
Abstract

Design and Implementation of Privacy-Preserving

Surveillance

Aaron Segal

Yale University

2016

The modern internet and phone networks offer very little security, privacy, or ac-

countability to their users. As people conduct their business and social lives online

and over the phone, they naturally generate private or sensitive data about them-

selves. But any number of parties can and do track this data. Not only the services

people interact with everyday, but third-party services for ad tracking, malicious

hackers, government agencies operating with nebulous legal authority, and service

providers themselves can and do observe and track users. They can then use the

sensitive data in a variety of objectionable ways.

Changing this state of affairs without an earth-shattering technological break-

through may appear to be a hopeless situation. But, in this dissertation, we demon-

strate how existing technology can, if deployed and used properly, markedly improve

privacy for users and accountability for those collecting data. We discuss two tech-

niques for achieving these improvements: privacy-preserving surveillance and anony-

mous communication. For each technique, we present example protocols for which

we have have implemented fast prototypes running on commercial hardware.

First, we define the notion of privacy-preserving surveillance. Currently, a gov-

ernment agency can collect and examine bulk user data while making no distinction

between the legitimate target of investigation and the average person, and with little

or no oversight from other agencies. Privacy-preserving surveillance is an alternative

legal regime in which searches of sensitive user data could only take place with the

active collaboration of multiple government agencies. Trust is distributed amongst

these agencies, assuring that no single authority can unilaterally view sensitive user

data (or metadata). We then show how two types of bulk surveillance, currently in

use by the authorities, could be made privacy-preserving by the adoption of modern

cryptographic protocols to secure data.

We also discuss protocols for anonymous communication. We take two approaches

to anonymity. First, we present an improvement to the Tor network, an anonymity

substrate based on onion routing that is already deployed in the wild. Second, we

present a complete specification of the dining-cryptographers-based Verdict protocol

and formally prove its anonymity, security, and accountability properties.

Design and Implementation of

Privacy-Preserving Surveillance

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Aaron Segal

Dissertation Director: Joan Feigenbaum

December 2016

Copyright © 2017 by Aaron Segal

All Rights Reserved

ii

Contents

List of Figures viii

List of Tables ix

Dedication xi

Acknowledgements 1

1 Introduction 1

1.1 Outline of this Thesis . 3

2 Privacy-Preserving Surveillance and Openness Principle 5

2.1 Open Processes for Law Enforcement 5

2.2 Mass Surveillance . 8

2.3 Case Study: Intersection Warrants Using Cell-Tower Dumps 10

3 Privacy-Preserving Set Intersection 12

3.1 Lawful Intersection Attacks . 12

3.1.1 Principals . 12

3.1.2 Lawful Set-Intersection Protocol 14

3.1.3 Protocol Properties . 17

3.2 Implementation and Evaluation . 18

iii

3.2.1 Prototype Implementation . 19

3.2.2 Query Efficiency . 20

4 Privacy-Preserving Contact Chaining 22

4.1 Lawful Contact Chaining . 22

4.2 Protocols For Privacy-Preserving Contact

Chaining . 24

4.2.1 Inputs and Parties to the Protocol 24

4.2.2 Security Assumptions . 26

4.2.3 Desired Outputs and Privacy Properties 27

4.2.4 Ownership-Revealing Lawful Contact-Chaining Protocol . . . 28

4.2.5 Ownership-Hiding Lawful Contact-Chaining Protocol 31

4.3 Discussion of Lawful Contact-Chaining 33

4.3.1 Correctness of Output . 33

4.3.2 Privacy . 34

4.3.3 Hiding Information From Telecoms 35

4.4 Performance of Privacy-Preserving Contact

Chaining Protocol . 35

4.4.1 Java Implementation . 36

4.4.2 Experimental Setup . 36

4.4.3 Results . 37

5 Peerflow: Secure Load Balancing in Tor 40

5.1 Relay Measurement with TorFlow . 41

5.2 Background and Related Work . 42

5.3 Attacks on TorFlow . 44

5.4 Attacks on EigenSpeed . 48

iv

5.5 PeerFlow . 53

5.5.1 Measuring total traffic of a relay 54

5.5.2 Measuring available bandwidth 58

5.5.3 Preserving link privacy with noise 59

5.5.4 Measurement periods . 60

5.5.5 Load balancing using measurements 60

5.5.6 Updating voting weights . 63

5.5.7 Bootstrapping new relays . 65

5.6 Security analysis . 67

5.6.1 Weights in a single voting-weight period 67

5.6.2 Weights across voting periods 69

5.7 Load-Balancing Analysis . 71

5.7.1 Experimentation Setup . 71

5.7.2 Network Performance . 72

5.7.3 Client Performance . 74

5.7.4 Consensus Weight Errors . 75

5.8 Speed and Efficiency Analysis . 77

5.8.1 Speed . 77

5.8.2 Efficiency . 79

5.9 Enhanced PeerFlow . 79

5.9.1 Encrypted Measurement Aggregation 80

5.9.2 Example Threshold Homomorphic Tally Schemes 82

5.10 Proofs of Theorems . 86

6 Proof of Security of Verdict 91

6.1 Introduction to Verdict . 91

v

6.2 The Verdict Protocol . 92

6.2.1 Assumptions and Architecture 92

6.2.2 Setup Protocols . 95

6.2.3 Verifiable Shuffles . 98

6.2.4 DC-nets Ciphertext Systems 99

6.2.5 Verdict . 100

6.2.6 Blaming and Proof Verification 105

6.3 Formal Definitions of Properties . 107

6.3.1 DC-Nets Ciphertext Scheme Properties 108

6.3.2 Verifiable Shuffle Properties 116

6.3.3 Anonymity Protocol Properties 118

6.4 Proofs of Protocol Properties to DC-Nets Ciphertext Properties . . . 122

6.4.1 Proof of P-Accountability . 123

6.4.2 Proof of P-Anonymity . 126

6.4.3 Proof of P-Integrity . 132

7 Conclusions 134

7.1 Openness in Lawful Surveillance . 134

7.2 Privacy-Presering Set Intersection . 135

7.2.1 Enhancements and Generalizations 136

7.3 Privacy-Preserving Contact Chaining 137

7.4 PeerFlow . 138

7.5 Final Thoughts . 138

Bibliography 147

vi

List of Figures

2.1 Secret versus open electronic surveillance processes 6

3.1 Lawful Intersection Performance . 20

4.1 Performance of Lawful Contact-Chaining 38

5.1 A relay can inflate its consensus weight at little cost by lying about

its capacity and denying service to all but measurement circuits. Our

experiments led to a bandwidth inflation factor of 489.476. 47

5.2 Measuring positions in a circuit: relay G in position g measures relay M , relay M

in position mc measures relay E, relay M in position md measures relay G, and

relay E in position e measures relay M . A dashed arrow indicates hosts between

which traffic is not measured. 54

5.3 Non-trusted relay weight algorithm if SR � normal 62

5.4 Non-trusted relay weight algorithm if SR � probation 62

5.5 Max adversarial relative inferred capacity across voting periods using trusted relays

and using trusted relays only . 68

5.6 Network utilization and client performance for the Ideal, TorFlow, and PeerFlow

load balancing models. 73

5.7 Measurement times weighted by observed relay capacity 79

vii

5.8 The subset entropy of four voting-weight rounding schemes applied to the top 750

bandwidth weights from a recent Tor consensus: full is no rounding, ideal assigns

all weights to 1, rounded-1k rounds to the nearest 1000, rounded-pow2 rounds up

to the nearest power of 2. 84

viii

List of Tables

5.1 Cases with minimum bandwidth in which all framed relays had increase metrics

above 0.2. 51

5.2 Cases with maximum weight in which all malicious relays had increase metrics

below 0.2 and liar metrics below the honest non-trusted relays. 52

5.3 Key variables (top), parameters (bottom) in PeerFlow 54

5.4 Statistical summary of the raw relay weights from the ultimate Tor network con-

sensus document. 75

5.5 Total absolute and relative accuracy and precision errors over all relays Ri with

true capacities Ci and weights Wi as estimated by TorFlow and PeerFlow. 76

ix

Without my father, I would never have learned to write programs.

Without my mother, I would never have learned to write English.

This thesis is dedicated to them.

Acknowledgments

I would sincerely like to thank my advisor, Prof. Joan Feigenbaum, for her brillant

teaching, wise advice, and continual encouragement and support. I’m also deeply

grateful for her generous support of graduate student social life as chair of the De-

partment of Computer Science.

Thank you to Prof. Bryan Ford for his insightful feedback and assistance with

my research in privacy-preserving surveillance.

Thanks to Dr. Aaron Johnson, Dr. Rob Jansen, and Dr. Paul Syverson of the

US Naval Research Laboratory for hosting me over the summer at NRL, and for

collaborating with me on our under-appreciated research into Tor.

I owe a debt of gratitude to my undergraduate research advisor, Prof. Leonid

Reyzin of Boston University, for opening my eyes to the world of computer science

reseach. Without him, I wouldn’t even be in this field.

For keeping me going these last five years, I’d to thank the friends I made at

Yale, including but not limited to: Henny Admoni, Will Dower, Debayan Gupta,

Brad Hayes, Jérémie Koenig, Rasmus Kyng, Alex Litoiu, David Meierfrankenfeld,

Lawrence Moy, Nathan Schwalm, Mark Schwab, Amelinda Webb, and Andrew

Womack. And I’d like to thank my friends who aren’t at Yale, but stood by me any-

way: Dan and Anna Copel, Kristine Gammer, Siggy and Kate Tomascovic-Moore,

Rachel Lucas, Bart Moore, Luke Moreau, Barry Torch, and my brother Jacob Segal.

The research in this dissertation was supported by a Computer Science Depart-

ment Kempner Fellowship, a grant from the Office of Naval Research, and a Google

Faculty Research Award.

xii

Chapter 1

Introduction

As people conduct their business and social lives online and over the phone, they

naturally generate private or sensitive data about themselves. This data includes

content that users generate directly, such as email, social media posts, photos, and

videos; metadata, such as phone records and lists of contacts; and tracking data,

such as the websites a user visits and the cell towers a mobile phone connects to.

Unfortunately, the modern internet and phone networks offer people very little

control over their data. Most people have very little expectation that their sensitive

information will remain private. In the case of metadata and tracking data, many

people do not even realize how much about them there is to know, or who knows it.

In fact, a number of parties can and do collect sensitive, personal data in bulk,

and use this data in dangerous or even malicious ways. Advertisers online commonly

use data about individuals to target ads. This practice can be relatively benign, but

it can also allow shared users of a computer to discover facts about each other from

the ads served to their shared browser, even if they clear their internet history [9].

Criminals can use sensitive data about their targets to commit fraud or blackmail,

or to enhance the effectiveness of a phishing attack [30]. Government agencies also

1

2

collect sensitive data, often operating under nebulous, classified authorities, and use

the data in poorly supervised investiations.

The situation may look hopeless. Given the government interest in observing and

collecting private information, it may appear that the only way for average internet

and phone users to have any kind of privacy would be the invention of some great new

cryptographic wonder. Some hold out hope for the invention of a technology that

would allow trustworthy government investigators, and only them, unfettered access

to user data - although this solution would still have massive privacy implications

without sufficient oversight. In the context of surveillance, some go so far as to say

that user privacy must be abandoned in favor of national security.

But the truth is that the cryptographic tools to improve privacy, security, and

accountability already exist.

In this thesis, we will discuss two techniques that could be used to improve

users’ control over their private information: privacy-preserving surveillance, and

anonymity. Both rely only on well-known and well-studied systems of encryption

and authentication, and could be deployed now, at scale and on commercial hard-

ware. Tools for anonymous communication over the internet are starting to see use,

primarily in the form of a program called Tor [19], but Tor has some significant issues

we address in this thesis, both with improvements to the Tor network and with an al-

ternative anonymity system which we prove provides anonymity, accountability, and

integrity. Privacy-preserving surveillance, if adopted along with a legal framework

supporting it, would allow investigatory agencies to conduct warranted searches of

metadata without destroying the privacy of all internet or phone users in the process,

and ensure oversight for such searches to prevent abuses.

3

1.1 Outline of this Thesis

In Chapter 2, we discuss the principles behind privacy-preserving surveillance. We

will present several specific policies that should be used by governments engaging in

electronic bulk surveillance activities to make the surveillance process accountable,

limited in scope, and precisely targeted.

We will then discuss the technical basis for privacy-preserving surveillance in

Chapters 3 and 4. In Chapter 3, we will consider privacy-preserving set interesec-

tion, a modification of a surveillance technique used by the FBI [1] and the NSA [49]

to support preserving the privacy of all users except the actual subjects of an inves-

tigation. We will present a protocol to achieve privacy-preserving set intersection,

and then discuss our experimental results with an implementation of this protocol.

Chapter 4 will discuss contact chaining, an investigative tool that examines con-

nections in a social graph to attempt to discover other members of a known sus-

pect’s criminal or terrorist organization [15]. We will present a protocol for privacy-

preserving chaining, which can be used in connection with our protocol of Chapter 4.

We will also consider the running time of the privacy-preserving contact chaining

protocol run on a sample social graph.

In Chapters 5 and 6, we turn our attention to anonymity protocols. We will

discuss in Chapter 5 a vulnerability in the currently deployed implementation of

Tor, which could allow a malicious user to game the system measuring relays in

the Tor network and potentially associate users with their traffic. To resolve the

vulnerability, we offer a new measurement system called Peerflow.

An alternative anonymous communication system to Tor is Verdict, originally

proposed in [13]. In Chapter 6 we, for the first time, formally specify the Verdict pro-

tocol and rigorously prove how it uses a “dining cryptographers”-based protocol [10]

4

to guarantee anonymity for its users, integrity of messages sent, and accountability

for anyone violating the protocol.

Finally, we conclude by offering some open questions and directions for future

research in Chapter 7.

Chapter 2

Privacy-Preserving Surveillance

and Openness Principle

This chapter outlines several principles that we believe should govern electronic

surveillance. We start with a basic principle stating that processes that use pri-

vate data in bulk must be open, and we then outline several related properties that

we expect such open processes to have. Finally, we summarize how these principles

might be applied in the case of “set-intersection warrants.”

This research was carried out in collaboration with Bryan Ford and Joan Feigen-

baum, and the material in this chapter was presented in preliminary form in [45].

2.1 Open Processes for Law Enforcement

A basic tenet of democratic society is that law enforcement must follow open pro-

cesses: procedures laid out in public law and subject to debate and revision through

deliberation. Police need not disclose whom they may suspect of a particular crime

or other details of an ongoing investigation, but their investigation must neverthe-

5

6

(a) What we have: a cloud of secret mass
surveillance processes

(b) What we require: open warrant-based
processes for lawful electronic surveillance,
creating a “privacy firewall.”

Figure 2.1: Secret versus open electronic surveillance processes

less follow rules and procedures established in open law books that everyone has a

right to know and understand. And it is accepted that searching a person’s home or

personal records requires a narrowly targeted and properly authorized warrant based

on probable cause.

We wish to formulate an openness principle for electronic surveillance that dis-

tinguishes between two classes of Internet users. A targeted user is one who is under

suspicion and is the subject of a properly authorized warrant. All others are untar-

geted users – the vast majority of Internet users (and cell-phone users and users of

any general-purpose, mass-communication system).

Just as search-warrant processes in free societies are grounded in open law, we

believe that any “bulk” electronic-surveillance process that ingests, searches, or oth-

erwise touches private1 data of untargeted users must likewise be an open process.

We refer to processes that are not open, public, and unclassified as secret processes,

and we seek to limit their use (while recognizing that there are circumstances in

which they may be needed). Once law enforcement has legitimately employed an

open process to identify, target, and obtain information about an Internet user sus-

pected of a crime, however, it may potentially subject that targeted user’s data to

1Rigorous definitions of the term “private” are the subject of extensive study in computer secu-
rity, law, philosophy, and many other fields. They are beyond the scope of this dissertation.

7

the full range of secret analysis tools and techniques in its arsenal.

One of the key reasons the NSA’s mass-surveillance activities disclosed by Snow-

den are so troubling is that they tap into “bulk” data and metadata about untargeted

users and ingest these private bulk data into secret processes that are codified only

in secret FISA law and are subject only to secret oversight and accountability pro-

cedures (Figure 2.1a). In short, the public must simply “trust” the US government’s

evidence-free assertions that its mass ingestion and secret processing of privacy-

sensitive data are (secretly) lawful and subject to adequate (secret) privacy protec-

tions and effective (secret) oversight. We cannot remotely envision the framers of the

US Constitution being comfortable with such blind faith in secret mass-surveillance

processes of this nature.

We therefore propose that a basic openness principle, comprising two main planks,

should govern electronic-surveillance processes in a modern democracy:

I Any surveillance or law-enforcement process that obtains or uses private infor-

mation about untargeted users shall be an open, public, unclassified process.

II Any secret surveillance or law-enforcement processes shall use only:

(a) public information, and

(b) private information about targeted users obtained under authorized war-

rants via open surveillance processes.

We view this openness principle as demanding that an open privacy firewall be

placed in the path of private information flowing from the Internet to law enforce-

ment (Figure 2.1b). Processes that search or ingest private data of untargeted users

“through the firewall” must be open processes, but, once a user is targeted by a

legitimate warrant and his data have been acquired via open processes, these data

8

collected about that targeted user may potentially be subject to secret investigative

processes.

Openness conceived in this manner may sound incompatible with the requirement

that government agencies be able to keep secret the targets and details of active

investigations, but it is not. Using appropriate security technology, a data-collection

or surveillance process used in an investigation may be made fully public without

revealing the content of any particular investigation.

Our focus here is on general electronic surveillance principles for law enforce-

ment purposes, independent of any particular government or agency. The hot-

button case of the NSA is complicated by the fact that the NSA was founded

as a foreign-intelligence agency but has acquired de facto characteristics of law-

enforcement agencies by: (a) increasingly serving to support and feed surveillance

data to law-enforcement agencies such as the FBI and the DEA; (b) collecting and

storing both US and non-US surveillance data alike, even if internal “searches” are

allowed only on “non-US persons”; (c) being increasingly employed not just against

wartime adversaries but against citizens of peaceful, allied, democratic states, who

common sense dictates should have protection against “unreasonable search and

seizure” regardless of the letter of US law [29]. To whatever extent the NSA or any

government agency behaves like a domestic or international law-enforcement agency,

we believe the above openness principle should apply.

2.2 Mass Surveillance

How should this openness principle be applied to mass-surveillance processes, i.e.,

processes such as the cell-phone records-collection program that have the potential

to collect or use all data in a particular category about all users? (As currently

9

implemented, the cell-phone records-collection program realizes this potential [18,26],

but we do not think it should.) We refer to data sets collected and used in mass

surveillance as bulk data sets.

We identify four particular “sub-principles” that we believe should apply to mass-

surveillance processes:

Division of trust: No single agency or branch of government should have either

the authority or the technical means to compromise the privacy of bulk data about

untargeted users. Mass-surveillance processes must require the sign-off, oversight,

and active participation of multiple independent authorities representing each branch

of government.

Enforced scope limiting: Surveillance processes must incorporate scope-limiting

mechanisms ensuring that no particular warranted-surveillance activity captures data

from an overly broad group of users. For example, each warrant might have a spec-

ified limit on the number of users whose data may be touched by the warrant-

authorized process.

Sealing time and notification: Surveillance processes that capture privacy-

sensitive user data must impose a limit on the length of time that the users in

question may be kept ignorant of the fact that their data were captured. After this

time has expired, the process must ensure that the users are notified of the data

access and given means to investigate the justification and/or obtain recompense for

any unjust effects of the investigation. Higher levels of authority should be required

to authorize longer sealing times. No level of authority should permit indefinite

sealing times (even indirectly, on an “installment” basis).

Accountability: Surveillance processes must incorporate accounting mecha-

nisms that enable all three branches of government, as well as civilian participants,

to maintain and safely disclose relevant statistics on how frequently and extensively

10

warranted-access mechanisms are used, e.g., number of warrants per month of a

given type, maximum number of individuals affected under any warrant, total num-

ber of individuals affected by all warrants in one month, or maximum secrecy period

applied to any outstanding warrant in one month.

2.3 Case Study: Intersection Warrants Using Cell-

Tower Dumps

Given a properly authorized warrant, we wish to enable law-enforcement agencies

to target not just known users (those whose cell-phone numbers they already have

and are covered by the warrant) but also unknown users (in our case, those whose

cell-phone numbers they do not have but may be able to discover by intersecting

several relevant cell-tower dumps). It may appear nonsensical to describe a user

as both “unknown” and lawfully “targeted,” but it is not. We may view such an

intersection warrant as a type of “John Doe” warrant [5]: one in which the names

or phone numbers of the person(s) of interest are unknown, but for which relevant

times and locations are known, and for which there is sufficient evidence to convince

a judge that there is probable cause to believe the given times and locations uniquely

identify the unknown person(s) who committed a crime.

For example, the FBI caught the High Country Bandits [1] by intersecting three

cell-tower dumps, representing the sets of cell-phone numbers that had been used

near three different bank-robbery sites at the times of the robberies. In total, these

dumps contained 150,000 cell-phone numbers, but their intersection contained only

one: that of a High Country Bandit. Similarly, the NSA’s CO-TRAVELER pro-

gram [49] searches for unknown associates of known surveillance targets by first

intersecting cell-tower dumps from times and locations at which a particular known

11

target appeared and then interpreting the intersection as the set of cell-phone num-

bers of people who may be “traveling with” the known target.

In Sections 3.1 and 3.2, we present and evaluate a protocol that computes the

intersection of cell-tower dumps and obeys the principles articulated above. This is

a natural test case for us for at least two reasons. First, intersections of cell-tower

dumps have proven useful in catching criminals; this distinguishes them from many

of the other surveillance activities featured in the Snowden revelations, the practical

utility of which is at best unclear. Second, privacy-preserving set intersection is a

well-studied, mature, and practical technology [24,39,55].

Note that our protocol is not specific to cell-tower dumps and could also be used

to query other “time-and-place” metadata collections in an open, lawful manner.

Chapter 3

Privacy-Preserving Set

Intersection

3.1 Lawful Intersection Attacks

This section first outlines the assumptions and principals involved in our lawful

intersection-warrant protocol, then describes the operation of the protocol, and fi-

nally summarizes its key security properties.

This research was carried out in collaboration with Bryan Ford and Joan Feigen-

baum, and the material in this chapter was presented in preliminary form in [45].

3.1.1 Principals

Our model for lawful intersection attack involves the following three types of prin-

cipals. For simplicity, we assume here that these principals will participate in an

intersection-attack mechanism in an honest-but-curious way. That is, they will not

attempt to violate the rules of the mechanism, but they may use their own views of

12

13

all data they see to acquire additional information.1

Sources: entities that produce metadata records embodying information of the

form, “user X was observed to be near location Y at time Z.” The obvious examples

are phone companies whose cell towers produce logs of the users who appeared in

the vicinity of a given cell tower at a given time, but our model extends to other

producers of metadata of this general form.

Repository: any entity tasked with storing metadata for surveillance or law-

enforcement purposes. This may be the phone companies that produced the records

(i.e., the same as the metadata sources), a government agency, or some specialized

independent agency. While “who stores the data” is an important question in general,

it is orthogonal to our goals, and our model is agnostic with respect to its answer.

Agencies: a set of multiple independent but cooperating government agencies

across whom our model divides surveillance authority. While our model is formally

agnostic with respect to the number or specific natures of the authorities across whom

trust is divided, we will use the US’s 3-branch constitutional model as a concrete

example, in which it might be appropriate to divide surveillance authority across

three agencies:

� The Executive Agency represents the executive branch and is responsible

for requesting surveillance warrants – e.g., an agency like the NSA or FBI.

� The Judicial Agency represents the judicial branch and is responsible for

authorizing requested warrants, after verifying independently that they are

legally justified and suitably scoped.

� The Legislative Agency reports to the legislative branch and is responsi-

1 This assumption could be relaxed significantly by requiring all principals to produce zero-
knowledge correctness proofs of their intermediate results, using standard and well-known tech-
niques. We leave these details to future work, however, and we would still need to assume the
correctness of the original inputs – e.g., logged phone numbers.

14

ble for ensuring that accurate and sufficiently detailed data are gathered and

regularly reported to Congress on how and to what extent these surveillance

capabilities are employed.

3.1.2 Lawful Set-Intersection Protocol

The lawful set intersection protocol we present is similar in structure to the protocol

of Vaidya and Clifton [55].

Our protocol is built on two encryption schemes: ElGamal [21, 54], a random-

ized encryption scheme, and Pohlig-Hellman [44], a deterministic encryption scheme.

Both of these cryptosystems are also commutative.

We use the randomized, public-key ElGamal encryption scheme for long-term

protection of stored data. Each agency, or “participant,” in the protocol needs an

ElGamal key pair, the public key for which is known to the sources of private in-

formation. We use randomized encryption for data storage so that two ciphertexts

representing the same piece of metadata will not necessarily be identical. This pre-

vents the repositories or the participants from learning anything about the ciphertext

sets - in effect, preventing them from performing the intersection attack without the

cooperation of other participants.

In order to enable intersection at the appropriate point in the protocol, we use the

deterministic, symmetric-key Pohlig-Hellman encryption scheme. The participants

in the protocol use Pohlig-Hellman to blind the data prior to intersection. Short-term

Pohlig-Hellman keys are generated by each participant during the protocol execution

and discarded at the execution’s end. Because Pohlig-Hellman is commutative and

deterministic, there is a one-to-one correspondence between data items and their

encryptions under any fixed set of Pohlig-Hellman keys, regardless of the order in

which those keys are applied. We rely on this property to allow the intersection to

15

proceed.

The ElGamal and Pohlig-Hellman encryption schemes are both commutative. A

commutative encryption scheme has the property that a message encrypted sequen-

tially under multiple encryption keys can be decrypted by applying the corresponding

decryption keys in any order. not only commutative but mutually commutative -

that is, a message encrypted under a combination of encryption keys from the two

cryptosystems can still be decrypted by the corresponding decryption keys, again

regardless of order. For example, a ciphertext encrypted under a single ElGamal key

could next be encrypted under a Pohlig-Hellman key to form a “mixed encryption”

ciphertext. This ciphertext can then decrypted with the ElGamal decryption key to

produce a valid Pohlig-Hellman ciphertext. As long as at least one of the keys used

to encrypt a ciphertext is a key from the randomized ElGamal cryptosystem, the

mixed encryption is randomized, and direct comparison between ciphertexts cannot

be performed.

Each participant’s input is its ElGamal private key and a set of data that has

been encrypted under the ElGamal public keys of all agencies. The agencies do not

generate these sets – rather, they are distributed to the agencies by the repositories.

If there are n agencies, they are given numbers 1 through n so that, when the mth

agency is done acting on a set of data, it can pass the set on to the pm � 1qth, and

it can receive new sets from the pm� 1qth.

Assuming all agencies execute the protocol with honest-but-curious behavior, the

protocol’s output for each participant will be the intersection of all sets. Optionally,

each agency may also supply a threshold limiting the size of the intersection it is

willing to reveal. If the size of the intersection of all sets would be above any agency’s

threshold, no agency will learn anything except the cardinality of the intersection,

which agency’s threshold was violated, and some intermediate values discussed in

16

Section 3.1.3. The protocol runs as follows:

Initialize. Each agency first generates a temporary Pohlig-Hellman key to be

used only during this execution of the protocol and then discarded. The first agency

then obtains the ElGamal-encrypted sets to be intersected from the Repository.

