Design and Analysis of Efficient Anonymous-Communication Protocols

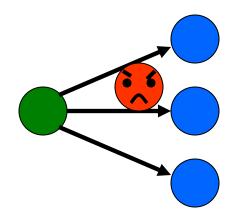
Thesis Defense
Aaron Johnson
Department of Computer Science
Yale University
7/1/2009

Acknowledgements

- Joan Feigenbaum
- Paul Syverson

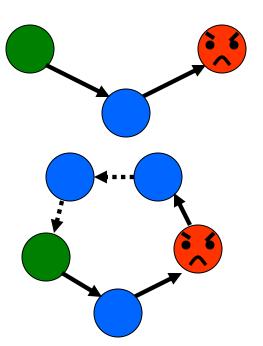
Simple Anonymous-Communication Protocols

Broadcast: Send an encrypted message to everyone



Proxy: Send message via a proxy

 Bus/Ring: Send an encrypted message on a ring



Anonymous Communication in Practice

- Anonymous proxies
 - Anonymizer.net
 - SafeWeb
- anon.penet.fi
- Mixmaster
- Tor
- AN.ON

Anonymous Communication in Research

- Mix networks (Chaum, CACM, 1981)
- Dining cryptographers (Chaum, Journal of Cryptology, 1988)
- Onion routing (Goldschlag et al., Information Hiding, 1996)
- Crowds (Reiter and Rubin, ACM TISSEC, 1998)
- PipeNet (Dai, Cypherpunks mailing list, 1998)
- Xor-trees (Dolev and Ostrovsky, ACM TISSEC, 2000)
- Hordes (Levine and Shields, JCS, 2002)
- Tarzan (Freedman and Morris, ACM CCS, 2002)
- P5 (Sherwood et al., IEEE S&P, 2002)
- Anonymous buses (Beimel and Dolev, JCS, 2003)
- AP3 (Mislove et al., ACM SIGOPS European Workshop 2004)
- Salsa (Nambiar and Wright, ACM CCS, 2006)

Problem 1: Efficient protocols are useful but not rigorously understood.

Problem 1: Efficient protocols are useful but not rigorously understood.

Solution: We model and analyze onion routing.

Problem 1: Efficient protocols are useful but not rigorously understood.

Solution: We model and analyze onion routing.

Problem 2: Onion routing provides weak anonymity.

Solution: We design and analyze two protocols that provide stronger anonymity and similar efficiency.

Thesis Publications

- 1. A Model of Onion Routing with Provable Anonymity with Joan Feigenbaum and Paul Syverson In Proceedings of Financial Cryptography and Data Security '07 (FC 2007).
- 2. Probabilistic Analysis of Onion Routing in a Black-box Model with Joan Feigenbaum and Paul Syverson In Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society (WPES 2007).
- 3. More Anonymous Onion Routing Through Trust with Paul Syverson To appear in the 22nd IEEE Computer Security Foundations Symposium (CSF 2009).
- 4. Preventing Active Timing Attacks in Low-Latency Anonymous Communication
 - with Joan Feigenbaum and Paul Syverson (under submission)

Other Publications

1. Private Web Search

with Felipe Saint-Jean, Dan Boneh, and Joan Feigenbaum

In Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society (WPES 2007).

2. Online and Offline Selling in Limit Order Markets

with Kevin L. Chang In Proceedings of the 4th International Workshop on Internet and Network Economics (WINE 2008).

Outline

- 1. Introduction
- 2. Model & Definitions
- 3. Onion Routing Possibilistic Analysis
- 4. Onion Routing Probabilistic Analysis
- 5. Improved Anonymity Through Trust
- 6. Improved Anonymity by Eliminating Timing Attacks

Outline

- 1. Introduction
- 2. Model & Definitions
- 3. Onion Routing Possibilistic Analysis
- 4. Onion Routing Probabilistic Analysis
- 5. Improved Anonymity Through Trust
- 6. Improved Anonymity by Eliminating Timing Attacks

Model

- Network
 - Fully-connected
 - Asynchronous
 - Bounded message delay
- $\{m\}_k$ denotes private-key encryption by k.
- Users U, |U| = n
- Routers R
- Destinations D, $|D| = \delta$
- Adversary $A \subseteq U \cup R \cup D$ $|A \cap R|/|R| = b$

Model

- Users *U* all try to send an anonymous message at the same time.
- Destinations D send response within a bounded time.
- Adversary A
 - Active: Can run arbitrary automata
 - Local: Three different situations to consider
 - Controls links from users (e.g. malicious ISP)
 - Controls destination
 - Controls some of the routers

Criteria

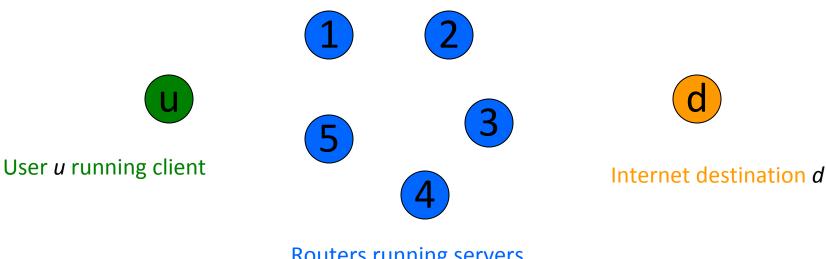
- Definition (AnonymousMessage):
 - **AnonymousMessage**(d,m): This operation delivers message m to destination d and returns the response.
- Definition (Relationship Anonymity): Relationship Anonymity measures how well the adversary can determine the communication partners of a user.
- Definition (Latency): Latency is time between calling AnonymousMessage(d,m) and the receipt of m by d.
- Definition (Message Complexity): Message complexity is the ratio of total messages to the number of calls to AnonymousMessage.

Outline

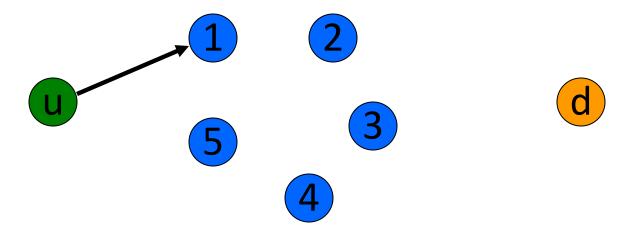
- 1. Introduction
- 2. Model & Definitions
- 3. Onion Routing Possibilistic Analysis
- 4. Onion Routing Probabilistic Analysis
- 5. Improved Anonymity Through Trust
- Improved Anonymity by Eliminating Timing Attacks

Contributions

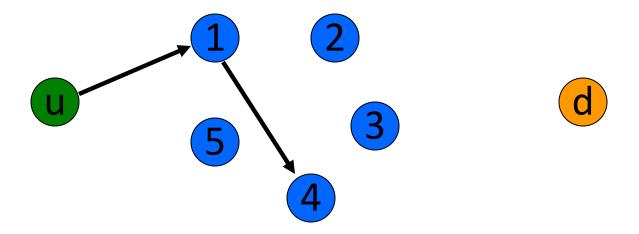
- Create an I/O-automata model of onion routing
- Characterize those situations in which anonymity is provided



