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We investigate multicast cost sharing from both computational and economic perspectives. Recent
work in economics leads to the consideration of two mechanisms: marginal cost (MC), which is efficient and
strategyproof, and Shapley value (SH), which is budget-balanced and group-strategyproof. Subsequent work
in computer science shows that the MC mechanism can be computed with only two modest-sized messages
per link of the multicast tree but that computing the SH mechanism for p potential receivers can require
Ω(p) bits of communication per link. We extend these results in two directions. First, we give a group-
strategyproof mechanism that exhibits a tradeoff between the other properties of SH: It can be computed
with exponentially lower worst-case communication than the SH algorithm, but it might fail to achieve
exact budget balance (albeit by a bounded amount). Second, we completely characterize the groups that
can strategize successfully against the MC mechanism.
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1. INTRODUCTION

Despite their prominent role in some of the more applied areas of computer science, incentives
have rarely been an important consideration in traditional algorithm design where, typically, users
are assumed either to be obedient (i.e., to follow the prescribed algorithm) or to be adversaries who
“play against” each other. In contrast, the strategic users in game theory are neither obedient nor
adversarial. Although one cannot assume that strategic users will follow the prescribed algorithm,
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FIG. 1 A multicast cost-sharing problem.

one can assume that they will respond to incentives. Thus, one need not design algorithms that
achieve correct results in the face of adversarial behavior on the part of some users, but one does
need algorithms that work correctly in the presence of predictably selfish behavior. This type of
“correctness” is a primary goal of economic mechanism design, but standard notions of algorithmic
efficiency are not.
In short, the economics literature traditionally stressed incentives and downplayed computational

complexity, and the theoretical computer science literature traditionally did the opposite. The
emergence of the Internet as a standard platform for distributed computation has changed this state
of affairs. In particular, the work of Nisan and Ronen (2001) inspired the design of algorithms for a
range of problems, including scheduling, load balancing, shortest paths, and combinatorial auctions,
that satisfy both the traditional economic definitions of incentive compatibility and the traditional
computer-science definitions of efficiency.
One of the problems that has been studied is multicast cost sharing, and we continue the study

here. Multicast routing is a technique for transmitting a packet from a single source to multiple
receivers without wasting network bandwidth. To achieve transmission efficiency, multicast routing
constructs a directed tree that connects the source to all the receivers and sends only one copy of
the packet over each link of the directed tree. When a packet reaches a branch point in the tree,
it is duplicated and a copy is sent over each downstream link. Multicasting large amounts of data
to large groups of receivers is likely to incur significant costs, and these costs need to be covered by
payments collected from the receivers. However, receivers cannot be charged more than what they
are willing to pay, and the transmission costs of shared network links cannot be attributed to any
single receiver. Thus, one must design cost-sharing mechanisms to determine which users receive
the transmission and how much they are charged.
Figure 1 depicts an instance of the multicast cost-sharing problem. There are six potential

receivers, each located at a particular node of the multicast tree and each having a certain utility
value for receiving the multicast transmission. For example, the notation u1 = 3 beside the leftmost
node on the second level from the top means that potential receiver number 1 is located at this
node and is willing to pay at most 3 to receive the transmission. The numerical values on the links
represent the costs of sending the transmission over those links. The source of the transmission is
the root node at the top level of the tree. If R ⊆ {1, . . . , 6} is the set of actual receivers, then the
transmission will be sent only to the nodes of the tree at which members of R are located. The total
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cost of this transmission will be the sum of the costs of the links in the smallest subtree that contains
these nodes and the root. For example, if R = {2, 3, 4}, then the total cost of the transmission would
be 15. The role of a cost-sharing mechanism is to determine, for each instance, what the receiver-set
R should be and how much each member of R should be charged.
The multicast cost-sharing problem has been studied extensively in recent years, first from a

networking perspective (Herzog et al., 1997), then from a mechanism-design perspective (Moulin
and Shenker, 2001), and most recently from an algorithmic perspective (Feigenbaum et al., 2001;
Feigenbaum et al., 2002; Adler and Rubenstein, 2002; Jain and Vazirani, 2001; Fiat et al., 2002).
Computationally efficient cost-sharing algorithms are desirable because the computational resources
of the multicast infrastructure (i.e., link bandwidth and nodes’ memory and CPU cycles) must be
used to compute them; the raison d’etre of this infrastructure is to deliver content efficiently, not
to do cost-sharing, and hence the latter must not consume enough resources to interfere with the
former. All of the cost-sharing mechanisms in the existing literature have two basic properties:
No Positive Transfers (NPT), which means that the mechanism cannot pay receivers to accept the
transmission, and Voluntary Participation (VP), which means that no receiver can be forced to pay
more than his utility value. The mechanisms that we present in this paper will satisfy these basic
properties as well.
In addition to NPT and VP, there are certain other desirable properties that one could expect

a cost-sharing mechanism to possess. A cost-sharing mechanism is termed efficient if it maximizes
the overall welfare (i.e., the sum of the receivers’ utilities minus the total transmission cost), and
it is said to be budget-balanced if the revenue raised from the receivers covers the total cost of the
transmission exactly.
It is a classical result in game theory (Green and Laffont, 1979) that a strategyproof cost-

sharing mechanism cannot be both budget-balanced and efficient. Moulin and Shenker (2001) have
shown that there is only one strategyproof mechanism, marginal cost (MC), that satisfies the basic
requirements and is efficient. They have also shown that, while there are many group-strategyproof
mechanisms that are budget-balanced but not efficient, the most natural budget-balanced mechanism
to consider is the Shapley value (SH), because it minimizes the worst-case welfare loss. The SH
mechanism has the users share the transmission costs in an equitable fashion; the cost of a link is
shared equally by all users that receive the transmission through that link.
For the instance shown in Figure 1, the MC mechanism computes the receiver-set R to be

{1, 2, 3, 4, 5} resulting in a total transmission cost of 15 and overall welfare of 10. The SH mechanism
does not include potential receiver number 1 in the receiver set, because this receiver’s utility is not
sufficient to cover an equitable share of the transmission cost, and hence computes R to be {2, 3, 4, 5}.

Our Results: The foregoing discussion makes it clear that the computational and game-theoretic
properties of the SH and MC mechanisms are both worthy of study. It is easy to see (and is noted
in Feigenbaum et al. (2001)) that both are polynomial-time computable by centralized algorithms.
Feigenbaum et al. (2001) have further shown that there is a distributed algorithm that computes
MC using only two messages per link. By contrast, Feigenbaum et al. (2003) shows that computing
the SH mechanism requires, in the worst case, that Ω(|P |) bits be sent over Ω(|N |) links, where P
is the set of potential receivers, and N is the set of tree nodes.
The game-theoretic properties of these mechanisms have also been studied. The MC mech-

anism is known to be strategyproof but is vulnerable to groups of players colluding to improve
their welfare. Previous studies did not investigate the nature of collusion needed to succeed in
manipulating the mechanism. The SH mechanism, on the other hand, has been shown to be group-
strategyproof (Moulin and Shenker, 2001; Moulin, 1999).
In this paper, we extend previous results on the SH and MC mechanisms in two directions:

3



• We present a group-strategyproof mechanism that exhibits a tradeoff between the properties
of SH: It can be computed by an algorithm that is more communication-efficient than the
natural SH algorithm (exponentially more so in the worst case), but it might fail to achieve
exact budget balance or exact minimum welfare loss (albeit by a bounded amount).

• We completely characterize the groups that can strategize successfully against the MC mech-
anism and the conditions under which they can do so.

The rest of this paper is organized as follows. Section 2 provides necessary terminology and
notation from algorithmic mechanism design and multicast cost sharing and explains what it means
to “approximate” an algorithmic mechanism. In Section 3, we present our group-strategyproof,
communication-efficient mechanism and explain why it can be viewed as a step toward the goal of
“approximately computing the SH mechanism” in a communication-efficient manner. In Section 4,
we present our result on successful collusion against the MC mechanism. Section 5 contains open
problems.

2. TECHNICAL PRELIMINARIES

In this section, we review the basics of algorithmic mechanism design and multicast cost sharing.
We also formulate the notion of “approximately computing a mechanism” that will be used in Section
3 below and comment on some aspects of our computational and strategic models.

2.1. Algorithmic Mechanism Design

The purpose of this section is to review the basics of algorithmic mechanism design. Readers
already familiar with this area should skip to the next section.
In designing efficient, distributed algorithms and network protocols, computer scientists typically

assume either that computational agents are obedient (i.e., that they follow the protocol) or that
they are adversaries (i.e., that they may deviate from the protocol in arbitrary ways that harm other
users, even if the deviant behavior does not bring them any obvious tangible benefits). In contrast,
economists design market mechanisms in which it is assumed that agents are neither obedient nor
adversarial but rather strategic: They respond to well defined incentives and will deviate from the
protocol only for tangible gain. Until recently, computer scientists ignored incentive compatibility,
and economists ignored computational efficiency.
The emergence of the Internet as a standard, widely used distributed-computing environment

and of Internet-enabled commerce (both in traditional, “real-world” goods and in electronic goods
and computing services themselves) has drawn computer scientists’ attention to incentive-compat-
ibility questions in distributed computation. In particular, there is growing interest in incentive
compatibility in both distributed and centralized computation in the theoretical computer science
community (see, e.g., Archer and Tardos (2002); Feigenbaum et al. (2001); Fiat et al. (2002); Her-
shberger and Suri (2001); Jain and Vazirani (2001); Nisan and Ronen (2001); Roughgarden and
Tardos (2002)) and in the “distributed-agents” part of the AI community (see, e.g., Monderer and
Tennenholtz (1999); Parkes (1999); Parkes and Ungar (2000); Sandholm (1999); Wellman (1993);
Wellman et al. (2001)).
A standard economic model for the design and analysis of scenarios in which the participants act

according to their own self-interest is as follows: There are n agents. Each agent i, for i ∈ {1, . . . , n},
has some private information ti, called its type. For each mechanism-design problem, there is an
output specification that maps each type vector t = (t1, . . . , tn) to a set of allowed outputs. Agent i’s
preferences are given by a valuation function vi that assigns a real number vi(ti, o) to each possible
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output o. For example, in an instance of the task-allocation problem studied in the original paper
of Nisan and Ronen (2001), there are k tasks z1, . . . , zk, agent i’s type t

i = (ti1, . . . , t
i
k) is the set of

minimum times in which it is capable of completing each of the tasks, the space of feasible outputs
consists of all partitions Z = Z1t . . .tZn, in which Zi is the set of tasks assigned to agent i, and the
valuation functions are vi(ti, Z) = −