Phase 1. Each agency in turn uses its ElGamal private key to remove a layer

of ElGamal encryption from each item in each set to be intersected; it then adds a

layer of Pohlig-Hellman encryption to each item, using the temporary key it gener-

ated in the Initialize step. The agency then randomly shuffles each encrypted set

independently, while keeping the sets separate, and forwards the sets to the next

agency. The phase is complete when agency n decrypts the final layer of ElGamal

encryption from all items in all sets, leaving all sets encrypted under every agency’s

Pohlig-Hellman keys only.

Phase 2. Agency n broadcasts the resulting Pohlig-Hellman-encrypted data sets

to all other participants. Each participant then computes the desired intersection:

i.e., the encrypted elements that appear in all sets – or, more generally, the elements

that appear in some threshold number of the sets as defined by the intersection

warrant. Because Pohlig-Hellman is a commutative and deterministic encryption

scheme, two identical data items will have identical encryptions at this stage, making

computation of the intersection trivial despite the encryption.

Phase 3. If any agency sees that the number of distinct items (e.g., phone

numbers) appearing in the resulting set intersection is above a warrant-specified

limit on the number of individuals the warrant is permitted to target, the agency

deletes its Pohlig-Hellman key, sends a message to all other agencies, and refuses

to continue with the protocol. (The agency requesting the warrant might then be

required to produce a new, more narrowly targeted warrant and try again.)

Phase 4. If the intersection’s cardinality meets the requirements of the warrant,

17

then the agencies collectively decrypt the items in the intersection. As in Phase

1, each agency in turn uses its Pohlig-Hellman key to decrypt each element of the

intersection set, shuffles the intersection set, then forwards it to the next agency.

The phase completes when when agency n decrypts the last layer of Pohlig-Hellman

encryption and forwards the plaintext result to the other agencies.

For simplicity, we describe Phases 1 and 4 above as strict “cascades,” each agency

processing the full data set before passing it to the next. A simple performance

optimization our prototype implements is for different input sets to start at different

agencies – i.e., to start and end at different “points” around a circle – thus spreading

computational load and increasing parallelism. This is only one of many potential

optimizations, however.

3.1.3 Protocol Properties

We now analyze our cell-tower-dump intersection mechanism with respect to our

openness principle for mass-surveillance processes. We accomplish division of trust

by having all data be encrypted in advance with the public keys of the agencies that

request, authorize, or oversee the surveillance. Without participation of all of these

agencies, the data cannot be decrypted – even if the Repository is compromised, for

example – and no unauthorized surveillance can be performed unilaterally.

The protocol also provides the means to enforce a limited scope of investigation.

The sizes of all sets and intersections are visible to all participants in Phase 3; so the

warrant can specify a limit on the number of users whose data may be revealed. If

it does, and the size of the intersection is above this limit, the protocol participants

should stop before any metadata records are revealed in cleartext. Any or all of

the agencies can take responsibility for this, because even one agency halting and

deleting its Pohlig-Hellman key prevents decryption of the metadata.

18

If the protocol completes, it gives the same output to each participant. This

makes it easy to notify users whose data were viewed after some sealing time and to

maintain statistics for the purpose of accountability. These processes are beyond the

scope of the intersection protocol, but one of the participants in the protocol can be

responsible for maintaining them. The other participants can audit those processes,

since they also know which uses should be notified.

Finally, this process protects the privacy of untargeted users. The only informa-

tion leaked apart from the output are the sizes of intersections of any two or more

sets involved in the protocol. (This property is proven in [55] for a protocol using

the same structure as ours; the proof generalizes straightforwardly to our case.)

This small information leakage reveals how many users appear in multiple sets

but does not reveal any specific user identities or metadata other than those in the

requested intersection. Because only aggregate properties of the sets are leaked, we

feel this leak should not represent a major privacy issue – and when a query fails

because of an empty or too-large intersection, the leaked statistics may help the

agency that requested the warrant formulate a revised request for a better scoped

warrant.

3.2 Implementation and Evaluation

This section presents the results of our preliminary experiments with the lawful set-

intersection protocol of Section 3.1. Recall that each network node that participates

in this protocol acts on behalf of an “agency,” in the terminology of Section 3.1.1. It

is this set of agencies across whom trust, e.g., the power to authorize an intersection

attack, is divided in our model. Because the public keys of all agencies are used to

encrypt the data stored in the Repository, each agency effectively uses its private

19

key to “authorize” the selection and decryption of results responsive to a particular

intersection warrant.

3.2.1 Prototype Implementation

Our implementation of the lawful set-intersection protocol is written in Java and

available on GitHub.2 The prototype does not use any external libraries for cryptog-

raphy beyond Java’s standard BigInteger class.

The program is run on multiple servers. The servers connect to each other over

TCP sockets, and, for simplicity, we use a directed cycle as the connection graph.

Each server sends data only to the next server in the cycle and receives data only from

the previous server in the cycle. Each participant takes one set of encrypted data

and a 1024-bit ElGamal private key as input. The data must have been sequentially

encrypted under all participants’ public keys before it can be used in the protocol;

because this encryption is done offline and in advance, the protocol itself does not

require access to public keys.

To test the protocol, we ran it many times on data sets of various sizes. We used

three nodes on the Yale CS Cloud, each running 8 compute threads to process the

encryption and decryption of data.

The tests were all run using only these three nodes, each node with one data set.

We expect the running time would increase considerably as a function of the number

of participants, but three is a natural number of nodes in this context, representing

a distribution of authority across three branches of government (Section 3.1.1).

2https://github.com/DeDiS/Surveillance

https://github.com/DeDiS/Surveillance

20

101 102 103 104 105
10�2

10�1

100

101

102

Total Set Size [Ciphertexts]

R
u
n
n
in

g
T

im
e

[m
in

]

End-to-End Running Time

Figure 3.1: Lawful Intersection Performance

3.2.2 Query Efficiency

Prior to execution, we randomly generated data sets for each trial for each node. We

ran the protocol 10 times each with different-sized data sets, ranging from 10 items

per set to 50,000 items per set. In each trial, we measured the amount of data each

node transmitted upstream during the protocol and the total end-to-end time of the

protocol, measured from the start of the protocol’s execution to the production of

output. After running each test 10 times, we averaged the results; these averages are

presented in Figure 3.1.

In the High Country Bandits case, the FBI processed information from about

150,000 users total [1]. Our largest test, with 50,000 data items per set, tested our

protocol’s efficiency with an equally large amount of data. The average amount of

time needed to run the protocol in this experiment was 629.4 seconds, just over 10

minutes.

These tests were run with an intersection size of three. We also tested these

benchmarks with an intersection size of 10 and found that the average times did not

21

change by more than one second in any case and that the data sent per node always

increased by 3 KB.

Our results indicate that the amount of data sent over the network and end-to-

end time both increase linearly with the size of the data sets, which is what we would

expect from this protocol.

Further tests showed that total data sent and total CPU usage across participants

were not affected if the data were concentrated in one or two sets, as opposed to being

spread equally over all three sets. However, we found that the end-to-end delay can

increase by up to a factor of two if the data are spread out. This result is unsurprising,

because unbalanced sets render less effective the optimization mentioned at the end

of Section 3.1.2, wasting time while the small-set-input participants idle, waiting for

data to be sent by large-set-input participants.

Chapter 4

Privacy-Preserving Contact

Chaining

Contact chaining [15] is a form of government surveillance with which it is decep-

tively easy to expose many innocent, untargeted users to government scrutiny. In

this chapter, we propose a privacy-preserving surveillance protocol to obtain rele-

vant information that would be discovered using a contact chaining search, without

violating the privacy of untargeted users.

The work reported in this chapter was done in collaboration with Bryan Ford

and Joan Feigenbaum.

4.1 Lawful Contact Chaining

The goal of contact chaining is to use information about social connections between

identities, such as records of phone calls between one number and another, to identify

members of a criminal organization or terrorist group. Starting with one or more

suspects whose identities are known, the government aims to consider contacts of

22

23

those suspects. These can be direct contacts, such as two people who spoke on the

phone, or extended contacts, such as two people connected by a chain of two or more

phone calls. For example, suppose Alice calls Bob, Bob calls Charlie, but Charlie

and Alice have not called each other. Then Alice and Bob are direct contacts (as are

Bob and Charlie), but Alice and Charlie are extended contacts. We may also say

that Alice and Charlie are at distance 2 in the communication graph (because the

smallest number of phone calls that connect Alice to Charlie is 2).

Without mechanisms to preserve privacy, a contact chaining search can collect

a surprisingly large group of users’ information. For example, if the average cell

phone user contacts 30 individuals within the period of the investigation, a contact

chaining search out to distance 3 would capture 27,000 users on average - or many

more if a heavy phone user is swept up by the search. With such a large group, it is

assured that the vast majority of contacts will not be the targeted collaborators of

the primary suspect in the investigation. This is a large and unnecessary intrusion

of privacy. These untargeted users may nevertheless face unwarranted government

scrutiny, intrusive investigation, or a risk that their sensitive communications histo-

ries may be leaked accidentally.

Despite this risk, we recognize the potential law-enforcement value of information

about social connections between targeted invidivuals. Therefore, we propose a law-

ful contact chaining protocol. This protocol permits multiple government agencies

working together to provide oversight and accountability, satisfying the principles laid

out in Chapter 2. Our protocol focuses on the case in which the government seeks

information from multiple telecommunications providers about the communication

graph formed by phone calls and text messages. Using this protocol, the agencies

can retrieve an encrypted set of user data from multiple telecoms, each of which

holds only part of a larger communication graph. This encrypted set contains the

24

identities of users within a certain distance of a target, but the identities cannot be

decrypted unless the agencies cooperate. Under the lawful processes we propose, this

cooperation would take the form of an intersecton with other encrypted sets of data,

using the protocol from Section 3.1.2. These sets can come from privacy-preserving

contact chaining, from cell tower dumps, or from other sources of information about

suspects. Importantly, while any set may contain encrypted data about many un-

targeted users, very few users will appear in all the sets, and those few users will be

suitable targets for further lawful investigation.

The same principles of oversight and accountability provided by multiple govern-

ment agencies can apply to contact chaining searches in other types of communication

graphs, such as the social network graph of Twitter or Facebook. These cases do not

require our protocol, however, since if one provider knows the entire communication

graph, it can compute the output of the protocol without any interactivity needed.

4.2 Protocols For Privacy-Preserving Contact

Chaining

4.2.1 Inputs and Parties to the Protocol

There are two types of parties in this protocol: Telecommunications companies

(telecoms) and government agencies interested in performing lawful contact-chaining

(agencies). The protocol computes a function of all parties’ data.

The telecoms jointly hold an undirected communication graph G � pV,Eq. Each

telecom knows only a subset of the edges E. V contains vertices labeled with the

phone numbers they represent, and E contains an edge between a and b if and only if

phone number a has contacted phone number b or vice versa within some window of

25

time. Each phone number v is served by exactly one telecom. We assume telecoms

know which telecom serves which phone number. Each telecom keeps records of all

phone calls made by phones they serve, including calls made to phone numbers served

by other telecoms. The subgraph known by telecom T is GT � pV,ET q where ET is

the set of edges pa, bq such that a or b is a phone number served by T . Henceforth,

for any phone number a, let T paq be the telecom that serves a.

The agencies must each hold a copy of a warrant in order to perform this protocol.

A warrant is a triplet (x, k, d). The variable x is a target phone number. We assume,

since x belongs to a user targeted by the agencies, that they also know which telecom

serves x. The variable k is a (small) distance from x, the distance at which the

agencies wish to consider chained contacts. For example, if k � 2, then the agencies

only wish to consider users at most 2 phone calls away from their person (or phone

number) of interest x. Choosing a small limit is important to limiting the scope

of the investigation. However, many users’ information might still be captured if

some phone numbers have very many contacts. Suppose the target x calls the most

popular pizza place in town. Now everyone else who has recently called that pizza

place is at a distance 2 to x.

We can assume that business phone numbers have many more contacts than per-

sonal phone numbers do. In most cases, knowing that two individuals have contacted

the same business phone number does not indicate that those individuals have a per-

sonal relationship. Therefore, the warrant also includes d, an upper bound on the

degree of users the agencies are willing to “chain” through. If a phone number has

more than d contacts, then the agencies do not consider paths to other users through

that phone number in their search. The agencies disregard d for the initial target

x, however. The high-degree users themselves will also be present in the agencies’

outputs.

26

This provides a reasonable limit to the scope of the investigation and hides what

are very likely to be untargeted users from the government. In the uncommon sce-

nario where a business number with many contacts also functions as a front or hub

for a criminal organization to be revealed, the government is still able to conduct

further investigation on it, perhaps even beginning a new contact-chaining search

with that number as the initial target.

We specify the protocol in full in Sections 4.2.4 and 4.2.5.

4.2.2 Security Assumptions

We make a few assumptions about existing cryptographic infrastructure. All tele-

coms and agencies must have a public encryption key known to all other parties to

the protocol and a private decryption key. For the purpose of interoperability with

lawful intersection, agencies’ keys must be for a commutative cryptosystem (i.e. El-

Gamal). The parties must also each have private signing keys and public verification

keys.

In the protocol below, we refer to “the agencies” sending messages to one or

more telecoms. Exactly which agency transmits messages to the telecoms is not

important to our protocol, but a telecom will disregard any message not accompanied

by signatures from every agency. One simple topology is for a single agency to handle

all direct communication with telecoms and with other agencies, forwarding reponses

from the telecoms on to the other agencies and signatures on agency messages to the

telecoms.

Our protocol preserves the privacy of untargeted users as long as all parties exe-

cute the protocol in an honest-but-curious manner, all of the government agencies do

not collude together, and no telecoms collude with government agencies. A colluding

group containing all agencies would be equivalent to the current situation n which

27

the government does not provide meaningful accountability of its own surveillance

activities; what we propose is a replacement for this situation, but it does require

the government to follow its own laws, once set. A telecom colluding with a govern-

ment agency would amount to sending that agency free information about its users,

or submitting incorrect information to the protocol. But telecoms have no business

purpose to deviate from the protocol and risk legal action. In practice, existing legal

tools allow law enforcement agencies to gather information about the phone history

of a suspect with a valid warrant, but such information cannot generally be used for

further contact chaining.

In Chapter 7, we discuss potental ways in which our honest-but-curious assump-

tion might be relaxed.

4.2.3 Desired Outputs and Privacy Properties

The goal of the protocol is for the agencies to obtain a set of ciphertexts, each of which

is the encryption of a phone number v such that the distance in the communication

graph from v to the targeted phone number x is at most k. The set should not

contain encryptions of numbers v such that each path from x to v of length at most

k contains an intermediate vertex of degree greater than d. Here the “intermediate”

vertices in a path are all vertices except the endpoints x and v.

Every phone number in this set must be encrypted with each of the agencies’

public ElGamal keys. The agencies should all have the same output.

The telecoms should not learn the agency’s output. Instead, each telecom’s out-

put should contain only a list of which of the phone numbers it serves were sent to the

government agencies. This allows the telecoms to play an additional accountability

role in this protocol. The government may have an interest in keeping the telecoms

from knowing which of their clients were surveilled; we discuss this in section 4.3.3.

28

With the encryptions of these phone numbers, the agencies can then act as appro-

priate to further investigate them. In particular, the encrypted set of phone numbers

can be used as an input into a lawful set intersection protocol.

Below, we present two versions of our protocol. In the first version, the agencies

and telecoms learn some additional information. Specifically, the agencies learn the

provider of each phone number in the encrypted set, and the distance from x of

each encrypted phone number. Each telecom learns which of the phone numbers it

serves appear in the agencies’ output, as well as the distance of each of those phone

numbers from the target phone number x.

In section 4.2.5, we will present a second version of the protocol in which the

agency does not learn which telecom serves which encrypted phone number.

As long as our security assumptions for this protocol hold, the agencies collectively

learn no information about the edge set E except what is implied by the output.

Furthermore, the agencies cannot learn any of the phone numbers that appear in

encrypted form in the output (unless implied by the size of the encrypted output

and the leaked service information), nor can agencies cause a phone number not

within distance k of target x to appear in the output, even in encrypted form.

4.2.4 Ownership-Revealing Lawful Contact-Chaining Proto-

col

The protocol below amounts to a distributed breadth-first search of the commu-

nication graph run by the agencies making queries of the telecoms. However, all

messages the agencies receive from the telecoms will be encrypted. They will know

which message come from which telecoms, and will therefore know which telecoms

serve which ciphertexts.

29

Let EncT pmq be the encryption of message m under telecom T ’s public key. Call

such an encryption a telecom ciphertext. Let EncApmq be the encryption of m under

the public keys of all agencies, and call such an encryption an agency ciphertext.

To manage the breadth-first search, the agencies (or at least the investigating

agency) will maintain a queue Q, containing vertices yet to explore. Q contains tuples

for unexplored vertices a of the form pEncT paqpaq, T paq, jq. These tuples contain the

telecom ciphertext for a, a record of which telecom owns a, and an integer j indicating

the remaining distance out to which neighbors can be chained from a.

The agencies will represent their output in the form of a list C, containing agency

ciphertexts. Each telecom T will represent its output in the form of a list LT , listing

plaintext users served by that telecom whose information the agencies requested.

The protocol is as follows:

1. The agencies start by agreeing upon a warrant px, k, dq, where x is the target

phone number, k is a maximum distance, and d is an upper limit on the degree

of vertices to chain through. They encrypt x under the public key of T pxq.

2. The agencies initialize a queue Q. Initially, Q contains only the triple

pEncT pxqpxq, T pxq, kq.

3. The agencies initialize the output list C to be empty.

4. Each telecom T initializes its output list LT to be empty.

5. While Q is not empty, do the following:

(a) The agencies dequeue pEncT paqpaq, T paq, jq from Q. They send the pair

(EncT paqpaq, jq to T paq.

(b) a’s provider, T paq, decrypts a from its telecom ciphertext. It adds a to

LT .

30

(c) T paq encrypts a under the agencies’ public keys, and sends EncApaq to

the agencies.

(d) If j � 0, T paq is done. Go to step 5g.

(e) Otherwise, T paq encrypts each neighbor b of a under the public key of

T pbq, creating a telecom ciphertext for b.

(f) T paq sends the number of ciphertexts generated this way, degpaq, as well

as all telecom ciphertexts generated in the previous step, to the agencies.

T paq sends the ciphertexts in the form of pairs pEncT pbqpbq, T pbqq.

(g) The agencies add EncApaq to C.

(h) If degpaq ¡ d and j � k (i.e. a � x), the agencies discard all telecom

ciphertexts received for a’s neighbors (i.e., agencies refuse to sign these

ciphertexts in future steps of the protocol, and do not send them on to

the telecoms).

(i) Otherwise, for each telecom ciphertext received, the agencies add

pEncT pbqpbq, T pbq, j � 1q to Q.

6. The agencies’ final output is the list C. Each telecom T ’s final output is LT .

For the sake of efficiency, it is worth noting that the inner loop can be executed

many times in parallel, up to the point of completely emptying Q at the beginning of

the loop. Many messages to the same telecom can also be batched and sent together,

thereby reducing the number of signing and verifying operations so that they depend

only on k and not on the size of the input or output.

31

4.2.5 Ownership-Hiding Lawful Contact-Chaining Protocol

The previous version of the protocol allows agencies to learn which telecoms own the

phone numbers in its encrypted output. This subsection presents a modification of

the previous version of the protocol, which uses a DC-nets-based anonymity protocol

to hide this information from the agencies (except with respect to the initial target

x).

An anonymity protocol is run by a number of parties, some of which have messages

to send. At the end of the protocol, all parties must learn all messages sent, but no

party other than the sender of any given message can learn which party sent that

message. Dissent [12] and Verdict [13]) both satisfy our requirements; they are more

powerful than we need, however, because we assume all telecoms are honest-but-

curious. Given an anonymity protocol, we use it to to allow the correct telecom to

respond anonymously in steps 5c and 5f in the protocol above. This removes the

need for the agencies to know which telecom owns which ciphertext.

Now we can present the following modified protocol. This protocol uses the same

data structures as in section 4.2.4, except that Q now contains pairs pEncT paqpaq, jq

for unexplored vertices a (omitting the identity of T paq.

1. The agencies start by agreeing upon a warrant px, k, dq, where x is the target

phone number, k is a maximum distance, and d is an upper limit on the degree

of vertices to chain through. They encrypt x under the public key of T pxq.

2. The agencies initialize a queue Q. Initially, Q contains only the pair

pEncT pxqpxq, kq.

3. The agencies initialize the output list C to be empty.

4. Each telecom T initializes its output lists LT to be empty.

32

5. While Q is not empty, do the following:

(a) The agencies dequeue a pair pEncT paqpaq, jq from Q. They send the pair

pEncT paqpaq, jq to all telecoms.

(b) All telecoms attempt to decrypt EncT paqpaq with their decryption keys.

Only T paq will be able to do so. Other telecoms skip to step 5f.

(c) T paq adds a to LT .

(d) T paq encrypts a under the agencies’ public keys, producing the agency

ciphertext EncApaq.

(e) If j ¡ 0, T paq encrypts each neighbor b of a under the public key of T pbq,

creating a telecom ciphertext for b.

(f) All parties to this protocol engage in the anonymity protocol. T paq sends

an anonymous message consisting of the agency ciphertext it generated in

step 5d; the set of telecom ciphertexts generated in step 5e, and degpaq, the

number of telecom ciphertexts being sent. The agencies and all telecoms

that could not decrypt EncT paqpAq participate but send no anonymous

message.

(g) When the anonymity protocol is complete, the agencies receive all the

ciphertexts. They add EncApaq to C.

(h) If degpaq ¡ d and j � k (i.e. a � x), the agencies discard all telecom

ciphertexts received for a’s neighbors (i.e., agencies refuse to sign these

ciphertexts in future steps of the protocol, and do not send them on to

the telecoms).

(i) Otherwise, for each telecom ciphertext received, the agencies add

pEncT pbqpbq, j � 1q to Q.

33

6. The agencies’ final output is the list C. Each telecom T ’s final output is LT .

The protocol replaces each query in the protocol of section 4.2.4 with broadcast

of the telecom ciphertext to all telecoms, and replaces each response with a round

of the anonymity protocol. This allows the telecom that owns each phone number

to respond with appropriate information about the phone number, but shields the

telecom’s identity from the agencies (and incidentally from other telecoms).

As in the previous section, It should be noted that the agencies and telecoms need

not handle one ciphertext at a time. The agencies can in principle dequeue all of Q

in step 5a and broadcast all pending vertices to the telecoms. In step 5f, multiple

telecoms can submit multiple messages to a single run of the anonymity protocol,

with only those telecoms which were unable to decrypt any vertices submitting no

message. The exact number of messages per instance of the anonymity protocol can

be tuned for best efficiency.

4.3 Discussion of Lawful Contact-Chaining

We now discuss the correctness and privacy properties of both variants of our lawful

contact-chaining protocol.

4.3.1 Correctness of Output

The agencies’ outputs from the protocols in Sections 4.2.4 and 4.2.5 will be C. C will

contain agency ciphertexts of all phone numbers at most k phone calls away from x,

considering only vertices of degree at most d. This is the desired output. C reveals

nothing to any agencies unless they all provide their decryption keys. To continue

the process of lawful investigation, the agencies should combine the output C with

34

other sets of potential suspects (such as from further runs of this protocol, or from

cell tower dumps) in a lawful intersection protocol.

4.3.2 Privacy

Both versions of the protocol hide the identities of the chained contacts of x. They

do allow the agencies to learn the distance from x of each ciphertext in their output,

but these ciphertexts cannot be resolved to phone numbers without the cooperation

of all agencies.

The protocol of section 4.2.4 allows the agencies to learn which telecoms owns

which ciphertexts in C. This may be a security concern, since some telecoms are

relatively small, specialized, or localized to a particular country or region. If the

agencies know that such a such a telecom owns an encrypted phone number, this will

not allow them to identify the phone number itself, but might convince the agencies

to subject that ciphertext to additional scrutiny, up to the point of decrypting it

outside the context of lawful surveillance. This would still require the collusion of all

agencies, however. Our revised protocol mitigates this concern. Assuming that the

anonymity protocol used in section 4.2.5 does not allow its participants to learn who

sends each message, then the revised protocol does not leak ciphertext ownership

information.

The telecoms learn two types of information as part of the lawful contact chaining

protocol. First, they learn the warrant. Second, they learn which of the phone

numbers they serve have been captured (in encrypted form) by the protocol, and

when they were captured. The telecoms might possibly be able to infer some extra

information about G from observing when vertices they own are queried by the

agencies, but only of a very limited form. For instance, an agency may serve two

phone numbers, a and b, which the agencies query at distance 1 and 4 from x,

35

respectively . In that case, the telecom can infer that there exists a path in G of

length 3 between a and b. The telecom does not learn which other phones are involved

in that path, and is already aware of all paths of length 2 or less between phone

numbers it serves. Therefore, this potential information leak is of little concern.

4.3.3 Hiding Information From Telecoms

In both versions of our protocol, the telecoms learn which of their numbers have been

submitted to the agencies. They do not know which phone numbers the agencies will

actually investigate after running the privacy-preserving set intersection protocol, but

they do know which ones could be under investigation. Since many numbers could

be investigated, this does not compromise the agencies’ investigative power.

We may point out nevertheless that a modification of our protocol from 4.2.4

could allow the agencies to hide from the telecoms which of their clients is being

surveilled. The telecoms would need to precompute agency ciphertexts for all of their

client numbers, and telecom ciphertexts for all of their clients’ contacts. With these

precomputed databases, the telecoms could then use oblivious transfer to blindly

serve the agencies’ requests for information about their clients.

4.4 Performance of Privacy-Preserving Contact

Chaining Protocol

We implemented the privacy-preserving contact chaining search protocol of 4.2.4 in

Java and tested the implementation’s running time, CPU time used, and data sent

over the network. Below, we describe our implementation and its experimental setup,

and then summarize our results.

36

4.4.1 Java Implementation

Our Java implementation uses the variant of our protocol in which the agencies

completely exhaust the search queue Q each round, sending all queries at any given

distance from x to the telecoms at once in batches. Ths variant allows for greater

parallelism. All of the telecoms receive their batch of queries at the same time, and

operate on those queries using eight parallel threads of computation.

We use 2048-bit DSA signatures, 2048-bit RSA encryption for the telecoms, and

ElGamal encryption for the agencies’ output to provide compatability with the lawful

intersection protocol of Chapter 3.

Our Java program supports any number of agencies and telecoms, but we chose to

run tests with three government agencies and four telecoms. Each agency and telecom

has a dedicated server in our cloud testbed. As mentioned in Section 3.1.1, three

is a reasonable choice for the number of agencies, corresponding to three branches

of government. Four telecoms should cover most users in any given mobile phone

market, and increasing the number of telecoms in our experiments only serves to

decrease the protocol’s total running time by splitting the same users over more

servers.

4.4.2 Experimental Setup

For our underlying contact graph, we used an anonymized data set provided by [40]

containing 1.6 million users from Pokec, a Slovakian social network. To replicate

the multi-provider environment of the real telephone network, we assigned each user

to one of four telecom servers. The telecoms were each given a different number of

the users, in proportion to the subscriber base of the largest four telecoms in the

world [42].

37

To experiment with differently sized output sets, we ran our protocol many times,

varying x, k, and d. We chose a variety of different-degree starting targets x, varied

the maximum path length k between 2 and 3, and varied d from 25 to 500. For each

run, we measured the total running time of the protocol, the CPU time spent by the

agencies and telecoms, and the amount of data sent over the network in total.

These results are important in evaluating how practical our lawful contact-chaining

protocol would be it were put into practice by government agencies and telecoms.

