that corresponds to the input request r. The
range of assertion (fi, si) is made up of acceptance records of the form (i, si, Rij),
the meaning of which is that, based on the information at its disposal, assertion
number i, issued by source si, approves action Rij . A set of acceptance records is
referred to as an acceptance set. It is by maintaining acceptance sets and making
them available to assertions that the PolicyMaker compliance checker manages
“inter-assertion communication,” giving assertions the chance to make decisions
based on conditional decisions by other assertions. The compliance checker will
start with initial acceptance set {(Λ,Λ,R)}, in which the one acceptance record
means that the action string for which approval is sought is R and that no as-



sertions have yet signed off on it (or anything else). The checker will run the
assertions (f0,POLICY), (f1, s1), . . . , (fn−1, sn−1) that it has received as input,
not necessarily in that order and not necessarily once each, and see which ac-
ceptance records are produced. Ultimately, the compliance checker approves the
request r if the acceptance record (0,POLICY, R), which means “policy approves
the initial action string,” is produced.

Thus, abstractly, an assertion is a mapping from acceptance sets to accep-
tance sets. Assertion (fi, si) looks at an acceptance set A encoding the actions
that have been approved so far and the numbers and sources of the assertions
that approved them. Based on this information about what the sources it trusts
have approved, (fi, si) outputs another acceptance set A′.

The following concrete examples show why PolicyMaker assertions are al-
lowed to approve multiple action strings for each possible request. That is, for
a given input request r, why do assertions need to do anything except say “I
approve r” or refuse to say it?

First, consider the following “co-signing required” assertion (f0,POLICY):
“All expenditures of $500 or more require approval by A and B.” Suppose that
A’s policy is to approve such expenditures if and only if B approves them and
that B’s is to approve them if and only if A approves them. Our acceptance
record structure makes such approvals straightforward. The credential (f1,A),
can produce acceptance records of the form (1, A,R) and (1, A,RB), where R
corresponds to the input request r; the meaning of the second is “I will approve
R if and only if B approves it.” Similarly, the credential (f2,B), can produce
records of the form (2, B,R) and (2, B,RA). On input {(Λ,Λ,R)}, the sequence
of acceptance records (1, A,RB), (2, B,RA), (1, A,R), (2, B,R), (0,POLICY, R)
would be produced if the assertions were run in the order (f1,A), (f2,B), (f1,A),
(f2,B), (f0,POLICY), and the request r would be approved. If assertions could
only produce binary approve/disapprove decisions, no transactions would ever be
approved, unless the trust management system had some way of understanding
the semantics of the assertions and knowing that it had to ask A’s and B’s
credentials explicitly for a conditional approval. This would violate the goal of
having a general-purpose, trust management system that processes requests and
assertions whose semantics are only understood by the calling applications and
that vary widely from application to application.

Second, consider the issue of “delegation depth.” A very natural construction
to use in assertion (f0,POLICY) is “I delegate authority to A. Furthermore, I
allow A to choose the parties to whom he will re-delegate the authority I’ve
delegated to him. For any party B involved in the approval of a request, there
must be a delegation chain of length at most two from me to B.” Various “domain
experts” B1, . . ., Bt could issue credentials (f1, B1), . . ., (ft, Bt) that directly
approve actions in their areas of expertise by producing acceptance records of
the form (i, Bi, R

i
0). An assertion (gj , sj) that sees such a record and explicitly

trusts Bi could produce an acceptance record of the form (j, sj , Ri
1), the meaning

of which is that “Bi approved Ri directly, I trust Bi directly, and so I also
approve Ri.” More generally, if an assertion (gl, sl) trusts sk directly and sees an



acceptance record of the form (k, sk, Ri
d), it can produce the acceptance record

(l, sl, Ri
d+1). The assertion (f0,POLICY) given above would approve an action

Ri if and only if it were run on an acceptance set that contained a record of
the form (k,A, Ri

1), for some k. Note that (f0,POLICY) need not know which
credential (fi, Bi) directly approved Ri by producing (i, Bi, R

i
0). All it needs to

know is that it trusts A and that A trusts some Bi whose credential produced
such a record.

