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Abstract—This article describes a novel quantitative proof
technique for the modular and local verification of lock-freedom.
In contrast to proofs based on temporal rely-guarantee require-
ments, this new quantitative reasoning method can be directly
integrated in modern program logics that are designed for the
verification of safety properties. Using a single formalism for
verifying memory safety and lock-freedom allows a combined
correctness proof that verifies both properties simultaneously.

This article presents one possible formalization of this quan-
titative proof technique by developing a variant of concurrent
separation logic (CSL) for total correctness. To enable quantita-
tive reasoning, CSL is extended with a predicate for affine tokens
to account for, and provide an upper bound on the number of
loop iterations in a program. Lock-freedom is then reduced to
total-correctness proofs. Quantitative reasoning is demonstrated
in detail, both informally and formally, by verifying the lock-
freedom of Treiber’s non-blocking stack. Furthermore, it is shown
how the technique is used to verify the lock-freedom of more
advanced shared-memory data structures that use elimination-
backoff schemes and hazard-pointers.

I. INTRODUCTION
The efficient use of multicore and multiprocessor systems

requires high performance shared-memory data structures.
Performance issues with traditional lock-based synchronization
has generated increasing interest in non-blocking shared-
memory data structures. In many scenarios, non-blocking data
structures outperform their lock-based counterparts [1], [2].
However, their optimistic approach to concurrency complicates
reasoning about their correctness.

A non-blocking data structure should guarantee that any
sequence of concurrent operations that modify or access the
data structure do so in a consistent way. Such a guarantee is a
safety property which is implied by linearizability [3]. Addi-
tionally, a non-blocking data structure should guarantee certain
liveness properties, which ensure that desired events eventually
occur when the program is executed, independent of thread
contention or the whims of the scheduler. These properties are
ensured by progress conditions such as obstruction-freedom,
lock-freedom, and wait-freedom [4], [5] (see §II). In general,
it is easier to implement the data structure efficiently if the
progress guarantees it makes are weaker. Lock-freedom has
proven to be a sweet spot that provides a strong progress
guarantee and allows for elegant and efficient implementations
in practice [6], [7], [8], [9].

The formal verification of practical lock-free data structures
is an interesting problem because of their relevance and the
challenges they bear for current verification techniques: They
employ fine-grained concurrency, shared-memory pointer-based
data structures, pointer manipulation, and control flow that
depends on shared state.

Classically, verification of lock-freedom is reduced to model-
checking liveness properties on whole-program execution
traces [10], [11], [12]. Recently, Gotsman et al. [13] have
argued that lock-freedom can be reduced to modular, thread-
local termination proofs of concurrent programs in which
each thread only executes a single data-structure operation.
Termination is then proven using a combination of concurrent
separation logic (CSL) [14] and temporal trace-based rely-
guarantee reasoning. In this way, proving lock-freedom is
reduced to a finite number of termination proofs which can be
automatically found. However, as we show in §II, this method
is not intended to be applied to some lock-free data structures
that are used in practice.

These temporal-logic based proofs of lock-freedom are quite
different from informal lock-freedom proofs of shared data
structures in the systems literature (e.g., [7], [9]). The informal
argument is that the failure to make progress by a thread is
always caused by successful progress in an operation executed
by another thread. In this article, we show that this intuitive
reasoning can be turned into a formal proof of lock-freedom.
To this end, we introduce a quantitative compensation scheme
in which a thread that successfully makes progress in an
operation has to logically provide resources to other threads
to compensate for possible interference it may have caused.
Proving that all operations of a data structure adhere to such
a compensation scheme is a safety property which can be
formalized using minor extensions of modern program logics
for fine-grained concurrent programs [14], [15], [16], [17].

We formalize one such extension in this article using
CSL. We chose CSL because it has a relatively simple meta-
theory and can elegantly deal with many challenges arising in
the verification of concurrent, pointer-manipulating programs.
Parkinson et al. [18] have shown that CSL can be used to
derive modular and local safety proofs of non-blocking data
structures. The key to these proofs is the identification of a
global resource invariant on the shared-data structure that is
maintained by each atomic command. However, this technique
only applies to safety properties and the authors state that they
are “investigating adding liveness rules to separation logic to
capture properties such as obstruction/lock/wait-freedom”.