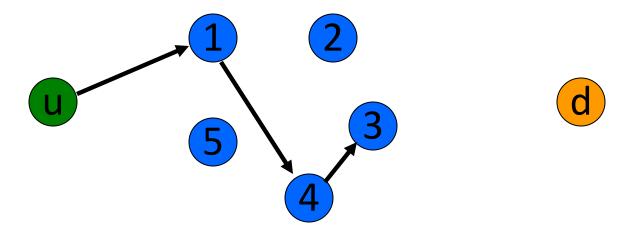
Routers running servers



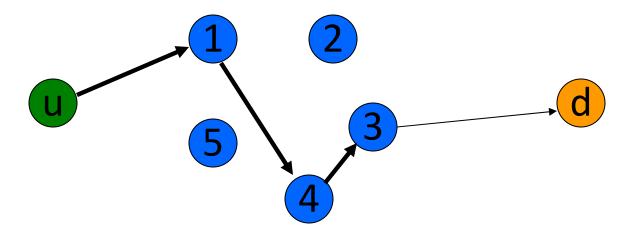
1. *u* creates *l*-hop **circuit** through routers



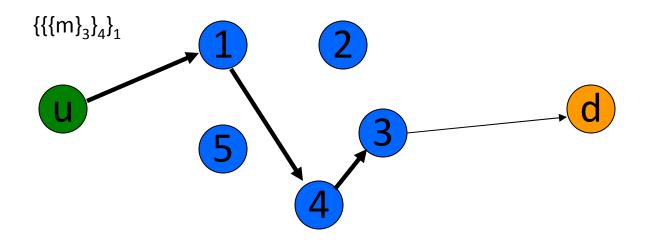
1. *u* creates *l*-hop **circuit** through routers



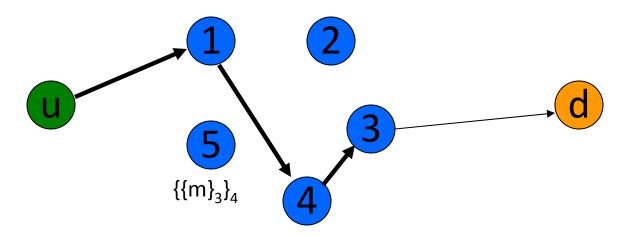
1. *u* creates *l*-hop **circuit** through routers



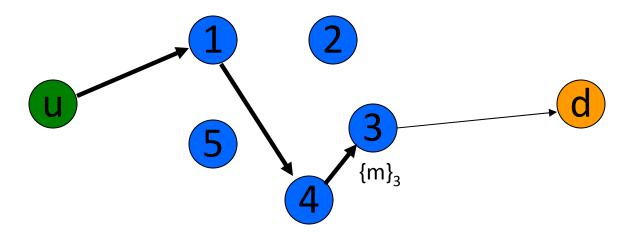
- 1. *u* creates *l*-hop **circuit** through routers
- 2. *u* opens a stream in the circuit to *d*



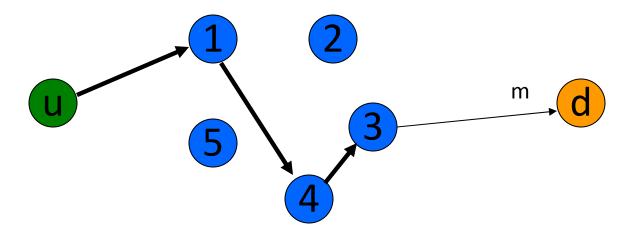
- 1. *u* creates *l*-hop **circuit** through routers
- 2. *u* opens a stream in the circuit to *d*
- 3. Data is exchanged



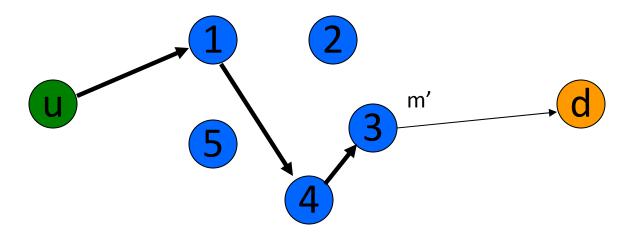
- 1. *u* creates *l*-hop **circuit** through routers
- 2. *u* opens a stream in the circuit to *d*
- 3. Data is exchanged



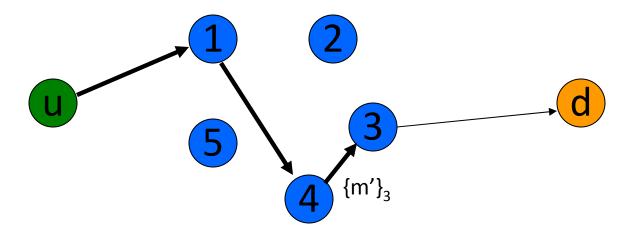
- 1. *u* creates *l*-hop **circuit** through routers
- 2. *u* opens a stream in the circuit to *d*
- 3. Data is exchanged



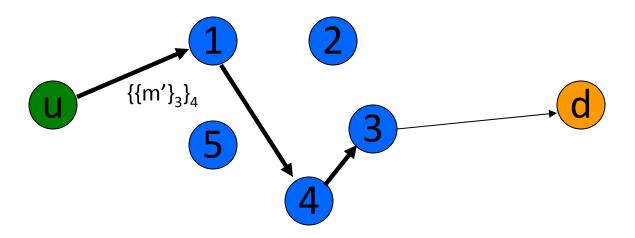
- 1. *u* creates *l*-hop **circuit** through routers
- 2. *u* opens a stream in the circuit to *d*
- 3. Data is exchanged



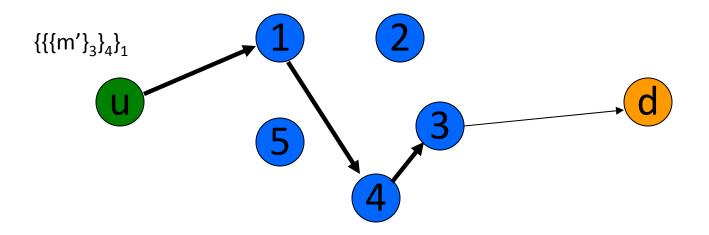
- 1. *u* creates *l*-hop **circuit** through routers
- 2. *u* opens a stream in the circuit to *d*
- 3. Data is exchanged



- 1. *u* creates *l*-hop **circuit** through routers
- 2. *u* opens a stream in the circuit to *d*
- 3. Data is exchanged



- 1. *u* creates *l*-hop **circuit** through routers
- 2. *u* opens a stream in the circuit to *d*
- 3. Data is exchanged

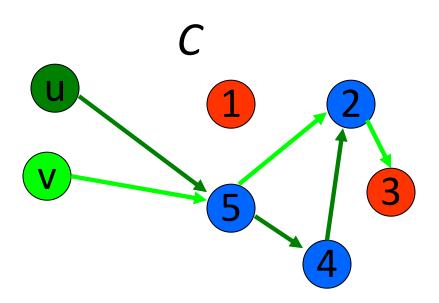


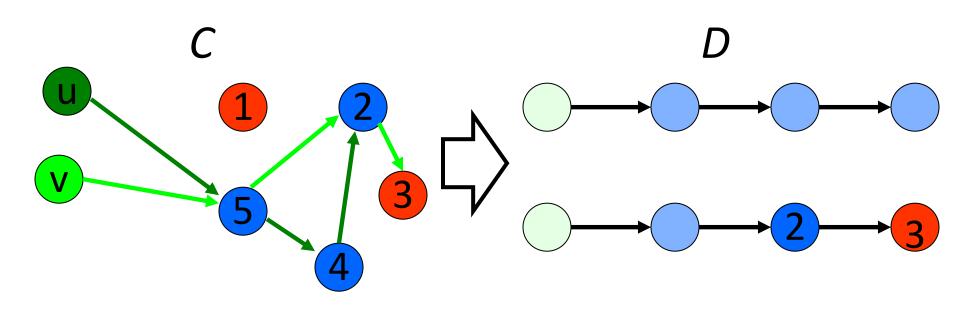
- 1. *u* creates *l*-hop **circuit** through routers
- u opens a stream in the circuit to d
- 3. Data is exchanged