∑

zj∈Zi
tij . Except for the private-type information, everything

else in the scenario is public knowledge.
A mechanism defines for each agent i a set of strategies Ai. For each input vector (a1, . . . , an),

i.e., the vector in which i “plays” ai ∈ Ai, the mechanism computes an output o = o(a1, . . . , an) and
a payment vector p = (p1, . . . , pn), where pi = pi(a1, . . . , an). Agent i’s welfare is wi = vi(ti, o)+ pi,
and it is this quantity that the agent seeks to maximize. A strategyproof mechanism is one in which
the set of allowable types ti is a subset of the strategy space Ai, and each agent maximizes his
welfare by giving his type ti as input regardless of what other agents do. In other words, the relation

vi(ti, o(a−i, ti)) + pi(a−i, ti) ≥ vi(ti, o(a−i, ai)) + pi(a−i, ai)

(where a−i denotes the vector of strategies of all players except player i) must hold for all i and all
possible values of ti, a−i and ai.
Thus, the mechanism wants each agent to report his private type truthfully, and it is allowed to

pay agents in order to provide incentives for them to do so. In the task-allocation problem described
above, an agent may be tempted to lie about the times he requires to complete each task, in the hope
that his resulting allocation will have a higher valuation. If tasks were allocated by a strategyproof
mechanism, he would have no incentive to do this, because his resulting payment would be lower;
indeed it would be sufficiently lower that his overall welfare would be no greater than it would have
been if he had told the truth.
For a thorough introduction to economic mechanism design, see Chapter 23 of the book by

Mas-Colell, Whinston, and Green (Mas-Colell et al., 1995).
In their seminal paper on algorithmic mechanism design, Nisan and Ronen (2001) add computa-

tional efficiency to the set of concerns that must be addressed in the study of how privately known
preferences of a large group of selfish entities can be aggregated into a “social choice” that results in
optimal allocation of resources. Succinctly stated, Nisan and Ronen’s contribution to the mechanism-
design framework is the notion of a (centralized) polynomial-time mechanism, i.e., one in which o()
and the pi()’s are polynomial-time computable. They also provide strategyproof, polynomial-time
mechanisms for some concrete problems of interest, including LCPs and task allocation.
To achieve feasible algorithmic mechanisms within an Internet infrastructure, the mechanism-

design framework must be enhanced with more than computational efficiency; it also requires a
distributed computational model. After all, if one assumes that massive numbers of far-flung, inde-
pendent agents are involved in an optimization problem, one cannot reasonably assume that a single,
centralized “mechanism” receives all of the inputs and doles out all of the outputs and payments. The
first work to address this issue is the multicast cost-sharing paper of Feigenbaum, Papadimitriou,
and Shenker. This work does not attempt to provide a general decentralized-mechanism compu-
tational model. Rather, it achieves the more modest goal of using the same network-algorithmic
infrastructure that is needed for multicast to compute two natural mechanisms for assigning cost
shares to the recipients of the multicast. It puts forth a general concept of “network complexity”
that requires the distributed algorithm executed over an interconnection network T to be modest in
four different respects: the total number of messages that agents send over T , the maximum number
of messages sent over any one link in T , the maximum size of a message, and the local computational
burden on agents.
Clearly, “network complexity” is not (yet) a well defined notion; indeed, there is not (yet) in

general a full-fledged “complexity theory of Internet computation.” We expect the development
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of more prima facie good (and bad) distributed algorithmic mechanisms to lead eventually to a
satisfactory formalization of network complexity. In these early stages of the field, it suffices to
note that the four measures of complexity identified in Feigenbaum et al. (2001) are all of practical
importance and that, in particular, because the SH mechanism cannot be computed exactly when
the maximum number of bits sent over a link is o(|P |), where P is the set of potential receivers, it
makes sense to attempt to approximate it.

2.2. Multicast Cost Sharing

The multicast cost-sharing mechanism-design problem involves an agent population P residing
at a set of network nodes N that are connected by bidirectional network links L. The multicast
flow emanates from a source node αs ∈ N ; given any set of receivers R ⊆ P , the transmission flows
through a multicast tree T (R) ⊆ L rooted at αs and spanning the nodes at which agents in R reside.
It is assumed that there is a universal tree T (P ) and that, for each subset R ⊆ P , the multicast
tree T (R) is merely the smallest subtree of T (P ) required to reach the elements in R.7 Since we
usually draw the tree with the root αs at the top, if node α lies along the path from node β to
αs (and α 6= β) then we say α lies above β and is an ancestor of β. Symmetrically, β lies below α
and is a descendent of α. If these two nodes are directly connected by a link, then α is β’s parent,
and β is a child of α. Each link l ∈ L has an associated cost c(l) ≥ 0 that is known by the nodes
on each end, and each agent i assigns a utility value ui ≥ 0 to receiving the transmission. Let
u = (u1, u2, . . . , u|P |) denote the vector of utilities. Only player i knows her true utility ui.
A cost-sharing mechanism determines which agents receive the multicast transmission and how

much each receiver is charged. Since the players’ utilities are private information, the mechanism
will ask each player to report some utility µi and base its decisions on the input vector µ of these
reported utilities. We let xi(µ) denote how much agent i is charged and σi(µ) denote whether agent
i receives the transmission; σi(µ) = 1 if the agent receives the multicast transmission, and σi(µ) = 0
otherwise. The mechanismM is then a pair of functionsM(µ) = (x(µ), σ(µ)). The receiver set for a
given input vector is R(µ) = {i | σi(µ) = 1}. An agent’s individual welfare is given by the quasilinear
form wi(µ) = σi(µ)ui − xi(µ). Notice that wi(µ) does depend on i’s true utility ui, but we suppress
this in the notation. The cost of the tree T (R) reaching a set of receivers R is c(T (R)), and the overall
welfare, also known as efficiency or net worth, is NW (R) = uR− c(T (R)), where uR =

∑

i∈R ui and
c(T (R)) =

∑

l∈T (R) c(l). The overall welfare measures the total benefit of providing the multicast

transmission (the sum of the valuations minus the total transmission cost). Of course, the mechanism
does not have direct access to u; so it can only compute NWµ(R) = µR − c(T (R)), the net worth
with respect to the reported utilities.
A multicast cost-sharing mechanism fits into Nisan and Ronen’s algorithmic mechanism-design

framework as follows. The private type information is just the user’s individual utility for receiving
the transmission, ti = ui. The player’s strategy ai is just the reported type µi. The mechanism
computes the output specification o = σ and the payment vector p = −x. The agents’ valuation
functions are: vi(ti, o) = ti if oi = 1 and 0 otherwise. Each user seeks to maximize v

i(ti, o(µ)) +
pi(µ) = σi(µ)ui − xi(µ), which is the user’s individual welfare, wi(µ).
Let µ−i denote the vector of all reported utilities besides player i’s, so we can write µ as (µ−i, µi).

A strategyproof cost-sharing mechanism is one that satisfies the property wi(µ−i, ui) ≥ wi(µ−i, µi),
for all i, ui, µ−i, and µi. In other words, no matter what utilities the other players report, i’s best
strategy is to report her true utility ui (although i may have other strategies that are equally good).

7This approach is consistent with the design philosophy embedded in essentially all current multicast-routing
proposals (see, e.g., Ballardie et al. (1993); Deering and Cheriton (1990); Deering et al. (1996); Holbrook and Cheriton
(1999); Perlman et al. (1999)).

6



Strategyproofness does not preclude the possibility of a group of users colluding to improve their
individual welfares.
Any reported utility profile µ can be considered a group strategy for any group S ⊇ {i | µi 6= ui}.

It will be handy to have a notation for perturbing reported utilities. If µ is one utility profile, and µ̂S
is a vector of utilities for players in the set S, then let µ|Sµ̂S denote the vector whose i

th component
is µi if i /∈ S and µ̂i if i ∈ S. Thus, if S is the strategizing set, we can write the reported utility profile
as u|SµS . A mechanism M is group-strategyproof (GSP) if there is no group strategy such that at
least one member of the strategizing group improves his welfare while the rest of the members do
not reduce their welfare. In other words, if M is GSP, the following property holds for all u, µ, and
S ⊇ {i|ui 6= µi}:

either wi(µ) = wi(u) ∀i ∈ S

or ∃i ∈ S such that wi(µ) < wi(u)

Economic considerations (Moulin and Shenker, 2001) point to two strategyproof mechanisms
that are worthy of algorithmic consideration: marginal-cost (MC) and Shapley-value (SH). The MC
mechanism, a member of the Vickrey-Clarke-Groves (VCG) family (Vickrey, 1961; Clarke, 1971;
Groves, 1973), is efficient, which means that it chooses the receiver set R that maximizes NWµ(R).
Let Wµ be the net worth of this welfare-maximizing R. For each i ∈ R, let W−i

µ be the net worth
of the receiver set that the MC mechanism would have computed if i had not participated (i.e., if
µi had been set to 0). Then Wµ −W−i

µ measures the gain in overall welfare that results from i’s

participation. The cost share that MC assigns to i is xi(µ) ≡ µi − (Wµ −W−i
µ ). MC is the only

strategyproof and efficient mechanism that also has the following two properties:

NPT No Positive Transfers: xi(µ) ≥ 0, or, in other words, the mechanism cannot pay receivers to
receive the transmission.

VP Voluntary Participation: wi(µ) ≥ 0, provided agent i reports truthfully (i.e. µi = ui); this
implies that xi = 0 whenever σi = 0 and that agents are always free to not receive the
transmission and not be charged (by setting µi = 0).

However, MC is not GSP and does not guarantee budget-balance.
By contrast, the SH mechanism is GSP and budget-balanced, where the latter means simply

that
∑

i∈R xi = c(T (R)), where R is the receiver set chosen by the mechanism. SH assigns cost
shares xi by dividing the cost c(l) of each link l in T (R) equally among all members i ∈ R that
are downstream of l. The SH receiver set is the largest R ⊆ P such that µi ≥ xi, for all i ∈ R.
As mentioned in Section 1 above, there is no strategyproof mechanism that is both efficient and
budget-balanced (Green and Laffont, 1979).
The MC mechanism has good network complexity: In Feigenbaum et al. (2001), a distributed

algorithm is given that computes the MC receiver set and cost shares by sending just two modest-
sized messages over each l ∈ L and doing two very simple calculations at each node. We review this
algorithm in Section 4 below. On the other hand, the SH mechanism has bad network complexity:
In Feigenbaum et al. (2003), it is shown that any algorithm, deterministic or randomized, that
computes SH must, in the worst case, send Ω(|P |) bits over Ω(|N |) links.