We show that it is not necessary to add “liveness rules” to
CSL to verify lock-freedom. As in Atkey’s separation logic for
quantitative reasoning [19] we extend CSL with a predicate
for affine tokens to account for, and provide an upper bound
on the number of loop iterations in a program. In this way,
we obtain the first separation logic for total correctness of
concurrent programs.
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Strengthening the result of Gotsman et al. [13], we first
show that lock-freedom can be reduced to the total correctness
of concurrent programs in which each thread executes a finite
number of data-structure operations. We then prove the total
correctness of these programs using our new quantitative
reasoning technique and a quantitative resource invariant in
the sense of CSL. Thus the proof of the liveness property of
being lock-free is reduced to the proof of a stronger safety
property. The resulting proofs are simple extensions of memory-
safety proofs in CSL and only use standard techniques such
as auxiliary variables [20] and read permissions [21].

We demonstrate the practicality of our compensation-based
quantitative method by verifying the lock-freedom of Treiber’s
non-blocking stack (§VI). We further show that the technique
applies to many lock-free data structures by discussing the
verification of more complicated shared-memory data structures
such as Michael and Scott’s non-blocking queue [7], Hendler
et al.’s non-blocking stack with elimination backoff [9], and
Michael’s non-blocking hazard-pointer data structures [8]
(§VII).

Our method is a clean and intuitive modular verification
technique that works correctly for shared-memory data struc-
tures that have access to thread IDs or the total number of
threads in the system (see §II for details). It can not only be
applied to verify total correctness but also to directly prove
liveness properties or to verify termination-sensitive contextual
refinement. Automation of proofs in concurrent separation logic
is an orthogonal issue which is out of the scope of this paper.
It would require the automatic generation of loop invariants
and resource invariants. Assuming that they are in place, the
automation of the proofs can rely on backward reasoning and
linear programming as described by Atkey [19].

In summary, we make the following contributions.
1) We introduce a new compensation-based quantitative

reasoning technique for proving lock-freedom of non-
blocking data structures. (§III and §V)

2) We formalize our technique using an novel extension of
CSL for total correctness and prove the soundness of
this logic. (§IV, §V, and §VI)

3) We demonstrate the effectiveness of our approach by
verifying the lock-freedom of Treiber’s non-blocking
stack (§VI), Michael and Scott’s lock-free queue, Hendler
et al.’s lock-free stack with elimination backoff, and
Michael’s lock-free hazard-pointer stack.

In §VII, we discuss how quantitative reasoning can verify
the lock-freedom of data structures such as maps and sets,
that contain loops that depend on the size of data structures.
Finally, in §IX, we discuss other possible applications of
quantitative reasoning for proving liveness properties including
wait-freedom and starvation-freedom. Appendix II of this article
contains all rules of the logic, the semantics, and the full
soundness proof.

II. NON-BLOCKING SYNCHRONIZATION
Recent years have seen increasing interest in non-blocking

data structures [1], [2]: shared-memory data structures that

provide operations that are synchronized without using locks
and mutual exclusion in favor of performance. A non-blocking
data structure is often considered to be correct if its operations
are linearizable [3]. Alternatively, correctness can be ensured
by an invariant that is maintained by each instruction of the
operations. Such an invariant is a safety property that can
be proved by modern separation logics for reasoning about
concurrent programs [18].

Progress Properties: In this article, we focus on com-
plementary liveness properties that guarantee the progress of
the operations of the data structure. There are three different
progress properties for non-blocking data structures considered
in literature. To define these, assume there is a fixed but arbitrary
number of threads that are (repeatedly) accessing a shared-
memory data structure exclusively via the operations it provides.
Choose now a point in the execution in which one or more
operations has started.
• A wait-free implementation guarantees that every thread

can complete any started operation of the data structure
in a finite number of steps [4].

• A lock-free implementation guarantees that some thread
will complete an operation in a finite number of steps [4].

• An obstruction-free implementation guarantees progress
for any thread that eventually executes in isolation [5]
(i.e., without other active threads in the system).