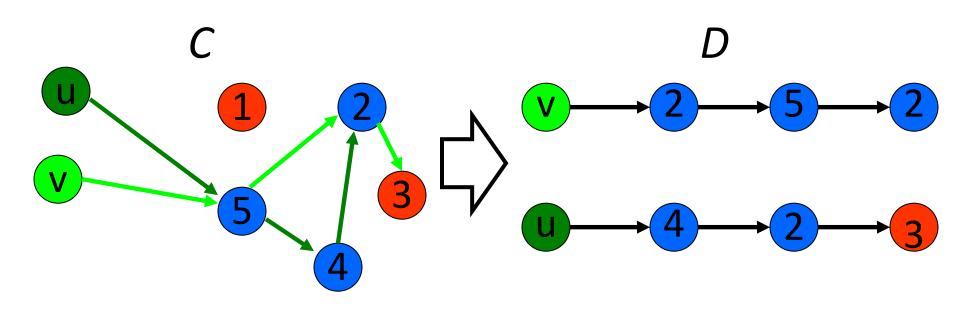
- Formalized protocol using I/O automata
 - Relies on abstract properties of cryptosystem
 - Simplification of actual protocol
 - No key exchange
 - No circuit teardown
 - No stream ciphers
 - No streams

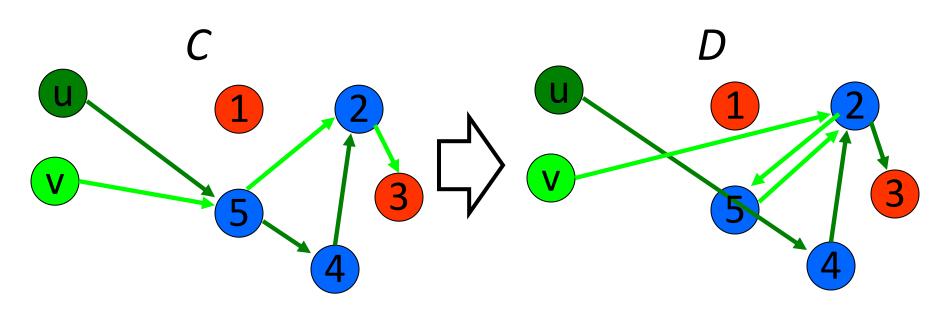
Definition (relationship anonymity):

User u performs and destination d have **relationship anonymity** in execution α if there exists an indistinguishable execution β in which u does not communicate with d.







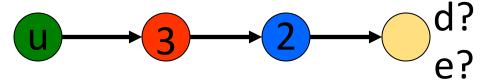


Relationship Anonymity

Corollary: A user and destination have relationship anonymity when:

Relationship Anonymity

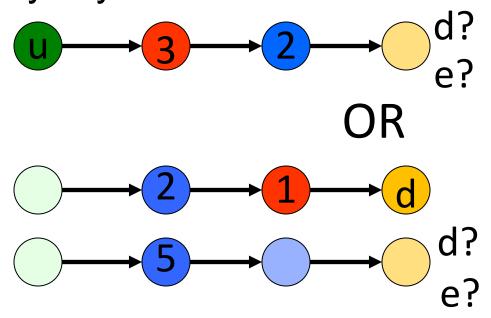
Corollary: A user and destination have relationship anonymity when:



The destination is unknown.

Relationship Anonymity

Corollary: A user and destination have relationship anonymity when:

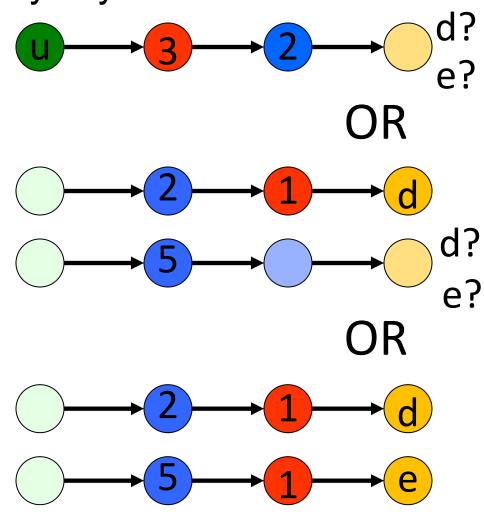


The destination is unknown.

The user is unknown and another unknown user has an unknown destination.

Relationship Anonymity

Corollary: A user and destination have relationship anonymity when:



The destination is unknown.

The user is unknown and another unknown user has an unknown destination.

The user is unknown and another unknown user has a different destination.

Protocol Efficiency

- Onion routing
 - Latency: /+1
 - Message complexity: /+1

Outline

- 1. Introduction
- 2. Model & Definitions
- 3. Onion Routing Possibilistic Analysis
- 4. Onion Routing Probabilistic Analysis
- 5. Improved Anonymity Through Trust
- Improved Anonymity by Eliminating Timing Attacks

Contributions

- Create a probabilistic model of onion routing
- 2. Analyze relationship anonymity
 - a. Provide worst-case bounds
 - b. Examine a typical case

Model with Probability

- Users choose routers uniformly at random
- User u chooses destination d with probability p_d^u
- Events in executions occur uniformly at random

Probabilistic Anonymity

Let C be the selection of routers and destinations.

Let X be a random selection, with X_D the destinations.

The metric *Y* for the relationship anonymity of *u* and *d* in *C* is:

$$Y(C) = \Pr[X_D(u) = d \mid X \approx C]$$

Probabilistic Anonymity

Let C be the selection of routers and destinations.

Let X be a random selection, with X_D the destinations.

The metric *Y* for the relationship anonymity of *u* and *d* in *C* is:

$$Y(C) = \Pr[X_D(u) = d \mid X \approx C]$$

Note: There are several other candidates for a probabilistic anonymity metric, e.g. entropy

Probabilistic Anonymity

Let C be the selection of routers and destinations.

Let X be a random selection, with X_D the destinations.

The metric *Y* for the relationship anonymity of *u* and *d* in *C* is:

$$Y(C) = \Pr[X_D(u) = d \mid X \approx C]$$

Relationship anonymity given that *u* visits *d*:

$$\mathbf{E}[Y \mid X_D(u)=d]$$

Let
$$p^{u}_{1} \ge p^{u}_{2} \ge p^{u}_{d-1} \ge p^{u}_{d+1} \ge ... \ge p^{u}_{\delta}$$

Theorem: The maximum of $\mathbf{E}[Y \mid X_D(u)=d]$ over $(p^v)_{v\neq u}$ occurs when

- 1. p^{ν}_{δ} =1 for all $v\neq u$ OR
- 2. p^{v}_{d} =1 for all $v\neq u$

Let
$$p^{u}_{1} \ge p^{u}_{2} \ge p^{u}_{d-1} \ge p^{u}_{d+1} \ge ... \ge p^{u}_{\delta}$$

Theorem: The maximum of $\mathbf{E}[Y \mid X_D(u)=d]$ over $(p^v)_{v\neq u}$ occurs when

- 1. p^{ν}_{δ} =1 for all $v\neq u$ OR
- 2. p^{v}_{d} =1 for all $v\neq u$

Theorem: When $p^{\nu} = 1$ for all $v \neq u$:

$$E[Y \mid X_{D}(u)=d] = b + b(1-b)p_{d}^{u} + (1-b)^{2} p_{d}^{u} [(1-b)/(1-(1-p_{\delta}^{u})b)) + O(\sqrt{\log n/n})]$$

$$\approx b + (1-b) p_{d}^{u}$$

Let
$$p^{u}_{1} \ge p^{u}_{2} \ge p^{u}_{d-1} \ge p^{u}_{d+1} \ge ... \ge p^{u}_{\delta}$$