2.3. Strategically Faithful Approximate Mechanisms

In view of the proof given in Feigenbaum et al. (2003) that exact computation of the SH mech-
anism has unacceptably high communication cost, it is natural to ask the following question: Can
one compute an approximation to the SH mechanism using an algorithm that is significantly more
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communication-efficient? To approach this question, we must first say what it means to “approxi-
mate the SH mechanism.”
A multicast cost-sharing mechanism is a pair of functions (σ, x). Thus, one may be tempted to

define an approximation of the mechanism as a pair of functions (σ′, x′) such that σ′ approximates
σ well (for each u, these are characteristic vectors of subsets of P ; so, we may call σ ′ a good approxi-
mation to σ if, for each u, the Hamming distance between the vectors is small), and x′ approximates
x well (in the sense, say, that, for some p, the Lp-difference of x(u) and x′(u) is small, for each
u). The mechanism (σ′, x′), however, would not be interesting if its game-theoretic properties were
completely different from those of (σ, x). In particular, if (σ′, x′) were not strategyproof, then agents
might misreport their utilities; thus, even if (σ, x) and (σ′, x′) were, for each u, approximately equal
as pairs of functions, the resulting equilibria might be very different, i.e., (σ′(µ), x′(µ)) might be very
far from (σ(u), x(u)), where µ is the reported utility vector when using the approximate mechanism
(σ′, x′). Thus, we require that our approximate mechanisms retain the strategic properties – strate-
gyproof or group-strategyproof – of the mechanism that they are approximating. In addition, if the
original mechanism has some property, such as budget balance or efficiency, that does not relate to
the underlying strategic behavior of agents but is an important design goal of the mechanism, then
we would want the approximate mechanism to approximate that property closely.
The SH mechanism is GSP, budget-balanced, and, among all mechanisms with these two prop-

erties, the unique one that minimizes the worst-case welfare loss. We should therefore strive for a
GSP mechanism that has low network complexity and is approximately budget-balanced and ap-
proximately welfare-loss minimizing in the worst case. “Approximately budget-balanced” can be
taken to mean that there is a constant β > 1 such that, for all c(·), T (P ), and u:

(1/β) · c(T (R(u))) ≤
∑

i∈R(u)

xi(u) ≤ β · c(T (R(u)))

Here T (P ) is used to denote the non-numerical, “universal-tree” part of a multicast cost-sharing
problem instance, the four components of which are the node-set N , the link-set L, the locations of
the agents, and the multicast source location αs.

8

The efficiency loss of a mechanismM on an instance I = (T (P ), c(·), u) is the difference between
the optimal net worth of I (i.e., that realized by the MC mechanism) and the net worth realized
by M . The SH mechanism minimizes the worst-case loss in the following sense: For any given cost
structure (T (P ), c(·)) , the worst-case efficiency loss L(M,T (P ), c(·)) of a mechanism M on this
cost structure in the maximum, over all possible utility profiles u, of the efficiency loss of M on the
instance (c(·), T (P ), u). Among all GSP, budget-balanced mechanisms, the SH mechanism achieves
the minimum L(M,T (P ), c(·)); further, SH is the only mechanism to achieve this minimum for all
cost structures (T (P ), c(·)). A mechanism M is “approximately efficiency-loss minimizing in the
worst case” if there is a constant γ > 1 such that, for all cost structures (T (P ), c(·)), the worst-case
efficiency loss of M on this cost structure is at most γ times the worst-case efficiency loss of SH on
the same cost structure.
We do not obtain an approximate SH mechanism here, but we do make some progress toward

the goal; our mechanism is GSP and fails to achieve exact budget balance and exact minimum-
welfare loss by bounded amounts, but the bounds are not constant factors. Furthermore, there is a
distributed algorithm that computes this mechanism using far less communication over the links of
T (P ) than is needed by SH.
This notion of approximating a mechanism M that we use in this paper – roughly, “retain the

strategic properties ofM but approximate the other mechanism design goals” – is called strategically

8An alternative definition of approximate budget balance could allow for only a one-sided error, e.g., a surplus but
not a deficit, as in Jain and Vazirani (2001).
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faithful approximation. Approximation is an increasingly active area of algorithmic mechanism
design, and several other interesting notions of approximation have been put forth – see Section 5
of Feigenbaum and Shenker (2002) for an overview. Here we mention only the work that is most
closely related to the results in this paper.
Nisan and Ronen (2000) were the first to address the question of approximate computation in

algorithmic mechanism design. They considered VCG mechanisms in which optimal outcomes are
NP-hard to compute (as they are in combinatorial auctions). They pointed out that, if an optimal
outcome is replaced by a computationally tractable approximate outcome, the resulting mechanism
may no longer be strategyproof. The above discussion of how we should define “approximating
the SH mechanism” and why approximating the pair of functions (σ, x) is not sufficient is based
on the analogous observation in our context. Nisan and Ronen (2000) approach this problem by
developing a notion of “feasible” strategyproofness and describing a broad class of situations in
which NP-hard VCG mechanisms have feasibly strategyproof approximations. This approach is not
applicable to SH-mechanism approximation for several reasons: SH is not a VCG mechanism; we
are not seeking an approximation to an NP-hard optimization problem but rather a communication-
efficient approximation to a communication-inefficient, but polynomial-time computable, function;
we are interested in network complexity in a distributed computational model, and Nisan and Ronen
(2000) were interested in time complexity in a centralized computational model. Approximate
multicast cost sharing was first addressed by Jain and Vazirani (2001). They exhibited a GSP,
approximately budget-balanced, polynomial-time mechanism based on a 2-approximation algorithm
for the minimum-Steiner-tree problem. Their approach is also not applicable to SH-mechanism
approximation, because they are concerned with time complexity in a centralized computational
model, their network is a general directed graph (rather than a multicast tree, as it is in our case),
and they are not attempting to approximate minimum worst-case welfare loss. Finally, “competitive-
ratio” analysis (a form of approximation) has been studied for a variety of strategyproof auctions
(see, e.g., Fiat et al. (2002), Goldberg et al. (2001), and Lavi and Nisan (2000)).

2.4. Comments on the problem formulation

Our goal is to explore the relationships between incentives and computation in multicast cost
sharing, but, before we do so, we first comment on several aspects of the model. The cost model we
employ is a poor reflection of reality, in that transmission costs are not per-link; current network-
pricing schemes typically only involve usage-based or flat-rate access fees, and the true underlying
costs of network usage, though hard to determine, involve small incremental costs (i.e., sending
additional packets is essentially free) and large fixed costs (i.e., installing a link is expensive).
However, we are not aware of a well validated alternative cost model, and the per-link cost structure
is intuitively appealing, relatively tractable, and widely used.
We assume that the total transmission costs are shared among the receivers. There are certainly

cases in which the costs would more naturally be borne by the source (e.g., broadcasting an infomer-
cial) or the sharing of costs is not relevant (e.g., a teleconference among participants from the same
organization); in such cases, our model would not apply. However, we think that there will be many
cases, particularly those involving the widespread dissemination of popular content, in which the
costs would be borne by the receivers.
In some situations, such as the high-bandwidth broadcast of a long-lived event such as a concert

or movie, the bandwidth required by the transmission is much greater than that required by a
centralized cost-sharing mechanism (i.e., sending all the link costs and utility values to a central
site at which the receiver set and cost shares could be computed). For these cases, our feasibility
concerns would be moot. However, Internet protocols are designed to be general-purpose; what
we address here is the design of a protocol that would share multicast costs for a wide variety of
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uses, not just long-lived and high-bandwidth events. Thus, we need only claim that there are many
scenarios in which our feasibility concerns would be relevant, not that our concerns are relevant in
all scenarios.
In comparing the bandwidth required for transmission to the bandwidth required for the cost-

sharing mechanism, one much consider several factors. First, and most obvious, is the transmission
rate b of the application. For large multicast groups, it will be quite likely that there will be at least
one user connected to the Internet by a slow modem. Because the multicast rate must be chosen
to accommodate the slowest user, one can’t assume that b will be large. Second, the bandwidth
consumed on any particular link by the centralized cost-sharing mechanisms scales linearly with the
number of users p = |P |, but the multicast’s usage of the link is independent of the number of users.
Third, one must consider the time increment ∆ over which the cost accounting is done. For some
events, such as a movie, it would be appropriate to calculate the cost shares once (at the beginning
of the transmission) and not allow users to join after the transmission has started. For other events,
such as the transmission of a shuttle mission, users would come and go during the course of the
transmission. To share costs accurately in such cases, the time increment ∆ must be fairly short. In
centralized cost sharing, the accounting bandwidth on a single link scales roughly as p, which must
be compared to the bandwidth ∆b used over a single accounting interval. Although small multicast
groups with large ∆ and b could easily use a centralized mechanism, large multicast groups with
small ∆ and b could not.
We have assumed that budget-balanced cost sharing, where the sum of the charges exactly covers

the total incurred cost, is a natural goal of a charging mechanism. If the charging mechanism were
being designed by a monopoly network operator, then one might expect the goal to be maximizing
revenue. There have been some recent investigations of revenue-maximizing charging schemes for
multicast (see, e.g., Fiat et al. (2002)), but here we assume, as in Herzog et al. (1997); Moulin
and Shenker (2001); Feigenbaum et al. (2001) and Adler and Rubenstein (2002), that the charging
mechanism is decided by society at large (e.g., through standards bodies) or through competition.
Competing network providers could not charge more than their real costs (or otherwise their prices
would be undercut) nor less than their real costs (or else they would lose money), and so budget
balance is a reasonable goal in such a case. For some applications, such as big-budget movies, the
bandwidth costs will be insignificant compared to the cost of the content, and then different charging
schemes will be needed, but for low-budget or free content (e.g., teleconferences) budget-balanced
cost-sharing is appropriate.
Lastly, in our model it is the users who are selfish. The routers (represented by tree nodes),

links, and other network-infrastructure components are obedient. Thus, the cost-sharing algorithm
does not know the individual utilities ui, and so users could lie about them, but once they report
them to the network infrastructure (e.g., by sending them to the nearest router or accounting node),
the algorithms for computing x(u) and σ(u) can be reliably executed by the network. Ours is
the simplest possible strategic model for the distributed algorithmic mechanism-design problem of
multicast cost sharing, but, even in this simplest case, determining the inherent network complexity
of the problem is non-trivial. Alternative strategic models (e.g., ones in which the routers are selfish
and their strategic goals may be aligned or at odds with those of their resident users) may also
present interesting distributed algorithmic mechanism-design challenges. Preliminary work along
these lines is reported in Mitchell and Teague (2002).

3. TOWARDS APPROXIMATING THE SH MECHANISM

In this section, we develop a GSP mechanism that exhibits a tradeoff between the other properties
of the Shapley value: It can be computed by an algorithm that is more communication-efficient than
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the natural SH algorithm (exponentially more so in the worst case), but it might fail to achieve
exact budget balance or exact minimum welfare loss (albeit by a bounded amount).
First, in Section 3.1, we review the natural SH algorithm given in Feigenbaum et al. (2001). In

Section 3.2, we give an alternative SH algorithm that also has unacceptable network complexity but
that leads naturally to our approach to approximation. In Sections 3.3, 3.4, and 3.5, we define a
new mechanism that has low network complexity, prove that it is GSP, and obtain bounds on the
budget deficit and the welfare loss.