Note that these definitions do not make any assumptions on the
scheduler. We assume however that any code that is executed
between the data-structure operations terminates. If a data
structure is wait-free then it is also lock-free [4]. Similarly,
lock-freedom implies obstruction-freedom [5]. Wait-free data
structures are desirable because they guarantee the absence of
live-locks and starvation. However, wait-free data structures
are often complex and inefficient. Lock-free data structures,
on the other hand, often perform more efficiently in practice.
They also ensure the absence of live-locks but allow starvation.
Since starvation is an unlikely event in many cases, lock-free
data structures are predominant in practice and we focus on
them in this paper. However, our techniques apply in principle
also to wait-free data structures (see §IX).

Treiber’s Stack: As a concrete example we consider
Treiber’s non-blocking stack [6], a classic lock-free data
structure. The shared data structure is a pointer S to a linked
list and the operations are push and pop as given in Figure 1.

The operation push(v) creates a pointer x to a new list node
containing the data v. Then it stores the current stack pointer
S in a local variable t and sets the next pointer of the new
node x to t. Finally it attempts an atomic compare and swap
operation CAS(&S,t,x) to swing S to point to the new node x.
If the stack pointer S still contains t then S is updated and
CAS returns true. In this case, the do-while loop terminates
and the operation is complete. If however, the stack pointer
S has been updated by another thread so that it no longer
contains t then CAS returns false and leaves S unchanged.
The do-while loop then does another iteration, updating the
new list node to a new value of S. The operation pop works
similarly to push(v). If the stack is empty (t == NULL ) then



Preprint – March 28, 2013

struct Node {
value_t data;
Node *next;

};

Node *S;

void init()
{S = NULL;}

void push(value_t v) {
Node *t, *x;
x = new Node();
x->data = v;
do { t = S;
x->next = t;

} while(!CAS(&S,t,x));
}

value_t pop() {
Node *t, *x;
do { t = S;
if (t == NULL)
{return EMPTY;}

x = t->next;
} while(!CAS(&S,t,x));
return t->data;

}

Fig. 1. An implementation of Treiber’s lock-free stack as given by Gotsman et al. [13].

I := -1; //initialization

ping() , if I == TID then { while (true) do {} }
else { I := TID }

Fig. 2. A shared data structure that shows a limitation of the method of
proving lock-freedom that has been introduced by Gotsman et al. [13]. For
every n, the parallel execution of n ping operations terminates. However, the
data structure is not lock-free. (It is based on an idea from James Aspnes.)

pop returns EMPTY. Otherwise it repeatedly tries to update
the stack pointer with the successor of the top node using a
do-while loop guarded by a CAS.

Treiber’s stack is lock-free but not wait-free. If other threads
execute infinitely many operations they could prevent the oper-
ation of a single thread from finishing. The starvation of one
thread is nevertheless only possible if infinitely many operations
from other threads succeed by performing a successful CAS.
The use of do-while loops that are guarded by CAS operations
is characteristic for lock-free data structures.

Lock-Freedom and Termination: Before we verify
Treiber’s stack, we consider lock-freedom in general. Following
an approach proposed by Gotsman et al. [13], we reduce the
problem of proving lock-freedom to proving termination of a
certain class of programs. Let D be any shared-memory data
structure with k operations π1, . . . , πk. It has been argued [13]
that D is lock-free if and only if the following program termi-
nates for every n ∈ N and every op1, . . . , opn ∈ {π1, . . . πk}:
On =

f
i=1,...,n opi . However, this reduction does not apply

to all shared-memory data structures. Many non-blocking data
structures have operations that can distinguish different callers,
for instance by accessing their thread ID. A simple example
is described in Figure 2. The shared data structure consists of
an integer I and a single operation ping. If ping is executed
twice by the same thread without interference from another
thread then the second execution of ping will not terminate.
Otherwise, each call of ping immediately returns. As a result,
the program

f
i=1,...,n ping terminates for every n but the data

structure is not lock-free.
We are also aware of a similar example that uses the total

number of threads in the system instead of thread IDs. It is
in general very common to use these system properties in
non-blocking data structures. Three of the five examples in
our paper use thread IDs (the hazard pointer stack, the hazard
pointer queue, and the elimination-backoff stack).

Consequently, we have to prove a stronger termination
property to prove that a data structure is lock-free. Instead
of assuming that each client only executes one operation, we
assume that each client can execute finitely many operations.

To this end, we define a set of programs Sn that sequentially
execute n operations.