However, our data set is relatively small compared to the databases held by real

telecommunications companies, and each company handles that data using different

technologies. The absolute running time and CPU usage of executing this protocol

could vary from telecom to telecom. Therefore, we also produced a implementation of

the contact-chaining protocol which omits all cryptographic operations. This version

of the protocol does not preserve the privacy of users. By comparing the performance

of our lawful contact-chaining protocol with the zero-cryptography contact-chaining

protocol, however, we can get a sense of the “cost” of privacy and accountability as

compared to the practice of releasing plaintext data to government surveillance.

4.4.3 Results

Our implementation of lawful contact-chaining performed well. Our experiments

showed a linear relationship between the number of ciphertexts in the output and

the running time, CPU time, and data usage of the protocol. We display graphs of

our recorded data in Figure 4.1. Taking the average of all cases with d ¡ 25, the

telecoms used 58.2 ms of CPU time per ciphertext. The agencies used, again in the

average case, 2.0 ms of CPU time per ciphertext. Note that these times are the sums

taken over all telecoms and all agencies respectively. Because the agencies have do

very little cryptography in this protocol, we focus on the telecoms’ CPU time in our

38

101 102 103 104 105 10610�2

10�1

100

101

102

Ciphertexts in Result

R
u

n
n

in
g

T
im

e
[m

in
]

Protocol Runtime

Lawful contact-chaining
Zero-crypto

101 102 103 104 105 10610�1

100

101

102

103

Ciphertexts in Result

T
ot

al
C

P
U

T
im

e
[m

in
]

All-Telecom CPU Time

Lawful contact-chaining
Zero-crypto

101 102 103 104 105 10610�1

100

101

102

103

104

Ciphertexts in Result

D
at

a
tr

an
sf

er
re

d
[M

B
]

Data transferred

Lawful contact-chaining
Zero-crypto

Figure 4.1: Performance of Lawful Contact-Chaining

39

evaluation.

We found that our protocol was able to process, in the average case, 197.4 ci-

phertexts per second. To return to our example from earlier of a network with an

average of 30 contacts per user, a lawful contact-chaining search with k � 2 would

have 900 users in the output, and a search with k � 3 would have 27,000 users in the

output. To compare these times to some of our acutal experiments, we found that

a search that returned 937 ciphertexts took 6.86 seconds to run, and a search that

returned 27,338 ciphertexts took 109.55 seconds to run. To provide another point of

comparison, consider the “High Country Bandits” case mentioned in Section 2.3, in

which the FBI performed an intersection of 150,000 phone number to help solve a

series of bank robberies. In one of our experiments with lawful contact chaining, we

find that a similarly sized data set of 149,535 ciphertexts took 625.08 seconds - 10.4

minutes - to compile with our protocol. Given the context of a criminal investigation,

we feel these running times are quite reasonable.

The zero-cryptography version of our program ran, predictably, more quickly

than the lawful privacy-preserving version. The total CPU time across all telecoms

needed for our zero-crypto implementation never rose above ten seconds, even in the

largest cases. This result allows us to disambiguate the cost of information retrieval

from privacy protection. The linear relationship between the size of the encrypted

user data set and the performance in terms of running time, CPU time, and network

data usage of the protocol all remain even when we subrtract out the time to run all

non-cryptgraphic parts of the protocol. We therefore conclude that, even given the

potental database operations real telecoms would have to contend with, the cost of

adding privacy-preservation to the contact-chaining protocol will remain reasonable.

Chapter 5

Peerflow: Secure Load Balancing

in Tor

We now turn our attention to anonymous communication. Anonymous communica-

tion protocols allow users to hide their identity, not only from the other parties they

communicate with, but ideally also from third parties who might attempt to asso-

ciate messages on the network with their senders. This allows users to avoid having

their private information linked back to them and used in malicious or insecure ways.

Tor [19] is a popular anonymous-communication network. It consists of over 7000

volunteer relays carrying the traffic of over 2 million users daily at over 60Gib/s on

average [53]. To balance this large traffic load over a diverse relay population, Tor

estimates relay bandwidth using both self measurements and external measurements

and then directs clients to use relays in proportion to the relays’ bandwidth esti-

mates. This load-balancing system is an attractive target for attack because the

relays that carry a client’s connection are able to learn sensitive properties about

that connection, such as the client’s identity. If an adversary controls enough of

those relays, he can deanonymize the connection [36]. In this chapter, we discuss

40

41

how one of the systems used to manage these relays, TorFlow, could be exploited by

an adversary, and we present a more secure, alternative system called PeerFlow.

The work reported in this chapter was done in collaboration with Aaron Johnson,

Rob Jansen, Nicholas Hopper, and Paul Syverson.

5.1 Relay Measurement with TorFlow

Tor designed its current relay-measurement system, TorFlow [2, 43], to avoid rely-

ing entirely on self-reported measurements [4] and thereby improve performance and

security. TorFlow implements “bandwidth scanning”, in which measurement author-

ities create connections through relays to measure their bandwidth. Researchers have

observed [6,51] that in this system a malicious relay can increase its apparent band-

width. We confirm this observation by implementing the attacks and experimentally

testing them. Our results show that an adversary can obtain 489 times more client

traffic than he should. An adversary with 1% of the network bandwidth could have

89% of client traffic directed to him, which he can then attack using deanonymization

techniques that don’t require that actually send or receive all of it [4].

The main alternative to TorFlow is the EigenSpeed system of Snader and

Borisov [46–48]. In EigenSpeed, each Tor relay measures the speeds of its con-

nections to other Tor relays and reports them to an authority, who applies Principal

Component Analysis (PCA) to produce bandwidth estimates. We show that Eigen-

Speed too is highly vulnerable to attack. We identify basic flaws in its measurement

method and initialization process, and we describe and experimentally demonstrate

fundamental flaws in using PCA to aggregate measurements. These flaws allow an

adversary to either get most honest relays kicked out of the network or receive up to

420 times more client traffic.

42

We present PeerFlow, a load-balancing scheme for Tor that prevents an adver-

sary from being directed a share of client traffic that is much larger than his share

of the network capacity. PeerFlow uses a bandwidth-weighted voting process that

resists manipulation by low-bandwidth adversaries, and it can use measurements

from trusted relays for improved security. PeerFlow solves many of the additional

challenges to creating a complete replacement for TorFlow, including a secure boot-

strapping process for new relays and techniques to ensure user privacy in reported

traffic statistics. We also prototype PeerFlow in the actual Tor software and use

large-scale network simulations to show that its load-balancing maintains Tor’s cur-

rent performance.

5.2 Background and Related Work

Tor Tor [19] anonymizes a client TCP connection by randomly choosing three relays

from its network, creating a multiply-encrypted circuit over those relays, and creating

a stream through that circuit, which causes the endpoint to create an associated TCP

connection to the destination. Streams can be multiplexed over a circuit.

Clients have a small, longstanding set of relays (guards) from which they select

the first hop on their circuits. Tor clients use one guard rotated every 2–3 months. To

become guards, relays must be old enough, provide at least 250KB/s of bandwidth,

and have adequate uptime. Relays meeting these criteria receive the Guard flag,

which makes them eligible to be selected as guards. Circuits also have a second

(middle) hop and a third (exit) hop. Relays must allow connection to the client’s

desired destination port and IP to be selected as the exit. Most exits receive the Exit

flag, given when a relay allows exit to the most useful ports. Currently relays must

also receive the Fast flag (requires a bandwidth of 100KB/s) to be selected at all.

43

A system of Directory Authorities maintains flag and other relay information

and publishes an hourly consensus, which clients use to select relays for circuits.

Clients choose relays for a circuit position randomly proportional to the product

of each relay’s consensus weight, which is proportional to the relay’s bandwidth for

load balancing in a given position, and a position weight, which is based on the

relay’s flags and used to improve load-balancing across the different relay positions

(namely, guard, middle, and exit). Relays also provide the Directory Authorities a

self-determined advertised bandwidth to aid in setting their consensus weights.

Tor security requires that most of the network by consensus weight is not ma-

licious. An adversary that controls much of the network will be selected often by

clients. When selected as a guard, he can apply website fingerprinting [56,57] to iden-

tify the client’s destination. When selected as guard and exit, he can deanonymize

the connection using a first-last correlation attack [36]. And, of course, when selected

for all three relays on a circuit, the connection can be trivially deanonymized.

Bandwidth Measurement TorFlow [2, 43] is a bandwidth-scanning tool that is

currently used by Tor measuring authorities to directly measure the bandwidths

of Tor relays and balance load among them. Past work has shown that TorFlow

is vulnerable to multiple attacks [4, 51], which we will explore in more detail in

Section 5.3. Our goal with PeerFlow is to use peers’ direct observations of each other

instead of centralized and authoritative bandwidth scanning in order to determine

which relays can handle more traffic. EigenSpeed [46–48] is another scheme for

accurate and secure peer-to-peer bandwidth estimation. Presented as a scheme to

secure bandwidth evaluation in the Tor network, it is also proposed more generally

for use in peer-to-peer distribution networks. EigenSpeed is the state of the art for

this problem as far as we are aware, and it has been seriously considered for adoption

44

into Tor 1. We show in Section 5.4 that EigenSpeed can be manipulated through

several attacks and does not achieve its security goals.

Other Karame et al. [37] describe attacks on link capacity estimation techniques

and suggest using trusted network hardware to secure these measurements. Susel-

beck et al. [50] propose a system for estimating peer bandwidth in a P2P system. It

includes both passive measurements and active traffic injection, as PeerFlow does,

but assumes all peers are trustworthy, as PeerFlow does not. Haeberlen et al. pro-

pose the PeerReview system [27], which users cryptographic logs of node activity

and witness audits of a node’s actions to detect misbehavior in a distributed system.

While these methods might prevent some kinds of misbehavior in PeerFlow, they

are unable to solve major challenges, including (i) exposing falsely-claimed transfers

between malicious relays, (ii) identifying trustworthy witnesses in a system where

Sybil attacks are possible. Jansen et al. [34,35] describe how secure bandwidth mea-

surements in Tor could be used to build a system to incentivize Tor relay operators

by rewarding them for transferring traffic.

5.3 Attacks on TorFlow

TorFlow TorFlow [2,43] is a tool used by bandwidth-measuring Directory Authori-

ties to directly measure the bandwidths of Tor relays. TorFlow works by constructing

a series of measurement circuits, using them to perform test downloads, and then

computing a weight for each relay based on the speeds of the test downloads.

TorFlow selects which relays to measure by dividing the list of all relays into

slices of 50 relays of similar bandwidth (according to the most recent consensus). It

measures each slice by constructing two-hop measurement circuits using only relays

1https://trac.torproject.org/projects/tor/ticket/5464

https://trac.torproject.org/projects/tor/ticket/5464

45

from that slice. When each circuit is built, TorFlow uses it to download a file from

torproject.org. TorFlow continues building new circuits, choosing unmeasured

relays from the current slice at random, to measure two relays at a time until every

relay in the slice under examination has been measured several times. Then, for

each relay, TorFlow takes the average bandwidth measured on circuits involving that

relay, and stores this measurement to disk.

Every hour, TorFlow aggregates these measurements and produces a weight for

each relay. A relay’s weight is calculated by multiplying the relay’s self-advertised

bandwidth by the ratio between the measured bandwidth for that relay and the

averaged measured bandwidth over the entire network. The Directory Authorities

use these weights to produce the consensus weights.

Attacks TorFlow allows a number of attacks that make it easy to manipulate a

relay’s apparent bandwidth. First, as shown in [4], malicious relays can perform a liar

attack, wherein they dishonestly report a higher bandwidth than they have available

to increase their chances of being chosen during path selection while expending very

few resources. TorFlow attempts to address this problem by adjusting self-reported

bandwidths by a multiplier representing relative performance, but by continuing to

use the reported bandwidth as a baseline, it remains vulnerable to the same attack.

For example, a relay providing only 100 KB/s of bandwidth (the minimum required

to obtain the Fast flag) could advertise a bandwidth so high that even after being

adjusted down by TorFlow (as explained above), it will only be capped by 10 MB/s—

the upper bound the Directory Authorities will assign to any relay. This attack is

very effective, but gross exaggeration could be detected.

A more subtle attack takes advantage of TorFlow’s two-hop measurement circuits,

which are built with one of a small number of authorities on one end and a fixed URL

46

on the other. Because the IP addresses of these measurement nodes are known, relays

can easily recognize measurement circuits and treat them differently from ordinary

ones, a technique demonstrated by Thill [51]. In a selective denial-of-service (DoS)

attack, a relay can provide service only to measurement circuits while dropping all

others, thereby giving the authorities the impression of excess capacity at very low

cost. An adversarial exit can further reduce resource consumption by spoofing short

responses from the destination instead of downloading and serving real ones, since

TorFlow does not verify certificates or check the correctness or length of downloads.

Results To demonstrate the efficacy of both the liar and selective DoS attacks,

we developed a new TorFlow plug-in for the Shadow [33] discrete-event network

simulator. The plug-in mimics the functionality of the python scripts [2] that are

used to run TorFlow in the public Tor network. Using Shadow and our new plug-in,

we constructed a private Tor network with 50 relays, 1000 clients, and 1 bandwidth

authority that runs TorFlow. More details about Shadow, our TorFlow plug-in, and

our Tor model can be found in Section 5.7.

We implemented both attacks outlined above in the Tor code base, and compiled

the Shadow Tor plug-in with our modified Tor code. We configured one exit relay

with a 1 gigabit/s access link and set its initial consensus weight to the same as the

fastest relay in the network. Figure 5.1 shows the results of two simulations: one

where our exit was acting honestly, and one where it was running both the liar and

selective DoS attacks. We monitored the exit’s bandwidth usage and its consensus

weight fraction, the fraction of the total consensus weight that our exit achieved,

over time.

The results shown in Figure 5.1 indicate that, using the attacks, the exit node was

successfully able to inflate its consensus weight relative to other relays while at the

47

30 35 40 45 50 55 60

Time (m)

0

2

4

6

8

10

12

14

16

18

D
at

a
Tr

an
sf

er
re

d
(M

iB
)

honest attack

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

C
on

se
ns

us
W

ei
gh

tF
ra

ct
io

n

honest attack

Figure 5.1: A relay can inflate its consensus weight at little cost by lying about its
capacity and denying service to all but measurement circuits. Our experiments led
to a bandwidth inflation factor of 489.476.

same time consuming significantly less bandwidth (only what was required for the

measurement circuits). Our attack reduced the median bandwidth consumed by our

exit from 9.395 MiB/s to 0.084 MiB/s, while the median consensus fraction obtained

increased from 0.227 to 0.267; our attack enabled the exit to obtain more units of

consensus weight fraction per bandwidth unit cost with a bandwidth inflation factor

of 489.476. While we used only one relay for demonstration purposes, an adversary

could easily use the same techniques with hundreds of relays to gain an even larger

total fraction of the consensus weight.

We note that while TorFlow’s current design makes these attacks easy to carry

out, any bandwidth-scanner approach will need to solve the problem of relays de-

tecting and giving biased service to measurement probes, as observed in [6].

48

5.4 Attacks on EigenSpeed

EigenSpeed EigenSpeed uses as consensus weights the eigenvector of a matrix de-

rived from the observed bandwidth matrix T , where Tij is the bandwidth observation

of relay j by relay i. This process can be viewed as finding weights that are consistent

with using themselves in a weighted average of the bandwidth observations. Tor’s

Directory Authorities are the recipients of each node’s measurements of the others

and are responsible for determining the weights. Snader’s thesis [46] is the final and

most complete description of EigenSpeed, and so we use it as the as the authoritative

version.

The bandwidth observations measure the current bandwidth of a flow with a

relay, rather than that relay’s entire bandwidth. Each new bandwidth observation is

combined with the current estimate using an exponentially-weighted moving average

(EWMA). These weights are put into matrix T which the Directory Authorities use

to produce T by first setting T ii � 0 to ignore self-measurements, next setting T ij �

minpTij, Tjiq to enforce symmetric measurements, and finally normalizing rows of T

to sum to one. The EigenSpeed consensus weights are the left principal eigenvector v�

of T , which is produced by iteratively computing vi � vi�1T , where v0 has a 1{t entry

in the positions of a set of t trusted relays and a 0 entry elsewhere. Any relay j with

sufficiently different measurements than the eigenvector, that is, with }v��T j}4 ¡ L

for L � 10�5, is considered a liar and is removed and added to a set of unevaluated

relays. Call this value the liar metric. Similarly, any relay j whose weight increased

too fast during the first two iterations, that is, with pv2
j � v1

j q{v
1
j ¡ ∆ for ∆ � 0.1,

is considered to be malicious and is removed and considered unevaluated. Call this

value the increase metric. The unevaluated set also includes relays that are not in

the largest component of the measurement graph (e.g. new relays), where an edge

49

pi, jq exists in the graph if T ij ¡ 0. In EigenSpeed, unevaluated relays will each get

1{n of the total consensus weight, where n is the total number of relays.

Attacks An obvious vulnerability of EigenSpeed is that it selects each unevaluated

relay with probability 1{n. An adversary can flood the network with a large number

of new relays contributing little or no bandwidth and thereby obtain a large total

selection probability. Each new relay need only have a unique IP address. This could,

for example, allow a botnet of just 20,000 computers to have a collective consensus

weight of over 74% in a Tor network of its current size of about 7,000 honest relays.

We therefore assume that unevaluated relays are selected with very low probability

(e.g. if there are u unevaluated relays, then the probability of selecting a given one

is 0.01{u). This limits the effect of a Sybil attack to just taking over the unevaluated

set, but it also means that a relay that is unevaluated can be essentially shut out of

the Tor network.

We show how the two mechanisms that EigenSpeed uses to detect malicious nodes

can be used to frame honest relays and have them put into the unevaluated set. The

liar threshold L � 10�5 and increase threshold ∆ � 0.1 are designed for an attack

in which a clique of malicious relays report high bandwidth with each other and

low bandwidth with others. However, modifications to this attack can confuse the

trusted relays (which otherwise help distinguish between the honest and dishonest

relays) by making the liar or increase metrics for honest framed relays appear large.

This will imply that either (i) the adversary can get the honest non-trusted relays

effectively kicked out of the network by moving them to the unevaluated set or (ii) L

and ∆ are large enough that the adversary can greatly inflate the inferred bandwidth

of his relays.

50

Analysis We demonstrate framing attacks using the Tor 2015-04-31 23:00 network

consensus [11], which contains 5589 relays with positive selection probability (over

1000 relay have zero selection probability). EigenSpeed measurements are correlated

with the per-stream bandwidth at a given relay rather than the total bandwidth at

that relay (see [46] Section 3.3.1). Thus we consider the ideal load-balanced case, in

which all streams have the same bandwidth. We note that our attacks are even more

effective when the network is not load-balanced, in which case there is disagreement

among the relays’ observations, forcing the thresholds L and ∆ to be large. For

example, suppose that the relay observations are the total relay bandwidths, which

we take to be the “observed bandwidths” in the relays’ descriptors [52]. Then, with

10% of relays trusted (starting with the largest by observed bandwidth) and no

malicious relays, honest relays have a liar metric as large as 0.00165, much larger

than the suggested threshold of L � 10�5, and honest relays have an increase metric

as large as 0.86, much larger than the suggested ∆ � 0.1. We thus consider all our

attacks in the load-balanced setting, in which case these metrics are much smaller and

well below the suggested thresholds. In all of our experiments, we follow Snader [46]

and stop the iterative eigenvector calculation when the change in vector norm is less

than 10�10.

The increase framing attack causes the increase metric of a targeted set of honest

relays to be large. In this attack, a set of malicious relays obtains the average band-

width measurement with all trusted relays and with a subset of “framed” honest,

non-trusted relays. The malicious relays also falsely claim that bandwidth mea-

surement among themselves (i.e. no data is actually sent among them). All other

measurements with malicious relays are zero. All measurements among the honest

relays are the same load-balanced flow rate (say, 1). Note that each malicious relay

can easily obtain any bandwidth measurement with any honest relay, as long as the

51

trusted relays
(% of honest)

adv
relays

framed
relays Adv bw %

280 (5%) 447 1118 1.92
559 (10%) 558 1118 2.83
1118 (20%) 558 559 2.83
1677 (30%) 558 112 3.00

Table 5.1: Cases with minimum bandwidth in which all framed relays had increase metrics above
0.2.

measurement doesn’t exceed the relay’s true bandwidth, by creating spurious con-

nections to the honest relay with the necessary amounts of traffic. The malicious

relay may furthermore drop all connections from honest clients for measurements of

zero.

We consider adding relays to the Tor network in order to frame a subset of honest

relays by causing their increase metric to reach above 0.2. Not only is this amount

is greater than the ∆ � 0.1 recommended, it will be enough to allow significant

bandwidth inflation and thereby demonstrate that no setting for ∆ can provide good

protection. For various numbers of trusted relays, we searched for a minimum adver-

sarial bandwidth needed to frame at least 2% of the relays. We count the bandwidth

of a relay as the sum of the measurements obtained with each other relay, ignoring

the false measurements among malicious relays. Table 5.1 presents our results. It

shows that with at most 3% of the total bandwidth, the adversary can frame between

112 (2%) and 1118 (20%) of the honest relays, with the number decreasing as the

number of honest relays that are trusted increases from 280 (5%) to 1677 (30%).

The number of relays that the adversary must add is rather small, from 447 to 558.

Moreover, the attack can easily be repeated (with a different set of malicious relays)

in order to move even more honest relays into the unevaluated set. As we noted, the

selection probability for relays in the unevaluated set must be quite low. Therefore,

they will be rarely observed by other relays, and so they must either wait many

measurements periods to be evaluated or will have very low inferred bandwidths. In

52

trusted relays
(% of honest)

adv
relays

False bw
factor

Adv
bw %

Adv
weight %

280 (5%) 4191 100 3.49 98.2
559 (10%) 2235 100 3.70 93.9
1118 (20%) 1117 100 3.70 79.5
1677 (30%) 1397 15 6.52 48.5

Table 5.2: Cases with maximum weight in which all malicious relays had increase metrics below
0.2 and liar metrics below the honest non-trusted relays.

addition, if the adversary performs another Sybil attack on the unevaluated pool,

which requires IP addresses but no bandwidth, then relays in the unevaluated pool

are effectively removed entirely. Even worse, the relay bandwidths are highly skewed,

and so even for the smallest number of frame relays in Table 5.1 (112), the adver-

sary quickly cause most of the network capacity to be unused. For example, in the

consensus used in our experiments, 50% of the total observed bandwidth is provided

by the largest 464 relays and 75% by the largest 1172.

We next show how to confuse the trusted relays in order to keep the liar metrics

of the malicious relays low while inflating their weight. In these experiments, the

malicious relays create bandwidth measurements with the trusted relays that are

the average bandwidth of the honest non-trusted relays, the malicious relays create

measurements of zero with the honest non-trusted relays, and the malicious relays

report a large false bandwidth among themselves. All honest relays again have the

same bandwidth measurement among themselves.

Thus the trusted relays make the same measurements with the other honest re-

lays as with the malicious relays, but the measurements of the other honest relays

are in disagreement with those of the malicious relays. This makes the attack use

less bandwidth while keeping the liar metrics of malicious relays close to those of

honest non-trusted relays. Table 5.2 lists the scenarios in which the final adversary

weight was maximized among those we tested subject to (i) preferring adversary

bandwidth of less than 4% when possible, (ii) producing increase metrics for mali-

53

cious relays of no larger than 0.2, and (iii) producing liar metrics of malicious relays

less than those of honest non-trusted relays. We can assume that ∆ ¡ 0.2, or the

previously-described framing attack would be possible. Therefore, no malicious re-

lays are unevaluated due to an increase metric above ∆. Furthermore, no setting of

the liar threshold L is able discriminate between malicious and honest relays. Either

it would allow the large adversary weight inflations shown in Table 5.2 or it would

put all honest non-trusted relays in the unevaluated set. We can see that by report-

ing a false bandwidth of 15-100 times the load-balanced rate reported by all honest

relays, malicious relays can potentially obtain weight inflated 7.4-28.1 times.

5.5 PeerFlow

PeerFlow uses two relay-measurement techniques: (i) each relay reports on the num-

ber of bytes it sent to or received from other relays, and (ii) each relay reports its

available but unused bandwidth. Measurements from the first technique are com-

bined to estimate the total bytes transferred after trimming a weight fraction λ of the

largest and smallest values, and thus an adversary without λ of the network capacity

can’t manipulate the outcome. Measurements from trusted relays (if available) are

used to ensure that the estimates of bytes transferred aren’t unreasonably high or

low. The second measurement technique allows the network to discover any unused

bandwidth. It is vulnerable to lying by an adversary, though, and therefore PeerFlow

will only consider increasing the consensus weight for a relay after consulting the se-

cure outputs of the first measurement technique and verifying that the relay carried

the expected amount of traffic. Further methods are used to increase the privacy,

accuracy, and speed of collecting these measurements and to securely bootstrap new

relays into the system. We now explain each of the PeerFlow components in detail.

54

Name Description
βSR
p bytes measured by S to and from R in position p

ρ
pSqR
ppq total traffic relayed by R (inferred by S, in position p)

ηpSqR estimated traffic relayed by R (with S)
κR capacity of relay R computed by Directory Authorities
σR self-estimated capacity of relay R
ωR consensus weight of router R
vRp voting weight of relay R in position p

tR measurement time of relay R
λ fraction of measuring relay inferences to trim
τ trusted relay weight fraction in each position
εdec max fraction a relay’s weight can decrease

µ weight of measuring relays: 0.75
εinc max fraction a relay’s weight can increase: 0.25

Table 5.3: Key variables (top), parameters (bottom) in PeerFlow

G M Emd

g

mc

e

Figure 5.2: Measuring positions in a circuit: relay G in position g measures relay M , relay M in
position mc measures relay E, relay M in position md measures relay G, and relay E in position e
measures relay M . A dashed arrow indicates hosts between which traffic is not measured.

For convenience, the key variables and parameters are listed in Table 5.3.

5.5.1 Measuring total traffic of a relay

For each circuit position, a subset of relays keeps track of the amount of traffic

it sends to and receives from all of the other public relays while in that position.

Let Mg, Mm, and Me be the set of measuring guards, measuring middles, and

measuring exits, respectively. Mp is defined to be the set containing each relay R

with positive voting weight vRp in position p, that is, Mp � tR|vRp ¡ 0u. Voting

weights approximate the relays’ relative capacity in each position, with the smallest

relays excluded to speed up measurement (see Section 5.5.6).

Each measuring relay r P Mp counts the number of bytes exchanged with each

55

other relay while r is in position p. Bytes are counted at the application layer, and

both sent and received bytes are included in the count. A measuring relay detects

itself in the guard position if the circuit-creation messages are not sent by a public

Tor relay, it detects itself in the exit position if the circuit is not extended past the

measuring relay, and otherwise it assumes the middle position. A measuring middle

further divides its observations into client-side and destination-side measurements

according to whether the measuring relay extended the circuit to the measured relay

during circuit creation or vice versa, respectively. A measuring relay R0 counts traffic

sent to and received from each relay R1 for a measurement period of length tR1 that

depends on the bandwidth of R1 (see Section 5.5.4). Let βR0R1
p be the number of

bytes that measuring relay R0 sent to or received from R1 during the measurement

period while R0 was in directional position p. The possible directional positions are

guard, client-side middle, destination-side middle, and exit, denoted g, mc, md, and

e, respectively (see Figure 5.2).

At the end of the measurement period for relay R1, measuring relay R0 will

process the traffic count for each position that it measures for and send it to the

Directory Authorities. The first step in processing count βR0R1
p protects the privacy

of individual traffic flows by adding noise. The noise is a random value selected

from the Laplace distribution Lappbq, which has mean 0 and variance 2b2, where b

is set to provide differential privacy for a certain amount of traffic on the link (see

Section 5.5.3). Let NR0R1
p � Lappbq be the noise value, and let β̃R0R1

p � βR0R1
p �

NR0R1
p .