The most general version of the compliance-checking problem is:

Proof of Compliance (POC):
Input : A request r and a set {(f0,POLICY), (f1, s1), . . ., (fn−1, sn−1)} of
assertions.
Question : Is there a finite sequence i1, i2, . . . , it of indices such that each ij is
in {0, 1, . . . , n− 1}, but the ij ’s are not necessarily distinct and not necessarily
exhaustive of {0, 1, . . . , n− 1} and such that

(0,POLICY, R) ∈ (fit
, sit

) ◦ · · · ◦ (fi1 , si1)({(Λ,Λ,R)}),

where R is the action string that corresponds to the request r?
This most general version of the problem is clearly undecidable. A compliance

checker cannot even decide whether an arbitrary assertion (fi, si) halts when
given an arbitrary acceptance set as input, much less whether some sequence
containing (fi, si) produces the desired output.

When we say that “{(f0,POLICY), (f1, s1), . . . , (fn−1, sn−1)} contains a
proof that r complies with POLICY,” we mean that (r, {(f0,POLICY), (f1, s1),
. . ., (fn−1, sn−1)}) is a yes-instance of this unconstrained, most general form
of POC. If F is a (possibly proper) subset of {(f0,POLICY), (f1, s1), . . .,
(fn−1, sn−1)} that contains all of the assertions that actually appear in the
sequence (fit

, sit
) ◦ · · · ◦ (fi1 , si1), then we say that “F contains a proof that r

complies with POLICY.”
Restricted versions of POC are obtained by adding various pieces of infor-

mation to the problem instances. Specifically, consider augmenting the instance
(r, {(f0, POLICY), (f1, s1), . . ., (fn−1, sn−1)}) in one or more of the following
ways:

Global runtime bound: An instance may contain an integer d such that a
sequence of assertions (fi1 , si1), . . ., (fit

, sit
) is only considered a valid proof

that r complies with POLICY if the total amount of time that the compliance
checker needs to compute (fit

, sit
) ◦ · · · ◦ (fi1 , si1)({(Λ,Λ,R)}) is O(Nd). Here

N is the length of the original problem instance, i.e., the number of bits needed
to encode r, (f0,POLICY), . . ., (fn−1, sn−1), and d in some standard fashion.

Local runtime bound: An instance may contain an integer c such that (fi1 ,
si1), . . ., (fit

, sit
) is only considered a valid proof that r complies with POLICY if

each (fij
, sij

) runs in time O(Nc). Here N is the length of the actual acceptance
set that is input to (fij

, sij
) when it is run by the compliance checker. Note

that the length of the input fed to an individual assertion (fij
, sij

) in the course
of checking a proof may be considerably bigger than the length of the original



problem instance (r, {(f0,POLICY), (f1, s1), . . . , (fn−1, sn−1)}, c), because the
running of assertions (fi1 , si1), . . ., (fij−1 , sij−1) may have caused the creation
of many new acceptance records.

Bounded number of assertions in a proof: An instance may contain an
integer l such that (fi1 , si1), . . ., (fit

, sit
) is only considered a valid proof if t ≤ l.

Bounded output set: An instance may contain integers m and s such that an
assertion (fi, si) can only be part of a valid proof that r complies with POLICY if
there is a set Oi = {Ri1, . . . , Rim} of m action strings, such that (fi, si)(A) ⊆ Oi

for any input set A, and the maximum size of an acceptance record (i, si, Rij) is s.
Intuitively, for any user-supplied request r, the meaningful “domain of discourse”
for assertion (fi, si) is of size at most m — there are at most m actions that it
would make sense for (fi, si) to sign off on, no matter what the other assertions
in the instance say about r.

Monotonicity: Important variants of POC are obtained by restricting atten-
tion to instances in which the assertions have the following property: (fi, si) is
monotonic if, for all acceptance sets A and B, A ⊆ B ⇒ (fi, si)(A) ⊆ (fi, si)(B).
Thus, if (fi, si) approves action Rij when given a certain set of “evidence” that
Rij is ok, it will also approve Rij when given a superset of that evidence — it
does not have a notion of “negative evidence.”