3.1. The natural multi-pass SH algorithm

The Shapley-value mechanism divides the cost of a link l equally among all receivers downstream
of l. The mechanism can be characterized by its cost-sharing function f : 2P 7→ <P≥0 (Moulin and
Shenker, 2001; Moulin, 1999). For a receiver set R ⊆ P , player i’s cost share is fi(R). Feigenbaum
et al. (2001) present a natural, iterative algorithm that computes SH. We restate it here:
The simplest case of the SH cost-share problem is the one in which all ui are sufficiently large

to guarantee that all of P receives the transmission. (For example, ui > c(T (P )), for all i, would
suffice.) For this case, the SH cost shares can be computed as follows.9 Do a bottom-up traversal of
the tree that determines, for each node α, the number pα of users in the subtree rooted at α. Then,
do a top-down traversal, which the root initiates by sending the numbermd = 0 to its children. After

receiving message md, node α computes md′ ≡
(

c(l)
pα

)

+md, where l is the network link between α

and its parent, assigns the cost share md′ to each of its resident users, and sends md′ to each child.
Thus, each user ends up paying a fraction of the cost of each link in its path from the source, where
the fraction is determined by the number of users sharing this link.
In the general case, we initially start, as before, with R = P and compute the cost shares as

above. However, we cannot assume that ui ≥ md′ for all i, and so some users may prefer not to
receive the transmission. After each pass up and down the tree, we update R by omitting all users i
such that ui < md′ and repeat. The algorithm terminates when no more users need to be omitted.
Unfortunately, this algorithm could make as many as |P | passes up and down the tree and send a

total of Ω(|N | · |P |) messages in the worst case. Moreover, Feigenbaum et al. (2003) contains a corre-
sponding lower bound: Any algorithm that computes SH requires Ω(|N | · |P |) bits of communication
in the worst case.

3.2. A one-pass SH algorithm

Our first step toward a more communication-efficient mechanism that has some of the desirable
properties of SH is to present a distributed algorithm for SH that makes just one pass up and down
the tree. We do this by communicating, in a single message, a digest of the utility profile of all
the players in a subtree. This algorithm still sends more than |N | · |P | communication bits in the
worst case, and thus it is not directly usable. However, we show in Section 2.3 how approximating
the functions communicated in this one-pass SH algorithm leads to a new mechanism that can be
computed in a significantly more communication-efficient manner and has other desirable properties.
Let µ be the (reported) utility profile. Then, for every link l in T (P ), the digest we compute is:

nl(p, µ)
def
= the number of players in the subtree beneath l who are each willing to pay p for the links

above l (i.e., the number of players in this subtree who will not drop out of the receiver set when
their cost share for the links from the root down to but excluding l is p).
(We put the utility profile µ in explicitly as an argument so that it can be used below in the

proof of group strategyproofness; however, in any one run of the algorithm, µ is fixed.)

9This simple case is essentially a distributed version of the linear-time algorithm given in Megiddo (1978).
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FIG. 2 The function nl(p, µ) computed for each link l

Note that this definition requires that the cost from the leaves through l has already been adjusted
for. The information conveyed through the function nl(p, µ) is a sufficient digest of the costs and
utilities in the subtree beneath l, because the SH mechanism does not distinguish between receivers
downstream of l when sharing the cost of l or its ancestors; all such receivers pay the same amount
for these links. For each link, we compute this function at all prices p. The function nl(p, µ) is
monotonically decreasing with p, and, for any given utility profile µ, can be represented with at
most |P | points with coordinates (pi, ni) corresponding to the “corners” in the graph of nl(p, µ) in
Figure 2. We use this list-of-points representation of nl(p, µ) in our algorithm.
The Feigenbaum et al. (2001) statement of the multicast cost-sharing problem allows for players

at intermediate (non-leaf) nodes; however, to simplify the discussion, we can treat each of these
players as if it were a child node with one player and parent link-cost zero. Thus, we assume,
without loss of generality, that all players are at leaf nodes only.
The function nl(p, µ) is computed at the node αl below l in the tree. The computation is easy

if αl is a leaf node. Let pαl be the number of agents at αl, and assume that µ1 ≥ µ2 ≥ . . . ≥ µpαl .
Let c(l) be the cost of link l. For a given price p, compute nl(p, µ) as follows. Let k = 0. If

p + c(l)
pαl−k

≤ µ(pαl−k)
, then stop with nl(p, µ) = pαl − k. Otherwise, increment k by 1 and repeat

the test. If k reaches pαl − 1, and the test fails (i.e., if p+ c(l) > µ1), then stop with nl(p, µ) = 0.
If αl is not a leaf node, we have to include the functions reported by its children in this calcu-

lation. Suppose we are at node αl and have received the functions nli(p, µ) from all the child links
{l1, l2, . . . lr} of l. We can compute nl(p, µ) in two steps:

• Step 1: First, we compute a function

ml(p, µ) =
r
∑

i=1

nli(p, µ)

Intuitively, ml(p, µ) is the number of players beneath l who are willing to pay p each towards
the cost from the root down to (and including) l. This is apparent from the definition of
nli(p, µ). If each nli(·) is specified as a sorted list of points, we can compute ml(·) by merging
the lists and adding up the numbers of players.

• Step 2: Now, we have to account for the cost c(l) of the link l to compute the function nl(p, µ).
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For any p such that p ·ml(p, µ) ≥ c(l), we have

nl(p−
c(l)

ml(p, µ)
, µ) ≥ ml(p, µ) , (1)

because the ml(p, µ) players who were willing to pay p for the path including l can share the
cost of l. Equation 1 need not be a strict equality because it is possible that, for a price q < p,
the larger set of size ml(q, µ) has

q −
c(l)

ml(q, µ)
≥ p−

c(l)

ml(p, µ)

and so could also support the price p′ = p−(c(l)/ml(p, µ)) each for the links above l. However,
the value of nl(p, µ) must correspond toml(p

′, µ) for some p′ ≥ p, because every player beneath
l who receives the transmission pays an equal amount for the link l. It follows that

nl(p, µ) = max
{

p′−
c(l)

ml(p
′,µ)

≥p
}

ml(p
′, µ) (2)

When the right hand side of Equation 2 is undefined (because there is no p′ satisfying the
condition), we set nl(p, µ) = 0. Given a list of points (p

(i),m(i)) corresponding to ml(·), we
can compute nl(·) through the following procedure: For each point (p

(i),m(i)), we get the
transformed point (p(i) − (c(l)/m(i)),m(i)). We then sort the list of these transformed points
and throw away any point that is dominated by a higher mi at the same or higher price.

In this manner, we can inductively compute nl(·) for all links, until we reach the root. At the
root, we can combine the functions received from the root’s children to get mroot(·). Because there
are no further costs to be shared, it follows that there are m = mroot(0, µ) players that are willing
to share the costs up to the root. Also, there is no set of more than m players that can support
the cost up to the root, and so m is the size of the unique largest fixed-point set computed by the
Shapley-value mechanism.
Now, we have to compute the prices charged to each player. Assuming that the nodes have

stored the functions nl(·) on the way up the tree, we compute the prices on the way down as follows:
For each link l, we let xl be the cost share of any receiver below l for the path down to (but not
including) l. If l is the link from node β to β’s parent, then we use xl and xβ interchangeably. Then,
xroot = 0 and, if l has child links l1, l2, . . . lk,

xlj = xl +
c(l)

nl(xl, µ)
(3)

We descend the tree in this manner until we get a price xi for every player i ∈ P : If i is at node

β, and l is the link from β to its parent, then xi = xl +
c(l)

nl(xl,µ) . Then, we include i in R(µ) iff

xi ≤ µi, and if included i pays xi.
The following two lemmas show that this one-pass algorithm computes the SH mechanism.

Lemma 1. The outcome computed by this algorithm is budget-balanced.

Proof. By definition, there are exactly nl(xl, µ) players beneath l who can pay xl for the path
down to but excluding l. It follows that

∀j nl(xl, µ) = ml(xlj , µ) =
∑

i nli(xli , µ) .

Using this inductively until we reach the leaves, we can show that there are nl(xl, µ) players down-
stream of l in the receiver set chosen by the algorithm, i.e., with xi ≤ µi. Equation 3 then shows that
the cost of each link is exactly balanced, and hence the overall mechanism is budget-balanced.
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FIG. 3 Approximation to nl(p, µ).

Lemma 2. The receiver set computed by this algorithm is the same as the receiver set computed
by the Shapley-value algorithm given in Section 2.1.

Proof. By Lemma 1, we know that the set R(µ) constructed can bear the cost of transmitting
to R(µ). Let R(µ) be the receiver set chosen by the iterative Shapley-value algorithm (i.e., the one
in Section 2.1). Because R(µ) is the greatest fixed point, R(µ) ⊇ R(µ).
We show that R(µ) = R(µ) as follows. Let xl(µ) be the cost shares of individual receivers for

the path down to but excluding l corresponding to the receiver set R(µ). Let nl(µ) be the number
of receivers below l in this outcome. By induction, we can show that Steps 1 and 2 of the algorithm
described in this section maintain the property

nl(xl(µ), µ) ≥ nl(µ)

Because this is true at the root, it follows that |R(µ)| ≥ |R(µ)|. Hence R(µ) = R(µ).

The two algorithms (one-pass and iterative) are both budget-balanced, with the same receiver
set and the same cost-sharing function; thus they both compute the SH mechanism.

3.3. A communication-efficient approximation of nl(·)

The algorithm for the Shapley-value mechanism described in the previous section makes only one
pass up and down the tree. However, in the worst case, the function nl(·) passed up link l requires
|P | points (pi, ni) to represent it, which is undesirable.
Our approach to approximating the SH mechanism is as follows: We replace the function nl(·)

in the one-pass SH mechanism by a small approximate representation of nl(·); only this ap-
proximate representation is communicated up the tree, resulting in an exponential saving in the
worst-case number of communication bits. What should this approximation look like? To begin
with, we would like to underestimate nl(·) at every point, effectively underestimating the players’
utilities, so that we can still compute a feasible receiver set in one pass.
For each link l, instead of nl(p, µ), the mechanism uses an under-approximation ñl(p, µ). The

approximation we choose is simple and is illustrated in Figure 3. For some parameter κ > 1, we
round down all values of nl(p, µ) to the closest power of κ. The resulting function ñl(p, µ) has at
most (log |P |/ log κ) “corners,” and so it can be represented by a list of O(log |P |) points.
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At the leaf nodes, we first compute the exact function nl(p, µ) as before, and from this we compute
the approximation ñl(p, µ) as illustrated in Figure 3. At non-leaf nodes, we compute ñl(p, µ) by using
the following modified versions of Steps 1 and 2 of the one-pass algorithm:

• Step 1’: Compute

m̂l(p, µ) =
∑

li

ñli(p, µ)

(This step is unchanged; we do an exact summation, but the input functions are approximate.)

• Step 2’: First, adjust for cost c(l) as before

n̂l(p, µ) = max
{

p′−
c(l)

m̂l(p
′,µ)

≥p
}

m̂l(p
′, µ)

Then, approximate the function n̂l(·) by ñl(·):

ñl(p, µ) = κblogκ n̂l(p,µ)c

Because ñ(·) is given in the list-of-points representation, this is easily done by dropping ele-
ments of the list that do not change ñl(p, µ).