Sn = {op1; . . . ; opn | ∀i : opi ∈ {π1, . . . , πk}}
Let S =

⋃
n∈N Sn. We now define the set of programs Pm

that execute m programs in S in parallel.

Pm = {
n

i=1,...,m

si | ∀i : si ∈ S}

Finally, we set P =
⋃
m∈N Pm. For proving lock-freedom, we

rely on the following theorem. By allowing a fixed but arbitrary
number of operations per thread we avoid the limitations of
the previous approach.

Theorem 1. The data structure D with operations π1, . . . , πk
is lock-free if and only if every program P ∈ P terminates.

Proof. Assume first that D is lock-free. Let P ∈ P . We prove
that P terminates by induction on the number of incomplete
operations in P , that is, operations that have not yet been
started or operations that have been started but have not yet
completed. If no operation is incomplete then P immediately
terminates. If n operations are incomplete then the scheduler
has already or will start an operation by executing one of the
threads. By the definition of lock-freedom, some operation will
complete independently of the choices of the scheduler. So
after a finite number of steps, we reach a point in which only
n−1 incomplete operations are left. The termination argument
follows by induction.

To prove the other direction, assume now that every program
P ∈ P terminates. Furthermore, assume for the sake of
contradiction that D is not lock-free. Then there exists
some concurrent program P∞ that only executes operations
op ∈ {π1, . . . , πk} and an execution trace T of P∞ in which
some operations have started but no operation ever completes.
It follows that P∞ diverges and T is therefore infinite. Let n
be the number of threads in P∞ and let si be the sequential
program that consists of all operations that have been started
by thread i in the execution trace T in their temporal order.
Then program

f
i=1,...,n si ∈ Pn can be scheduled to produce

the infinite execution trace T . This contradicts the assumption
that every program in P terminates.

III. QUANTITATIVE REASONING TO PROVE
LOCK-FREEDOM

A key insight of our work is that for many lock-free data
structures, it is possible to give an upper bound on the total
number of loop iterations in the programs in P (§II).

To see why, note that most non-blocking operations are
based on the same optimistic approach to concurrency. They
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repeatedly try to access or modify a shared-memory data
structure until they can complete their operation without
interference by another thread. However, lock-freedom ensures
that such interference is only possible if another operation
successfully makes progress:

In an operation of a lock-free data structure, the failure of
a thread to make progress is always caused by successful
progress in an operation executed by another thread.

This property is the basis of a novel reasoning technique that
we call a quantitative compensation scheme. It ensures that a
thread is compensated for loop iterations that are caused by
progress—often the successful completion of an operation—in
another thread. In return, when a thread makes progress (e.g.,
completes an operation), it compensates the other threads. In
this way, every thread is able to “pay” for its loop iterations
without being aware of the other threads or the scheduler.

Consider for example Treiber’s stack and a program Pn in
which every thread only executes one operation, that is, Pn =f
i=1,...,n si and si∈{push, pop}. An execution of Pn never

performs more than n2 loop iterations. Using a compensation
scheme, this bound can be verified in a local and modular
way. Assume that each of the threads has a number of tokens
at its disposal and that each loop iteration in the program
costs one token. After paying for the loop iteration, the token
disappears from the system. Because it is not possible to create
or duplicate tokens—tokens are an affine resource—the number
of tokens that are initially present in the system is an upper
bound on the total number of loop iterations executed.

Unfortunately, the maximum number of loop iterations
performed by a thread depends on the choices of the scheduler
as well as the number of operations that are performed by
the other threads. To still make possible local and modular
reasoning, we define a compensation scheme that enables the
threads to exchange tokens. Since each loop iteration in Pn is
guarded by a CAS operation this compensation scheme can
be conveniently integrated into the specification of CAS. To
this end, we require that (logically) n−1 tokens have to be
available to execute a CAS.

(a) If the CAS is successful then it returns true and
(logically) 0 tokens. Thus, the executing thread loses
n−1 tokens.

(b) If the CAS is unsuccessful then it returns false and
(logically) n tokens. Thus, the executing thread gains a
token that it can use to pay for its next loop iteration.