Any of the parameters l, m, and s that are present in a particular instance
should be written in unary so that they play an analogous role to n (the number
of assertions) in the calculation of the total size of the instance. The parameters d
and c are exponents in a runtime bound and hence can be written in binary. Any
subset of the parameters d, c, l, m, and s may be present in a POC instance,
and each subset defines a POC variant, some of which are more natural and
interesting than others. Including a global runtime bound d obviously makes the
POC problem decidable, as does including parameters c and l.

In stating and proving results about the complexity of POC, we use the notion
of a promise problem [ESY84]. In a standard decision problem, a language L is
defined by a predicate R in that x ∈ L ⇔ R(x). In a promise problem, there
are two predicates, the promise Q and the property R. A machine M solves
the promise problem (Q,R) if, for all inputs x for which the promise holds,
the machine M halts and accepts x if and only if the property holds. Formally,
∀x[Q(x) ⇒ [M halts on x and M(x) accepts ⇔ R(x)]]. Note that M ’s behavior
is unconstrained on inputs that do not satisfy the promise, and each set of
choices for the behavior of M on these inputs determines a different solution.
Thus predicates Q and R define a family of languages, namely all L such that
L = L(M) for some M that solves (Q,R). A promise problem is NP-hard if it
has at least one solution and all of its solutions are NP-hard.

The following natural variants of POC are NP-hard. Refer to Blaze et al. [BFS98]
for the NP-hardness proofs.

Locally Bounded Proof of Compliance (LBPOC):
Input : A request r, a set {(f0,POLICY), (f1, s1), . . . , (fn−1, sn−1)} of assertions,
and integers c, l, m, and s.



Promise : Each (fi, si) runs in time O(Nc). On any input set that contains
(Λ,Λ,R), where R is the action string corresponding to request r, for each (fi, si)
there is a set Oi of at most m action strings such that (fi, si) only produces
output from Oi, and s is the maximum size of an acceptance record (i, si, Rij),
where Rij ∈ Oi.
Question : Is there a sequence i1, . . . , it of indices such that

1. Each ij is in {0, 1, . . . , n− 1}, but the ij need not be distinct or collectively
exhaustive of {0, 1, . . . , n− 1},

2. t ≤ l, and
3. (0,POLICY, R) ∈ (fit

, sit
) ◦ · · · ◦ (fi1 , si1)({(Λ,Λ,R)})?

Globally Bounded Proof of Compliance (GBPOC):
Input : A request r, a set {(f0,POLICY), (f1, s1), . . . , (fn−1, sn−1)} of assertions,
and an integer d.
Question : Is there a sequence i1, . . . , it of indices such that

1. Each ij is in {0, 1, . . . , n− 1}, but the ij need not be distinct or collectively
exhaustive of {0, 1, . . . , n− 1},

2. (0,POLICY, R) ∈ (fit
, sit

)◦· · ·◦(fi1 , si1)({(Λ,Λ,R)}), where R is the action
string corresponding to request r, and

3. The computation of (fit
, sit

)◦ · · · ◦ (fi1 , si1)({(Λ,Λ,R)}) runs in (total) time
O(Nd)?

Monotonic Proof of Compliance (MPOC):
Input : A request r, a set {(f0,POLICY), (f1, s1), . . . , (fn−1, sn−1)} of assertions,
and integers l and c.
Promise : Each assertion (fi, si) is monotonic and runs in time O(Nc).
Question : Is there a sequence i1, . . . , it of indices such that

1. Each ij is in {0, 1, . . . , n− 1}, but the ij need not be distinct or collectively
exhaustive of {0, 1, . . . , n− 1},

2. t ≤ l, and
3. (0,POLICY, R) ∈ (fit

, sit
)◦· · ·◦(fi1 , si1)({(Λ,Λ,R)}), where R is the action

string corresponding to request r?