Theorem: The maximum of $\mathbf{E}[Y \mid X_D(u)=d]$ over $(p^v)_{v\neq u}$ occurs when

- 1. p^{ν}_{δ} =1 for all $v\neq u$ OR
- 2. p^{v}_{d} =1 for all $v\neq u$

Theorem: When $p^{\nu} = 1$ for all $v \neq u$:

$$E[Y \mid X_{D}(u)=d] = b + b(1-b)p_{d}^{u} + (1-b)^{2} p_{d}^{u} [(1-b)/(1-(1-p_{\delta}^{u})b)) + O(\sqrt{\log n/n})]$$

$$\approx b + (1-b) p_{d}^{u}$$

$$E[Y \mid X_D(u)=d] \ge b^{2+} (1-b^2) p_d^u$$

Typical Case

Let each user select from the Zipfian distribution:

$$p_{d_i} = 1/(\mu_i^s)$$

Theorem:

$$E[Y \mid X_D(u)=d] = b^2 + (1-b^2)p^u_d + O(1/n)$$

Typical Case

Let each user select from the Zipfian distribution:

$$p_{d_i} = 1/(\mu_i^s)$$

Theorem:

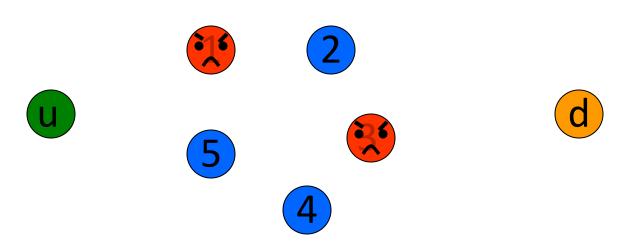
$$\mathbf{E}[Y \mid X_D(u) = d] = b^2 + (1 - b^2)p^u_d + O(1/n)$$

$$\mathbf{E}[Y \mid X_D(u) = d] \ge b^2 + (1 - b^2)p^u_d$$

Outline

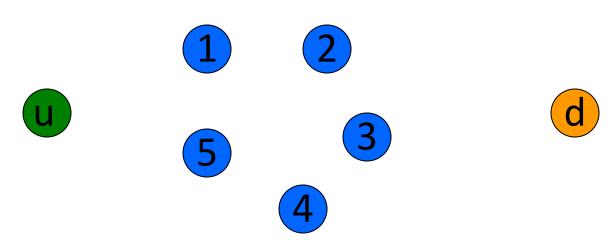
- 1. Introduction
- 2. Model & Definitions
- 3. Onion Routing Possibilistic Analysis
- 4. Onion Routing Probabilistic Analysis
- 5. Improved Anonymity Through Trust
- Improved Anonymity by Eliminating Timing Attacks

Using Trust



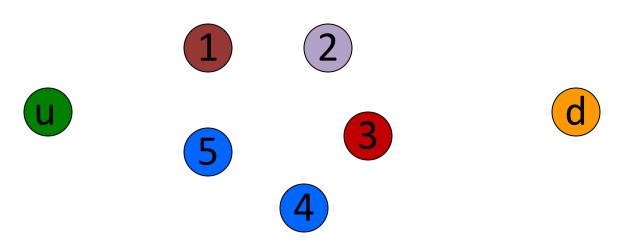
Adversarial routers

Using Trust



- Adversarial routers
- User doesn't know where the adversary is.

Using Trust



- Adversarial routers
- User doesn't know where the adversary is.
- User may have some idea of which routers are likely to be adversarial.

Model

- Router r_i has **trust** t_i . An attempt to compromise a router succeeds with probability $c_i = 1-t_i$.
- User will choose circuits using a known distribution.
- Adversary attempts to compromise at most k routers, K⊂R.
- After attempts, users actually choose circuits.

Model

- For anonymity, just consider case that adversary controls first and last routers.
- Probability of compromise:

$$c(p,K) = \sum_{r,s \in K} p_{rs} c_r c_s$$

- Problem:
 - **Input:** Trust values $t_1,...,t_n$
 - Output: Distribution p^* on router pairs such that

$$p^* \in \operatorname{argmin}_p \operatorname{max}_{K \subset R: |K| = k} c(p, K)$$

Algorithm

- Turn into a linear program
- Variables: $p_{rs} \forall r,s \in R$ t (slack variable)
- Constraints:
 - Probability distribution:

$$0 \le p_{rs} \le 1$$

$$\sum_{r,s \in R} p_{rs} = 1$$

- Minimax:

$$t - c(p,K) \ge 0 \quad \forall K \subseteq R: |K| = k$$

• Objective function : *t*

Algorithm

- Turn into a linear program
- Variables: $p_{rs} \forall r,s \in R$ t (slack variable)
- Constraints:
 - Probability distribution:

$$0 \le p_{rs} \le 1$$

$$\sum_{r,s \in R} p_{rs} = 1$$

- Minimax:

$$t - c(p,K) \ge 0 \quad \forall K \subseteq R: |K| = k$$

Objective function : t

Problem: Exponential-size linear program

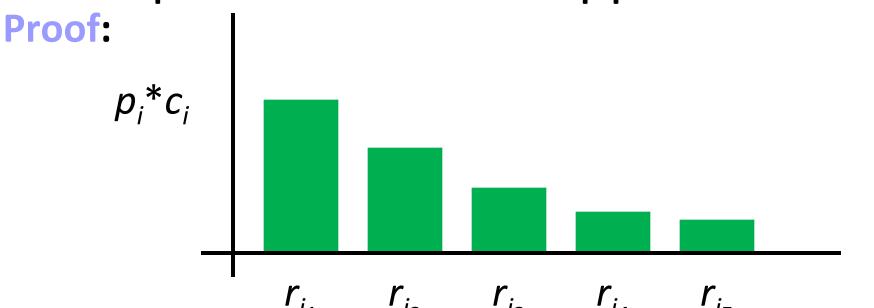
- 1. Let $c(p) = \max_{K \subseteq R: |K| = k} \sum_{r \in K} p_r c_r$.
- 2. Choose routers independently using $p^* \in \operatorname{argmin}_p c(p)$

- 1. Let $c(p) = \max_{K \subseteq R: |K| = k} \sum_{r \in K} p_r c_r$.
- 2. Choose routers independently using

$$p^* \in \operatorname{argmin}_p c(p)$$

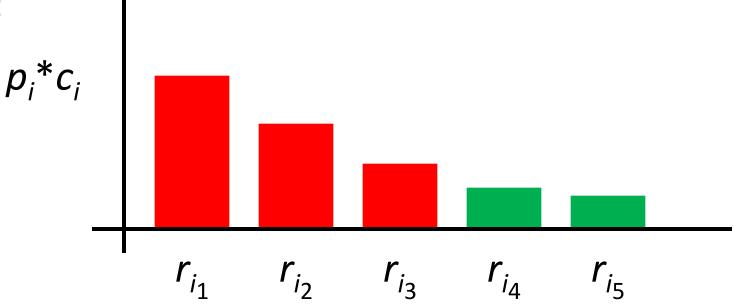
Let
$$\mu = \operatorname{argmin}_{i} c_{i}$$
.
Let $p^{1}(r_{\mu}) = 1$.
Let $p^{2}(r_{i}) = \alpha/c_{i}$, where $\alpha = (\Sigma_{i} 1/c_{i})^{-1}$.