The function n̂l(·) computed on the way up is stored at the node beneath l.
10 On the way down,

we compute

xlj = xl +
c(l)

n̂l(xl, µ)

Note that Step 2’ guarantees that there are at least n̂l(xlj , µ) players beneath l who can afford
to pay p′ = xlj for the links from the root through l.
We can now define a mechanism (called Mechanism SF, for “step function”) by computing xi for

i ∈ P as in the one-pass algorithm for SH in Section 2.2, including i in the receiver set if xi ≥ µi,
and assigning cost share xi to i if i is included. However, we now have a situation in which the
number of receivers downstream of link l is potentially greater than ñl(xl, µ), because ñl(·) is an
under-approximation. Thus, SF does not achieve exact budget balance; there may be a budget
surplus.
For example, consider running mechanism SF on the instance shown in Figure 4 with κ = 2.

Node B computes n̂l1(·) as follows: If only player 4 is included, he would have to pay the entire
cost of link l1 and hence have only 12 left to pay for link l3; this gives us a corner at point (12, 1).
Further computations show that the other corner points are (11, 2), (10, 3), and (3, 4). Figure 4 also
shows the approximate function ñl1(·): the only difference is that the corner at (10, 3) is dropped.
Similarly, node C computes ñl2(·); in this case, there is a single corner at (7, 2).
Now, node A receives the approximate functions ñl1(·) and ñl2(·). It then combines them to

compute n̂l3(·). It turns out that the only way to share the cost of l3, based on the received ñl1(·)
and ñl2(·), is to admit two players from each of A and B; each of these players is willing to pay at
least 7 for links l3 and above, and so can share the cost of link l3 and be willing to pay up to 1
more. Thus, the function n̂l3(·) has a single corner at (1, 4). Our approximation procedure makes
no difference in this case, and so the function ñl3 is identical. Finally, the root receives ñl3 , and as
there are no additional costs to share, it computes that transmission is feasible.
On the way down, the payments are computed as follows: At node A, the cost of l3 is divided by

n̂l3(0, u) = 4, and thus xl1 = xl2 = 6. Node B then adds on the additional cost of l1, and divides it

10If there are space constraints, it is easy to modify the mechanism to store ñl(·) instead, by rounding m̂l to a
compact approximation m̃l and using this function to compute ñl(·) in Step 2.
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FIG. 4 Example illustrating budget surplus of Mechanism SF with κ = 2.

among n̂l1(6, u) = 3 players. Thus, the ask price for players at node B is 6+4 = 10; players 2, 3, and
4 are included in the receiver set and pay 10 each. Similarly, the ask price at node C is computed
to be 6 + 12 = 18; players 7 and 8 are included and pay 18 each. The total amount collected is 66,
but the cost of transmission is only 60, resulting in a surplus of 6. This surplus arises because node
A counted on having only 4 receivers sharing the cost of l3, whereas there were actually 5 receivers.

3.4. Group strategyproofness of mechanism SF

Notation

Throughout this section, we use u = (u1, u2, . . . , un) to indicate the true utility profile of the players.
Recall that µ|iri denotes the utility profile (µ1, µ2 . . . , µi−1, ri, µi+1, . . . , µn), i.e., the utility vector
µ perturbed by replacing µi by ri.
Now, let µ be the reported utility profile. Then S = {i | ui 6= µi} is the strategizing group. This

strategy is successful if no member of S has a lower welfare as a result of the strategy, and at least
one member has a higher welfare as a result of the strategy:

∀i ∈ S wi(µ) ≥ wi(u)

∃j ∈ S such that wj(µ) > wj(u)

We prove that mechanism SF is GSP in three steps: First, we prove that, if there is a successful
(individual or group) strategy, there is a successful strategy µ in which all colluding players raise
their utility, i.e., µi ≥ ui. This is intuitive, because, if a player receives the transmission, she is not
hurt by raising her utility further. Next, we show that a receiver has no strategic value in raising
her utility: If xi ≤ ui < µi, then the outcome of the mechanism (both receiver set and cost shares)
is unchanged in moving from strategy µ to µ|iui. Finally, we combine these two results to show that
a successful strategy against mechanism SF cannot exist.
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For the first part, we formalize our argument that it is sufficient to consider strategies in which
all members raise their utilities. The key to this is showing that the following monotonicity property
holds:

Lemma 3. Monotonicity: Let u be a utility profile and µ be the perturbed profile obtained by
increasing one element of u (µ = u|iµi, where µi > ui). Then, the following properties hold:

(i). ∀l, x ñl(x, µ) ≥ ñl(x, u)

(ii). ∀j ∈ P xj(µ) ≤ xj(u)

(iii). R̃(µ) ⊇ R̃(u)

(Here xj(µ) is the ask price computed for player j in the downward pass.)

Proof. Note that our approximation technique has the property that, if n̂l(x, µ) ≥ n̂l(x, u), then
ñl(x, µ) ≥ ñl(x, u). Statement (i) is then immediately true at the leaves and follows by induction
at non-leaf nodes. Because the cost of any link l is divided among n̂l(xl, µ) players, statement (ii)
follows from statement (i). Finally, because the utilities are the same (or higher in the case of player
j), statement (ii) implies statement (iii).

Lemma 3 suggests that, for any successful strategy µ, we can get a successful strategy µ′ by raising
µi to ui whenever µi < ui. However, we first have the technical detail of eliminating non-receivers
from the strategizing group:

Lemma 4. Let µ be a strategy for group S. Suppose i ∈ S and i /∈ R̃(µ). Let µ′ be the strategy
µ|iui. Then, xj(µ

′) ≤ xj(µ), for all j ∈ P .

Proof. Because i /∈ R̃(µ), xi(µ) > µi. When µi ≤ ui, the statement follows directly from
Lemma 3. When µi > ui, we can show that ñl(xl(µ), µ

′) = ñl(xl(µ), µ) by induction on the height
of l (where l is the link from the location of i to its parent), and the statement follows.

Combining the last two results, we get:

Lemma 5. Suppose a group S has a successful strategy. Then, S has a successful strategy µ′

where µ′i ≥ ui.

Proof. By lemma 4, we can assume, without loss of generality, that S has a successful strategy
µ such that S ⊆ R(µ). Define a sequence of strategies

µ = µ(0), µ(1), . . . µ(n−1), µ(n) = µ′

where µ(k) = µ(k−1)|kuk if uk > µk, µ
(k) = µ(k−1) otherwise. The monotonicity property implies

that, if µ(k−1) is a successful strategy, so is µ(k).

Now, we prove that, if a receiver i raises his utility, the solution is not altered:

Lemma 6. Let u be a utility profile, and let µ be the perturbed profile obtained by increasing one
element of u (µ = u|iµi, where µi > ui). If ui ≥ xi(u), then

∀l,∀x < xl(u) ñl(x, µ) = ñl(x, u)
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Proof. It is obviously true if i is at a leaf and l is the link from the leaf to its parent, because the
utility µi only affects the value of ñl(·) at prices above ui ≥ xi. (This is a result of our pointwise
approximation scheme; not all approximations would have this property.) Also, because of the
monotonically decreasing nature of ñl(·), this property is maintained by Steps 1’ and 2’ as we move
up the tree.

A corollary of lemma 6 is that, when the conditions of the lemma hold, the output of the
mechanism is identical for inputs u and µ. This follows from the fact that ñl(·) is not evaluated at
prices above xl(u) on the way down, and so inductively xl(µ) = xl(u) for all links l. Hence, each
player gets the same ask price xi(µ) = xi(u).
We can now prove the main result:

Theorem 1. Mechanism SF is GSP.

Proof. Assume the opposite, i.e., that there is a successful group strategy against mechanism
SF. Then, by lemma 5, there is a group strategy µ for some set S, where every member of S receives
the transmission after the strategy. Define the sequence of strategies:

µ = µ(0), µ(1), . . . µ(n−1), µ(n) = u

where µ(k) = µ(k−1)|kuk. It follows from lemma 6 that, if µ
(k−1) is a successful strategy for S, so is

µ(k). This implies that u is a successful strategy, which is a contradiction.

We have an alternative proof that mechanism SF is GSP that uses Moulin’s characterization of
budget-balanced mechanisms based on cross-monotonic cost-sharing functions (Moulin, 1999). We
give this alternative proof in the appendix below.

3.5. Mechanism SSF: bounded budget deficit and welfare loss

While mechanism SF is group strategyproof and has a bounded budget deficit, it has a potentially
fatal flaw: it may output an empty receiver set in situations in which the SH mechanism would give
a large receiver set. As a result, it may incur a very large welfare loss with respect to the SH
mechanism. In this section, we present a simple modification of mechanism SF, called SSF (for
“scaled SF”), and prove bounds on its budget deficit and loss of net worth with respect to the SH
mechanism. The goal of the modification is to ensure that, for every utility profile, the mechanism
has a receiver set at least as large as the SH receiver set. We do this by discounting the cost of each
link by a bounded fraction; this converts the budget surplus of mechanism SF to a budget deficit,
but improves the worst-case welfare loss.
This mechanism works as follows:

Mechanism SSF:

Let hl be the height of link l in the tree. (If one of the endpoints of link l is a leaf, then hl = 1.)
Then, define the scaled cost cκ(l) of the link l to be c(l)/(κhl). Run mechanism SF assuming link
costs cκ(l) instead of c(l), to compute a receiver set Rκ(u) and cost shares xκi (u).

Lemma 7. Mechanism SSF is GSP.

Proof. The player’s utility does not affect the scaled costs, and mechanism SF is GSP for any
tree costs.

Let R(u) be the receiver set in the (exact) Shapley-value mechanism. We now show that Rκ(u) ⊇
R(u).
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Lemma 8. For any link l, let ñκl (x, u) be the approximation computed by mechanism SSF. Let
nl(x, u) and xl be defined as in the one-pass exact Shapley-value algorithm given in Section 2.2.
Then,

∀l ñκl (xl, u) ≥
nl(xl, u)

κhl

Proof. We prove the statement by induction on hl. For hl = 1, it is true because of our approxi-
mation method. Suppose the statement is true for all links of height no more than r, and hl = r+1.
Let {l1, l2, . . . , lk} be the child links of l. By the inductive assumption, ñ

κ
li
(x, u) ≥ (nli(xli , u))/κ

r.
It follows that

m̂κ
l (xli , u) =

k
∑

i=1

ñκli(xli , u) (4)

≥
nl(xl, u)

κr
(5)

From the computation of the ask prices xl and xli in the exact Shapley value mechanism, we
know

xl = xli −
c(l)

nl(xl, u)
.