Each version of POC can be defined using “agglomeration” (f2, s2) ! (f1, s1)
instead of composition (f2, s2) ◦ (f1, s1). The result of applying the sequence
of assertions (fi1 , si1), . . ., (fit

, sit
) agglomeratively to an acceptance set S0 is

defined inductively as follows: S1 ≡ (fi1 , si1)(S0) ∪ S0 and, for 2 ≤ j ≤ t,
Sj ≡ (fij

, sij
)(Sj−1) ∪ Sj−1. Thus, for any acceptance set A, A ⊆ (fit

, sit
) !

· · · ! (fi1 , si1)(A). The agglomerative versions of the decision problems are iden-
tical to the versions already given, except that the acceptance condition is
“(0,POLICY, R) ∈ (fit

, sit
) ! · · · ! (fi1 , si1)({(Λ,Λ,R)})?” We refer to “agglom-

erative POC,” “agglomerative MPOC,” etc., when we mean the version defined
in terms of ! instead of ◦.



A trust management system that defines “proof of compliance” in terms
of agglomeration makes it impossible for an assertion to “undo” an approval
that it or any other assertion has already given to an action string during the
course of constructing a proof. Informally, it forces assertions to construct proofs
by communicating on a “write-only blackboard.” This definition of proof makes
sense if it is important for the trust management system to guard against a rogue
credential-issuer’s ability to thwart legitimate proofs. Note that the question
of whether the compliance checker combines assertions using agglomeration or
composition is separate from the question of whether the assertions themselves
are monotonic.

The agglomerative versions of GBPOC, LBPOC, and MPOC are also NP-
hard; the NP-hardness proofs are given in [BFS98] and are simply minor varia-
tions on the NP-hardness proofs for the composition versions.

Finally, we present the compliance-checking algorithm that is used in the
current version of the PolicyMaker trust management system. The promise that
defines this special case includes some conditions that we have already discussed,
namely monotonicity and bounds on the runtime of assertions and on the total
size of acceptance sets that assertions can produce. It also includes “authentic-
ity,” something that can be ignored when proving hardness results. An authentic
assertion (fi, si) only produces acceptance records of the form (i, si, Rij), i.e., it
does not “impersonate” another assertion by producing an acceptance record of
the form (i′, si′ , Ri′j).

PolicyMaker constructs proofs in an agglomerative fashion, and hence we
use ! in the following problem statement. This variant of POC could be defined
using ◦ as well, but the algorithm given below would not work for the ◦ version.
Locally Bounded, Monotonic, and Authentic Proof of Compliance
(LBMAPOC):
Input : A request r, a set {(f0,POLICY), (f1, s1), . . . , (fn−1, sn−1)} of assertions,
and integers c, m, and s.
Promise : Each assertion (fi, si) is monotonic, authentic, and runs in timeO(Nc).
On any input set that contains (Λ,Λ,R), where R is the action string correspond-
ing to request r, for each (fi, si) there is a set Oi of at most m action strings,
such that (fi, si) only produces output from Oi, and s is the maximum size of
an acceptance record (i, si, Rij), such that Rij ∈ Oi.
Question : Is there a sequence i1, . . . , it of indices such that each ij is in {0, 1, . . . ,
n−1}, but the ij need not be distinct or collectively exhaustive of {0, 1, . . . , n−1},
and (0,POLICY, R) ∈ (fit

, sit
) ! · · · ! (fi1 , si1)({(Λ,Λ,R)}).

The current algorithm is called CCA1, for “compliance-checking algorithm,
version 1,” to allow for the evolution of PolicyMaker, and for improved algorithms
CCAi, i ≥ 1.

Assertion (fi, si) is called “ill-formed” if it violates the promise. If CCA1

discovers in the course of simulating it that (fi, si) is ill-formed, CCA1 ignores
it for the remainder of the computation. Note that an assertion (fi, si) may
be undetectably ill-formed; for example, there may be sets A ⊆ B such that
(fi, si)(A) �⊆ (fi, si)(B), but such that A and B do not arise in this run of the



compliance checker. The CCA1 algorithm checks for violations of the promise
every time it simulates an assertion. The pseudocode for these checks is omitted
from the statement of CCA1 given here, because it would not illustrate the basic
structure of the algorithm; the predicate IllFormed() is included in the main
loop to indicate that the checks are done for each simulation.