Theorem:
$$c(p^*) = \begin{cases} c(p^1) \text{ if } c_{\mu} \leq k\alpha \\ c(p^2) \text{ otherwise} \end{cases}$$

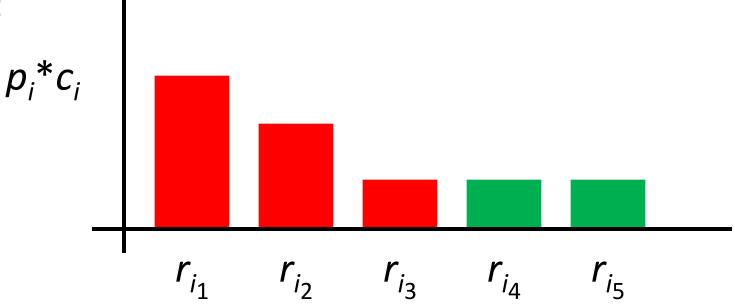


Proof: $p_i^*c_i$ r_{i_1} r_{i_2} r_{i_3} r_{i_4} r_{i_5}

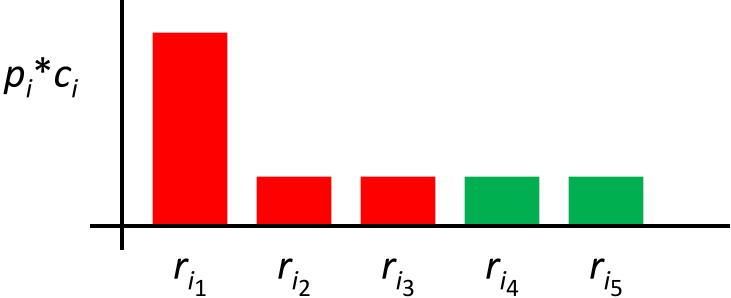
1. Adversary chooses k routers with largest $p_i c_i$.



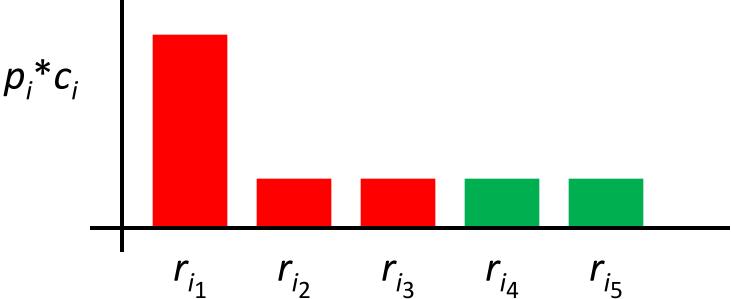
- 1. Adversary chooses k routers with largest $p_i c_i$.
- 2. $c_{ij} \le c_{ij+1}$ or swapping would be an improvement.



- 1. Adversary chooses k routers with largest $p_i c_i$.
- 2. $c_{i_j} \le c_{i_{j+1}}$ or swapping would be an improvement.
- 3. Can assume that $p_i c_i = p_j c_{j,i} i,j >= k$.



- 1. Adversary chooses k routers with largest $p_i c_i$.
- 2. $c_{i_j} \le c_{i_{j+1}}$ or swapping would be an improvement.
- 3. Can assume that $p_i c_i = p_i c_{ij} i,j >= k$.
- 4. Can assume that $p_i c_i = p_i c_{i;} i,j >= 2$.



- 1. Adversary chooses k routers with largest $p_i c_i$.
- 2. $c_{i_i} \le c_{i_{i+1}}$ or swapping would be an improvement.
- 3. Can assume that $p_i c_i = p_i c_{j}$, i,j >= k.
- 4. Can assume that $p_i c_i = p_i c_{ij} i,j >= 2$.
- 5. Adjusting p_1 changes c(p) linearly. Therefore one extreme is a minimum.

Proof: $p_i^*c_i$ $r_{i_1} \quad r_{i_2} \quad r_{i_3} \quad r_{i_4} \quad r_{i_5}$

- 1. Adversary chooses k routers with largest $p_i c_i$.
- 2. $c_{i} \le c_{i+1}$ or swapping would be an improvement.
- 3. Can assume that $p_i c_i = p_i c_{i:} i,j>= k$.
- 4. Can assume that $p_i c_i = p_i c_{ij} i,j >= 2$.
- 5. Adjusting p_1 changes c(p) linearly. Therefore one extreme is a minimum.

Proof: $p_i^*c_i$ $r_{i_1} \quad r_{i_2} \quad r_{i_3} \quad r_{i_4} \quad r_{i_5}$

- 1. Adversary chooses k routers with largest $p_i c_i$.
- 2. $c_{i_j} \le c_{i_{j+1}}$ or swapping would be an improvement.
- 3. Can assume that $p_i c_i = p_i c_{j}$, i,j >= k.
- 4. Can assume that $p_i c_i = p_j c_{j,i} i,j >= 2$.
- 5. Adjusting p_1 changes c(p) linearly. Therefore one extreme is a minimum.

Theorem: The approximation ratio of independent selection is $\Omega(\sqrt{n})$.

Theorem: The approximation ratio of independent selection is $\Omega(\sqrt{n})$.

Proof sketch:

Let $I_n = (c_1, \ldots, c_n, k)$ be such that

1.
$$c_1 = O(1/n)$$

2.
$$c_2 > c$$
, $c \in (0, 1)$

3.
$$k = o(n)$$

4.
$$k = \omega(1)$$

Theorem: The approximation ratio of independent selection is $\Omega(\sqrt{n})$.

Proof sketch:

Let $I_n = (c_1, \ldots, c_n, k)$ be such that

1.
$$c_1 = O(1/n)$$

2.
$$c_2 > c$$
, $c \in (0, 1)$

3.
$$k = o(n)$$

4.
$$k = \omega(1)$$

Let $p^*(r_1,r_i) \propto 1/(c_{r_1} c_{r_i})$. Then $c(I_n, p^1)/c(I_n, p^*) = \Omega(n/k)$ and $c(I_n, p^2)/c(I_n, p^*) = \Omega(k)$.

Theorem: The approximation ratio of independent selection is $\Omega(\sqrt{n})$.

Proof sketch:

Let $I_n = (c_1, \ldots, c_n, k)$ be such that

1.
$$c_1 = O(1/n)$$

2.
$$c_2 > c$$
, $c \in (0, 1)$

3.
$$k = o(n)$$

4.
$$k = \omega(1)$$

Let $p^*(r_1,r_i) \propto 1/(c_{r_1} c_{r_i})$. Then $c(I_n, p^1)/c(I_n, p^*) = \Omega(n/k)$ and $c(I_n, p^2)/c(I_n, p^*) = \Omega(k)$.

Theorem: The approximation ratio of independent selection is $\Omega(\sqrt{n})$.

Proof sketch:

Let $I_n = (c_1, \ldots, c_n, k)$ be such that

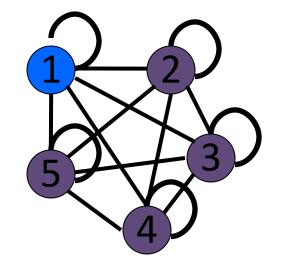
1.
$$c_1 = O(1/n)$$

2.
$$c_2 > c$$
, $c \in (0, 1)$

3.
$$k = o(n)$$

4.
$$k = \omega(1)$$

Let $p^*(r_1,r_i) \propto 1/(c_{r_1} c_{r_i})$. Then $c(I_n, p^1)/c(I_n, p^*) = \Omega(n/k)$ and $c(I_n, p^2)/c(I_n, p^*) = \Omega(k)$.