The second processing step is to infer the total amount of traffic to or from R1

seen in directional position p. This is accomplished by adjusting the amount R0

sees by the probability of making that observation. Let qR0
g be the probability of

selecting R0 as a guard, as determined from the consensuses of the measurement

56

period. Let qR0
m , qR0

mc, and qR0
md all be set to the probability of selecting R0 as a middle.

Let qR0
e be the probability that R0 is chosen as an exit (using the presence of the

Exit flag as an approximate way to identify possible exits). Then let the estimate for

the total traffic relayed by R1 and seen in directional position p P tg,mc,md, eu be

ρR0R1
p � β̃R0R1

p {qR0
p .

At the end of the measurement period for R1, the Directory Authorities will re-

ceive the ρ statistics about R1 from the measuring relays. The Directory Authorities

remove the largest and smallest fraction λ of the ρ values for each directional po-

sition p P tg,mc,md, eu and aggregate the remaining values to obtain an estimate

ρ̄R1
p . This process removes the influence of outliers, including especially any falsified

reports from malicious relays. When trimming the fraction λ, a voting weight vRp

proportional to R’s capacity is used for each estimate ρRR1
p , and so an adversary

that provides little bandwidth to Tor has minimal effect on the measurement out-

comes. Let ij be the index of the relay Rij with the jth largest value ρ
Rij

R1

p , let j1

be the largest value such that
°
j j1

v
Rij
p λ, and let j2 be the smallest value such

that
°
j¡j2

v
Rij
p λ. The trimmed ρ statistics are combined by adding their noisy

byte values and dividing by the total selection probability of the untrimmed relays:

ρ̄R1
p �

°
j1¤j¤j2

ρ
Rij

R1

p q
Rij
p {

°
j1¤j¤j2

q
Rij
p .

When there are no trusted relays, we set λ � 0.256 to maximize the size of the

adversary that is prevented from arbirtrarily increasing his weight. PeerFlow can

defend against (see Section 5.6). Note that using the median (i.e. λ � 0.5) does

not provide optimal security in this case. When there are trusted relays, we set λ

to maximize the size of the adversary such that PeerFlow’s method of using µ of

the network for measurement results in a smaller bound on an adversary’s capacity

increase compared to simply using measurements from the smaller set of trusted

relays. For τ � 0.05, 0.1, 0.2, and 0.3, the respective values of λ are 0.34, 0.348,

57

0.497, and 0.498.

Given the aggregate values ρ̄R1
p , the Directory Authorities calculate two estimates

for the total number of bytes relayed by R1. The first is the sum of the client-

side estimates, ρR1
c � ρ̄R1

g � ρ̄R1
mc, and the second is the sum of the destination-side

estimates, ρR1
d � ρ̄R1

md� ρ̄
R1
e . If R1 can act as a guard, then client-side observations for

it will be missing for any circuits on which it is a guard, and similarly for destination-

side observations if R1 can act as an exit. On the other hand, when a relay acts

as a middle it is observed both on the client and destination side but should get

credit for that traffic only once. Therefore, the Directory Authorities use ρR1
max �

maxpρR1
c , ρR1

d q as an estimate for the total amount of traffic relayed by R1. In order to

avoid excluding client-side or destination-side observations made on separate circuits,

PeerFlow requires that during a measurement period a Tor relay will not operate

both as a guard and as an exit (Tor effectively already enforces this currently via

its bandwidth weights, as exit bandwidth is relatively scarce and is thus reserved for

exiting).

PeerFlow takes advantage of measurements from any trusted relays by using

them to limit the range in which a relay’s traffic will be inferred. PeerFlow uses

trusted relays in this way instead of simply using only the trusted measurements

because doing so provides better security and accuracy when relatively little of the

network is trusted. Because many of the highest-bandwidth Tor relays are managed

by organizations closely aligned with the Tor Project, and (as of 15 May 2015) the

top 60 relays constitute over 20% of the total weight, it seems reasonable to imagine

a set of trusted relays that carry 15-25% of Tor traffic.

Let Tp be the set of trusted relays in position p, and let τ be the minimum fraction

of relay capacity that they are assumed to provide in each of the guard, middle, and

exit positions. At the end of a measurement period for R1, the Directory Authorities

58

simply combine the measurements from the trusted relays of bytes exchanged with

R1 to determine the following trusted estimate for the total bytes relayed by R1

and observed in position p: ρ̂R1
p �

°
RPTp ρ

RR1
p qRp {

°
RPTp q

R
p . PeerFlow then combines

these positional trusted estimates as it does with the analogous estimates from all

relay measurements to produce ρ̂R1
c � ρ̂R1

g � ρ̂R1
mc, ρ̂

R1
d � ρ̂R1

md � ρ̂R1
e , and ρ̂R1

max �

maxpρ̂R1
c , ρ̂R1

d q.

The trusted estimate ρ̂R1
max is used to adjust the all-relay estimate ρR1

max by enforcing

a ceiling and floor on its value. The ceiling is simply ρ̂R1
ceil � ρ̂R1

max, which means that

the inferred traffic relayed by R1 will be limited by the number of bytes it can

exchange with trusted relays. The floor is ρ̂R1
floor � ρ̂R1

maxτ{pµp1 � λqq, which both

limits the amount that the adversary can use falsely low measurements from its

relays to reduce honest relays’ inferred traffic relayed and ensures that the adversary

gains no advantage in targeting its bandwidth on the trusted relays instead of the

top 1� λ fraction of measuring relays in a given position. The final estimate for the

traffic relayed by R1 is thus ρR1 � maxpminpρ̂R1
ceil, ρ

R1
maxq, ρ̂

R1
floorq. If there are no trusted

relays, then ρR1 � ρR1
max.

5.5.2 Measuring available bandwidth

Each relay R monitors its network activity during a measurement period and esti-

mates its total capacity for relaying traffic. That is, R estimates the maximum rate

at which it could have relayed traffic during the measurement period if Tor clients

had asked it to. This could be measured in the same way that Tor relays currently

determine their self-advertised bandwidths. R sends this self-measured value σR to

the Directory Authorities at the end of the measurement period.

59

5.5.3 Preserving link privacy with noise

The traffic statistics that measuring relays report to Directory Authorities reveal how

traffic flows through the Tor network. Traffic statistics per relay are already collected

and reported by Tor [11], but the PeerFlow statistics describe traffic between each

pair of relays. These statistics should not assumed to be kept secret by the Directory

Authorities, because some Directory Authorities may be compromised and because

it allows auditing of PeerFlow to identify errors and relay misbehavior.

The risk of releasing the PeerFlow measurements is that they could be used to

identify the routes through the Tor network taken by a target set of connections. For

example, a malicious destination might target an incoming connection and use its

observation of the exit node and traffic volume to identify as the middle node that

relay measured by PeerFlow to have sent the same amount of traffic as the target

connection. The guard relay could then be identified similarly. Although there

exist other ways of identifying the relays used on a connection (e.g. the congestion

attack [22], latency attack [28], and predecessor attack [59]), this information should

still have some protection.

Therefore, measuring relays in PeerFlow add a random value to the observed byte

totals. The goal of this added noise is to limit the certainty with which an adversary

can conclude that a given client stream was carried between a given pair of relays. We

accomplish this by choosing the noise value randomly from the Laplace distribution

with mean 0, which has the probability density function Lappx; bq � e�|x|{b{p2bq.

Adding noise according to the Laplace distribution provides differential privacy [20],

where the privacy notion applies to a given amount of traffic. We set the Laplace

parameter to b � τn{εn, where τn is the amount of traffic for which the output

distribution has bounded change (we use τn � 1 MiB), and εn ¡ 0 is the bound on

60

that change (we use εn � 0.1). Section 5.9 describes a cryptographic measurement-

aggregation scheme that further limits the amount of traffic data revealed.

5.5.4 Measurement periods

The length of a measurement period is determined for each relay individually and is

updated at the end of the each measurement period. We would like this length to be

low in order to enable quick response to changes in relay bandwidth and load. The

speed of measurement is limited by how quickly a relay can exchange an amount of

client traffic with each measuring relay such that the added noise is relatively small.

Let tR1
0 be the length of a just-completed measurement period for relay R1. The

Directory Authorities update tR1
0 to tR1 by using the recent measurements ρR0R1

p0 to

estimate the traffic rates with each measuring relay R0 in each position p. tR1 is set to

a large enough value that with probability qe for at least 1�2λ of the measuring relays

by voting weight the amount of noise added is less than a fraction εe of the traffic

exchanged with R1 during the measurement period (we use qe � 0.1 and εe � 0.1).

1 � 2λ of the voting weight ensures accurate estimates remain after trimming the

largest and smallest fraction λ of the ρ statistics. In addition, tR1 is set large enough

that 0.4ρR1tR1εdecp1 � 2λqµεn{pτnt
R1
0 q ¥ 2 maxp|Mg| � |Mm|, |Me| � |Mm|q. This

is for security purposes and will ensure that the added noise is small relative to the

expected traffic of any adversarial relays.

5.5.5 Load balancing using measurements

The Directory Authorities use the aggregate peer-measurement ρR and

self-measurement σR to produce the consensus weight ωR for relay R. Tor clients

select relay R for a given position in a new circuit with probability proportional to

61

ωR (approximately, see Section 5.2). Thus, in order to balance the load across the

available relays, the Directory Authorities attempt to determine consensus weights

that are proportional to the bandwidth of each relay. They must do this even as relay

capacities and network traffic change, and they must do it in a way that is secure

against manipulation. They will accomplish this by computing and comparing the

amounts of traffic a relay was expected to transfer, did transfer, and claims it can

transfer.

Let ηR be the amount of traffic that R is expected to have relayed in the current

measurement period. To determine ηR, let PR be the set of relays (including R)

that could be chosen for the same positions as R in their most-recently completed

measurement period based on the Guard, Exit, and Fast consensus flags, where for

this purpose a relay is considered to possess each of these flags if they exist for

the majority of consensuses during the measurement period. Then let ωR
1

0 be the

weight used by R1 P PR during its most-recently completed measurement period,

let tR
1

0 be the length of that period, and let ρR
1

0 be the inferred number of bytes

relayed during that period. Finally, set ηR to be the voting-weight median of the set

tωR0 t
R
0 ρ

R1

0 {pω
R1

0 t
R1

0 quR1PPR .

Let κR be the current estimate for the capacity of R, that is, the rate of traffic-

relaying that R has recently sustained. κR is set initially during the bootstrapping

process. Let SR be the measurement state of R. After the bootstrapping period

has finished, SR will only take values normal and probation (its use during boot-

strapping is described in Section 5.5.7).

For SR � normal, if R is non-trusted, Figure 5.3 describes how the Directory

Authorities update the consensus weight ωR, the relay state SR, and the capacity

estimate κR. Observe that κR is never set to be larger than the relay’s self-estimate

σR and that κR is increased to the observed rate ρR{tR if κR is less than it. κR will

62

1: κ1R � minpmaxpρR{tR, κRq, σRq
2: ωR � minpmaxpp1� εincqκ

R, κ1Rq, σRq
3: κR � κ1R

4: if ρR p1� εdecqminpκRtR, ηRq ^ ρR{tR σR then
5: SR �probation
6: ωR � κR

7: end if

Figure 5.3: Non-trusted relay weight algorithm if SR � normal

1: κR � minpρR{tR, σRq
2: SR �normal
3: ωR � minpp1� εincqκ

R, σRq

Figure 5.4: Non-trusted relay weight algorithm if SR � probation

only be decreased if R transfers a certain fraction εdec less than both the expected

amount ηR and R’s estimated limit κRtR. This fraction is set to εdec � 1�τ{pµp1�λqq

to protect honest relays from being forced into probation by an adversary. Setting

εdec this way protects an honest R because R will send the expected amount to

the trusted relays, and so p1 � εdecqη
R � ρ̂Rfloor ¤ ρR. Without trusted relays, εdec

should be set to a small value to allow some natural variation in traffic amounts

without allowing too much underperformance without penalty (e.g. εdec � 0.25). If

ρR falls below the required threshold but R indicates with σR that it believes it has a

higher capacity than the amount measured, then R maintains its capacity but enters

the probation state. When the relay stays in the normal state, the final weight

produced ωR is only increased either to a newly-demonstrated capacity κR or, if R

believes it has additional unused capacity, to a fraction εinc over the old capacity (we

use εinc � 0.25).

Probation allows a relay to avoid a weight decrease due to a random or malicious

63

lack of client traffic. When non-trusted relay R enters the probation state, it attempts

to prove over the next measurement period that it is capable of transferring at a rate

that is the minimum of its current capacity κR and its self-assessed capacity σR. To

do so, R monitors the number of bytes that it transfers to other relays, and it sends

and receives dummy traffic as needed to transfer minpκR, σRqtR bytes total after tR

time. The dummy traffic is openly exchanged pairwise with the measuring relays,

it includes traffic sent in both directions, and each measuring relay R1 takes the

minimum of dummy bytes sent and received and adds it to both ρR
1R

mc and ρR
1R

md . As

shown in Figure 5.4, at the end of the measurement period the relay leaves probation

status and is assigned the capacity that is measured ρR{tR, unless that exceeds its

updated self-assessment.

Trusted relays also update their weights as shown in Figures 5.3 and 5.4, with

the additional requirement that trusted relays maintain τ fraction of the weight (i.e.

selection probability) in each position. After the update of ωR for any relay R, an

inflation factor is computed that is multiplied by the trusted-relay weights when

computing selection probabilities qRp for R P T . The inflation factor is taken to be

minimum value greater than one such that
°
RPT q

R
p ¥ τ for p P tg,m, eu.

5.5.6 Updating voting weights

For accuracy and security, the voting weight of a relay should reflect the amount of

bandwidth it has provided in a given position. Giving relays with high contributed

bandwidth high voting weights improves accuracy because those relays have the most

observations about other relays’ activity. It improves security because it requires the

use of costly bandwidth in order for an adversary’s votes to affect relay weights by

much, and because it requires that an adversary exchange a large amount of traffic

with a large fraction of the network in order to obtain large weights for its relays.

64

Thus PeerFlow bases voting weights on previous estimates for the amount of relayed

traffic. However, voting weights are updated more slowly than consensus weights in

order to increase the upfront bandwidth cost of obtaining influence over consensus

weights. In addition, a fraction of the smallest relays is excluded from voting to

speed up measurement.

We need to maintain that the measuring relays constitute a significant fraction

of the network. However, we would also like to update voting weights infrequently

to force an adversary to relay traffic for a while before increasing his voting weight.

To satisfy the former concern, we select a fraction µ of the network capacity in each

position to receive a positive voting weight (we use µ � 0.75). To satisfy the latter,

we only update the voting weights when the cumulative selection probability of any

1� 2λ of the voting weight in some position falls below p1� 2λqµ. This will ensure

that an small adversary (i.e. one with voting weight α λ) can’t inflate his weight

by targeting the 1 � 2λ fraction of measuring relays that have had their selection

probability reduced the most.

The Directory Authorities initiate any update of the voting weights after deter-

mining the next consensus weights. To perform an update, the Directory Authority

first estimates the amount the relays have each relayed in a given position. Let ρRv

be the total estimated traffic relayed by R since the last voting-weight update. That

is, ρRv is the sum over the measurement periods that completed for R since the last

voting-weight update of the estimates ρR obtained in each period, as described in

Section 5.5.1. Using the weights of the next consensus, for each position p P tg,m, eu

and relay R, the Directory Authority multiplies the position weight for p by ρRv to

obtain a weight ρRv,p. Let ij,p be the index of the relay with the jth largest value

ρRv,p. Then, for position p, the Directory Authority gives a positive voting weight

to the relays that have relayed the most traffic and constitute a fraction µ of the

65

network capacity. Let κRp be the current estimated capacity κR of relay R multiplied

by the position weight for R and p. Let j�p be the number of relays needed to reach

a fraction µ of
°
R κ

R
p . Relay Rij,p , j ¤ j�p , is assigned a voting weight for position

p of v
Rij,p
p � κ

Rij,p
p {

°
k¤j�p

κ
Rik,p
p . Relay Rij,p , j ¡ j�p , is assigned a voting weight for

position p of v
Rij,p
p � 0.

5.5.7 Bootstrapping new relays

PeerFlow boostraps new relays into the system using the following staged process:

Initialization A new relay that Tor would currently just add to the next consensus

has its measurement state SR initialized to unknown.

Unknown In any consensus period a set of Bandwidth Authorities, such as those

currently used by TorFlow, estimate the capacity of a relay R with SR �unknown

by downloading a set of test files of increasing size through a one-hop circuit con-

sisting of R. The test file is obtained from a Bandwidth Authority itself, and the

Bandwidth Authority should have enough capacity to measure a reasonable lower-

bound on capacity for the largest relays. To reduce the ability of the adversary to

slow down the testing process, Bandwidth Authorities test relays in the order that

they joined, and they only allow the download to take as long as it would take a

relay with the minimum amount of bandwidth needed for the Fast flag (currently

100KB/s [52]).

Regardless of whether all downloads finished, at the end of the tests for relay

R, the Bandwidth Authority estimates a sustainable rate for the relay κR as the

minimum of the observed rate (i.e. the test bytes transferred over the time needed

to transfer them) and the initial self-measured capacity σR. The weight of R is

66

initialized to ωR � κR. The measurement time tR is set as described in Section 5.5.4,

except the traffic amounts ρRp in each measurement position p (which don’t exist

initially) are estimated by using those amounts ρR
1

p from the other relays R1 with

the same flags as R after their most-recently completed measurement period. To

estimate ρRp from these, each ρR
1

p is normalized to ωRρR
1

p {pt
R1

ωR
1

q, and ρRp is set to

the vote-weighted median of these values. Finally, the state of R is updated to SR �

estimated.

Note that this stage is for performance reasons only. The amount of data down-

loaded during the tests is not high and is not intended as a security barrier. In

addition, the measured relay is aware that the requested downloads are measure-

ment tests performed by Bandwidth Authorities.

Estimated Relay R with SR �estimated starts being selected only for the middle

position when doing so won’t cause the selection probability of estimated relays to

exceed some small amount (e.g. 5%). The middle position cannot observe the client

or destination directly, and so PeerFlow allows relays to occupy the middle position

based only on an insecure capacity estimate. The limit on the probability of estimated

relays limits the extent of observations they can make. Note that estimated relays are

not considered when determining the measuring relays, which, among other things,

prevents an adversary from triggering a voting-weight update by flooding new relays.

Measuring relays measure R just as they do for relays in the normal state.

After tR time, an estimate ρR is produced for the amount relayed by R using the

same trimmed vote as for relays in the normal state. Then the capacity estimate

is updated to κR � minpρR{tR, σRq, and the consensus weight is set to ωR � κR.

Finally, the relay’s state is updated to SR � normal.

67

5.6 Security analysis

The main security goal of PeerFlow is to ensure that an adversary that relays a

fraction φ of Tor’s traffic only obtains a total relative consensus weight of γφ, where

γ is a small advantage factor. We first examine consensus weights in a given voting-

weight period (voting-weight periods are described in Section 5.5.6). We show

bounds on γ, which, in addition to the limits imposed by trusted relays, show that

if the adversary is small (i.e., has a maximum voting-weight fraction of α λ),

the advantage is bounded even without any trusted relays. We then examine the

consensus weights across voting-weight periods and show that PeerFlow provides

bounded advantage there as well.

5.6.1 Weights in a single voting-weight period

Let αp, p P tg,m, eu, be voting weight fraction that the adversary’s relays cumula-

tively possess in position p, and let α � maxp αp. Let A be an adversarial relay. Let

βA be the total number of bytes sent or received by A during its measurement period.

We use the variables in Table 5.3 to refer to those values in the current consensus,

and we denote by x0 the value of variable x in the last consensus (e.g. κ0 indicates

the capacity inferred at the end of the last consensus).

We focus on α λ because initially α � 0, small adversaries will maintain small

α (as shown in Section 5.6.2), and with α ¡ λ the adversary’s inferred capacity

is bounded only by the trivial trusted ceiling. Lemma 1 shows that the number of

bytes that PeerFlow infers were transferred by A (i.e. ρA) is expected to be at most

a constant multiple of βA plus a small fraction of the bytes of the bytes expected if A

continues at its last rate of ρA0 {τ
A
0 . For example, the multiple of βA is 1.8 for α � 0

and λ � 0.256. The additional term is due to the added noise, and at εdec � 0.25 it

68

0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6
0
.0

7
0
.0

8
0
.0

9
0
.1

0
0
.1

1
0
.1

2
0
.1

3
0
.1

4
0
.1

5
0
.1

6
0
.1

7
0
.1

8
0
.1

9
0
.2

0
0
.2

1
0
.2

2
0
.2

3
0
.2

4
0
.2

5

Adv relative capacity

0.0

0.2

0.4

0.6

0.8

1.0

M
a
x
 r

e
la

ti
v
e
 i
n
fe

rr
e
d
 c

a
p
a
ci

ty

Trusted fraction: 0.00

Trusted fraction: 0.05

Trusted-only frac: 0.05

Trusted fraction: 0.10

Trusted-only frac: 0.10

Trusted fraction: 0.20

Trusted-only frac: 0.20

Trusted fraction: 0.30

Trusted-only frac: 0.30

Figure 5.5: Max adversarial relative inferred capacity across voting periods using trusted relays
and using trusted relays only

will be 0.1 times βA if A continues to send at last inferred rate.

Lemma 1. If α λ, then

ErρAs ¤
βA

p1� λ� αqµ
�

0.4εdecρ
A
0 t
A

tA0
.

Proof. See Section 5.10.

Lemma 1 limits the amount an adversary can increase his relays’ inferred bytes

transferred. His total consensus weight is relative to the honest relays, however, and

it may occur that many of these relays transfer most of their traffic with a small

number of measuring relays, whose values get trimmed. However, it is unlikely that

traffic from honest clients is skewed much in this way. Let γ1 ¤ 1 be the smallest

factor by which some set of honest measuring relays with voting weight 1 � 2λ

underestimates an honest relay. Let A be the set of indices of the adversary’s relays.

Lemma 4 states that the inferred bytes of each honest relay is at most γ1 of the

correct value.

Lemma 2. If α λ, then, for all i R A, ρRi ¥ γ1βRi{2.

Proof. See Section 5.10.

These lemmas combine to prove Theorem 2, which states that either the malicious

relay sends less than expected, putting it into probation, or it obtains a relative

69

consensus weight at most a constant factor above the relative amount of traffic it

transfers. With α � 0, γ1 � 1, µ � 0.75, εdec � 0.25, εinc � 0.25, and λ � 0.256, the

advantage factor is γ � 5.2.

Theorem 1. If βA p1�λ�αqp1� 1.4εdecqµρ
A
0 t
A{tA0 , then the expected value of ρA

puts A into probation. Otherwise,

ErωAs°
R ω

R
¤

�
2γ1p1� εincqp1� εdecq

p1� λ� αqp1� 1.4εdecqµ
°
R

�
pβA{tAq

pβR{tRq
.

Proof. See Section 5.10.

While in theory the adversary can obtain the advantage factor γ in Theorem 2

(the value in brackets), doing so requires performing certain attacks that have their

own costs and limitations. To obtain the factor of 2 in γ, the adversary must only

send or receive “one-sided” traffic to measuring relays, i.e. only from the client side

or destination side. In particular, he must not actually relay any Tor traffic. Acting

this way is highly observable and is likely to be noticed by clients. To obtain the

1{pp1 � λ � αqµq factor in γ, the adversary must only exchange traffic with a set

of measuring relays with voting weight 1 � λ � α. This is observable by Directory

Authorities (although hard to distinguish from a possible framing of an honest relay)

and also noticeable by clients.

5.6.2 Weights across voting periods

We now consider that the ability of an adversary to increase his inferred capacities

κA over time, A P A. For this analysis, we ignore the possible inflation effect of the

added noise, assume that honest relays send their share of the traffic volume to the

measuring relays (i.e. that γ1 � 1), and assume that voting weights and selection

70

probabilities are maintained to be proportional (e.g. as when there is no network

churn).

The adversary can apply a feedback attack to the bounds of Theorem 2 by repeat-

edly exchanging all traffic with a target set of relays with voting weight 1 � λ � α,

including the trusted relays, as α grows. He can accomplish this, for example, by

severely rate limiting honest client connections and creating his own dummy connec-

tions through the targeted measuring relays. Initially, when α � 0, this inflates his

total capacity by a factor of at most 2{pp1�λqµq. Then, once the adversary receives

an inflated voting weight α, he can target 1�λ�α of the measuring relays to exchange

all traffic with, further increasing his voting weight by a factor of p1�λq{p1�λ�αq.

The adversary can repeat this process until either he reaches a fixpoint or he receives

voting weight α ¡ λ, at which point the capacities of his relays are limited by the

ceiling set by the trusted-relay measurements (and are unbounded without trusted

relays), and the adversary can start to deflate the weights of the honest relays, which

are ultimately limited by the floor set by the trusted-relay measurements.

We simulate this process across voting periods until the adversary’s weight no

longer increases. We also consider a simpler variant of PeerFlow in which only

trusted-relay measurements are used. In this variant, the trusted-relays measure-

ments are used directly (i.e. ρR � ρ̂max), there are no voting weights, and the other

PeerFlow components operate in the same way.

The results are shown in Figure 5.5. It shows that PeerFlow can provide bounded

weight inflation to small adversaries even when there are no trusted relays. Specif-

ically, the inflation factor is γ 4.6 when τ � 0 and the adversary is at most

4% of the network. It also shows that using measurements from all relays protects

against small adversaries at the expense of worse security against larger adversaries

compared to using measurements from only trusted relays. Making this tradeoff is

71

consistent with Tor’s security in general, which can only protect against adversaries

of small relative size [36]. We can also see that as the trusted fraction of the network

grows, the security from using all relays and from using only trusted relays become

the same. In both cases, as the trusted fraction grows, an adversary with φ of the

network capacity has his inferred relative capacity limited to p2φ{τq{p1�2φ{τq, which

implies a bounded inflation factor of γ ¤ 2{τ .

5.7 Load-Balancing Analysis

In this section, we experimentally demonstrate PeerFlow’s ability to effectively dis-

tribute network traffic to relays in proportion to their bandwidth capacities.

5.7.1 Experimentation Setup

We evaluate PeerFlow and its effect on the consensus path selection weights, net-

work goodput, and client performance using Shadow [33]. Shadow is an open-source

parallel discrete-event network simulator/emulator hybrid that has been extensively

validated and utilized for Tor network experimentation [31,32]. Shadow experiments

are completely isolated from the network, so they are safe and contain no privacy

risk to the public Tor network or its users. Because Shadow runs real applications

as plug-ins, it is ideal for analyzing application-layer effects, e.g. those that result

from modifying Tor’s load-balancing protocols.

Our Private Tor Network We generated a new Tor network configuration for

Shadow using the tools available in the Shadow distribution and Tor Metrics data [53]

collected during 2014-09. The resulting Tor network contains 4 Tor directory au-

thorities, 498 Tor relays, 7,500 Tor clients, and 1,000 servers. Our private network

72

represents the public Tor network from 2014-09 at scale of approximately 1
12

, and we

ran our private network for 5 virtual hours for each experiment (the first 2 of which

were used for bootstrapping the network).