Let

x′ = xli −
cκ(l)

m̂κ
l (xli , u)

. (6)

Then, x′ ≥ xl follows from Equation (5).
Now, in Step 2’ of mechanism SSF, the function m̂κ

l (·) is adjusted for the scaled cost c
κ(l) to

compute the function n̂κl (·). Equation (6) guarantees that m̂
κ
l (xli , u) players in the subtree below

l can share the additional cost cκ(l) and still be willing to pay x′ each for links above l. Thus, we
have

n̂κl (x
′, u) ≥ m̂κ

l (xli , u) ,

and, because x′ ≥ xl, n̂
κ
l (xl, u) ≥ n̂κl (x

′, u). Finally, in passing from n̂κ(·) to ñκ(·), we get

ñκl (xl, u) ≥
n̂κl (xl, u)

κ

ñκl (xl, u) ≥
nl(xl, u)

κr+1

And thus the statement is proved by induction.

Lemma 9. Rκ(u) ⊇ R(u).

Proof. Using Lemma 8,
cκ(l)

ñκl (xl, u)
≤

c(l)

nl(xl, u)
,

and we can show inductively that xκl ≤ xl for all links l. Because this is true at the leaves, it follows
that Rκ(u) ⊇ R(u).

Bounding the budget deficit: Unlike mechanism SF, which is balanced or runs a surplus, mech-
anism SSF may generate a budget deficit (but never a surplus). However, the deficit (as a fraction
of the cost) can be bounded in terms of κ and the height h of the tree:
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Theorem 2.
c(T (Rκ(u)))

κh
≤

∑

i∈Rκ(u)

xκi (u) ≤ c(T (Rκ(u)))

Proof. Let X =
∑

i∈Rκ(u) x
κ
i (u). Because mechanism SF never runs a deficit,

X ≥ cκ(T (Rκ(u))) ≥
c(T (Rκ(u)))

κh
.

We now show that mechanism SSF never runs a budget surplus. For each link l, let xl denote
the offer price computed by mechanism SSF. Consider a link l, and let l1, l2, · · · , lk be its child
links. Note that the cost of link l is factored into xli by assuming that there are n̂

κ
l (xl, u) receivers

downstream of l. It is sufficient to prove that, for any link l, the number of receivers downstream of
l (in Rk) is at most κhl · n̂κl (xl, u); as the cost of link l has been scaled down by κ

hl , it follows that
we never collect a surplus with respect to the true cost.
We prove this by induction on the height hl of l. When hl = 1, this is clearly true: there are

exactly n̂κl (xl, u) receivers downstream of l. Assume it is true for all links of height at most r, and
consider a link l of height r + 1. By the inductive assumption, for each child link li, we have

n̂κli(xli , u) ≥
1

κr
× number of receivers downstream of li in R

k .

Thus, we have

ñκli(xli , u) ≥
1

κr+1
× number of receivers downstream of li in R

k ,

and so

m̂κ
l (xli , u) ≥

1

κr+1
× number of receivers downstream of l in Rk .

Finally, the computation of the price xli from xl satisfies n̂
κ
l (xl, u) = m̂κ

l (xli , u), which gives us

n̂κl (xli , u) ≥
1

κr+1
× number of receivers downstream of l in Rk .

Thus, by induction this is true for every link l. The total payment collected for any link l is at
most κhlcκ(l) ≤ c(l), and so mechanism SSF never runs a budget surplus.

Bounding the worst-case welfare loss: Let T κ and T be the multicast trees corresponding
to the receiver sets Rκ(u) and R(u) respectively. Then, T κ can be written as a disjoint union of
trees, T κ = T ∪ T1 ∪ T2 ∪ . . . ∪ Tr. The corresponding relation for the receiver set is R

κ(u) =
R(u) ∪ R1 ∪ R2 ∪ . . . ∪ Rr, where Ri is the subset of players in Rκ(u) who are attached to some
node in Ti. Some of these subtrees may have negative welfare, and so the overall welfare of the SSF
mechanism may be less than the welfare of the Shapley value. However, we can bound the worst-case
welfare loss (with respect to the exact Shapley value) in terms of the total utility U =

∑

i∈P ui:

Theorem 3.

NW (Rκ(u)) ≥ NW (R(u))− (κh − 1)U
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Proof. The welfare of the receiver set Rκ(u) is

NW (Rκ(u)) =
∑

i∈Rκ(u)

ui − c(T (Rκ(u)))

= NW (R(u)) +

r
∑

j=1

NW (Rj)

Now, for any subtree Tj of T
κ,

U(Tj) =
∑

i∈Tj

ui ≥ cκ(Tj) ≥
c(Tj)

κh
=⇒ NW (Tj) ≥ −(κ

h − 1)U(Tj)

and hence

NW (Rκ(u)) ≥ NW (R(u))− (κh − 1)
r
∑

j=1

U(Tj)

≥ NW (R(u))− (κh − 1)
∑

i∈Rκ(u)

ui

≥ NW (R(u))− (κh − 1)U

To summarize, Mechanism SSF sends O(logκ n) points (pi, ni) over each link, incurs a cost of at
most κh times the revenue collected, and has an welfare loss of at most (κh − 1)U with respect to
the SH mechanism.
For example, when |P | = 100, 000 and h = 5, the natural algorithm for the SH mechanism given

in Feigenbaum et al. (2001) would require about 100, 000 messages to be sent across a link in the
worst case. Our algorithm for SSF requires one bottom-up pass and one top-down pass, i.e., exactly
two messages over each link. The maximum size of each point (pi, ni) in a message in the bottom-up
pass is always bounded by O(log |P |+maxi∈P log ui) bits, and the maximum size of a message sent
in the top-down pass is always bounded by O(log(

∑

l∈L c(l))) bits. For |P | = 100, 000, h = 5, and
κ = 1.03, SSF has a budget deficit of at most 14% of the tree cost and a worst-case welfare loss with
respect to SH of at most 16% of the total utility, and the largest message sent in the bottom-up pass
contains at most 400 points (pi, ni). As another example, when |P | = 10

6 and h = 10, we can use
κ = 1.02 to achieve a worst-case deficit of 18% and worst-case welfare loss of 22% of the total utility,
with maximum bottom-up message size of 700 points, or use κ = 1.04 to achieve corresponding
bounds 33%, 48%, and 350 points.

4. GROUP STRATEGIES THAT SUCCEED AGAINST THE MC MECHANISM

The marginal cost (MC) mechanism for multicast cost sharing is an instance of the Vickrey-
Clarke-Groves (VCG) family of mechanisms (Vickrey, 1961; Clarke, 1971; Groves, 1973). As de-
scribed in Section 2.2, the MC mechanism selects the receiver set that maximizes total net worth,
and charges each receiver her reported utility minus a ”bonus” equal to the marginal value she added
to the system. VCG mechanisms are always strategyproof, but in general not group strategyproof.
In this section, we characterize exactly how the MC mechanism fails to be group strategyproof.
We say that a strategy µ for a group S is a successful group strategy at utility profile u if
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• S ⊇ {i ∈ P |µi 6= ui},

• ∀i ∈ S, wi(µ) ≥ wi(u), and

• ∃j ∈ S such that wj(µ) > wj(u).

In other words, a successful group strategy at u is one that (compared to truthtelling) harms none
of the members of the group and benefits at least one. Note that the member who benefits may not
be one of the members who misrepresented her utility. If the group S has only two members, we
call the strategy a successful pair strategy. If there is no group that has a successful strategy at u,
then we say that the mechanism is GSP at u. A GSP mechanism is one that is GSP at all u.
It is well known that the MC mechanism is not GSP. However, it is not obvious in general which

forms of collusion would result in successful manipulation. In this section, we examine this issue
in detail by asking two questions. First, at which utility profiles is MC GSP? Second, for a utility
profile u at which MC is not GSP, exactly which groups can strategize successfully? We will show
that MC fails to be GSP at u if and only if there exists a successful pair strategy or a specific simple
kind of three-player strategy, and show exactly when these strategic opportunities arise.
Feigenbaum et al. (2001) give a low network complexity algorithm for the MC mechanism. The

algorithm itself gives insights into the workings of the mechanism, so we describe it here.
Given a reported utility profile µ, the receiver set is the unique maximal efficient set of players.

To find it, we recursively compute the worth Wµ(β) of each node β ∈ N as

Wµ(β) =











∑

γ∈Ch(β)
Wµ(γ)≥0

Wµ(γ)











− c(l) + µ(β)

where Ch(β) is the set of children of β in the tree, c(l) is the cost of the link connecting β to its
parent node, and µ(β) denotes the total reported utility of the players residing at β. The worth
of a node β measures the marginal amount that this node and the optimal subtree below it would
contribute to the net worth of the chosen multicast tree, assuming that all the nodes above β had
already been included. We can easily compute the worth at the leaves of the tree, then work our
way up the tree to compute Wµ(·) for the remaining nodes recursively. The maximal efficient set
R(µ) is the set of all players i such that every node on the path from i to the root has nonnegative
worth.
Another way to view this is as follows: The algorithm partitions the universal tree T (P ) into a

forest F (µ) = {T1(µ), T2(µ), . . . , Tk(µ)}. A link from T (P ) is included in the forest if and only if the
child node has nonnegative worth. This is illustrated in Figure 5. R(µ) is then the set of players at
nodes in the subtree T1(µ) containing the root.
Once F (µ) has been computed, for each player i ∈ R(µ), define Y (i, µ) to be the node at or

above i with minimum worth. The payment xi(µ) of each player i is then defined as

xi(µ) = max(0, µi −Wµ(Y (i, µ)))

= µi −min(µi,Wµ(Y (i, µ))) ∀i ∈ R(µ) (7)

xi(µ) = 0 ∀i /∈ R(u)

This completes our description of the algorithm. If there are multiple nodes at or above i with
the same worth, we choose Y (i, u) to be the one among them nearest to i; this does not alter the
payment, but it simplifies our later results on when a coalition can be successful. For the same
reason, we define Y (i, µ) for i /∈ R(µ) to be the closest node at or above i that has zero or negative
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worth. We will use this characterization of the receiver set and payments in terms of F (u) and
Y (i, u) in our analysis of group strategies against the MC mechanism.
Before launching into the analysis of successful group strategies, we now give two specific instances

which will serve as canonical examples of such strategies.

Example 1. Consider Figure 6. Here R(u) = ∅, so when both players report truthfully, both
attain a welfare of zero. But if both lie by reporting µ1 = µ2 = 4, then R(µ) = {1, 2} and each pays
2, so player 2’s welfare remains at zero while player 1’s rises to 1. Notice that µ′ = (3, 4) would not
be a successful group strategy, because in that case player 2 would have to pay 3.

Example 2. Consider Figure 7. In this case, there is no successful pair strategy. When all
players report truthfully, only player 3 receives the transmission, paying x3(u) = 1. Players 1 and 2
can never attain positive welfare, because whenever either one appears in the receiver set, she must at
least pay for the link directly above her. If only one of these two players lies and she manages to join
the receiver set, then she will effectively pay 2 for the two links above her. However, if players 1 and
2 both lie so that the reported utilities are µ = (2, 2, 2), then R(µ) = {1, 2, 3}, and x(µ) = (1, 1, 0),
so player 3’s welfare rises from 1 to 2 and the other two players remain at zero welfare.