Theorem: The approximation ratio of independent selection is $\Omega(\sqrt{n})$.

Proof sketch:

Let $I_n = (c_1, \ldots, c_n, k)$ be such that

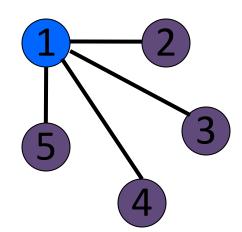
1.
$$c_1 = O(1/n)$$

2.
$$c_2 > c$$
, $c \in (0, 1)$

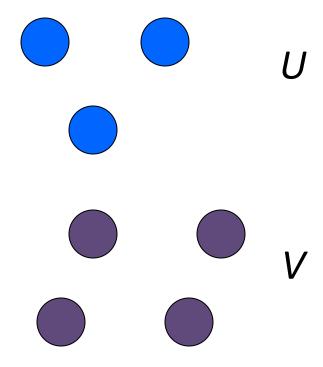
3.
$$k = o(n)$$

4.
$$k = \omega(1)$$

Let $p^*(r_1,r_i) \propto 1/(c_{r_1} c_{r_i})$. Then $c(I_n, p^1)/c(I_n, p^*) = \Omega(n/k)$ and $c(I_n, p^2)/c(I_n, p^*) = \Omega(k)$.



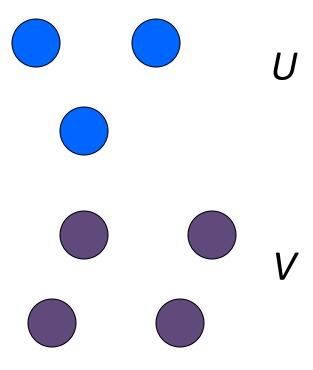
- Two trust levels: $t_1 \ge t_2$
- $U = \{r_i \mid t_i = t_1\}, V = \{r_i \mid t_i = t_2\}$



• Two trust levels: $t_1 \ge t_2$

•
$$U = \{r_i \mid t_i = t_1\}, V = \{r_i \mid t_i = t_2\}$$

Theorem: Three distributions can be optimal:

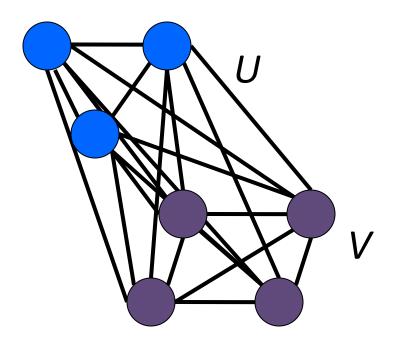


• Two trust levels: $t_1 \ge t_2$

• $U = \{r_i \mid t_i = t_1\}, V = \{r_i \mid t_i = t_2\}$

Theorem: Three distributions can be optimal:

1. $p(r,s) \propto c_r c_s$ for $r,s \in R$



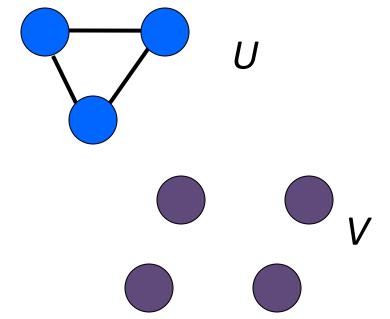
• Two trust levels: $t_1 \ge t_2$

•
$$U = \{r_i \mid t_i = t_1\}, V = \{r_i \mid t_i = t_2\}$$

Theorem: Three distributions can be optimal:

1.
$$p(r,s) \propto c_r c_s$$
 for $r,s \in R$

2.
$$p(r,s) \propto \begin{cases} c_1^2 & \text{if } r,s \in U \\ 0 & \text{otherwise} \end{cases}$$

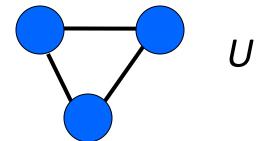


- Two trust levels: $t_1 \ge t_2$
- $U = \{r_i \mid t_i = t_1\}, V = \{r_i \mid t_i = t_2\}$

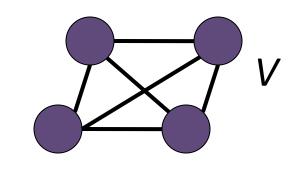
Theorem: Three distributions can be optimal:

1.
$$p(r,s) \propto c_r c_s$$
 for $r,s \in R$

2.
$$p(r,s) \propto \begin{cases} c_1^2 \text{ if } r,s \in U \\ 0 \text{ otherwise} \end{cases}$$



3.
$$p(r,s) \propto \begin{cases} c_1^2(n(n-1)-v_0(v_0-1)) \\ \text{if } r,s \in U \\ c_2^2(m(m-1)-v_1(v_1-1)) \\ \text{if } r,s \in V \\ 0 \text{ otherwise} \end{cases}$$



where $v_0 = \max(k-m,0)$ and $v_1 = (\max(k-n,0))$

Protocol Efficiency

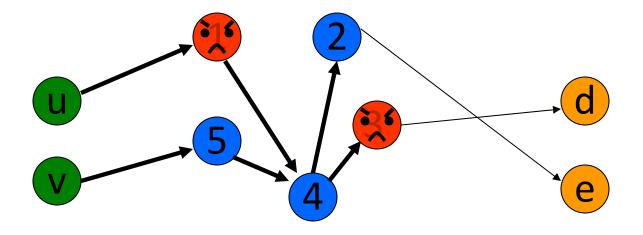
- Onion routing
 - Latency: *l+1*
 - Message complexity: /+1
- Onion routing with trust
 - Latency: *l+1*
 - Message complexity: /+1

Outline

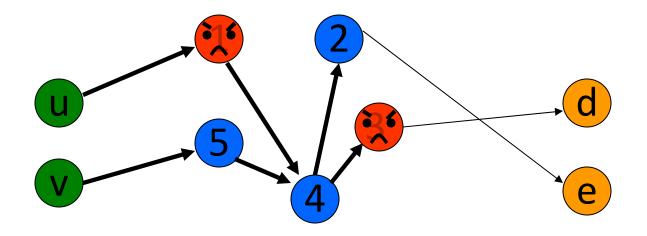
- 1. Introduction
- 2. Model & Definitions
- 3. Onion Routing Possibilistic Analysis
- 4. Onion Routing Probabilistic Analysis
- 5. Improved Anonymity Through Trust
- Improved Anonymity by Eliminating Timing Attacks

Contributions

- 1. Give an efficient protocol that provides arbitrarily good anonymity
- 2. Extend the model improve time and user models
- Perform measurements on the Tor network to evaluate performance in practice

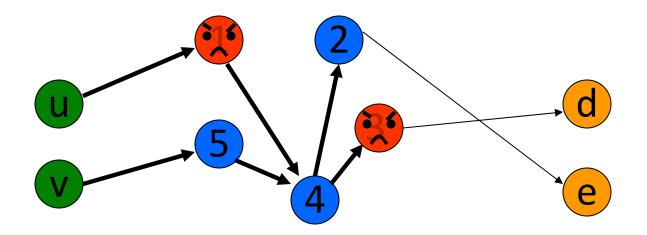


Problem: Adversary can delay messages.



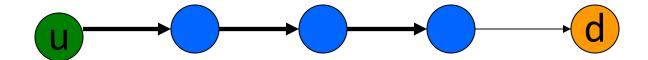
Problem: Adversary can delay messages.

Solution: Use redundancy to prevent blocked messages.



Problem: Adversary can delay messages.

Solution: Use redundancy to prevent blocked messages.