We experiment with and compare three models to determine the effect of load

balancing weights on client performance and the distribution of network load. In the

Ideal model, the relay consensus weights are initialized to their actual capacities as

configured during the generation process, and the weights do not change throughout

the experiment. In the TorFlow model, we run our new Shadow TorFlow plug-in

that we developed2 to mimic the behavior of TorFlow as it operates in the public

Tor network. In the PeerFlow model, we run a PeerFlow prototype3 that was imple-

mented in the Tor code-base forked at version 0.2.5.10. In both the TorFlow and

PeerFlow models, the bandwidth information used to produce the consensus weights

is dynamically updated throughout the experiment. Note that we do not compare

EigenSpeed because it is not currently used in practice and because it is vulnerable

to several attacks, as we have shown in Section 5.4, which we believe will prevent

Tor from adopting it.

5.7.2 Network Performance

A primary goal of Tor’s network load balancing algorithm is to distribute traffic

to best utilize existing resources, and we use goodput as a metric for determining

effective use of such resources. For our purposes, relay goodput, or application

throughput, is the number of application bytes that a relay is able to forward over

time. More formally, if a relay Ri receives Br
i pT q application bytes from the network

and sends Bs
i pT q application bytes to the network at time T over time interval t,

2Our Shadow TorFlow plug-in contains 2128 lines of code
3Our PeerFlow prototype contains 1222 lines of code

73

0 2 4 6 8 10
Goodput (MiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Ideal

TorFlow

PeerFlow

(a) Relay goodput per
second

380 400 420 440 460 480 500 520 540
Goodput (MiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Ideal

TorFlow

PeerFlow

(b) Aggregate relay
goodput per second

0.0 0.2 0.4 0.6 0.8 1.0
Bandwidth Utilization (percent)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Ideal

TorFlow

PeerFlow

(c) Relay utilization per
second

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Download Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Ideal

TorFlow

PeerFlow

(d) Time to first byte of
download

0 5 10 15 20 25
Download Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Ideal

TorFlow

PeerFlow

(e) Time to last byte of
320KiB download

0 10 20 30 40 50
Download Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Ideal

TorFlow

PeerFlow

(f) Time to last byte of
5MiB download

Figure 5.6: Network utilization and client performance for the Ideal, TorFlow, and PeerFlow
load balancing models.

then we define its goodput as GipT q � minpBr
i pT q, B

s
i pT qq{t. We normalize t to 1

second for ease of exposition.

To determine how load is distributed over the relays, we compute each relay’s

per-second goodput GipT q for every second of the final 3 virtual hours of simulation.

Figure 5.6a shows the cumulative distribution of the goodput for each relay-second,

over all relays and seconds. The goodput achieved under all three models were 193.5

KiB/s for Ideal, 0.01 KiB/s for TorFlow, and 29.3 KiB/s for PeerFlow in the median,

and 930.5 KiB/s for Ideal, 700.0 KiB/s for TorFlow, and 689.0 KiB/s for PeerFlow

in the third quartile.

Given our definition of relay goodput, we define aggregate load L at time T as the

sum of all relay goodputs, i.e., LpT q �
°
iGipT q. We compute L for all t P T (every

second), and plot the cumulative distribution over all seconds in the experiment. The

results are shown in Figure 5.6b. The median and standard deviation of aggregate

goodput are 483.5 and 17.3 MiB/s for the Ideal model, 432.2 and 20.9 MiB/s for

the TorFlow model, and 428.0 and 19.5 MiB/s for the PeerFlow model. Given

these results, we conclude that PeerFlow does not dramatically reduce relay goodput

74

compared to the TorFlow model, and that an optimized implementation of PeerFlow

may be able to increase aggregate relay goodput.

We also consider network utilization as a load balancing metric, which demon-

strates how well the algorithms in our load balancing models use the available network

resources. If relay Ri has goodput GipT q and capacity Ci, we define its utilization

UipT q at time T as UipT q � GipT q{Ci. We compute utilization for each relay each

second, and show the distribution of per-second utilization rates over all relays in

Figure 5.6c. Our results show that 75% of relays had a utilization of 40.9% or less

in TorFlow, 48.0% or less in PeerFlow, and 61.2% or less in Ideal. We thus conclude

that while PeerFlow improves utilization over TorFlow, further improvements may

still be possible.

5.7.3 Client Performance

Another goal of load balancing algorithms is to minimize client performance bot-

tlenecks. We use file download times as a metric for determining how clients will

perceive performance changes resulting from using PeerFlow. We consider the time

to download the first byte of all files as a general measure of latency (Figure 5.6d),

and the time to download the last byte of 320KiB files (Figure 5.6e) and 5MiB files

(Figure 5.6f) as measures of performance for web or bulk type downloads. As the

distribution of download times is nearly identical for all measurements below the

median, we focus on the upper half of the distributions.

With regards to the 320KiB file downloads in Figure 5.6e, the 3rd quartile down-

load time is highest for Ideal at 2.00 seconds, followed by TorFlow at 1.47 seconds,

and lowest for PeerFlow at 1.36 seconds. The maximum download time is just over

60 seconds for all models due to the default 60 second timeout set by the traffic

generation tool used in Shadow. These trends are similar for both 320KiB and 5MiB

75

min q1 med q3 max stdev
Ideal 21 176 617 2108 42280 4172
TorFlow 0 7 58 2801 737732 57957
PeerFlow 0 32 96 411 21289 2437

Table 5.4: Statistical summary of the raw relay weights from the ultimate Tor network consensus
document.

downloads, as well as for the time to first byte metric.

Given our results, we conclude that the security benefits of PeerFlow come with

a slight reduction in download times across all file sizes when compared to both

TorFlow and Ideal, and a small increase in download time for the smaller first byte

and 320KiB metrics for less than 10% of the downloads. In our incomplete prototype,

because probation not implemented, it is possible that PeerFlow will under-estimate

relays’ weights. We now analyze the extent of such errors in weight calculations in

our experiments.

5.7.4 Consensus Weight Errors

TorFlow and PeerFlow produce load balancing weights that get added to the Tor

network consensus. These weights bias the relays chosen by clients when constructing

circuits, thus affecting the distribution of client load. A statistical summary of

raw weights from the ultimate consensus file produced in our experiments (i.e., in

convergence) is given in Table 5.4. But, Tor’s path selection algorithm considers

the ratio of a given relay weight to the sum of all of the relays’ weights, not the

raw weights directly. Ignoring additional position weights that are applied based on

the ability to serve as a guard or exit relay, this fraction roughly approximates the

percentage of total network load that will be directed to a relay.

A good load balancing scheme should distribute load proportional to the real

capacities of the relays; in other words, a relay’s fractional weight should match its

76

Error type Formula TorFlow PeerFlow
Abs. Accuracy

°
i|Wi � Ci| 24.72 33.89

Rel. Accuracy
°

i|
Wi�Ci

Ci
| 14872 10099

Abs. Precision
°

i stdevpWiq 0.21 0.05

Rel. Precision
°

i
stdevpWiq
meanpWiq

178.96 55.15

Table 5.5: Total absolute and relative accuracy and precision errors over all relays Ri with true
capacities Ci and weights Wi as estimated by TorFlow and PeerFlow.

fractional capacity. Any deviation of its fractional weight from its fractional capacity

represents an error. More formally, let Ci and Wi be the bandwidth capacity and

consensus weight of relay Ri, respectively. Then, a relay’s fractional bandwidth

capacity is Ci � Ci{
°
j Cj and its fractional consensus weight is Wi � Wi{

°
jWj.

We consider accuracy of the weights produced by the load balancing algorithms

to help understand the efficacy of each approach. We define absolute accuracy er-

ror for relay Ri as the difference between the weight Wi as estimated by the load

balancing algorithm and the true capacity Ci, and relative accuracy error as the

absolute accuracy error relative to the true capacity. Because accuracy does not cap-

ture a consistent under- or over-estimation of the weights, we additionally consider

the precision of the weights. We define absolute precision error for a given relay

as the standard deviation of that relay’s weights over all consensuses produced in

the experiment, and relative precision error as the absolute precision error relative

to the mean of those weights. Multiple weight estimates are produced during the

experiment, and we then sum the absolute value of these errors over all relays R

to get the total error for each experiment. The results of this analysis are given

in Table 5.5. This analysis shows that our PeerFlow prototype produced less error

than TorFlow in its estimated weights for all but the absolute accuracy metric, and

that our prototype tended to consistently underestimate the available capacity of

relays. We suspect that PeerFlow’s weight estimates could be improved through the

77

use of dummy traffic as specified in Section 5.5.5, which was not implemented in our

prototype. Based on this weight error analysis, we conclude that PeerFlow would be

a suitable alternative to TorFlow for relay weight estimation.

5.8 Speed and Efficiency Analysis

PeerFlow schedules measurement rounds individually for each relay depending on

the relay’s expected client traffic. With more client traffic, a relay’s measurements

will more quickly be large relative to the added noise, and so the measurement time

can be smaller. These measurement times also affect the bandwidth efficiency of the

protocol because they determine how often measurements are sent to the Directory

Authorities.

5.8.1 Speed

In order to estimate relay measurement times when running PeerFlow on the Tor

network, we use historical network data from CollecTor [11]. These data include past

network consensuses, from which we can determine the types of relays that existed,

and extra-info descriptors, from which we can determine the amount of traffic each

relay transferred.

We use the consensus from January 31, 2015, at 00:00 and the extra-info descrip-

tors from January 2015 as the basis for our analysis. We estimate the average rate

of client traffic transferred by each relay using the byte histories over the hour before

the consensus. After excluding relays with empty or incomplete byte histories or

with selection probabilities of zero, there are 5917 relays in the network.

We estimate PeerFlow’s determination ρ̄Rp of the bytes relayed by R and observed

in position p by taking the minimum of read and written bytes in the byte history

78

and multiplying the result by R’s relative probability of being selected in each circuit

position. We take the measuring guards, measuring middles, and measuring exits to

be the largest µ � 0.75 fraction of relays by position-weighted bytes relayed (i.e.,

for relay R, ρR is multiplied by the position weight for selecting R in the given

measuring position). The result is 400 measuring guards, 749 measuring middles,

and 145 measuring exits. We classify as guard-type those relays that have a larger

probability of selection as a guard. We classify the rest as exit-type. In Tor, relays

can potentially serve as both guards and exits, and the bandwidth weights are set

to balance the total capacity among guards, middles, and exits. However, in the

consensus of January 31, 2015, at 00:00, the bandwidth weights are such that relays

that have both the Guard and Exit flags are chosen as exits with probability 1, relays

with only the Exit flag are chosen as exits with probability 1, and relays without the

Exit flag have exit policies that are unlikely to allow them to serve much as an exit.

Thus our analysis should not change under our division of relays into guard-type and

exit-type.

We apply the measurement-time procedure given in Section 5.5.4 to estimate

what the measurement times of existing Tor relays would be under PeerFlow. Fig-

ure 5.7 shows the resulting distribution of measurement times over the observed bytes

transferred. Measurement times below 14 days are shown, which constitute 96.8% of

the times by relay capacity. The 25th-percentile measurement time is 11.5 hours, the

50th is 27.7 hours, and the 75th is 70.7 hours. The relays with measurement times

above 14 days have low observed capacity, many below Tor’s stated requirements of

100 KB/s for Fast relays and 250 KB/s for guards. By raising these requirements by

150%, to 250 KB/s for Fast relays and 625 KB/s for guards, and excluding relays

with observed capacities below these requirements, the maximum measurement time

can be lowered to 316.4 hours (i.e. 13.2 days).

79

0 50 100 150 200 250 300 350
Measurement time (hours)

0.0
0.2
0.4
0.6
0.8
1.0

C
u
m

.
fr

a
ct

io
n
 o

f
to

ta
l
ca

p
a
ci

ty

Figure 5.7: Measurement times weighted by observed relay capacity

5.8.2 Efficiency

PeerFlow has bandwidth overhead from sending statistics to the Directory Author-

ities and from any dummy traffic sent by relays in the probation state. Relays

should rarely enter probation, which occurs if client traffic is unusually skewed

away from the consensus weights, and so its cost should be small under normal op-

eration. Each measuring relay sends data to the Directory Authorities at the end

of a measured relay’s measurement period. Thus the total amount of measurement

traffic to them is Opmnq, where m is the number of measuring relays and n is the

number of relays. However, each measuring relays sends only a few numbers for each

measured relay, and our evaluation shows that measurement periods are generally at

least a few hours long. Again using the consensus from January 31, 2015, at 00:00,

and assuming that each statistic is 4 bytes, we find that the average rate of upload

to each Bandwidth Authority is only 119.6 B/s.

5.9 Enhanced PeerFlow

While our simulations and analysis show that PeerFlow would improve the security

and performance of Tor’s load balancing at relatively low cost, we note that some

future concerns are not addressed by our basic design. First, revealing the approxi-

mate amount of traffic sent between specific pairs of relays increases the information

available to an adversary for traffic analysis. In addition, adding noise to traffic

80

statistics makes them less accurate and forces PeerFlow to wait to report on a given

relay until enough client traffic is likely to have been relayed. This delays measure-

ment of low-bandwidth relays, and as the network grows the relative weight of each

measuring relay will decrease, thus increasing the length of reporting intervals.

Here we describe a modifications to PeerFlow that address these concerns, by

cryptographically protecting the privacy of individual measurements. We present

these modifications as an enhancement to PeerFlow to leave a core design that is

more straightforward for the Tor Project to implement and adopt.

5.9.1 Encrypted Measurement Aggregation

In order to protect the privacy of individual measuring relay observations, we intro-

duce a new role for the Bandwidth Authorities (Section 5.5.7). These authorities

will have the role of jointly decrypting bandwidth reports after aggregation; if a

majority of the Bandwidth Authorities collude then individual observations can be

exposed, but if a majority are honest, then individual observation reports will retain

their privacy.

The Bandwidth Authorities cooperate to publish a public key for a threshold

homomorphic tally system, while separately maintaining shares of the decryption

key. In addition to key generation, a threshold homomorphic tally system supports

the following operations:

� Encryption: Given a public key and t tallies b1, b2, . . . , bt, produce a ciphertext

that encodes these counts, providing semantic security.

� Proving: Given a public key PK , randomness r, and a ciphertext that encrypts

a tally, produce a publicly-verifiable proof that the ciphertext is well-formed,

i.e. was produced by computing EPK p0, . . . , 1, . . . , 0; rq.

81

� Aggregation: Given ciphertexts c and c1 encoding tallies b1, . . . , bt and b11, . . . , b
1
t

and weights w and w1, produce a ciphertext c that encodes wc1�w
1c11, . . . , wct�

w1c1t.

� Decryption: Given ciphertext c and decryption key share s, produce a decryp-

tion share d along with a publicly-verifiable proof of correctness. The shares

should be publicly combinable to produce the joint decryption. This verifiabil-

ity allows PeerFlow to maintain auditability while increasing privacy.

We describe two possible implementations of these operations in Section 5.9.2 and

5.9.2.

Given the encrypted tally system, we modify how measuring relays report their

observations. For each relay R, we partition the range pp1 � δqρRp , p1 � δqρRp q into

t equally-sized buckets rb1, b2q, rb2, b3q, . . . , rbt�1, btq, where δ is a maximum allowed

relative capacity change. Each measuring relay in position p then computes the

observed value ρRp (without noise) as in Section 5.5.1, and chooses the bucket b P

t1, . . . , tu containing ρRp . The measuring relay R1 then encrypts a “vote” for this

bucket, and submits this encrypted tally cR
1

to the Bandwidth Authorities along

with a proof of well-formedness.

Finally, the Bandwidth Authorities use the homomorphic properties of submitted

ballots to combine the tallies, weighted by measuring relays’ voting weights, obtaining

a final tally for each relay observation. The Bandwidth Authorities decrypt this

aggregate, providing proofs of correct decryption. The Bandwidth Authorities then

compute the observation for relayR, ρ̄Rp , as the mean value of the votes after trimming

λ voting weight from the smallest and largest buckets. They send this value to the

Directory Authorities.

82

5.9.2 Example Threshold Homomorphic Tally Schemes

Paillier-based scheme

Baudron et al. [3] describe a homomorphic tally scheme based on the Paillier cryp-

tosystem; the scheme can be modified for PeerFlow in a straightforward way. The

Bandwidth Authorities engage in a distributed threshold Paillier key generation al-

gorithm, as in [16, 17, 23], resulting in a Paillier public key N with generator g.

Using the network consensus, all measuring relays can agree on a value M which

is greater than the sum S of all voting weights, for example M � 2rlog2 Ss. Then

to encrypt a vote for bucket i, a measuring relay chooses r PR Z�
N and computes

ENpbiq � gM
i
rN mod N2.4

Note that in this scheme, if the sum of voting weight given to bucket i is vi, we

have ENpbiq
vi � ENpviM

iq and
±

iENpviM
iq � ENp

°
i viM

iq, so as long as we have

all vi M , we can recover weights v1, ...vt by representing the result of decryption

in base M (and this will be particularly efficient if M � 2k for some k).

Proving in zero-knowledge that a ciphertext c � ENpM
iq correctly encrypts a

particular bucket value M i can be accomplished by proving knowledge of an N -

th root of c{gM
i

using the Guillou-Quisquater scheme, which requires the prover

to send two elements of ZN2 and a 2`-bit challenge for soundness level 2�` ; this

can be extended using the standard techniques of Cramer et al. [14] to prove

that
�t

i�1 c � ENpM
iq and converted into a noninteractive proof using the Fiat-

Shamir heuristic. All together, this method of proving that a ciphertext is correct

produces a proof of length 2tp2 log2N � `q bits, and can be verified with t modular

exponentiations in ZN2 .

Proofs of correct decryption are provided by each Bandwidth Authority individ-

4If M t ¡ N , the scheme can use the Damg̊ard-Jurik extension to work modulo Nd�1, where d
is the minimal integer such that M t Nd.

83

ually, following the protocol described in [16,17,23].

Additive Elgamal-based scheme

A tally scheme can also be implemented using additive Elgamal encryption over any

group where the Decisional Diffie-Hellman assumption is hard. In this case, the

bandwidth authorities engage in a distributed key generation protocol to produce t

public keys thi � gxi u
t
i�1 with generators g0, g1, . . . , gt of prime order p whose respec-

tive discrete logarithms are unknown. To encrypt a vote for bucket b, a measuring

relay chooses r PR Zp, and computes c0 � gr0, cb � hrbg0, and cj � hrj for j � b; the ci-

phertext becomes the list c0, c1, . . . , ct. Note that in this scheme, raising all elements

of a ciphertext to a scalar power v scales the tally for bucket b by v, and elementwise

multiplication adds the tallies for all buckets. After decrypting the elements of a

ciphertext using standard threshold Elgamal, the individual tallies are recovered in

Op
a°

i viq time using a standard short discrete logarithm algorithm.

Proving that a ciphertext c encrypts a vote for a single bucket b in honest-verifier

zero knowledge could be accomplished as follows: the verifier chooses a random

vector xx1, . . . , xty PR Ztp; then both sides compute X �
°
i xi, H �

±
i h

xi
i , and

Cb � g�xb0

±
i c
xi
i . Finally, the verifier and prover engage in a standard proof of

knowledge of equality of discrete logarithms, logg0 c0 � logH Cb, which requires the

prover to send a group element and an element of Zp and the verifier to send an `-bit

challenge. Applying the standard disjunction technique to the t possible buckets

allows constructing a proof that c encrypts a single vote for one bucket b P t1, . . . , tu,

and applying the Fiat-Shamir heuristic results in a noninteractive proof of length t

group elements plus t elements of Zp and t short exponents.

84

0 100 200 300 400 500 600 700 800

Subset Entropy

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

(W
ei

gh
tS

um
s)

Anonymity of Bin Tallies

ideal

full

rounded-1k

rounded-pow2

(a) Cumulative frequencies of subset
anonymity

0 2 4 6 8 10

Subset Entropy

0

5

10

15

20

C
ou

nt
(w

ei
gh

ts
um

s)

full

1k

pow2

(b) Counts of low-anonymity subsets
(capped at 20 to show detail)

Figure 5.8: The subset entropy of four voting-weight rounding schemes applied to the top 750
bandwidth weights from a recent Tor consensus: full is no rounding, ideal assigns all weights to 1,

rounded-1k rounds to the nearest 1000, rounded-pow2 rounds up to the nearest power of 2.

Privacy Analysis Under the assumption that the majority of Bandwidth Au-

thorities are honest, this scheme ensures that no information is leaked about the

individual measurements reported by each measuring relay beyond what is leaked by

the voting-weighted sum released for a given measurement period; this follows from

the semantic security of the tally encryption schemes. Here we analyze the amount

of information that could be leaked by this aggregate result.

The residual leakage stems from the fact that few relays have identical weights

in the current Tor network, so many small subsets of relays could have distinctive

weight sums. As an example, we consider the bandwidth weights of the top 750

relays in the Tor network as of February 9, 2015 (750 is just over the number of

measuring relays we used in our analysis Section 5.8.1). Among these relays, there

are 138 possible sums that can only arise from a single subset of the weights, and

2456 possible sums that can arise from fewer than 256 different relay subsets.5

However, this leakage can be mitigated to a large extent by one of two schemes for

5To count possible subset sums, we modified the standard pseudopolynomial-time dynamic pro-
gramming algorithm for subset sum, which runs in time OpmSq for m items with total weight
S

85

rounding of voting weights. In the Rounded-1K scheme, each measuring relay’s weight

is divided by 1000 and rounded. Continuing with the example above, we find that the

750th highest-weighted relay on Febuary 9, 2015 had a weight of 8160, which under

this scheme would be assigned voting weight 8, while the highest-weighted relay had

a weight of 334000, and would be assigned voting weight 334. In the Rounded-Pow2

scheme, each measuring relay’s weight is rounded to the next power of 2 and scaled by

the voting weight of the lowest-weighted measuring relay. Thus the lowest-weighted

measuring relay in the previous example would have its weight rounded to 8192 and

then scaled to 1, while the highest-weighted relay’s voting weight would be rounded to

219 � 524288 and scaled to 64. Figure 5.8 summarizes the impact of these rounding

schemes on the anonymity of weight sums: overall, most relay subsets have high

subset entropy (defined as SEpRq � log2 |tS � rns :
°
iPS wi �

°
iPR wiu|), as seen

in Figure 5.8a. As Figure 5.8b shows, however, both rounding schemes significantly

reduce the number of subsets with low subset entropy, with Rounded-Pow2 producing

the fewest low-entropy subsets.

We note that in the worst case, the Rounded-Pow2 scheme may inflate the fraction

of voting weight controlled by an adversary by nearly a factor of 2, whereas the

worst case for the Rounded-1K scheme is 1 � 1
2vmin�1

, where vmin ¥ 1 is the lowest

post-rounding voting weight among measuring relays; in our example vmin � 8,

so the worst-case inflation factor as a result of rounding was 1.059. If we instead

consider an adversary that compromises existing relays in our example, the highest

relative inflation encountered under the Rounded-Pow2 scheme was 1.366, while the

highest relative inflation under the Rounded-1K scheme was 1.014; the respective

90th percentiles were 1.287 and 1.014.

86

5.10 Proofs of Theorems

Lemma 3. If α λ, then

ErρAs ¤
βA

p1� λ� αqµ
�

0.4εdecρ
A
0 t
A

tA0
.

Proof. The Directory Authorities infer the number of bytes transferred by A as

the maximum of inferred bytes observed on the client and destination sides: ρA �

maxpρAc , ρ
A
d q. The inferred number of client-side bytes is the sum of the inferred

number of guard-observed and middle-client-side bytes: ρAc � ρ̄Ag � ρ̄
A
mc. The inferred

number of destination-side bytes is defined similarly: ρAd � ρ̄Ae � ρ̄Amd. Let βAp be

the number of bytes sent or received by A with a measuring relay in position p P

tg,mc,md, eu. We will show show a bound on each ρ̄Ap in terms of βAp that will

combine to bound both ρAc and ρAd and then ρA as well.

ρ̄Ap is determined from the values βRiA
p , which are the number of bytes A sent

or received from each measuring relay Ri P Mp while Ri was in position p in the

circuit. Each Ri uses βRiA to produce an independent estimate of the total bytes ρRiA
p

by first adding random noise NRiA
p � Lappτn{εnq and then dividing by its selection

probability qRi
p , that is, ρRiA

p � pβRiA
p � NRiA

p q{qRi
p . ρ̄Ap is the aggregate of these

estimates after trimming the largest and smallest fraction λ by voting weight. Let

ij be the index of the jth largest ρ statistic. Let ij1 and ij2 be the indices of the

first and last untrimmed statistics, respectively. Let A be the set of indices of the

adversary’s relays. Let N 1i be independent random variables from an exponential

distribution Exppεn{τnq (Exppλq has density function fpxq � λe�λx). To extend the

measuring relay notation to include directional positions, let Mmc � Mmd � Mm.

87

We can bound the value of ρ̄Ap as follows:

ρ̄Ap �

°
j1¤j¤j2

ρ
Rij

A
p q

Rij
p°

j1¤j¤j2
q
Rij
p

(5.1)

�

°
j1¤j¤j2

β
Rij

A
p �N

Rij
A

p°
j1¤j¤j2

q
Rij
p

(5.2)

¤

°
j1¤j^jRA β

Rij
A

p �N
Rij

A
p°

j1¤j^jRA q
Rij
p

(5.3)

¤
βAp

p1� λ� αqµ
�

°
j1¤j^jRAN

Rij
A

p

p1� λ� αqµ
(5.4)

¤
βAp

p1� λ� αqµ
�

°
1¤i¤|Mp|

N 1i

p1� λ� αqµ
(5.5)

The inequality in line 5.3 holds because j ¡ j1 implies that ρ
Rij

A
p ¥ ρ

Ri
j1
A

p and also

any untrimmed voting weight from adversarial relays is replaced by the same amount

of voting weight from honest relays with larger ρ statistics. The inequality in line 5.4

holds because the voting weight of honest relays with ρ statistics above the lower

trimmed fraction have weight 1�λ�α, with α λ, and voting weights are updated

to maintain that the selection probability of any subset with weight at least 1 � 2λ

has total selection probability of at least µ of its voting weight. The inequality in

line 5.5 holds because “remapping” a negative noise value to its absolute value only

increases its value and results in a random variable with distribution Exppεn{τnq, and

then including additional such remapped random variables only increases the sum

as they are all nonnegative.

88

Using this bound on ρ̄Ap , we can see that

ρAc � ρ̄Ag � ρ̄
A
mc (5.6)

¤
βA

p1� λ� αqµ
�

°
1¤i¤|Mg |�|Mm|N

1i

p1� λ� αqµ
. (5.7)

By similar arguments, an analogous bound holds for ρAd .

ρA is the maximum of ρAc and ρAd . Let nm � maxp|Mg| � |Mmc|, |Me| � |Mmd|q,

let N 1i
c and N 1i

d be independent random variables with distribution Exppεn{τnq, and

let Sp �
°

1¤i¤n1 N
1i
p , p P tc, du. Then

ErρAs � ErmaxpρAc , ρ
A
d qs

¤ E
�

1

p1� λ� αqµ
max

�
βAg � β

A
mc � Sc,

βAe � β
A
md � Sd

��
. (5.8)

This inequality follows using the same reasoning that established the inequality in

line 5.5.

For a fixed bandwidth budget βA, the right-hand side of inequality 5.8 is maxi-

mized by setting one of βAg �β
A
mc and βAe �β

A
md to βA and the other to 0. The follows

from the fact the sums of the noise variables Sp are identically distributed, and so

every case in which the maximum is reduced corresponds to a unique and equally-

probably case in which the maximum in increased by an equal or larger amount.

89

Therefore,

ErρAs ¤
1

p1� λ� αqµ
E
�
maxp0� Sc, β

A � Sdq
�

(5.9)

¤
βA � 2ErSds
p1� λ� αqµ

�
βA � 2n1τn{εn
p1� λ� αqµ

(5.10)

¤
βA

p1� λ� αqµ
�

0.4εdecρ
A
0 t
A

tA0
, (5.11)

where the inequality in line 5.11 holds because tA was set in order to make it true.