To better understand these examples, it helps to interpret the payment formula (7) in a different
way, in terms of cutoff utilities.

Definition 1. Fixing µ−i, the vector of reported utilities of all players aside from i, suppose
there is some number Ci(µ−i) such that if µi < Ci(µ−i) then i /∈ R(µ), and if µi ≥ Ci(µ−i) then
i ∈ R(µ) and i pays xi(µ) = Ci(µ−i). Then we call Ci(µ−i) the cutoff utility for i.

Lemma 10. The cutoff utility always exists, and can be computed from Wµ(·) as follows. For
i ∈ R(µ), Ci(µ−i) = max{0, µi −Wµ(Y (i, µ))}. For i /∈ R(µ), Ci(µ−i) = µi + L, where

L =
∑

α∈Nµ(i)

|Wµ(α)|

and Nµ(i) denotes the set of nodes α at or above i such that Wµ(α) < 0.
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Proof. We consider what happens if i raises or lowers her reported utility from µi, while the
other players hold theirs fixed at µ−i.
If i ∈ R(µ), then all of the nodes at or above i have non-negative worth, and

xi(µ) = µi −Wµ(Y (i, µ)), (8)

provided Wµ(Y (i, µ)) ≤ µi. Since Y (i, µ) is the node of minimum worth at or above i, player i can
lower her reported utility byWµ(Y (i, µ)) before the worth of this node drops below zero, causing i to
leave the receiver set. As µi varies anywhere above this threshold, both terms on the right side of (8)
change by the same amount, so i’s payment remains unchanged. Thus, Ci(µ−i) = µi−Wµ(Y (i, u)).
If Wµ(Y (i, µ)) > µi, then i is in the receiver set and pays zero no matter what her reported utility,
so Ci(µ−i) = 0.
If i /∈ R(µ) then there is some sequence of nodes α1, . . . , αk (k ≥ 1) in this order along the

path from i to αs such that Wµ(αj) < 0 for j = 1, . . . , k. As i increases her reported utility
from µi to µi + |Wµ(α1)|, the worth of each node from i to α1 also increases by |Wµ(α1)|. As
i’s reported utility rises another |Wµ(α2)|, all the nodes from i to α2 increase their worth by the
same amount. Inductively, we see that i first joins the receiver set when her reported utility reaches
µi + L. As the reported utility increases further, all nodes at or above i increase in worth. Since
W(µ−i,µi+L)(αk) = 0, i’s payment is µi + L when she first joins the receiver set. Further raising her
reported utility does not change her payment.

Armed with this new understanding of the payments, it is easy to detect when player j has the
opportunity to lie to increase the welfare of another player i. If i ∈ R(u), then i’s cutoff utility is
already at most ui, so j needs to somehow lower it further. If i /∈ R(u), then j needs to somehow
lower i’s cutoff utility below ui, so that i joins the receiver set and attains positive welfare. In both
cases, this is possible if and only if Ci(u−i) > 0 and j resides at or below node Y (i, u), by Lemma 10.
The tricky part is to figure out how j can do this without hurting herself – if j raises µj enough to
help i, then j will necessarily join the receiver set. (This is because µj affects the worth of Y (i, u)
only if all nodes on the path from j to Y (i, u) have strictly positive worth, and since i must be in
the receiver set to have positive welfare, all nodes above Y (i, u) must have non-negative welfare.)
If j /∈ R(u), then Cj(u−j) > uj so if the other players continue to report truthfully, then j will be
charged more than uj , incurring negative welfare. The pair strategy in Example 1 succeeds because
A is the first negative worth node above player 2, and player 1 resides below A, so player 1 can
”protect” player 2. The following definition and theorem formalize this observation.

Definition 2. Define P ′(u) = {i ∈ P |wi(u) < ui}. Then u is said to admit a pair opportunity
if there are players i and j in the same component of F (u) such that i ∈ P ′(u) and j resides at or
below Y (i, u).

Theorem 4. There exists a successful pair strategy for players i and j at utility profile u if and
only if u admits a pair opportunity for i and j. In this case, let

L =
∑

α∈Nu(i)

|Wu(α)|,

where Nu(i) is defined as in Lemma 10, and L
′ > L. Then u|{i,j}(ui + L, uj + L′) is a successful

pair strategy for i and j.

Proof. If direction: Suppose i and j are both in R(u). Then j can raise her reported utility µj
without hurting herself, since uj is already at least as large as j’s cutoff utility. Doing so will increase
the worth of all nodes above j, including the entire path from Y (i, u) to αs. This will decrease the
price that i pays, since Y (i, u) is the bottleneck node determining that price.
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Now suppose that i and j are in some other component of F (u). We have L > 0, since otherwise
i ∈ R(u). If j raises her reported utility µj to uj +L, then i’s cutoff utility will be exactly ui. Since
j resides at or below Y (i, u), further raising j’s reported utility to uj + L′ will make the worth of
all nodes at or above i strictly positive, driving i’s cutoff strictly below ui. Since i and j are in the
same component of F (u), the root of this component is the first negative-worth node above each
one (with respect to u). Therefore, if i also raises her reported utility to ui + L, then j’s cutoff will
be exactly uj . Thus, by colluding in this way, i and j will both be included in the receiver set, j’s
welfare will remain zero, and i’s welfare will increase. (Note: if i does not reside below Y (j, u), then
it is impossible for i to lower j’s cutoff utility any lower than uj .)
Only if direction: If i and j have a successful pair strategy, then the collusion must cause one of

them to improve her welfare, so without loss of generality we can assume it is i, hence i ∈ P ′(u).
We will argue using i and j’s cutoff utilities. Let µ̂ denote the successful pair strategy. Since all
players k aside from i and j have µ̂k = uk, we can consider i’s cutoff Ci(µ̂−i) to depend only on µ̂j ,
and similarly j’s cutoff utility to depend only on µ̂i.
If i ∈ R(u), then the only way to improve i’s welfare is to lower her cutoff utility, which j can

do only if she resides at or below Y (i, u). If i /∈ R(u), then i’s cutoff is initially above ui and must
be lowered strictly below ui.
In the latter case, we know that Wu(Y (i, u)) ≤ 0, and there is some node of strictly negative

worth above i. Since the strategy µ̂ improves i’s welfare, we know by Lemma 10 that Wu|j µ̂j (α) > 0
for all nodes α at or above i. In order for j to cause i to connect and pay less than ui, µ̂j must be
high enough to make all of the nodes at and above Y (i, u) have strictly positive worth with respect
to u|j µ̂j . In particular, j must reside at or below Y (i, u), since otherwise µj does not affect the
worth of Y (i, u). Moreover, all nodes at or above j must have strictly positive worth with respect
to u|j µ̂j . If µ̂i ≥ ui, then these nodes also have strictly positive worth with respect to µ̂. If µ̂i < ui,
then Wµ̂(α) may be lower than Wu|j µ̂j (α) for some of the nodes α at or above i, but all of these
still must have non-negative worth, since otherwise i would not be in the receiver set, so would not
attain positive welfare. Therefore, j is also in the receiver set R(µ̂).
Suppose i and j reside in different components of F (u). Since Y (i, u) is in i’s component and j

resides below this node, we know j’s component lies below i’s. Let α denote the root of j’s component
in F (u). We just argued that j ∈ R(µ̂). But i’s reported utility has no effect on Wµ(α), which is
negative when µ = u (i.e. when all utilities are reported truthfully). Thus, j’s cutoff Cj(u−j |

iµ̂i) is
at least uj+ |Wu(α)|, so wj(µ̂) < 0, which contradicts the assumption that µ̂ is a successful strategy.
Thus, i and j must reside in the same component of F (u).

In Example 2, u admits no pair opportunity, so by Theorem 4, there is no successful pair strategy.
Yet, the three players can still collude successfully. This is because players 1 and 2 are in the same
component of F (u), hence can protect each other from incurring negative welfare, and reside below
Y (3, u), hence can help player 3. It turns out that this situation is the only other way in which a
succussful group strategy can arise. We now formalize this result.

Definition 3. Suppose i ∈ P ′(u) and there is a component of F (u), distinct from i’s, that lies
below Y (i, u) and contains players j and k. Then we say that u presents a triple opportunity for
{i, j, k}.

Definition 4. Suppose u presents a triple opportunity for {i, j, k}. Let L =
∑

α∈Nu(j) |Wu(α)|

and L′ > L. Then the strategy µ{i,j,k} = (ui, uj + L′, uk + L′) is called a basic triple strategy for
{i, j, k}.

Note that if either j resides at or below Y (k, u) and k ∈ P ′(u) or vice versa, then j and k have a
successful pair strategy, by Theorem 4. But even if neither of those conditions holds, the next claim
shows that the basic triple strategy still succeeds.
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Claim 1. Suppose u presents a triple opportunity for {i, j, k}. Then the corresponding basic
triple strategies are successful group strategies for {i, j, k}.

Proof. By assumption, j, k /∈ R(u), so these players intially have zero welfare. Since j and k
are in the same component of F (u), we have Nu(j) = Nu(k), the lowest node in this set being the
root of this component. Thus, Wu|j(uj+L′)(α) > 0 for all α ∈ Nu(k), so Ck(u−k|

j(uj + L′)) ≤ uk.

Similarly, Cj(u−j |
k(uk + L′)) ≤ uj . Thus, under the group strategy µ̂ = u|{j,k}(uj + L′, uk + L′), j

and k at least maintain their zero welfare.
Since Nu(i) ⊂ Nu(j), L

′ > L, and j resides below Y (i, u), we have Wu|j(uj+L′)(α) > 0 for all
α at or above i. Increasing µk as well only increases the worths, so i ∈ R(µ̂) and xi(µ̂) < ui, so
wi(µ̂) > 0. Thus, if i /∈ R(u), the strategy improved i’s welfare. If i ∈ R(u), the strategy improves
i’s welfare because L′ > L guarantees Wµ̂(Y (i, u)) > Wu(Y (i, u)), so j and k’s increased reported
utilities lowered i’s cutoff utility.

Definition 5. If I is a set of players, we say that i ∈ I is minimal with respect to F (u) if there
is no other player j ∈ I located in a different component of F (u) such that i’s component of F (u)
contains any nodes above j. That is, if we contract components of F (u), there is no player j ∈ I
who resides strictly below i.

Theorem 5. If some coalition S has a successful group strategy at u, then either there exist
players i, j ∈ S with a successful pair strategy, or there exist players i, j, k ∈ S with a successful basic
triple strategy. Conversely, if there is a pair or triple of players with a successful pair or basic triple
strategy, then every set of players S containing that pair or triple has a successful group strategy.