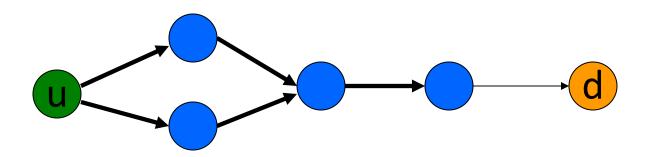
Problem: Adversary can delay messages.

Solution: Use redundancy to prevent blocked messages.



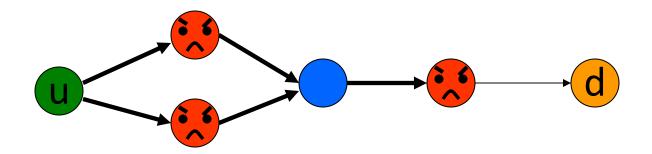
Problem: Adversary can delay messages.

Solution: Use redundancy to prevent blocked messages.



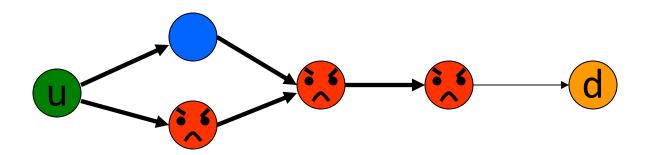
Problem: Adversary can delay messages.

Solution: Use redundancy to prevent blocked messages.



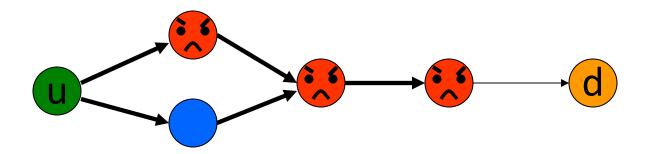
Problem: Adversary can delay messages.

Solution: Use redundancy to prevent blocked messages.



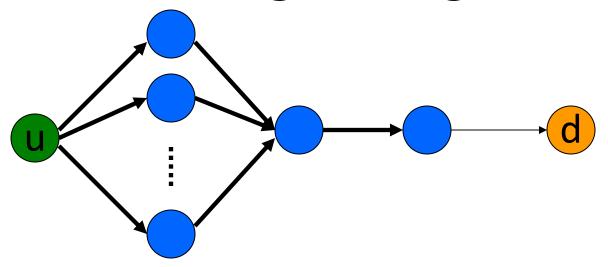
Problem: Adversary can delay messages.

Solution: Use redundancy to prevent blocked messages.



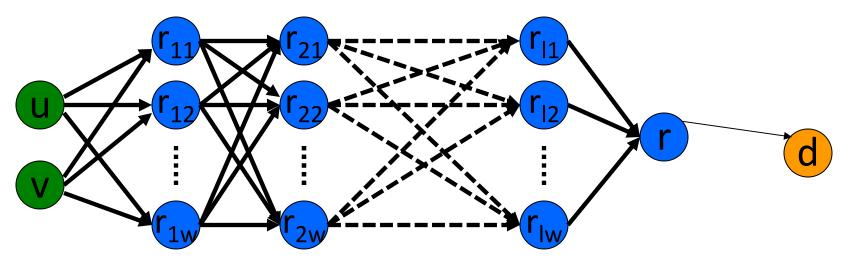
Problem: Adversary can delay messages.

Solution: Use redundancy to prevent blocked messages.

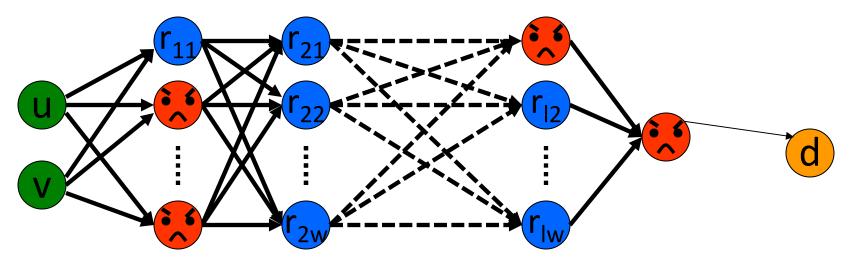


Problem: Adversary can delay messages.

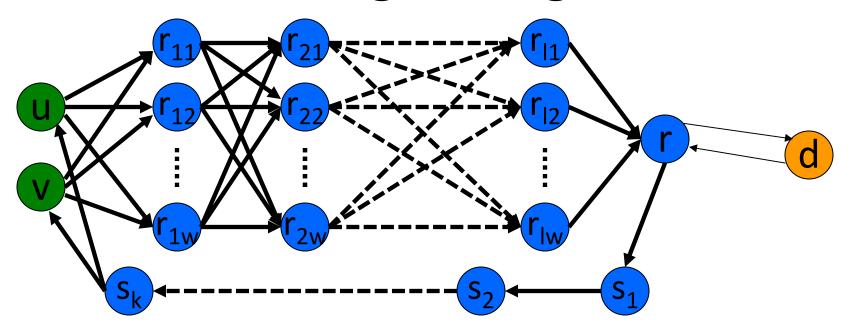
Solution: Use redundancy to prevent blocked messages.



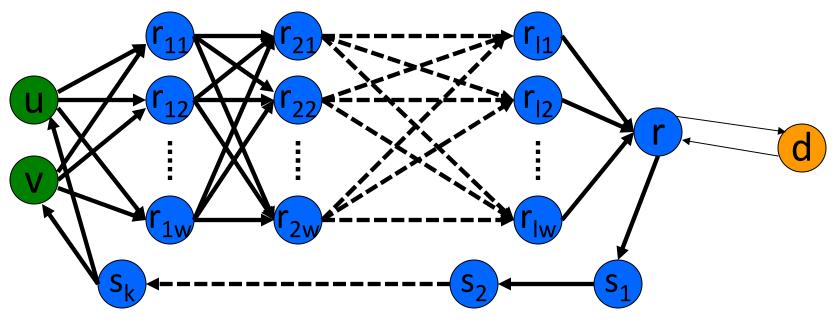
 Users send copies of each onion through a common random layered mesh (w = log l).



 Users send copies of each onion through a common random layered mesh (w = log l).



- Users send copies of each onion through a common random layered mesh (w = log l).
- Response or dummy onions are sent back on a path after a predefined delay.



Theorem: The probability of compromise p_c that the adversary can block packets is

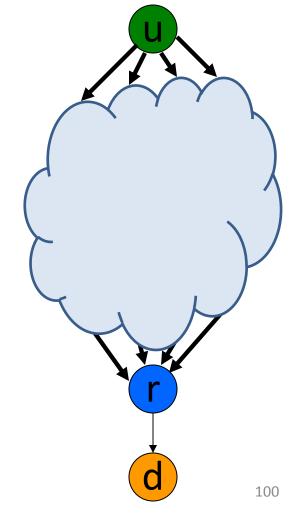
$$p_c(b) = b^{k+1} + b(1 - b^k) \Pr[B]$$

where B is that A first controls a layer.

And
$$\lim_{l\to\infty} \Pr[B] = \begin{cases} 0 & \text{for } b < \frac{1}{2} \\ 1 & \text{for } b > \frac{1}{2}. \end{cases}$$

Theorem: Among such forwarding schemes, $\lim p_c(b)=0$ for largest b possible.

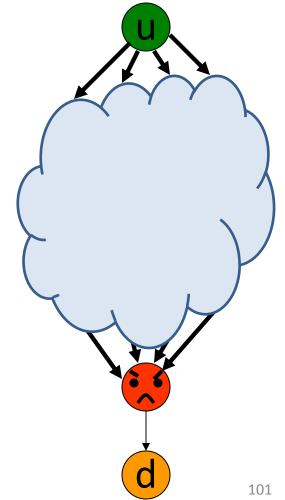
Theorem: Among such forwarding schemes, $\lim p_c(b)=0$ for largest b possible.