Lemma 4. If α λ, then, for all i R A, ρRi ¥ γ1βRi{2.

Proof. The adversary can only lower ρRi if he reduces the ρ statistics from his relays,

and α λ so we can assume the set of measurements in the trimmed sum are

from some set of honest relays of voting weight 1 � 2λ. The aggregate of these

measurements in a given position is at least γ1βRi
p . Because honest relays send each

byte that they receive and vice versa, βRi
g � βRi

mc or βRi
e � βRi

md is at least βRi{2. Thus

ρRi � maxpρ̄Ri
g � ρ̄

Ri
mc, ρ̄

Ri
e � ρ̄

Ri
mdq

¥ γ1 maxpβRi
g � βRi

mc, β
Ri
e � βRi

mdq

� γ1βRi{2.

Theorem 2. If βA p1�λ�αqp1� 1.4εdecqµρ
A
0 t
A{tA0 , then the expected value of ρA

puts A into probation. Otherwise,

ErωAs°
R ω

R
¤

�
2γ1p1� εincqp1� εdecq

p1� λ� αqp1� 1.4εdecqµ
°
R

�
pβA{tAq

pβR{tRq
.

Proof. If βA p1 � λ � αqp1 � 1.4εdecqµρ
A
0 t
A{tA0 , then, by Lemma 1, ErρAs p1 �

90

εdecqρ
A
0 t
A{tA0 . ωA is adjusted to keep ρA no less than p1 � εdecqη

R, and thus the

expected value of ρA would put A into probation.

Otherwise, we can simply substitute the right-hand side of this inequality for βA

into the inequality of Lemma 1 to yield

ErρAs ¤
p1� εdecqβ

A

p1� 1.4εdecqp1� λ� αqµ
.

Then we can use Lemma 4 and the fact that ωA is set to at most p1� εincqρ
A{tA to

obtain the theorem.

Chapter 6

Proof of Security of Verdict

6.1 Introduction to Verdict

The previous chapter concerned improvements to the network behind Tor, an ex-

tremely popular anonymity protocol based on onion routing. Tor’s greatest advan-

tage is its speed, and ability to function even in an environment requiring low latency.

However, Tor’s onion routing approach to anonymity has some inherent weaknesses.

An adversary capable of observing a large enough part of the network can associate

users with their messages, as can an adversary controlling a substantial fraction of

Tor relays [4, 36]. Malicious users and relays are also difficult to detect and iden-

tify [58] in Tor.

Some protocols address these issues by using core technologies other than onion

routing. Dining-cryptographers networks protocols, or DC-nets, provide a basis for

a type of anonymity protocol that provably maintains anonymity against adversaries

with the ability to read all messages sent over the network, and against coalitions

of all except for a few honest participants [10, 25]. Two such protocols include Dis-

sent [12] and Verdict [13]. These protocols also offer accountability, in the sense that

91

92

honest parties can detect when another party deviates from the protocol, and in-

tegrity, meaning that honest parties will detect any tampering with the anonymous

messages of other honest parties.

In this chapter, we examine the Verdict protocol, which was introduced and

implemented but not given a formal specification in [13]. In Section 6.2, we provide

a full and formal description of the Verdict protocol for the first time.

In Section 6.3, we define the properties of a DC-nets protocol and of a verifiable

shuffle protocol. Our description follows [13] in treating these underlying protocols as

black boxes, allowing for different choices of internal protocol to be used for different

applications. Three examples of DC-nets protocols that satisfy our requirements are

given in [13]. We also specify, in Section 6.3.3, formal definitions for the properties

we want our anonymity protocol to satisfy: anonymity, accountability, and integrity.

Finally, in Section 6.4, we provide a formal proof that, given a DC-nets protocol and

a verifiable shuffle protocol, Verdict satisfies these three properties.

6.2 The Verdict Protocol

This section defines the core Verdict protocol, as well as several sub-protocols and

methods that Verdict uses.

6.2.1 Assumptions and Architecture

All protocols are run between N clients and M servers. Each client directly com-

municates with at least one upstream server, and each server directly communicates

with all other servers.

Every party i has a long-term private signing key vi and a public verification key

Vi for an agreed-upon cryptographic signature scheme. We assume that all parties

93

have access to the functions σ Ð Signpvi,mq and VER Ð VerifypVi,m, σq. Every

party also has access to a common oracle, O. O can be a random oracle, or it can be

an oracle which returns a common reference string, as specified by the non-interactive

zero-knowledge proof-of-knowledge system used by the DC-nets construction.

For a party to participate in the protocol, every other party that will be partici-

pating must have access to its public verification key Vi. Before the protocol begins,

all parties are aware of a list of participating servers, and a list of potentially partic-

ipating clients. These groups are agreed upon before beginning the protocol, and we

do not discuss the details of how the groups are chosen here. We note, however, that

every server in the group is assumed to be online and participating in the protocol,

but not every client in the group is assumed to be online. Messages from any party

not in the groups are ignored during all of the following protocols. In addition, in

all protocols except for SetupA, parties ignore messages from clients for whom they

do not possess a verified and valid client public key (in other words, they ignore

messages from clients which are in the group but did not participate in SetupA).

We assume the parties communicate using asynchronous message passing. A

party broadcasts a message to a specified set by sending the same message individually

to all parties in that set. We do not handle non-responsive parties; therefore, none

of the following protocols are guaranteed to terminate.

When a party detects a failure, whether it causes the party to halt or not, it

produces a proof π � pVi, f, P,mess iq blaming the party i that caused failure f ,

with the data in P as the evidence for the proof. The proof also includes the set

mess i of all protocol messages sent by i sent under the current nonce that the party

constructing the proof has access to. This set of protocol messages is needed to verify

that i actually transmitted the data in P which is being used to blame it. A separate

method called ProofVer (described in section 6.2.6) allows a third party to verify a

94

blame proof.

We do not assume that the channels are private, authenticated, or tamper-proof.

That is, the channel itself does not prevent other parties from viewing, altering, or

dropping messages, nor does it prevent them from inserting messages between two

parties. Our design instead uses signatures, nonces, and step numbers to provide

some of this security, as described below.

With each message sent over the network, it is important for the sender to include

some additional information along with it. In these protocols, when a party sends

the message m, the data sent is actually the tuple pm,Vi, n, t, σq. m is the payload, or

the intended message, and the rest of the information is referred to as the metadata.

Vi is the sender’s public verification key and also serves as the sender’s “identity”.

n is the current nonce. Unless specified otherwise, the current nonce is either the

session nonce nS, the round nonce nR, or the slot nonce nS, whichever was most

recently set by the protocol. t is a number identifying the protocol and step under

which this message was sent. The values n and t together serve to prevent replay

attacks. Finally, the metadata includes a signature σ �Signpvi, pm,n, tqq.

Whenever a party’s message contains any value generated by a third party, such as

a ciphertext, the metadata must also include the verification tuples that accompanied

each of those values. This will mean that to send or forward a message, the identity

of the sender in the form of its public key, and the nonce and signature on that

message, will always be attached to it. This ensures that messages can be verified by

third parties at a later date. A protocol message which does not contain a verification

tuple is dropped by the receiver.

Finally, we assume that all parties know two agreed-upon parameters: ρ, a secu-

rity parameter; and R, the number of rounds for which the protocol will execute.

95

6.2.2 Setup Protocols

There are two protocols used for session setup: SetupA and SetupB. SetupA is for

selection and of nonces and session keys and dissemination of public keys, while

SetupB is for further setup dependent on the implementation of the underlying DC-

nets ciphertext system.

SetupA

pERR, dataA, πiq Ð SetupA pρ, viq takes the security parameter ρ and each party’s

private signing key vi as input. For each party, it outputs error status ERR, which

is either SUCCESS or FAIL, and some data, which may include a list of third-party-

verifiable proofs blaming parties which have sent invalid keys. SetupA will only fail

if a server sends or forwards an invalid key, but its list of blame proofs will include

both servers and clients who have sent invalid keys.

For a client i, if ERR � SUCCESS, dataA � pnS, Ai, ai, Yi, yi,Bq. That is, the

output consists of a session nonce nS identifying a run of Verdict, a client public

key Ai, a client private key ai, a pseudonym public key Yi, a pseudonym private key

yi, and the set of server public keys B. If ERR � FAIL, dataA is blank. In either

case, the output of SetupA also includes πi, a possibly-empty set of blame proofs.

For a server j, if ERR � SUCCESS, dataA � pnS, Bj, bj,A,Bq. This data includes

the session nonce nS, a server public key Bj, a server private key bj, a set of client

public keys A, and the set of server public keys B. If ERR � FAIL, dataA is blank.

Again, πi is an output in either case.

SetupA handles the setup steps which will be needed regardless of the choice of

DC-nets ciphertext system used by the rest of the protocol, but some of these steps

use methods which must be provided by the ciphertext system itself, specifically

KeyGen and VerifyKey, both of which are described in section 6.2.4.

96

Given these methods, SetupA does the following:

1. The servers collaboratively select a session nonce nS, then broadcast nS to their

downstream clients. As long as all servers agree on a reliable method to jointly

select a nonce, it does not matter which method is used, but the following is

presented as an example:

(a) Each server j selects a unique random string xj and broadcasts it to all

other servers. For this message, the nonce part of the metadata is blank.

(b) Upon receipt of string xk from server k, server j sends xj to k again.

For this message, the nonce part of the metadata is xk. (Note that the

metadata also contains a signature on the message and the nonce.)

(c) Once server j has received the same xk from server k, with xj used as

the nonce, it concatenates all random strings received from other servers

together in a pre-arranged way (e.g. sorted by public verification key) to

get nS, the nonce.

2. Each client i runs pAi, ai,PoK iq Ð KeyGenpρq and pYi, yiq Ð KeyGenpρq to get a

client keypair pAi, aiq and pseudonym keypair pYi, yiq. Client i sends pAi,PoK iq

to its upstream server(s).

3. Each server j runs VER Ð VerifyKeypAi,PoK iq upon receiving a message

from client i. If VER is False for client i’s message, the server adds

pVi, f1, Ai,PoK i,mess iq to πj.

4. Each server j collects the set of client public keys from its downstream clients

for which VER was True into Aj, and the set of associated proofs of knowledge

into PoKj.

97

5. Each server j runs pBj, bj,PoK jq Ð KeyGenpρq to get a server keypair pBj, bjq

and proof of knowledge PoK j. Server j then broadcasts pBj,PoK j,Aj,PoKjq

to the other servers.

6. Upon receiving a message from server k, server j runs

VER Ð VerifyKeypBk,PoK kq. If VER �False, it adds pVk, f1, Bk,PoK k,messkq

to πj. j also re-runs VER Ð VerifyKeypAi,PoK iq for each public key and

PoK pair in pAk,PoKkq. If VER �False for any of these checks, j adds

pVk, f2,Ak,PoKk,messkq to πj. If either of the verifications in this step failed,

j outputs pFAIL, πjq and halts. (Although the cause of failure was a faulty client

key, j fails if server k were honest, it would not have forwarded that key.)

7. Each server j compiles all public keys received into A Ð YkAk and B Ð YkBk,

and compiles all proofs of knowledge from the servers into PoK. If A includes

two different public keys Ai, A
1
i associated with the same Vi (as determined by

the metadata), j adds pVi, f3, Ai, A
1
i,mess iq to πj and removes both public keys

from A. It then sends B and PoK to its downstream clients, then halts and

outputs pSUCCESS, pnS, Bj, bj,A,Bq, πjq.

8. Client i receives B and PoK from its upstream server(s) j. For each server k in

the set of servers, i runs VER Ð VerifyKeypBk,PoK kq. If VER �False for any

of these checks, i adds pVj, f2, Bk,PoK k,messjq to πi and outputs pFAIL, πiq.

9. If i has multiple upstream servers, and receives two different public keys Bj,

B1
j associated with the same Vj, i adds pVj, f3, Bj, B

1
j,messjq to πi and outputs

pFAIL, πiq. Otherwise, it outputs pSUCCESS, pnS, Ai, ai, Yi, yi,Bq, πiq.

98

SetupB

The second setup protocol, SetupB, takes the output of dataA as input, and outputs

pERR, dataB, πq, where ERR is either SUCCESS or FAIL, and π is a possibly empty set

of blame proofs. The contents of dataB if ERR � SUCCESS, and the functionality of

the protocol otherwise, are entirely implementation-dependent. All proofs in π must

have f � f4.

6.2.3 Verifiable Shuffles

A verifiable shuffle VShuffle is a protocol run between all clients and all servers.

Each client i runs pERR, rms, πiq Ð ClientVShufflepvi,B,miq, and each server j

runs pERR, rms, πjq Ð ServerVShufflepvj, bj,Bq. We do not go into detail about

verifiable shuffle protocols in this section, but we can describe the inputs and outputs

of both the client-side and server-side protocols.

In ClientVShuffle, each client i encrypts its message mi using the server public

keys in B, then sends this encrypted message to its upstream server(s). It then waits

for the servers to communicate with each other, eventually receiving a response.

Based on this response, the output of i is either pSUCCESS, rms, πiq, where rms is a

permutation of the clients’ messages and πi is a possibly-empty set of blame proofs,

or pFAIL, m̄, πq, where m̄ is unreliable data, and πi is a set of blame proofs which

contains at least one proof. Proofs in πi blaming party k must have the format

pVk, f5, P,messkq. The details of P , the evidence blaming k, are dependent upon the

implementation of the verifiable shuffle.

In ServerVShuffle, each server j uses its own server private key bj and the set of

server public keys B to decrypt and shuffle the messages. When the messages have

been shuffled fully, the server’s output is either pSUCCESS, rms, πjq or pFAIL, m̄, πjq.

99

Server j sends the second half of this message to its clients.

6.2.4 DC-nets Ciphertext Systems

A DC-nets ciphertext system is a set of eight methods. The methods are called

KeyGen, VerifyKey, CoverCreate, OwnerCreate, ClientVerify, ServerCreate,

ServerVerify, and Reveal. A DC-nets ciphertext system also specifies a special

input data, an externally-generated value which is needed by some of the methods.

Depending on the implementation, data might be a slot nonce nT ; the output of

SetupB dataB, or blank. These methods also require access to the oracle O; we omit

O from the individual method descriptions for clarity of notation. Additionally, the

Verify methods must be deterministic.

� pK, k,PoK q Ð KeyGenpρq takes as input a security parameter ρ. It returns a

new public key K, associated private key k, and a proof of knowledge PoK

certifying that K is a valid public key.

� VER Ð VerifyKeypK,PoK q takes as input a key public K annd a proof of

knowledge PoK . The return value VER is True if public key K can be certified

valid by PoK , and False if not.

� pCi,PoK iq Ð CoverCreatepdata, ai,Bq takes as input the implementation de-

pendent data, i’s client private key ai, and the set of server public keys B.

It returns a client ciphertext Ci with no message, representing “cover traffic”,

and a proof of knowledge PoK i certifying that Ci is valid.

� pCi,PoK iq Ð OwnerCreatepdata, ai, y,B,mq takes as input the implementa-

tion dependent data, a client private key ai, the slot owner’s pseudonym secret

key y, the set of server public keys B, and a plaintext message m. It returns

100

a client ciphertext Ci encoding message m, and a proof of knowledge PoK i

certifying that Ci is valid.

� VER Ð ClientVerifypdata, Ai,B, Ci, Y,PoK iq takes as input the implemen-

tation dependent data, a client public key Ai, the set of server public keys B,

a client ciphertext Ci, the current pseudonym public key Y , and a proof of

knowledge PoK i. The return value VER is True if Ci and PoK i were able to

be verified, and False if not.

� pSj,PoK jq Ð ServerCreatepdata, bj,A,Cq takes as input the implementation

dependent data, a server private key bj, the set of client public keys A, and

a set of client ciphertexts C. It outputs a server ciphertext Sj and a proof of

knowledge PoK j certifying that Sj is valid.

� VER Ð ServerVerifypdata,A, Bj,C, Sj,PoK jq takes as input the implemen-

tation dependent data, the set of client public keys A, a server public key Bj,

a set of client ciphertexts C, a server ciphertext Sj, and a proof of knowledge

PoK j. The return value VER is True if Sj and PoK j were able to be verified,

and False if not.

� m Ð RevealpC,Sq takes as input a set of client ciphertexts C and a set of

server ciphertexts S. It returns the plaintext message m.

6.2.5 Verdict

The Verdict protocol is run between N clients and M servers. Each session begins

with the two setup protocols and a verifiable shuffle, then proceeds in rounds, each

of which is broken up into N slots, one for each pseudonymous client. The protocol

proceeds for the agreed-upon number of rounds R, but parties can halt earlier than

101

this if they detect a failure.

Failure Messages

When a party detects a failure during Verdict, whether it causes the party to halt or

not, it produces a proof π � pVi, f, P,mess iq, as described in section 6.2.1. The party

adds π to its output. If π blames a server, the party sends π to all of its neighbors in

place of the next message it was send to them, and then halts. Otherwise, it sends

π along with the next message it is to send.

Whenever a party receives a failure message π from another party, it runs

VER ÐProofVerpπq. If VER �True, the party adds π to its output. If the party

receiving this message was a client, it then halts.

If a server receives and verifies a failure message π, it may need to pass along

that message to other parties which may not have seen it. If the message comes

from a client, it broadcasts π to the other servers in place of the next message it

was supposed to send. If π comes from a server and blames a server, it sends π

to its downstream clients in place of the next message it was to send to them. In

either case, if π blamed another server, it then halts. If π blamed a client, the server

removes that client from its list of active clients before continuing with the next step

of the protocol as normal.

Detailed Verdict Protocol

A detailed description of Verdict is given below.

1. pERR, dataA, πiq Ð SetupA pρ, viq is run by all servers and clients. Party i

broadcasts πi (even if πi is empty), and adds πi to its output. ERR � FAIL, i

then halts.

102

2. pERR, dataB, πiq Ð SetupB pdataAq is run by all servers and clients. Party i

broadcasts πi (even if πi is empty), and adds πi to its output. ERR � FAIL, i

then halts.

3. pERR, rYs, πiq Ð ClientVShufflepvi,B, Yiq is run by each client i, and

pERR, rYs, πjq Ð ServerVShufflepvj, bj,Bq is run by each server j. Party i

broadcasts πi (even if πi is empty), and adds πi to its output. ERR � FAIL, i

then halts. Otherwise, all parties treat rYs as a shuffled list of pseudonym pub-

lic keys. (It is possible that one or more clients submitted an invalid pseudonym

public key, but as this will only have the effect of preventing that client from

transmitting, there is no need to check for this.)

4. The initial round nonce, nR, is set to nS, the session nonce.

5. All parties perform the following outer loop R times.

(a) All parties perform the following inner loop |rYs| times, each time initial-

izing the value Y to be the next pseudonym public key in the shuffled list

rYs, starting with the first. In the following steps, the “slot owner” is the

client who submitted Y as an input to ClientVShuffle.

i. A slot nonce nT is created by concatenating the round nonce nR with

the slot number.

ii. pCi,PoK iq Ð CoverCreatepdata, ai,Bq is run by each client i other

than the slot owner to generate a client ciphertext with a blank mes-

sage and an associated proof of knowledge.

iii. pCi,PoK iq Ð OwnerCreatepdata, ai, y,B,mq is run by the slot owner

to generate a client ciphertext with message m and an associated

proof of knowledge.

103

iv. Every client i sends pCi,PoK iq to its upstream server(s).

v. VER Ð ClientVerifypdata, Ai,B, Ci,PoK iq is run by each server j

on the message received from every client i. For each client whose

message fails to verify (that is, VER � False), the server j adds

pVi, f6, data, Ai,B, Ci,PoK i,mess iq to πj.

vi. Each server broadcasts Cj, the set of verified client ciphertexts re-

ceived by j, along with all proofs added to πj in the previous step, to

all other servers.

vii. VER Ð ClientVerifypdata, Ai,B, Ci,PoK iq is run by each server on

all new client ciphertexts passed along by server j. If VER is False for

any of these, the server broadcasts pVj, f7, data, Ai,B, Ci,PoK i,mess iq.

It then halts.

viii. Each server j computes C � YkCk, combining the sets of client ci-

phertexts received by all servers into a single set. If C contains two

different ciphertexts Ci and C 1
i from the same client i, the server

broadcasts adds pVi, f8, Ci, C
1
i,mess iq to πj. The server then broad-

casts the set of all proofs created this way, or an empty set if no such

proofs were created.

ix. Each server j removes from C all ciphertexts belonging to clients no

longer on its list of active clients (because a proof blaming such a

client was generated or validated by j).

x. pSj,PoK jq Ð ServerCreatepdata, bj,A,Cq is run by each server j

to compute a server ciphertext and associated PoK from the set of

client ciphertexts. Each server then broadcasts pSj,PoK jq to all other

servers.

104

xi. VER Ð ServerVerifypdata,A, Bk,C, Sk,PoK kq is run by each server

j to verify the ciphertext from server k. If VER is False for the cipher-

text sent by k, j broadcasts pVk, f9, data,A, Bk,C, Sk,PoK k,messkq

and halts.

xii. Each server computes S � YkSk, combining all server ciphertexts into

a single set.

xiii. mÐ RevealpC,Sq is run by each server to reveal the plaintext mes-

sage m from the complete set of client and server ciphertexts.

xiv. σj Ð Signpvj, pm,NT qq is run by each server to create a signature on

m along with the current slot nonce. Each server then broadcasts σj

to all other servers.

xv. VER Ð VerifypVk, pm,NT q, σkq is run by each server j to verify

the signatures provided by every other server k. If VER is False

for any signature, j broadcasts pVk, f10,m,NT , σk,messkq and halts.

Otherwise, j sends a blank message to the other servers to confirm

that it is ready to distribute m to its clients.

xvi. Each server sends m and σ Yk σk to each of its connected clients.

xvii. VER Ð VerifypVk,m, σkq is run by each client to verify the signa-

tures from every server k, as forwarded by each of its upstream servers

j. If VER is False for any signature forwarded by server j, i broad-

casts pVj, f11, Vk,m, σk,messjq and halts. Otherwise, the client sends

a message to its upstream servers confirming successful receipt of m,

and it adds m to its output.

xviii. Each server, after receiving confirmation from each client connected

to it, every other server a message confirming that the slot has ended

105

successfully.

xix. Each server, after receiving confirmation from each server connected

to it, sends its downstream clients a similar confirmation message and

adds m to its output. (These confirmation messages simply allow

the servers and clients an opportunity to forward any blame proofs

generated in the final steps.)

(b) At the end of a round, the round nonce nR is incremented by 1.

At the end of a session, a party’s output has the format pERR,m, πq. ERR �

SUCCESS if the protocol ran for all R rounds without halting, and ERR � FAIL if

the party halted at any point before the end. The list m consists of all messages m

recovered at the end of each completed slot, and π consists of all blame proofs that

the party either constructed, or received and verified with ProofVer.

6.2.6 Blaming and Proof Verification

In Verdict and its associated protocols, a malicious client or server may cause a

protocol to fail by sending invalid data. Whenever a party detects that the protocol

has failed or determines that another party has sent invalid data, it produces a

blame proof. Such proofs are tuples π with the format pVi, f, P,mess iq, where Vi is

the public verification key of the party i being blamed, f is a code representing the

type of failure for which i is being blamed, P consists of one or more values that

constitute verifiable evidence of i’s behavior, and mess i is a set of protocol messages

sent by i in under the current nonce.

A proof verification function VER Ð ProofVerpVi, f, P,mess iq is a function run

by a single party, which takes as input a public verification key Vi, a blame condition

f , proof evidence P , and set of protocol messages mess i. The output is True if the

106

proof is verified, and False if not. The protocol works as follows:

First, for each value in P , ProofVer checks that mess i contains a protocol message

with that value included in its payload, and a current nonce and valid signature

included in its metadata. If this property is not satisfied, then that value is removed

from P , because it is not known that Vi actually sent the message it is being blamed

for.

Once this check is complete, the exact functionality of ProofVer depends on the

blame condition f , as described below. If P does not contain the data required for

condition f , either because it was not originally included or because it was rejected

in the previous step, VER is False.

� If f � f1, the failure is that a client or server sent an invalid key in SetupA. P

must be a pair pK,PoK q. Then VER � VerifyKeypK,PoK q.

� If f � f2, the failure is that a server passed along an invalid client or server key

in SetupA. P must be a pair pA,PoKq. Then VER is True if

VerifyKeypK,PoK q �False for any key in A.

� If f � f3, the failure is that a client or server sent two different public keys in

SetupA. P must be a pair pK,K 1q. Then VER is True if K � K 1, and False

else.

� If f � f4, the failure took place in SetupB, and the verification process is

dependent on the implementation of the DC-nets ciphertext scheme.

� If f � f5, the failure took place in VShuffle, and the verification process is

dependent on the implementation of the verifiable shuffle.

� If f � f6, the failure is that a client ciphertext failed to verify. P must be a tuple

pdata, A,B, C,PoK q. Then VER � ClientVerifypdata, A,B, C,PoK q.

107

� If f � f7, the failure is that a server passed along a client ciphertext that failed

to verify. P must be a tuple pdata, A,B, C,PoK q. Then

VER � ClientVerifypdata, A,B, C,PoK q.

� If f � f8, the failure is that a client sent two different ciphertexts. P must be

a pair pC,C 1q. Then VER is True if C � C 1, and False else.

� If f � f9, the failure is that a server ciphertext failed to verify. P must be a tuple

pdata,A, B,C, S,PoK q. Then VER � ServerVerifypdata,A, B,C, S,PoK q.

� If f � f10, the failure is that a server sent an invalid signature on the recon-

structed message. P must be a tuple pm,NT , σq. Then

VER � VerifypVi, pm,NT q, σq.

� If f � f11, the failure is that a server passed an invalid signature to the client at

the end of a slot. P must be a tuple pV,m,NT , σq. Then

VER � VerifypV, pm,NT q, σq.

6.3 Formal Definitions of Properties

In this section we present full definitions of properties of DC-nets ciphertext schemes

and verifiable shuffles, as well as properties of the full anonymity protocol. These

properties, and the protocol referred to in these definitions, are based on the multi-

provider cloud, anytrust architecture described in [13]. By “adversary” we mean a

computationally-bounded malicious adversary. Even when these definitions specify

that the adversary and challenger run certain protocols with specific inputs, the

adversary is free to use any inputs it wants, and to deviate from any protocol at any

time. The challenger always uses the inputs given, and follows protocols honestly

108

unless otherwise specified. The adversary cannot win any of these games unless the

protocol completes.

6.3.1 DC-Nets Ciphertext Scheme Properties

Ciphertext scheme properties are tagged “CT-” for ciphertext.

CT-Anonymity

A ciphertext scheme has anonymity if a verifier cannot distinguish a client cipher-

text from the anonymous slot owner’s ciphertext. Formally, we say that a DC-nets

ciphertext scheme has the property CT-Anonymity if no adversary can win at the

following CT-Anonymity game with more than negligible advantage.

In the CT-Anonymity game, the adversary runs a specific protocol with the chal-

lenger. They run this protocol several times, until the adversary signals that it is

ready to begin the challenge round, during which they run a modified version of the

protocol. Afterwards the adversary may run this protocol several more times before

returning its output. The protocol is as follows:

1. The adversary may choose to have all parties run pERR, dataA, πq Ð SetupA

and pERR, dataB, πq Ð SetupB; or, if this is not the first round, to have all

parties use the same dataA and dataB used in the previous round, except with

the nonce nS incremented by one. If any server controlled by the challenger

gets ERR � FAIL, the adversary loses.