Proof. Denote the group strategy by µ̂. Since the strategy succeeds, the set I = {i ∈ S :
wi(µ̂) > wi(u)} is non-empty. Select some player i ∈ I that is minimal with respect to F (u). Since
i benefitted from the strategy µ̂ as compared to u, the manipulations of the other players in S must
have reduced i’s cutoff utility, and i ∈ R(µ̂). Thus, S must include some other player h residing at
or below Y (i, u), such that µ̂h > uh and the worth Wµ̂(α) of each node α between h and Y (i, u) is
strictly positive. Let J denote the set of all such players in S, and select some player j ∈ J that is
minimal with respect to F (u). Note that j ∈ R(µ̂), since (under µ̂) it has a positive welfare path to
Y (i, u), and i ∈ R(µ̂). If j lies in the same component of F (u) as i, then i and j have a successful
pair strategy, by Theorem 4. Otherwise, j’s component lies below i’s.
Suppose j’s component contains no other players in S, and let β denote the root of that com-

ponent. Because j is minimal in J , even if there is some player k ∈ S who resides in a component
strictly below j’s, then her misreported utility has no positive effect on the welfares computed at
the nodes between j and β. This is because j ∈ J but k /∈ J , so there is some node α at or above k
but not at or above j such that Wµ̂(k) ≤ 0. Thus, j’s cutoff utility is at least uj + |Wu(β)| > uj . So
wj(µ̂) < 0, which contradicts the assumption that µ̂ is a successful strategy. Thus, j’s component of
F (u) contains some other player k ∈ S. Thus, by Claim 1, there is a successful basic triple strategy
available for {i, j, k}.
The converse holds because the successful pair and basic triple strategies involve raising reported

utilities, which can never increase the cutoffs for the other players. So if each other player h reports
her true utility uh, then her welfare does not decrease, so she can be considered to be part of the
strategizing set.

Summarizing the previous results, we have the following characterization of utility profiles for
which the MC mechanism is GSP.

Theorem 6. The MC mechanism is GSP at u if and only if the following condition holds for
each i ∈ P ′(u): there is no player j in the same component of F (u) as i such that j resides at or
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below Y (i, u), and there is no pair of players j and k residing in the same component as each other
and below Y (i, u).

We have now completely characterized the utility profiles u at which the MC mechanism is GSP,
shown that the minimal sets of players who can successfully manipulate the mechanism are pairs
and triples, and shown that every set of players containing such a pair or triple has a successful
group strategy. The question remains, what do successful group strategies look like in general? The
following theorem shows that every group strategy can be converted into a ”canonical” one.

Theorem 7. If S has a successful strategy µ̂ at true utility profile u, then S ′ = S ∩R(µ̂) has a
successful strategy µ̂′ such that

• S′ ⊆ R(µ̂′)

• wi(µ̂
′) ≥ wi(µ̂) for all i ∈ P

• µ̂′i ≥ ui for all i ∈ S′

Proof. For each i ∈ S − R(µ̂) such that µ̂i > ui, set µ̂
′
i = ui. This may raise the cutoff utilities

for some players outside R(µ̂), but these had zero welfare anyway. It has no effect on the computed
welfares for nodes in the root component of F (µ̂), hence no effect on the receiver set or on the price
charged to any node in R(µ̂). Now set µ̂′i = ui for each remaining i ∈ S − R(µ̂). This can only
decrease the prices paid by players in R(µ̂). It may also expand the receiver set, but that will not
cause any of the new recipients to get negative welfare because we have already gotten rid of all the
players in S − R(µ̂) who exaggerated their utilities. Now set µ̂′i = ui for each i ∈ S ∩ R(µ̂) such
that µ̂i < ui. This does not change the receiver set, and can only decrease the prices paid by the
receivers. Since S had some player who benefitted from the strategy and this player is in R(µ̂), we
can now throw all players in S −R(µ̂) out of the strategizing set, leaving us with S ′.

Thus, in some sense, the “interesting” group strategies are the ones in which the players who
misreport their utilities only exaggerate them, and all of them end up in the receiver set.

5. OPEN PROBLEMS

The results in Section 3 above lead naturally to the following question about the SH mechanism:
Is there an approximation to the SH mechanism with the same worst-case network complexity as
SSF? That is, is there a mechanism with the same worst-case network complexity that also achieves
constant-factor bounds on the budget deficit (or surplus) and on the worst-case welfare loss?
The results in Section 4 above suggest a general line of inquiry within algorithmic mechanism

design that is worthy of further study. Recall that, in our discussion in Section 2 of what it means
to “approximate the SH mechanism,” we insisted that an approximate mechanism be GSP. We
note, however, that some form of tolerable manipulability might be acceptable. That is, one may
be quite willing to deploy a mechanism that is known not to be GSP if the groups that could
strategize successfully and their effects on the other parties and resources involved were precisely
characterizable and deemed to be acceptable. For example, in multicast cost sharing, a multicast-
service provider may be willing to use such a mechanism if successful groups did not cut deeply into
his profits. Our results on the MC mechanism cannot be put to practical use in this way, but they
exemplify a type of characterization that, for other mechanisms, may be usable in practice.
Additional open problems about multicast cost sharing in particular and distributed algorithmic

mechanism design in general can be found in Feigenbaum and Shenker (2002).
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APPENDIX: ALTERNATIVE PROOF THAT SF IS GSP

We now present a proof of Theorem 1 that builds on previous results in the mechanism-design
literature. Moulin and Shenker (Moulin and Shenker, 2001; Moulin, 1999) discussed a family of
budget balanced mechanisms based on cross-monotonic cost-sharing functions and proved them to
be group strategyproof.
Consider a function f : 2P 7→ <P≥0. This function is cross-monotonic if, ∀i ∈ S,∀T ⊆ P, fi(S∪

T ) ≤ fi(S). In addition, we require that fi(S) ≥ 0 and that, ∀j /∈ S, fj(S) = 0.
Then, the corresponding cross-monotonic mechanism Mf = (σ(µ), x(µ)) is defined as follows:

The receiver set R(µ) is the unique largest set S for which fi(S) ≤ µi. This is well defined, because,
if sets S and T each satisfy this property, then cross-monotonicity implies that S∪T satisfies it. Let
σi(µ) be the indicator vector for R(µ) and xi(µ) = fi(R(µ)).

Lemma 11. Mf is group strategyproof.

This was proved by Moulin (1999) in the context of budget-balanced mechanisms, but his proof
extends directly to all cross-monotonic mechanisms.
Let M = {Mf | f is cross-monotonic} be the set of cross-monotonic mechanisms. We give an

alternate characterization of the mechanisms in this set that does not explicitly use the cost-sharing
function in the construction of the receiver set.

Theorem 8. Fix the tree and the costs c(l), and let U = <P≥0 be the space of possible utility
profiles. A mechanism M = (σ(µ), x(µ)) is inM iff it satisfies the following properties:

1. Consumer sovereignty: ∃B such that, for all i, for all u ∈ U such that ui ≥ B, i ∈ R(u).

2. Monotonicity of receiver set: if u,u′ are utility profiles such that, for all i, ui ≤ u′i, then
R(u) ⊆ R(u′).

3. Let u, u′ ∈ U be utility profiles such that R(u) = R(u′). Then, xi(u) = xi(u
′), for all i.

In other words, the cost shares are a function of the receiver set alone, and we can use the
notation xi(S) to indicate the payment of player i when the receiver set is S.

4. xi(.) is cross-monotonic on the space of receiver sets, i.e., if S ⊆ S ′, then xi(S
′) ≤ xi(S), for

all i ∈ S.

5. For any S ⊆ P , let U(S) = {u ∈ U | R(u) = S}. Then, U(S) is closed under the pointwise
minimum operation: If u, u′ ∈ U(S), and u′′ is defined by u′′i = min(ui, u

′
i), then u

′′ ∈ U(S).

6. xi(S) = minu∈U(S) ui

Proof.

If direction: Consider a mechanism M = (σ(µ), x(µ)), and let R(µ) be the receiver set corre-
sponding to σ(µ). Assume M satisfies properties 1-6.
Properties 5 and 6 say that this mechanism partitions the utility space into “regions” U(S)

corresponding to every receiver set S. Every region has a unique minimum point u(S) defined by

ui(S) = xi(S) if i ∈ S

ui(S) = 0 if i /∈ S
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FIG. 8 Partition of utility space for a two-player mechanism

Consider the utility profile uS given by

uSi = B if i ∈ S

uSi = 0 if i /∈ S

Then, by property 1, R(uS) ⊇ S.
Now, consider the cost-sharing function f defined by

fi(S)
def
= ui(R(u

S)) (9)

For any S′ ⊇ S, we know by property 2 that R(uS
′

) ⊇ R(uS). Then, by property 4, it follows that,
for all i ∈ S, fi(S

′) ≤ fi(S), and hence f is a cross-monotonic cost-sharing function. It only remains
to be shown that, for all µ, R(µ) is the unique largest set S for which

∀i ∈ S fi(S) ≤ µi (10)

R(µ) satisfies equation (10), because µi ≥ ui(R(µ)) = xi(R(µ)). Consider any set T that also
satisfies this condition. Then, by assumption,

∀i fi(T ) ≤ µi

=⇒ ui(R(u
T )) ≤ µi

=⇒ R(u(R(uT ))) ⊆ R(µ) by property 2

We note that R(u(R(uT ))) = R(uT ) ⊇ T , and so it follows that T ⊆ R(µ). Because this is true for
all such T , R(µ) must be the largest set for which equation (10) is satisfied.
Only If direction: Consider any cross-monotonic mechanism Mf . Let B = maxi fi({i}). Then,

it is easy to verify that each of the properties above is satisfied.

Figure 8 illustrates one possible partition for two players. The mechanisms inM are completely
characterized by the points u(S), over all S ⊆ P .

Theorem 9. Mechanism SF ∈M.

Proof. We show that mechanism SF has all the properties listed in Theorem 8.
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Property 1: Let B be the maximum cost of a path from any player to the root. Then, if ui ≥ B,
i ∈ R̃(u).
Property 2: The monotonicity of mechanism SF was proved in Lemma 3.
Property 3: Suppose R(u) = R(u′) = S. Then, using Lemma 6 repeatedly, we can show that
xi(u) = xi(u

S), where uS is defined as in the proof of theorem 8. Similarly, it also follows that
xi(u

′) = xi(u
S), and so xi(u) = xi(u

′). Hence this property is valid, and we can refer to the
payment function as xi(S).
Property 4: For receiver sets S and S ′ such that S ⊆ S′, consider the utility profiles uS and uS

′

.
The conditions of Lemma 3 apply, and so xi(S) = xi(u

S) < xi(u
S′) = xi(S

′).
Properties 5 and 6: For any utility profile u, with receiver set R(u) = S, consider the utility profile
u defined by

ui = xi(S) if i ∈ S

ui = 0 if i /∈ S

Note that it is sufficient to show that R(u) = S to prove both properties 5 and 6.
We can prove that R(u) = R(u) = S by increasing the elements of ui to ui one at time and

showing that the receiver set remains the same at each step. For i /∈ S, we can show this by induction
on ñl(.), as in Lemma 4. For i ∈ S, this follows directly from Lemma 6.
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