Theorem: Among such forwarding schemes, $\lim p_c(b)=0$ for largest b possible.

Proof:

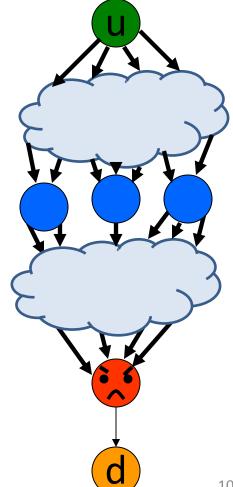
1.Assume the last router *r* is compromised.



Theorem: Among such forwarding schemes, $\lim p_c(b)=0$ for largest b possible.

Proof:

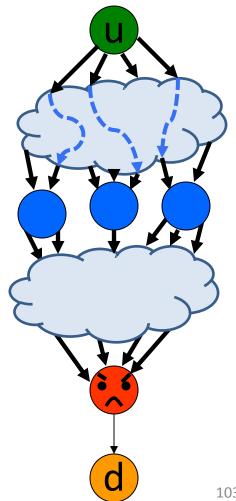
- 1.Assume the last router *r* is compromised.
- 2.There must be a cut of uncompromised routers in the graph between *u* and *r*.



Theorem: Among such forwarding schemes, $\lim p_c(b)=0$ for largest b possible.

Proof:

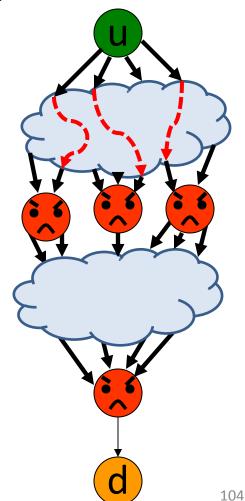
- 1.Assume the last router *r* is compromised.
- 2. There must be a cut of uncompromised routers in the graph between *u* and *r*.
- 3. Each router in the cut must have a path of uncompromised routers from и.



Theorem: Among such forwarding schemes, $\lim p_c(b)=0$ for largest b possible.

Proof:

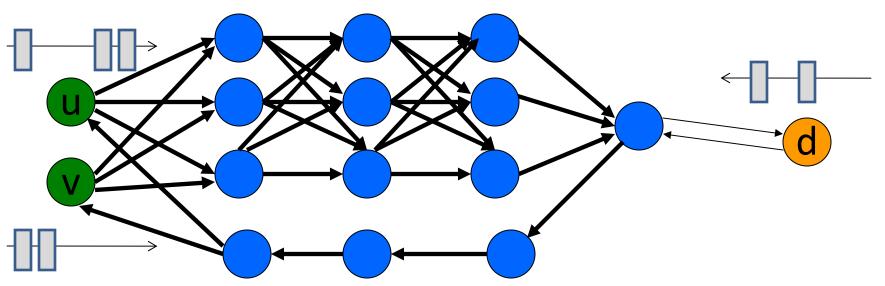
- 1.Assume the last router *r* is compromised.
- 2.There must be a cut of uncompromised routers in the graph between *u* and *r*.
- 3.Each router in the cut must have a path of uncompromised routers from *u*.
- 4. The reverse of this situation happens with the same probability when b' = 1-b. This case does not provide anonymity.



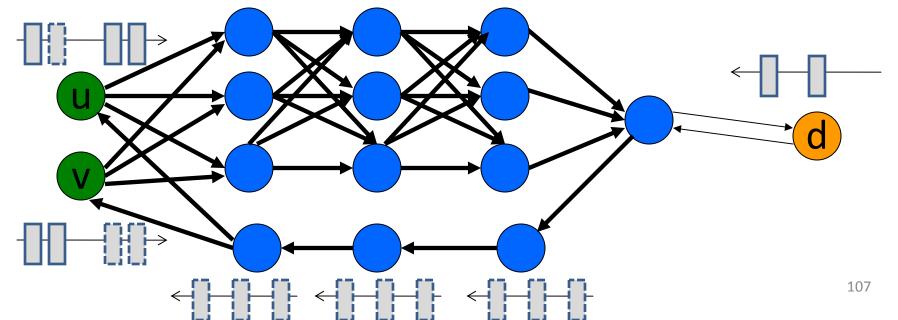
Protocol Efficiency

- Onion routing
 - Latency: *l+1*
 - Message complexity: /+1
- Onion routing with trust
 - Latency: 1+1
 - Message complexity: /+1
- Layered mesh
 - Latency: *l+2*
 - Message complexity: $(I-1)\log^2 I + 2\log I + 1$

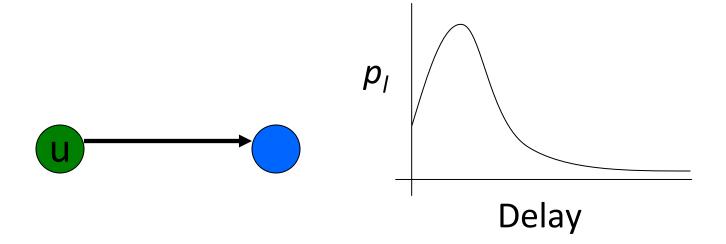
- Stream communication
 - User opens/closes stream
 - User and destination send messages on stream



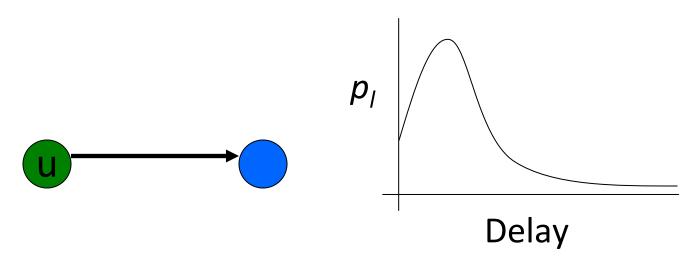
- Stream communication
 - User opens/closes stream
 - User and destination send messages on stream
- Protocol changes
 - Stream open/close
 - Users apply padding scheme
 - Specify padding scheme from destination



- Improved timing model
 - Each link I has a delay distribution p_{l} .



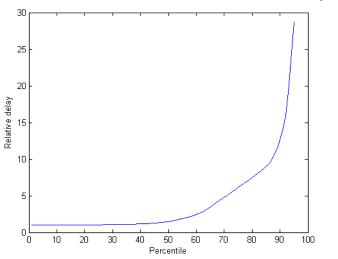
- Improved timing model
 - Each link I has a delay distribution p_I .
- Protocol changes
 - Onions include times instructing routers when to send
 - Delay d(I) guarantees an arrival probability of $p = \int_0^{d(I)} p_I(x) dx$
- Send times in layer i are all t_i : $t_i = t_{i-1} + \max d(r_{(i-1)i}, r_{i,k})$



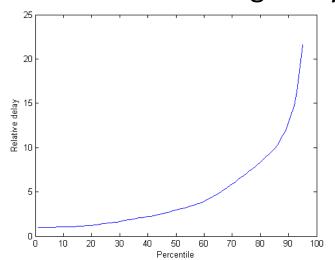
Network Measurements

- Measured delays in Tor
 - -2/22 3/21/09
 - 745 appropriate exit routers
 - Circuit connection times
 - Data forwarding times

Added connection delays



Added forwarding delays



Future Work

- Model additions
 - User connections over time
 - Stream functionality
 - Modeling congestion
- Show that padding schemes are feasible in practice.
- Understand using feasible anonymity primitives as building blocks.