2. The adversary selects two honest clients i0 and i1 and a plaintext message m,

and sends these to the challenger. If the adversary did not run SetupA and

SetupB in the previous step, i0 and i1 must be the same clients the adversary

used during the last round.

109

3. The challenger sets a bit b uniformly at random.

4. The challenger computes pCb,PoK bq Ð OwnerCreatepdata, ab, yb,B,mq and

pC1�b,PoK 1�bq Ð CoverCreatepdata, a1�b,Bq, then sends pC0, C1, Yb, Y1�bq to

the adversary.

At the end of the challenge round, the adversary makes a guess b1. The adversary

wins the game if b � b1.

CT-Completeness

A ciphertext scheme has completeness if an honest verifier will always accept proofs

of knowledge for valid ciphertexts. Formally, we say that a DC-nets ciphertext

scheme has the property CT-Completeness if no adversary can win at the following

CT-Completeness game with probability greater than 0.

In the CT-Completeness game, the adversary runs a protocol with the challenger.

They run this protocol several times, until the adversary signals that it is ready to

begin the challenge round. The adversary may pause the challenge round at any

time and run the protocol again several times with the challenger before continuing

the challenge round.

1. The adversary may choose to have all parties run pERR, dataA, πq Ð SetupA

and pERR, dataB, πq Ð SetupB; or, if this is not the first round, to have all

parties use the same dataA and dataB used in the previous round, except with

the nonce nS incremented by one. If any server controlled by the challenger

gets ERR � FAIL, the adversary loses.

2. The challenger shuffles all pseudonym public keys belonging to its clients, then

sends this set of keys to the adversary.

110

3. The adversary replies with Y , which must be one of the keys sent in the previous

step. It also sends a message m.

4. The challenger has each of its clients i run pCi,PoK iq Ð CoverCreatepdata, ai,B

except for the client whose pseudonym public key was Y ; that client runs

pCi,PoK iq Ð OwnerCreatepdata, ai, y,B,mq. The challenger sends pCi,PoK iq

for each of its clients to the adversary.

5. The adversary sends the challenger a client ciphertext Ci for each of its adver-

sarial clients.

6. The challenger collects the client ciphertexts into a set C, and has each of its

servers j run pSj,PoK jq Ð ServerCreatepdata, bj,A,Cq. It sends pSj,PoK jq

for each of its servers to the adversary.

The adversary wins the game if the result of ClientVerify or ServerVerify

returns False for any pair pCi,PoK iq or pSj,PoK jq created by the challenger during

the challenge round.

CT-Integrity

A ciphertext scheme has integrity if, when at least N valid client ciphertexts and

M server ciphertexts are honestly combined, the slot owner’s plaintext is faithfully

revealed. Formally, we say that a DC-nets ciphertext scheme has the property CT-

Integrity if no adversary can win at the following CT-Integrity game with more than

negligible probability.

In the CT-Integrity game, the adversary runs a protocol with the challenger.

They run this protocol several times, until the adversary signals that it is ready to

begin the challenge round. The adversary may run the protocol again several times

with the challenger before sending its final message of the challenge round.

111

1. The adversary may choose to have all parties run pERR, dataA, πq Ð SetupA

and pERR, dataB, πq Ð SetupB; or, if this is not the first round, to have all

parties use the same dataA and dataB used in the previous round, except with

the nonce nS incremented by one. If any server controlled by the challenger

gets ERR � FAIL, the adversary loses.

2. The challenger shuffles all pseudonym public keys belonging to its clients, then

sends this set of keys to the adversary.

3. The adversary replies with Y , which is to serve as the slot owner’s pseudonym

public key. Y can be a pseudonym public key owned by one of the challenger’s

clients, one of the adversary’s clients, or any other random piece of data.

4. The adversary sends pdata, aiq to the challenger on behalf of every adversary-

controlled client i. It either sends pm, yq as well on behalf of one of those clients,

or it sends just m.

5. The challenger runs either CoverCreatepdata, ai,Bq or

OwnerCreatepdata, ai, y,B,mq for each client i to get pCi,PoK iq. The chal-

lenger runs OwnerCreate for the client that the adversary specified, or for the

honest client for whom the challenger generated Y . If there is no such client,

the adversary loses.

6. The challenger sends the set of all client ciphertexts C generated in the previous

step to the adversary.

7. The adversary sends pdata, bjq to the challenger on behalf of every adversary-

controlled server j.

8. The challenger runs ServerCreatepdata, bj,A,Cq to get pSj,PoK jq for each

server j.

112

9. The challenger runs RevealpC,Sq, where S is the set of server ciphertexts the

challenger created, to get m1. The challenger sends m1 to the adversary.

The adversary wins the game if, in the challenge round, m � m1 and all private

keys sent by the adversary during the protocol correctly corresponded to the public

keys generated for those users in the Setup protocols.

CT-Soundness

A ciphertext scheme is sound if an honest verifier will, with overwhelming probability,

reject proofs of knowledge for invalid ciphertexts. Formally, we say that a DC-nets

ciphertext scheme has the property CT-Soundness if no adversary can win at the

following CT-Soundness game with more than negligible probability. Note that the

CT-Soundness game is similar to the CT-Completeness game, except that the win

condition is different; the challenger must successfully verify a PoK for an invalid

ciphertext for the adversary to win.

In the CT-Soundness game, the adversary runs a protocol with the challenger.

They run this protocol several times, until the adversary signals that it is ready to

begin the challenge round. The adversary may run the protocol again several times

with the challenger before sending its final message of the challenge round.

1. The adversary may choose to have all parties run pERR, dataA, πq Ð SetupA

and pERR, dataB, πq Ð SetupB; or, if this is not the first round, to have all

parties use the same dataA and dataB used in the previous round, except with

the nonce nS incremented by one. If any server controlled by the challenger

gets ERR � FAIL, the adversary loses.

2. The challenger shuffles all pseudonym public keys belonging to its clients, then

sends this set of keys to the adversary.

113

3. The adversary declares to the challenger which type of message it wants to

send, a client ciphertext or a server ciphertext.

4. If the adversary chose to send a client ciphertext:

(a) The adversary sends Y to the challenger, which is to serve as the slot

owner’s pseudonym public key. Y must be one of the pseudonym public

keys sent by the challenger in the previous step.

(b) The adversary sends pCi,PoK iq to the challenger on behalf of one adversary-

controlled client i.

(c) The challenger runs VER Ð ClientVerifypdata, Ai,B, Ci, Y,PoK iq, and

sends VER to the adversary.

5. If the adversary chose to send a server ciphertext:

(a) The adversary sends Y to the challenger, which is to serve as the slot

owner’s pseudonym public key.

(b) The adversary sends pdata, aiq to the challenger on behalf of every adversary-

controlled client i. It either sends pm, yq as well on behalf of one of those

clients, or it sends just m.

(c) The challenger runs either CoverCreatepdata, ai,Bq or

OwnerCreatepdata, ai, y,B,mq for each client i to get pCi,PoK iq. The

challenger runs OwnerCreate for the client that the adversary specified,

or for the honest client for whom the challenger generated Y . If there is

no such client, the adversary loses.

(d) The challenger sends the set of all ciphertexts C generated in the previous

step to the adversary.

114

(e) The adversary sends pSj,PoK jq to the challenger on behalf of one adversary-

controlled server j.

(f) The challenger runs VER Ð ServerVerifypdata,A, Bj,C, Sj,PoK jq, and

sends VER to the adversary.

The adversary wins the game if, in the challenge round, the result of ClientVerify

or ServerVerify was True and the message Ci or Sj sent by the server in the chal-

lenge round was not a possible output of CoverCreatepdata, ai,Bq or

ServerCreatepdata, bj,A,Cq, respectively, where ai or bj is the appropriate private

key that matches the challenge public key.

CT-Zero-Knowledge

A DC-nets ciphertext scheme is zero-knowledge if a verifier learns nothing from

verifying the proof of knowledge for a well-formed ciphertext besides the fact that it

is well-formed. Formally, we say that a DC-nets ciphertext scheme has the property

CT-Zero-Knowledge if there exists a polynomial-time simulator, as described below,

that produces transcripts such that no adversary can win at the following CT-Zero-

Knowledge distinguish game to distinguish the simulator’s output from actual proofs

of knowledge with more than negligible advantage.

The simulator pPoK ,O1q ÐSimulateOpdata, Ai, Y,B, Ciq must take as input

implementation-specific data, client public key Ai, pseudonym public key Y , the

set of server public keys B, and client ciphertext Ci. It has access to the oracle

O, either a random oracle or an oracle which returns a shared reference string, as

specified by the proof of knowledge system used by the DC-nets construction. The

simulator’s output is a simulated proof of knowledge PoK , and a modified oracle O1.

The proof of knowledge and modification to the oracle together can be viewed as the

115

equivalent to the “transcript” of an interactive zero-knowledge proof of knowledge

session. Our CT-Zero-Knowledge verification game will be won by the adversary

only if the adversary can tell whether it is being run with this simulated “transcript”

or whether it has access to the actual oracle and a genuine proof of knowledge.

In the CT-Zero-Knowledge game, the adversary runs a specific protocol with the

challenger. In this game, the challenger has access to the oracle O, but the adversary

does not. The protocol is as follows:

1. All parties run pERR, dataA, πq Ð SetupA and pERR, dataB, πq Ð SetupB. If

any server controlled by the challenger gets ERR � FAIL, the adversary loses.

2. The challenger shuffles all pseudonym public keys belonging to its clients, then

sends this set of keys to the adversary.

3. The adversary may choose to return to step 1, or to continue.

4. The adversary sends the challenger a number of tuples pY,m, iq. For each tuple,

Y must be one of the keys sent by the challenger in the previous step, or the

adversary loses; m is a message to be sent by the client who owns Y , and i is

the honest client whose ciphertext and proof the adversary wants to see.

5. For each tuple, the challenger computes pCi,PoK iq by running

CoverCreatepdata, ai,Bq for the selected client i if it was not the client for

whom Y was generated, or OwnerCreatepdata, ai, y,B,mq if it was.

6. The challenger chooses a random bit b.

7. If b � 1, the challenger sends pCi,PoK iq to the adversary for each tuple it re-

quested, and gives the adversary O. If b � 0, the challenger runs

SimulateOpdata, Ai, Y,B, Ciq for each tuple to get a simulated proof PoK 1
i

116

and oracle O1, containing the modifications produced by all the simulations. It

then sends pCi,PoK 1
iq to the adversary for each tuple it requested, and gives

the adversary access to O1q.

At the end of the game, the adversary makes a guess b1. The adversary wins the

game if b � b1.

6.3.2 Verifiable Shuffle Properties

Verifiable shuffle properties are tagged “VS-” for verifiable shuffle. These properties

are based on those found in [8]. Note that the messages in our verifiable shuffle will

be pseudonym public keys, not messages to be encrypted with DC-nets ciphertexts,

but we will use the generic term “message” throughout these definitions.

VS-Anonymity

A verifiable shuffle protocol has anonymity if an adversary cannot tell which of two

honest nodes submitted a given message to the shuffle. Formally, we say that a

verifiable shuffle protocol has the property VS-Anonymity if no adversary can win

at the following VS-Anonymity game with more than negligible advantage.

In the VS-Anonymity game, the adversary runs a protocol with the challenger.

They run this protocol several times, until the adversary signals that it is ready to

begin the challenge round. The adversary may run the protocol again several times

with the challenger before sending its final message of the challenge round.

1. The adversary may choose to have all parties run pERR, dataA, πq Ð SetupA

and pERR, dataB, πq Ð SetupB. If any server controlled by the challenger gets

ERR � FAIL, the adversary loses.

117

2. The adversary selects two honest clients, i0 and i1, and two messages m0 and

m1, and sends these to the challenger. It also chooses messages mi for all other

honest clients i, and sends those to the challenger as well.

3. The challenger chooses a random bit b.

4. The adversary and challenger run VShuffle together. The challenger has

each honest server j run ServerVShufflepvj, bj,Bq, and each honest client

i other than i0 and i1 run ClientVShufflepvi,B,miq. The challenger has i0

run ClientVShufflepv0,B,mbq and i1 run ClientVShufflepv1,B,m1�bq.

At the end of the game, the adversary makes a guess b1. The adversary wins the

game if b � b1.

VS-Integrity

A verifiable shuffle protocol has integrity if, at the end of the shuffle, every honest

node either receives every other honest node’s message, or knows that the shuffle did

not complete successfully. Formally, we say that a verifiable shuffle protocol has the

property VS-Integrity if no adversary can win at the following VS-Integrity game

with more than negligible probability.

In the P-Integrity game, the adversary runs a protocol with the challenger. They

run this protocol several times, until the adversary signals that it is ready to begin

the challenge round. The adversary may run the protocol again several times with

the challenger before sending its final message of the challenge round.

1. The adversary may choose to have all parties run pERR, dataA, πq Ð SetupA

and pERR, dataB, πq Ð SetupB; or, if this is not the first round, to have all

parties use the same dataA and dataB used in the previous round, except with

118

the nonce nS incremented by one. If any server controlled by the challenger

gets ERR � FAIL, the adversary loses.

2. The adversary chooses messages mi for all other honest clients i, and sends

them to the challenger.

3. The adversary and challenger run VShuffle together. The challenger has each

honest server j run pERR, rms, πjq ÐServerVShufflepvj, bj,Bq, and each hon-

est client i run pERR, rms, πiq ÐClientVShufflepvi,B,miq.

The adversary wins the game if, in the challenge round, any honest party’s output

from VShuffle has an empty proof set π and does not have a set rms which contains

each honest client’s message, and one message each for all other clients.

6.3.3 Anonymity Protocol Properties

Anonymity protocol properties are tagged “P-” for protocol.

P-Accountability

An anonymity protocol has accountability if an honest node is able to produce a

third-party verifiable proof of at least one dishonest node’s behavior whenever the

protocol fails, and dishonest nodes cannot produce third-party verifiable proofs blam-

ing honest nodes. Formally, we say that a protocol has the property P-Accountability

if no adversary can win at the following P-Accountability game with more than neg-

ligible probability.

In the P-Accountability game, the adversary runs a protocol with the challenger.

They run this protocol several times, until the adversary signals that it is ready to

begin the challenge round. The adversary may run the protocol again several times

with the challenger before sending its final message of the challenge round.

119

1. The adversary may choose to run steps 1 through 4 of Verdict. If any server

controlled by the challenger gets ERR � FAIL, skip to step 4. If this is not

the first round, the adversary may skip these steps and have all parties use

the same dataA and dataB used in the previous round, except with the round

nonce nR incremented by one.

2. The adversary selects plaintext messages mi for each honest client i and sends

them to the challenger.

3. The adversary and challenger run one complete round, with each client i using

mi as its message. The round ends either when the entire schedule of slots has

been completed, or when a server halts.

4. At the end of the round, the adversary may submit a number of blame proofs

to the challenger.

5. The challenger uses ProofVer to attempt to verify all proofs generated by

honest parties and all proofs sent by the adversary.

At the end of the challenge round, the adversary can win in one of three ways: If

ProofVer yielded False for any proof generated by the challenger; if a party controlled

by the challenger halts before the entire schedule is completed, but does not have

access to a blame proof blaming an adversarial party; or if ProofVer yielded True

for any proof blaming an honest party.

P-Anonymity

A protocol maintains slot owner anonymity if an adversary cannot tell which client

is the slot owner (assuming the slot owner is an honest client). Formally, we say

that an anonymity protocol has the property P-Anonymity if no adversary can win

120

at the following P-Anonymity game with more than negligible advantage. Note that

the P-Anonymity game differs from the CT-Anonymity game in that the challenger

and adversary run through the entire protocol, and that the adversary may look at

both ciphertexts and proofs of knowledge.

In the P-Anonymity game, the adversary runs a specific protocol with the chal-

lenger. They run this protocol several times, until the adversary signals that it is

ready to begin the challenge round, during which they run a modified version of the

protocol. Afterwards the adversary may run this protocol several more times before

returning its output. The protocol is as follows:

1. The adversary may choose to run steps 1 through 4 of Verdict. If any server

controlled by the challenger gets ERR � FAIL, the adversary loses. If this is

not the first round, the adversary may skip these steps and have all parties use

the same dataA and dataB used in the previous round, except with the round

nonce nR incremented by one.

2. The adversary selects two honest clients i0 and i1 and two messages m0 and

m1 and sends these to the challenger.

3. The challenger selects a random bit b.

4. The adversary and challenger run one complete round, with client i0 using mb

as its message, and client i1 using message m1�b. The round ends either when

the entire schedule of slots has been completed, or when a server halts.

At the end of the challenge round, the adversary makes a guess b1. The adversary

wins the game if b � b1.

121

P-Integrity

An anonymity protocol has integrity if, when a protocol round finishes, every honest

client either obtains the slot holder’s message or knows that the protocol did not

complete successfully. Formally, we say that an anonymity protocol has the property

P-Integrity if no adversary can win at the following P-Integrity game with more than

negligible probability. (Note that the P-Integrity game differs from the CT-Integrity

game in that the adversary is allowed to produce invalid ciphertexts, as long as this

is not detected.)

In the P-Integrity game, the adversary runs a protocol with the challenger. They

run this protocol several times, until the adversary signals that it is ready to begin

the challenge round. The adversary may run the protocol again several times with

the challenger before sending its final message of the challenge round.

1. The adversary may choose to run steps 1 through 4 of Verdict. If any server

controlled by the challenger gets ERR � FAIL during any of these steps, the

adversary loses. If this is not the first round, the adversary may skip these

steps and have all parties use the same dataA and dataB used in the previous

round, except with the round nonce nR incremented by one.

2. The adversary selects plaintext messages mi for each honest client i and sends

them to the challenger.

3. The adversary and challenger run one complete round, with each client i using

mi as its message. The round ends either when the entire schedule of slots has

been completed, or when a server halts.

The adversary wins the game if, in the challenge round, the output of each honest

client does not contains every message mi for that round and contains no blame

122

proofs.

6.4 Proofs of Protocol Properties to DC-Nets Ci-

phertext Properties

Here are proofs showing that if the protocol has the CT properties, then it will have

the P properties as well.

Terminology

By “valid ciphertext”, we mean any ciphertext in the output space of the Create

methods of the DC-nets ciphertext system, given proper inputs.

That is, a valid ciphertext from non-owner client i would be any output of

CoverCreatepdata, ai,Bq, where data is the appropriate implementation-dependent

data, ai is the private key corresponding to the public key Ai that i shared in SetupA,

and B is the set of server public keys shared during SetupA. If i is the slot owner,

a valid ciphertext is any output of OwnerCreatepdata, ai, y,B,mq, where data, ai,

and B are the same as before; y is the pseudonym private key corresponding ot this

slot’s pseudonym public key, and m can be anything.

A valid ciphertext from server j is any output of ServerCreatepdata, bj,A,Cq,

where data is the appropriate implementation-dependent data, bj is the private key

corresponding to the public key Bj that j shared in SetupA, A is the set of client

public keys shared during SetupA, and C is the set of client ciphertexts in this slot.

123

6.4.1 Proof of P-Accountability

Theorem 3. If Verdict uses a DC-nets ciphertext system with the properties of

CT-Completeness, CT-Integrity, and CT-Soundness, then Verdict has the property

of P-Accountability.

Proof. Recall from section 6.3.3 that there are three cases in which P-Accountability

is compromised:

(i) A party following the protocol has a proof in its output for which ProofVer

returns False

(ii) A party following the protocol halts without having any proof in its output

(iii) An adversary can produce a fraudulent proof blaming an honest party for which

ProofVer returns True

An inspection of the Verdict protocol makes it clear that case ii will not occur.

In every case where a party following the protocol halts, it first adds a proof to its

output. It therefore remains to show that for each failure condition f , ProofVer will

return True if and only if its input proof was constructed by a party following the

protocol honestly. To demonstrate this, we will investigate every failure condition

one by one.

We rely on the unforgeability property of the signature scheme to guarantee that

all messages being used to blame a user were genuinely sent by that user. In the

following examination, we will also rely on the following claim:

� f1 Invalid key proof We rely on the existence of a complete and sound non-

interactive zero-knowledge proof-of-knowledge system for keypairs in the chosen

DC-nets ciphertext system. As long as such a NIZKPoK system exists, by the

124

completeness of that system VerifyKey will always correctly verify an honest

user’s proof as generated by KeyGen, so proofs of this type cannot be forged.

Furthermore, VerifyKey will, except with negligible probability, fail to verify

a proof of a user who does not know the secret key k it purports to know, so

the proof generated by an honest user will be verified by ProofVer.

� f2 Forwarded invalid key As above, valid proofs will be verified by VerifyKey,

and invalid proofs will not. In this case, the forwarding server’s signature on

the message-proof pair certifies its guilt.

� f3 Key equivocation If a party sends two different public keys in SetupA, the

difference will be obvious, so an honest party’s proof will consist of the two

keys. Because all messages are signed using a nonce and step number, only if

a party signs two different keys during steps 2 or 5 of SetupA can this kind of

proof be created. No party honestly following the protocol will do that.

� f4 SetupB failure The verification of this failure condition depends on the

implementation of SetupB in the ciphertext scheme.

� f5 VShuffle failure The verification of this failure condition depends on the

implementation of VShuffle.

� f6 Invalid client ciphertext Due to CT-Completeness, there can be no honestly-

generated input pdata, ai,Bq to CoverCreate or pdata, ai, y,B,mq to

OwnerCreate that will cause the algorithm to return a pair pCi,PoK iq that

will not verify with ClientVerify. If there were any such input, the adver-

sary would have a non-zero probability of winning the CT-Completeness game.

Therefore, a blame proof using the tuple pdata, Ai,B, Ci, Y,PoK iq cannot be

used to blame an honest client, because if an honest client generated it then

125

ClientVerify will return True. By the same token, if ClientVerify returns

False, we can be sure that the input included in the blame proof was actually

generated by a dishonest client, and ClientVerify will return False on it. So

an honest server will reliably be able to construct this kind of proof.

� f7 Forwarded invalid ciphertext As argued above, if ClientVerify returns

False, its input must have been created by a dishonest client. Furthermore,

since ClientVerify is deterministic, if ClientVerify returns False once, it

will always return False on that same input. An honest server following the

protocol should have removed a ciphertext which failed to verify, and a message

from it containing an unverified ciphertext is proof of misbehavior which other

honest parties will recognize. No honest server would have sent such a message,

so an honest server cannot be blamed using this method.

� f8 Client equivocation If a client sends two different valid ciphertexts to

two servers in step 5(a)iv, the difference between the two ciphertexts will be

obvious. Again, the metadata will ensure that a proof of this kind cannot be

forged.

� f9 Invalid server ciphertext Due to CT-Completeness, there can be no

honestly-generated input pdata,A, B,C, S,PoK q to ServerCreate that will

cause the algorithm to return a pair pSj,PoK jq that will not verify with

ServerVerify. This follows precisely the same logic as in the case of an invalid

client ciphertext, above.

� f10 Invalid signature An additional signature is required from each server to

verify the reconstructed message to the clients. All honest servers will, if they

reach this point in the protocol, have the same set of client ciphertexts C and

126

a set of valid server ciphertexts S. All honest servers should therefore recover

the same message m and produce the same signature. If there were a set of

keys that would have allowed different honest servers to recover the different

ciphertexts in step 5(a)xiii of Verdict, then an adversary to the CT-Integrity

game could use those keys to win that game. Therefore, there is at most a

negligible probability that an honest server can be blamed this way. Except

in that unlikely case, proofs of this type will only happen if dishonest servers

create false signatures, which honest servers will all be able to recognize by the

soundness of the signature scheme.

� f11 Forwarded invalid signature Any server following the protocol will not

forward invalid signatures from other servers, so this type of proof can only be

used to blame dishonest servers. Honest clients will always be able to construct

this kind of proof as long as the signature scheme is complete and sound.

We have shown how, for each failure which can halt the Verdict protocol, an

honest node can generate third-party verifiable proof of misbehavior, and that these

proofs cannot be used to blame honest parties. Therefore, the protocol has the

property of P-Accountability.

6.4.2 Proof of P-Anonymity

Theorem 4. If Verdict uses a DC-nets ciphertext system with the properties of

CT-Anonymity and CT-Zero-Knowledge, and a verifiable shuffle VShuffle with VS-

Anonymity, then Verdict has the property of P-Anonymity.

Proof. We will use a hybrid argument to show that the advantage of adversary A in

the P-Anonymity game is negligible. The strategy we are using is to replace each

step of the protocol with an ideal or simulated version, one at a time, in each step

127

proving that the adversary’s output distribution will be at most negligibly different

from before. Finally, we will end with a game in which we will directly prove that

the adversary’s advantage is negligible.

� Game 0 is the P-Anonymity game.

� Game 1 is modified from game 0 in that the challenger swaps the inputs of the

two challenge clients to ClientVShuffle, having challenge client 0 submit Y1

as its message, and challenge client 1 submit Y0 as its message.

� Game 2 is modified from Game 1 in that the entire VShuffle protocol is re-

placed with a random permutation performed by the challenger.

� Game 3 is modified from Game 2 in that the all honest clients use simulated

proofs of knowledge rather than real ones.

We will now use a series of lemmas to show that the output distribution varies

no more than negligibly from one game to the next.

Lemma 5. The probability that the adversary A wins Game 0 differs from the prob-

ability that A wins Game 1 by no more than a negligible amount.

Proof. Suppose the opposite, that A’s output distribution differs between Games 0

and 1 by a non-negligible amount. Then we can construct an adversary B for the VS-

Anonymity game which will win with more than negligible advantage, contradicting

the assumption that VShuffle offers VS-Anonymity. B will use the A as an oracle,

running Game 0 with it and acting as the challenger.

B would have two honest clients to distinguish between in the P-Anonymity

game, i0 and i1. So B would choose two corresponding honest users i0 and i1 in its

VS-Anonymity game, and use those two clients’ pseudonym public keys, Y0 and Y1,

128

as its challenge messages. In the shuffle step, B would transmit all messages from

the VS-Anonymity challenger to A and vice versa. It would then follow the protocol

to completion with A. B’s output in the VS-Anonymity game would be the same as

A’s output.

During the shuffle step, the VS-Anonymity challenger may have had i0 submit

PK0 and i1 submit PK1, or it may have had i0 submit PK1 and i1 submit PK0. If we

fix a challenge bit in B’s game with A, we can see that B was playing Game 0 with A

in the former case, and Game 1 in the latter case. Since B is just copying A’s output,

any non-negligible difference in output distribution between Game 0 and Game 1

would mean that B also has a non-negligible advantage distinguishing between the

two cases in the VS-Anonymity game. This would contradict our assumption that

the verifiable shuffle in fact has anonymity. Therefore, there can be no negligible

difference in output distribution between Game 0 and Game 1.

Lemma 6. The probability that the adversary A wins Game 1 differs from the prob-

ability that A wins Game 2 by no more than a negligible amount.

Proof. Game 2 has the same output distribution as Game 0 with 50% probability,

and the same output distribution as Game 1 with 50% probability. By the preceding

lemma, these two output distributions are negligibly close to each other. Therefore,

Game 2’s output distribution is also negligibly close to that of Game 1.

Lemma 7. The probability that the adversary A wins Game 2 differs from the prob-

ability that A wins Game 3 by no more than a negligible amount.

Proof. Suppose the opposite, that A’s output distribution differs between Games

2 and 3 by a non-negligible amount. Then we can construct an adversary B for

the CT-Zero-Knowledge game which will win with more than negligible advantage,

contradicting the assumption that the ciphertext system offers CT-Zero-Knowledge.