Fig. 2. Pseudocode for Algorithm CCA1

CCA1(r, {(f0, POLICY), (f1, s1), . . ., (fn−1, sn−1)}, c, m, s):

{
S ← {(Λ, Λ, R)}
I ← {}
For j ← 1 to mn

{
For i ← n-1 to 0

{
If (fi, si)�∈ I, Then S’ ← (fi,si)(S)

If IllFormed((fi,si)), Then I ← I ∪ {(fi,si)},
Else S ← S ∪ S’

}
}
If (0, POLICY, R) ∈ S, Then Output(Accept),

Else Output(Reject)

}

Note that CCA1 doesmn iterations of the sequence (fn−1, sn−1), . . ., (f1, s1),
(f0,POLICY), for a total of mn2 assertion-simulations. Recall that a set F =
{(fj1 , sj1), . . . , (fjt

, sjt
)} ⊆ {(f0, POLICY), . . ., (fn−1, sn−1)} “contains a proof

that r complies with POLICY” if there is some sequence k1, . . . , ku of the indices
j1, . . . , jt, not necessarily distinct and not necessarily exhaustive of j1, . . . , jt,
such that (0,POLICY, R) ∈ (fku

, sku
) ! · · · ! (fk1 , sk1)({(Λ,Λ,R)}).

The following formal claim about this algorithm is proven in [BFS98].

Theorem 1. Let (r, {(f0,POLICY), (f1, s1), . . ., (fn−1, sn−1)}, c, m, s) be an
(agglomerative) LBMAPOC instance.

(1) Suppose that F ⊆ {(f0,POLICY), (f1, s1), . . . , (fn−1, sn−1)} contains a
proof that r complies with POLICY and that every (fi, si) ∈ F satisfies the
promise of LBMAPOC. Then CCA1 accepts (r, {(f0,POLICY), (f1, s1), . . . ,
(fn−1, sn−1) }, c,m, s).

(2) If {(f0,POLICY), (f1, s1), . . . , (fn−1, sn−1)} does not contain a proof that
r complies with POLICY, then CCA1 rejects (r, {(f0,POLICY), (f1, s1), . . . ,
(fn−1, sn−1) }, c,m, s).



(3) CCA1 runs in time O(mn2(nms)c).

Note that cases (1) and (2) do not cover all possible inputs to CCA1. There
may be a subset F of the input assertions that does contain a proof that r
complies with POLICY but that contains one or more ill-formed assertions. If
CCA1 does not detect that any of these assertions is ill-formed, because their
ill-formedness is only exhibited on acceptance sets that do not occur in this com-
putation, then CCA1 will accept the input. If it does detect ill-formedness, then,
as specified here, CCA1 may or may not accept the input, perhaps depending
on whether the record (0,POLICY, R) has already been produced at the time of
detection. CCA1 could be modified so that it restarts every time ill-formedness
is detected, after discarding the ill-formed assertion so that it is not used in the
new computation. It is not clear whether this modification would be worth the
performance penalty. The point is simply that CCA1 offers no guarantees about
what it does when it is fed a policy that trusts, directly or indirectly, a source
of ill-formed assertions, except that it will terminate in time O(mn2(nms)c). It
is the responsibility of the policy author to know which sources to trust and to
modify the policy if some trusted sources are discovered to be issuing ill-formed
assertions.

Finally, note that O(mn2(nms)c) is a pessimistic upper bound on the running
time of the compliance checker. It is straightforward to check (each time an
assertion (fi, si) is run, or at some other regular interval) whether the acceptance
record (0,POLICY, R) has been produced and to “stop early” if it has. Thus,
for many requests R that do comply with policy, the algorithm CCA1 will find
compliance proofs in time less than O(mn2(nms)c).