129

B will use A as an oracle, acting as the challenger in the P-Anonymity game, except

replacing the VShuffle protocol with a permutation as in Game 2. The operation

of B would then be as follows:

1. B transmits messages between its own challenger and A without modification

in order to complete the first step of the P-Anonymity game, repeating step 1

of the CT-Zero-Knowledge game as necessary to provide responses.

2. B uses the clients and messages that A chooses in step 2 of the P-Anonymity

game to generate request tuples in step 4 of the CT-Zero-Knowledge game. It

generates one set of tuples for each of the honest clients’ public pseudonym keys.

In other words, B requests from the CT-Zero-Knowledge challenger enough

ciphertext/proof pairs for its clients to be able to participate in one complete

round of the P-Anonymity game.

3. The CT-Zero-Knowledge challenger will, in step 7, return the requested pairs

pC,PoK q. The proofs may be real or simulated. The challenger also gives B

access to an oracle O which may have been modified; B gives A access to the

same oracle.

4. In the P-Anonymity game, B fixes a challenge bit b, and continues running the

game with A. It has each of its clients i send the appropriate pair pCi,PoK iq

in each slot.

5. If A wins its game, B outputs 1, signifying real proofs of knowledge. Otherwise,

B outputs 0, signifying simulated proofs of knowledge.

We can see that B was playing Game 2 if it had actual proofs of knowledge, and

Game 3 if it had simulated proofs. If we fix a challenge bit in B’s game with A, B

is either always copying A’s output or always returning the opposite of A’s output;

130

in either case, any non-negligible difference in output distribution between Game 2

and Game 3 would mean that B also has a non-negligible distinguishing between

real and simulated proofs in the CT-Zero-Knowledge game. This would contradict

our assumption that the DC-nets ciphertext system in fact has CT-Zero-Knowledge.

Therefore, there can be no negligible difference in output distribution between Game

2 and Game 3.

Lemma 8. If the DC-nets ciphertext system has CT-Anonymity, A’s advantage in

winning Game 3 is negligible.

Proof. Suppose the opposite, that A’s advantage in Game 3 is non-negligible. Then

we can construct an adversary B for the CT-Anonymity game which will win with

more than negligible advantage, contradicting the assumption that the ciphertext

system offers CT-Anonymity. B will use A as an oracle, acting as the challenger in

the P-Anonymity game, except replacing the VShuffle protocol with a permutation

as in Game 2 and replacing all proofs of knowledge with simulations as in Game 3.

The operation of B would then be as follows:

1. B transmits messages between its own challenger and A without modification

in order to complete the first step of the P-Anonymity game up to the part

where VShuffle would take place.

2. B runs the CT-Anonymity protocol through step 4 in order to get pseudonym

public keys and one pair of ciphertexts for the challenge clients.

3. B permutes the pseudonym public keys randomly, and sends the permuted list

to A. It records the slots belonging to the two challenge clients, but it does

not know which slot goes with which client.

131

4. B runs the CT-Anonymity protocol again through step 4, until it gets a pair of

ciphertexts corresponding to the other challenge client’s slot. (In other words,

it repeats the protocol until the two pseudonym public keys returned in step 4

are in the other order.)

5. Now, B has learned from the CT-Anonymity challenger two pairs of client

ciphertexts, Cb
0, C1�b

0 , Cb
1, and C1�b

1 , and two pseudonym public keys, Yb and

Y1�b, where Cb
i is client i’s ciphertext in the slot where Yb is pseudonym public

key of the slot owner. b is the challenge bit in the CT-Anonymity game, which

B does not know. So B temporarily presumes that b � 0. It randomly chooses

its own challenge bit b̄ for its game with A.

6. B continues running the P-Anonymity game with A, having its challenge clients

send the appropriate ciphertexts in step 5(a)iv. For example, when ib is the

slot holder, client i0 sends ciphertext Cb
0 if B chose b̄ � 0, or ciphertext Cb

1 if

it chose b̄ � 1. It simulates proofs of knowledge as in Game 3.

7. At the end of the game, if A wins, B returns 0. If A loses, B returns 1.

If B’s presumption that b � 0 is correct, A and B are exactly playing Game 3

with challenge bit b̄. If B’s presumption was incorrect, A and B are playing Game 3

except that the ciphertexts submitted by i0 and i1 have been switched twice. In other

words, A and B were playing Game 3, but with challenge bit 1� b̄, and A’s output

distribution is exactly reversed, so there is now a greater-than-negligible chance that

A loses the game. So, by returning 0 when A wins and 1 when A loses, in either case

B has a greater-than-negligible chance of winning the CT-Anonymity game. This

contradicts our CT-Anonymity assumption, so no such A can exist.

We have shown that, as long as CT-Zero-Knowledge and VS-Anonymity hold,

132

any adversary A has only a negligible advantage over any CT-Anonymity adversary,

and by assumption, no CT-Anonymity adversary has more than a negligible advan-

tage itself. Therefore, no adversary in the P-Anonymity game has a non-negligible

advantage.

6.4.3 Proof of P-Integrity

Theorem 5. If Verdict uses a DC-nets ciphertext system with the properties of

CT-Soundness and CT-Integrity, then Verdict has the property of P-Integrity.

Proof. For P-Integrity to be violated, there must be a non-negligible chance that, at

the end of a round, the plaintext messages revealed are not the ones submitted by

the clients and yet no honest parties have any proofs of misbehavior. Assume there is

an adversary A which can win the P-Integrity game with non-negligible probability.

There are two cases: A wins by having its clients and servers send only valid

ciphertexts in all steps, or A wins by having one of its clients or servers send an

invalid ciphertext at some point. We will argue that the existence of A violates

CT-Integrity in the former case and CT-Soundness in the latter case.

Consider the restricted case of the P-Integrity game where A sends only valid

ciphertexts. It is clear that each round of this restricted P-Integrity game is identical

to a round of the CT-Integrity game, except that A is allowed to choose which valid

ciphertext will be sent for each of its clients and servers. But if there is any ciphertext

which could cause the message not to be reconstructed, then the adversary to the

CT-Integrity game has a positive probability of winning (when the challenger selects

this ciphertext). This would violate the assumption that the DC-nets ciphertext

system provides CT-Integrity.

In order to win the P-Integrity game with non-negligible probability, A must

133

therefore send an invalid ciphertext at some step. However, A loses if a proof of its

misbehavior is created. As demonstrated in the proof of P-Accountability above, if

an invalid ciphertext is detected, a proof will be created. So all it remains to show

is that invalid ciphertexts will be detected with overwhelming probability.

This we can do by reduction to CT-Soundness. Any adversary A that can pro-

duce a ciphertext/proof pair which verifies with ClientVerify, but which does not

actually have a valid ciphertext, could use that same pair to win at the CT-Soundness

game. Therefore, as long as the ciphertext system provides CT-Soundness, no such

A can exist.

Chapter 7

Conclusions

7.1 Openness in Lawful Surveillance

In Chapter 2, we proposed a system of principles that might govern lawful surveil-

lance. The principles are a first stab at an appropriate foundation for privacy-

preserving, accountable surveillance. We hope that they contribute to a new and

growing dialog about how cryptographic technology can allow surveillance and pri-

vacy to co-exist, and that dialogue will stimulate further discussion and continue to

be refined and revised by the relevant research communities.

One remaining high-level issue is the tension between the openness principle pro-

posed in Section 2.1 – requiring that processes handling “bulk” electronic surveillance

data be open – and the traditional desire of intelligence agencies to protect “sources

and methods,” especially from the knowledge of criminals or terrorists being investi-

gated. We emphasize that satisfying our openness principle by no means demands

exposing all intelligence methods – only those few involved in implementing the “pri-

vacy firewall” in Figure 2.1b. All the details of any particular investigation – who is

being investigated, when, the details of a particular warrant such as which metadata

134

135

sets are to be intersected, how those sets were chosen, and how the decrypted results

are processed only after being lawfully queried through the “privacy firewall” – could

still rely on closely guarded intelligence methods.

A generic open process such as the set-intersection primitive tends to be usable

in many different, specific ways – as in the contrasting High Country Bandits [1]

and NSA CO-TRAVELER [49] examples. Had CO-TRAVELER not been disclosed

by Snowden, for example, then this specific method of using set intersection to find

unknown associates of known targets as they travel might well remain a closely

guarded secret, even if the basic intersection-warrant mechanism were well-known,

openly debated, and instituted in public policy.

Finally, a basic tenet of democratic society and the rule of law is that it is better

to risk a few criminals’ going uncaught, because they know and understand pub-

lic law-enforcement processes “too well,” than to risk that secret law-enforcement

processes, however well intentioned at the outset, might become unaccountable and

evolve into “star-chamber” tools of political repression and authoritarianism. This

democratic principle of openness must be carried into the electronic world; with

the right tools, the principle need not tie the hands of legitimate, accountable law-

enforcement processes.

7.2 Privacy-Presering Set Intersection

From the experimental results in Section 3.2, we conclude that privacy-preserving,

accountable set intersection may indeed be achievable at scale. This in turn leads us

to be optimistic about the feasibility of the broader goal articulated in Chapter 2:

maintaining constitutional rights in powerful, evolving, digital-communication sys-

tems while simultaneously equipping law-enforcement and intelligence agencies to

136

use these systems to combat and prevent crime and terrorism. There is a great deal

of further work to be done along these lines, and we briefly describe a portion of it

here.

7.2.1 Enhancements and Generalizations

The privacy-preserving set intersection protocol that we described in Section 3.1.2

leaks the sizes of pairwise intersections (but not the contents of those intersections)

in the case of three participants; more generally, it leaks the sizes of the j-wise

intersections, where 1 j k, and k is the number of participants. As explained

in Sections 3.1 and 3.2, this is not a show stopper on privacy or efficiency grounds,

but it leaves open the question of whether there is a similarly efficient protocol with

the same accountability properties that reveals no information except the k-wise

intersection.

In principle, one could achieve this ideal level of privacy by starting with a gen-

eral secure, multiparty computation (SMPC) protocol and augmenting it with the

appropriate accountability features. How well such an approach would scale is an

open question.

Starting with the Fairplay platform for secure, two-party computation [41], there

has been much work on general-purpose SMPC platforms. The goal of this research

is to provide languages, compilers, run-time environments, and other platform el-

ements that enable programmers who are not experts in cryptography or SMPC

to write ordinary code and transform it into executable, multiparty protocols with

the desired security properties. There are now many such platforms whose perfor-

mance and usability are improving (see, e.g., [60]). One could, in principle, achieve

the goals put forth in Section 3.1 simply by writing a set-intersection program and

using, say, Sharemind [7] to translate it into a privacy-preserving, distributed set-

137

intersection protocol (rather than implementing privacy-preserving set intersection

“from scratch” as in Section 3.2). Open questions include whether the resulting

protocol would be efficient enough to use at scale and how to make it accountable.

7.3 Privacy-Preserving Contact Chaining

For contact chaining, it may be possible to speed up our protocols by using elliptic-

curve cryptography instead of RSA. Additionally, our assumption that all parties

behave in an honest-but-curious manner might be weakened. By using standard

zero-knowledge proof techniques, it might be possible to create versions of the proto-

cols in Section 4.1 that are secure against, for example, a rogue agent’s maliciously

modifying telecom-supplied data in order to falsely incriminate a victim. It may also

be interesting to generalize the differential-privacy approach of Kearns et al. [38] so

that it applies to indirect contacts as well as direct contacts.

Of course, intersection of cell-tower dumps and contact-chaining are just two of

many computations that could be of use to law-enforcement and intelligence agencies.

It would be interesting to identify other such computations and to apply to them the

principles and computational approaches that we have explored.

Another problem of potential interest is the retrieval of targeted users’ postings

on Facebook and other social networks, including those that are shared only with

a small subset of the targeted user’s “friends.” Accountable surveillance of social-

network postings may present novel protocol-design challenges, because it deals with

one-to-many communication, whereas previous work in the area dealt with pairwise

communication.

138

7.4 PeerFlow

Tor’s security is vulnerable to an adversary running large relays, and we show that

under the Tor’s current TorFlow bandwidth-measurement system and the proposed

EigenSpeed system an adversary can make small relays appear large, drastically

reducing the cost of attack. We present PeerFlow, show how it limits the ability of

an adversary to fool Tor about the bandwidth of his relays, and demonstrate that

its performance is comparable to Tor’s currently. Possible future improvements to

PeerFlow include improving scalability and further improving security to reduce the

adversary’s ability to inflate his relays size even more.

7.5 Final Thoughts

Government authorities need wait for no “magic bullet” breakthrough in crypto-

graphic technology, nor use intentionally weakened encryption schemes. As we have

shown, privacy-preserving surveillance would allow them to legally acquire action-

able and relevant information about the targets of their investigation and still protect

the privacy of innocent people. From at least a technological perspective, privacy-

preserving surveillance could start being deployed immediately.

Similarly, internet users can protect their identity online with Tor, which is al-

ready available for download. Tor is under continuous development, and we hope

that our PeerFlow system will soon replace the exploitable and insecure TorFlow

as a tool for bandwidth measurement. We also hope that our proof of accountable

anonymity for Verdict spurs further research and development into DC-nets-based

anonymity, which ideally could be deployed alongside Tor as an alternative for people

with an absolute need for anonymous communication.

By showing how the bulk surveillance process can be opened up to privacy-

139

preserving mechanisms, and how anonymous communication systems can be made

secure in both practical and theoretical environments, we have demonstrated that

there is no need to accept the total loss of control over their own data that most users

seem to face. Both governmental authorities and ordinary people can take steps to

adopt these technologies instead, and make private information truly private once

again.

Bibliography

[1] Nate Anderson. How “cell tower dumps” caught the High Country Bandits—and

why it matters. arstechnica, August 29, 2013.

[2] Bandwidth scanner spec. https://gitweb.torproject.org/torflow.git/

blob plain/HEAD:/NetworkScanners/BwAuthority/README.spec.txt.

[3] Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and

Guillaume Poupard. Practical multi-candidate election system. In Proc. of ACM

Symposium on Principles of Distributed Computing, 2001.

[4] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas

Sicker. Low-resource routing attacks against Tor. In Proc. of ACM Workshop

on Privacy in the Electronic Society, 2007.

[5] Meredith A. Bieber. Meeting the statute or beating it: Using John Doe indict-

ments based on DNA to meet the statute of limitations. University of Pennsyl-

vania Law Review, 150(3):1079–1098, 2002.

[6] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for Tor

Hidden Services: Detection, measurement, deanonymization. In Proc. of IEEE

Symposium on Security and Privacy, 2013.

140

http://arstechnica.com/tech-policy/2013/08/how-cell-tower-dumps-caught-the-high-country-bandits-and-why-it-matters/
http://arstechnica.com/tech-policy/2013/08/how-cell-tower-dumps-caught-the-high-country-bandits-and-why-it-matters/
https://gitweb.torproject.org/torflow.git/blob_plain/HEAD:/NetworkScanners/BwAuthority/README.spec.txt
https://gitweb.torproject.org/torflow.git/blob_plain/HEAD:/NetworkScanners/BwAuthority/README.spec.txt

141

[7] Dan Bogdanov. Sharemind: programmable secure computations with practical

applications. PhD thesis, University of Tartu, 2013.

[8] Justin Brickell and Vitaly Shmatikov. Efficient anonymity-preserving data col-

lection. In Proc. of ACM SIGKDD Conference on Knowledge Discovery and

Data Mining, 2006.

[9] Claude Castelluccia, Mohamed-Ali Kaafar, and Minh-Dung Tran. Betrayed by

your ads! reconstructing user profiles from targeted ads. In Proc. of Privacy

Enhancing Technologies Symposium, 2014.

[10] David Chaum. The dining cryptographers problem: Unconditional sender and

recipient untraceability. Journal of Cryptology, pages 65–75, January 1988.

[11] CollecTor. https://collector.torproject.org/.

[12] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Accountable anonymous group

messaging. In Proc. of ACM Conference on Computer and Communications

Security, October 2010.

[13] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. Proactively

accountable anonymous messaging in Verdict. In Proc. of USENIX Security,

August 2013.

[14] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of par-

tial knowledge and simplified design of witness hiding protocols. In Proc. of

CRYPTO, 1994.

[15] Tim Cushing. NSA Appears To Be Chaining Calls Using Phone Numbers One

Hop Out As New Originating Selectors. Techdirt, July 3, 2014.

https://collector.torproject.org/
https://www.techdirt.com/articles/20140629/16130227727/nsa-appears-to-be-chaining-calls-using-phone-numbers-one-hop-out-as-new-originating-selectors.shtml
https://www.techdirt.com/articles/20140629/16130227727/nsa-appears-to-be-chaining-calls-using-phone-numbers-one-hop-out-as-new-originating-selectors.shtml

142

[16] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some ap-

plications of Paillier’s probabilistic public-key system. In Proc. of IACR Inter-

national Conference on Practice and Theory of Public-Key Cryptography, 2001.

[17] Ivan Damg̊ard and Mads Jurik. A length-flexible threshold cryptosystem with

applications. In Proc. of Australasian Conference on Information Security and

Privacy, 2003.

[18] Ryan Devereaux, Glenn Greenwald, and Laura Poitras. Data Pirates of the

Caribbean: The NSA Is Recording Every Cell Phone Call in the Bahamas. The

Intercept, May 20, 2014.

[19] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. In Proc. of USENIX Security, 2004.

[20] Cynthia Dwork. Differential privacy. In Proc. of International Colloquium on

Automata, Languages and Programming, 2006.

[21] Taher ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,

1985.

[22] Nathan Evans, Roger Dingledine, and Christian Grothoff. A practical congestion

attack on Tor using long paths. In Proc. of USENIX Security, 2009.

[23] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing decryp-

tion in the context of voting or lotteries. In Proc. of Financial Cryptography,

2000.

[24] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private match-

ing and set intersection. In Proc. of EUROCRYPT, 2004.

https://firstlook.org/theintercept/article/2014/05/19/data-pirates-caribbean-nsa-recording-every-cell-phone-call-bahamas/
https://firstlook.org/theintercept/article/2014/05/19/data-pirates-caribbean-nsa-recording-every-cell-phone-call-bahamas/

143

[25] Philippe Golle and Ari Juels. Dining cryptographers revisited. Proc. of EURO-

CRYPT, May 2004.

[26] Glenn Greenwald. NSA collecting phone records of millions of Verizon customers

daily. The Guardian, June 6, 2013.

[27] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview: Prac-

tical accountability for distributed systems. In Proc. of ACM Symposium on

Operating Systems Principles, 2007.

[28] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. How much

anonymity does network latency leak? ACM Transactions on Information and

System Security, 13(2), February 2010.

[29] Human Rights Council. The right to privacy in the digital age: Report of the

Office of the United Nations High Commissioner for Human Rights, June 2014.

[30] Tom N. Jagatic, Nathaniel A. Johnson, Markus Jakobsson, and Filippo Menczer.

Social phishing. Communications of the ACM, 50(10):94–100, October 2007.

[31] Rob Jansen, Kevin Bauer, Nicholas Hopper, and Roger Dingledine. Method-

ically modeling the Tor network. In Proc. of USENIX Workshop on Cyber

Security Experimentation and Test, 2012.

[32] Rob Jansen, John Geddes, Chris Wacek, Micah Sherr, and Paul Syverson. Never

been KIST: Tor’s congestion management blossoms with kernel-informed socket

transport. In Proc. of USENIX Security, 2014.

[33] Rob Jansen and Nicholas Hopper. Shadow: Running Tor in a box for accurate

and efficient experimentation. In Proc. of ISOC Network and Distributed System

Security Symposium, 2012.

http://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order/
http://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order/
http://www.ohchr.org/EN/HRBodies/HRC/RegularSessions/Session27/Documents/A.HRC.27.37_en.pdf
http://www.ohchr.org/EN/HRBodies/HRC/RegularSessions/Session27/Documents/A.HRC.27.37_en.pdf

144

[34] Rob Jansen, Aaron Johnson, and Paul Syverson. LIRA: Lightweight incentivized

routing for anonymity. In Proc. of ISOC Network and Distributed System Secu-

rity Symposium, 2013.

[35] Rob Jansen, Andrew Miller, Paul Syverson, and Bryan Ford. From onions to

shallots: Rewarding Tor relays with TEARS. In Proc. of Workshop on Hot

Topics in Privacy Enhancing Technologies, 2014.

[36] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson.

Users get routed: Traffic correlation on Tor by realistic adversaries. In Proc. of

ACM Conference on Computer and Communications Security, 2013.

[37] Ghassan Karame, David Gubler, and Srdjan Capkun. On the security of bottle-

neck bandwidth estimation techniques. In Proc. of EAI International Conference

on Security and Privacy in Communication Networks, 2009.

[38] Michael Kearns, Aaron Roth, Zhiwei Steven Wu, and Grigory Yaroslavtsev.

Private algorithms for the protected in social network search. Proceedings of the

National Academy of Sciences, 113(4):913–918, 2016.

[39] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In

Proc. of CRYPTO, 2005.

[40] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, June 2014.

[41] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay – a secure

two-party computation system. In Proc. of USENIX Security, August 2004.

[42] mobiThinking. Global mobile statistics 2014 Part A: Mobile subscribers; hand-

set market share; mobile operators. mobiForge, May 16, 2014.

http://snap.stanford.edu/data
https://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-market-share-mobile-operators#topmnos
https://mobiforge.com/research-analysis/global-mobile-statistics-2014-part-a-mobile-subscribers-handset-market-share-mobile-operators#topmnos

145

[43] Mike Perry. Torflow: Tor network analysis. In Proc. of Workshop on Hot Topics

in Privacy Enhancing Technologies, 2009.

[44] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for comput-

ing logarithms over GF(p) and its cryptographic significance (corresp.). IEEE

Transactions on Information Theory, 24(1):106–110, 1978.

[45] Aaron Segal, Bryan Ford, and Joan Feigenbaum. Catching bandits and only

bandits: Privacy-preserving intersection warrants for lawful surveillance. In 4th

USENIX Workshop on Free and Open Communications on the Internet (FOCI

14), San Diego, CA, August 2014. USENIX Association.

[46] Robin Snader. Path Selection for Performance- and Security-Improved Onion

Routing. PhD thesis, U. of I. at Urbana-Champaign, 2009.

[47] Robin Snader and Nikita Borisov. Eigenspeed: Secure peer-to-peer bandwidth

evaluation. In Proc. of International Workshop on Peer-to-Peer Systems, 2009.

[48] Robin Snader and Nikita Borisov. Improving security and performance in the

Tor network through tunable path selection. IEEE Transactions on Dependable

and Secure Computing, 8(5):728–741, September 2011.

[49] Ashkan Soltani and Barton Gellman. New documents show how the NSA infers

relationships based on mobile location data. The Washington Post, Decem-

ber 10, 2013.

[50] R. Suselbeck, G. Schiele, P. Komarnicki, and C. Becker. Efficient bandwidth

estimation for peer-to-peer systems. In Proc. of IEEE International Conference

on Peer-to-Peer Computing, 2011.

http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/10/new-documents-show-how-the-nsa-infers-relationships-based-on-mobile-location-data/
http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/10/new-documents-show-how-the-nsa-infers-relationships-based-on-mobile-location-data/

146

[51] Fabrice Thill. Hidden Service Tracking Detection and Bandwidth Cheating in

Tor Anonymity Network. PhD thesis, Univ. Luxembourg, 2014.

[52] Tor directory protocol, version 3. https://gitweb.torproject.org/

torspec.git?a�blob plain;hb�HEAD;f�dir-spec.txt.

[53] Tor metrics. https://metrics.torproject.org/.

[54] Yiannis Tsiounis and Moti Yung. On the security of ElGamal based encryption.

In Public Key Cryptography, volume 1431 of Lecture Notes in Computer Science,

pages 117–134. Springer, 1998.

[55] Jaideep Vaidya and Chris Clifton. Secure set intersection cardinality with appli-

cation to association rule mining. Journal of Computer Security, 13(4):593–622,

2005.

[56] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.

Effective attacks and provable defenses for website fingerprinting. In Proc. of

USENIX Security, 2014.

[57] Tao Wang and Ian Goldberg. Improved website fingerprinting on Tor. In Proc.

of ACM Workshop on Privacy in the Electronic Society, 2013.

[58] Philipp Winter, Richard Kwer, Martin Mulazzani, Markus Huber, Sebastian

Schrittwieser, Stefan Lindskog, and Edgar Weippl. Spoiled onions: Exposing

malicious Tor exit relays. In Proc. of Privacy Enhancing Technologies Sympo-

sium, 2014.

[59] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields. The Pre-

decessor Attack: An Analysis of a Threat to Anonymous Communications Sys-

https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=dir-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=dir-spec.txt
https://metrics.torproject.org/

147

tems. ACM Transactions on Information and System Security, 4(7):489–522,

November 2004.

[60] Yihua Zhang, Aaron Steele, and Marina Blanton. Picco: A general-purpose

compiler for private distributed computation. In Proc. of ACM Conference on

Computer and Communications Security, 2013.

	List of Figures
	List of Tables
	Dedication
	Acknowledgements
	Introduction
	Outline of this Thesis

	Privacy-Preserving Surveillance and Openness Principle
	Open Processes for Law Enforcement
	Mass Surveillance
	Case Study: Intersection Warrants Using Cell-Tower Dumps

	Privacy-Preserving Set Intersection
	Lawful Intersection Attacks
	Principals
	Lawful Set-Intersection Protocol
	Protocol Properties

	Implementation and Evaluation
	Prototype Implementation
	Query Efficiency

	Privacy-Preserving Contact Chaining
	Lawful Contact Chaining
	Protocols For Privacy-Preserving Contact Chaining
	Inputs and Parties to the Protocol
	Security Assumptions
	Desired Outputs and Privacy Properties
	Ownership-Revealing Lawful Contact-Chaining Protocol
	Ownership-Hiding Lawful Contact-Chaining Protocol

	Discussion of Lawful Contact-Chaining
	Correctness of Output
	Privacy
	Hiding Information From Telecoms

	Performance of Privacy-Preserving Contact Chaining Protocol
	Java Implementation
	Experimental Setup
	Results

	Peerflow: Secure Load Balancing in Tor
	Relay Measurement with TorFlow
	Background and Related Work
	Attacks on TorFlow
	Attacks on EigenSpeed
	PeerFlow
	Measuring total traffic of a relay
	Measuring available bandwidth
	Preserving link privacy with noise
	Measurement periods
	Load balancing using measurements
	Updating voting weights
	Bootstrapping new relays

	Security analysis
	Weights in a single voting-weight period
	Weights across voting periods

	Load-Balancing Analysis
	Experimentation Setup
	Network Performance
	Client Performance
	Consensus Weight Errors

	Speed and Efficiency Analysis
	Speed
	Efficiency

	Enhanced PeerFlow
	Encrypted Measurement Aggregation
	Example Threshold Homomorphic Tally Schemes

	Proofs of Theorems

	Proof of Security of Verdict
	Introduction to Verdict
	The Verdict Protocol
	Assumptions and Architecture
	Setup Protocols
	Verifiable Shuffles
	DC-nets Ciphertext Systems
	Verdict
	Blaming and Proof Verification

	Formal Definitions of Properties
	DC-Nets Ciphertext Scheme Properties
	Verifiable Shuffle Properties
	Anonymity Protocol Properties

	Proofs of Protocol Properties to DC-Nets Ciphertext Properties
	Proof of P-Accountability
	Proof of P-Anonymity
	Proof of P-Integrity

	Conclusions
	Openness in Lawful Surveillance
	Privacy-Presering Set Intersection
	Enhancements and Generalizations

	Privacy-Preserving Contact Chaining
	PeerFlow
	Final Thoughts

	Bibliography