The idea behind this compensation scheme is that every thread
needs n tokens to perform a data structure operation. One
token is used to pay for the first loop iteration and n−1 tokens
are available during the loop as the loop invariant. If the CAS
operation of a thread A is successful (case (a)) then this can
cause at most n−1 CAS operations in the other threads to fail.
These n−1 failed CAS operations need to return one token
more than they had prior to their execution (case (b)). On the
other hand, the successful thread A does not need its tokens
anymore since it will exit the do-while loop. Therefore the n−1
tokens belonging to A are passed to the other n−1 threads to

pay for the worst-case scenario in which this update causes
n−1 more loop iterations.

If the CAS operation of a thread A fails (case (b)), then some
other thread successfully updated the stack (case (a)) and thus
provided a token for thread A. Since A had n−1 tokens before
the execution of the CAS, it has n tokens after the execution.
So thread A can pay a token for the next loop iteration and
maintain its loop invariant of n−1 available tokens.

In our example program Pn, there are n2 many tokens in the
system at the beginning of the execution. So the number of loop
iterations is bounded by n2 and the program terminates.1 More
generally, we can use the same local and modular reasoning
to prove that every program with n threads such that thread i
executes mi operations performs at most

∑
1≤i≤nmi · n loop

iterations. Thread i then starts with mi · n tokens.
We will show in the following that this quantitative reasoning

can be directly incorporated in total correctness proofs for these
programs. We use the exact same techniques (for proving safety
properties [18]) to prove liveness properties; namely concurrent
separation logic, auxiliary variables, and read permissions. The
only thing we add to separation logic is the notion of a token
or a resource following Atkey [19].

IV. PRELIMINARY EXPLANATIONS
Before we formalize the proof outlined in §III, we give a

short introduction to separation logic, quantitative reasoning,
and concurrent separation logic. For the reader unfamiliar with
the separation logic extensions of permissions and auxiliary
variables, see Appendix I and the relevant literature [20], [21].
Our full logic is defined in Appendix II.

Separation Logic: Separation logic [22], [23] is an
extension of Hoare logic [24] that simplifies reasoning about
shared mutable data structures and pointers. As in Hoare logic,
programs are annotated with Hoare triples using predicates
P,Q, . . . over program states (heap and stack). A Hoare triple
[P ]C [Q] for a program C is a total-correctness specification of
C that expresses the following. If C is executed in a program
state that satisfies P then C safely terminates and the execution
results in a state that satisfies Q.

In addition to the traditional logical connectives, predicates of
separation logic are formed by logical connectives that enable
local and modular reasoning about the heap. The separating
conjunction P ∗Q is satisfied by a program state if the heap
of that state can be split in two disjoint parts such that one
sub-heap satisfies P and one sub-heap satisfies Q. It enables
the safe use of the frame rule

[P ]C [Q]

[P ∗R]C [Q ∗R]
(FRAME)

With the frame rule it is possible to specify only the part of
the heap that is modified by the program C (using predicates
P and Q). This specification can then be embedded in a larger
proof to state that other parts of the heap are not changed
(predicate R).

1In fact there are at most
(n
2

)
loop iterations in the worst case. However,

the n2 bound is sufficient to prove termination.
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Quantitative Reasoning: Being based on the logic of
bunched implications [25], separation logic treats heap cells as
linear resources in the sense of linear logic. It is technically
unproblematic to extend separation logic to reason about
affine consumable resources too [19]. To this end, the logic is
equipped with a special predicate ♦, which states the availability
of one consumable resource, or token. The predicate is affine
because it is satisfied by every state in which one or more
tokens are available. This in contrast to a linear predicate like
E 7→ F that is only satisfied by heaps H with |dom(H)| = 1.

Using the separating conjunction ♦ ∗P , it is straightforward
to state that two or more tokens are available. We define ♦n to
be an abbreviation for n tokens ♦ ∗ . . . ∗ ♦ that are connected
by the separating conjunction ∗.

Since we use consumable resources to model the terminating
behavior of programs, the semantics of the while command are
extended such that a single token is consumed, if available, at
the beginning of each iteration. Correspondingly, the derivation
rule for while commands ensures that a single token is available
for consumption on each loop iteration and thus that the loop
will execute safely:

P ∧B =⇒ P ′ ∗ ♦ I ` [P ′]C [P ]

I ` [P ]while B do C [P ∧ ¬B]
(WHILE)

The loop body C must preserve the loop invariant P under the
weakened precondition P ′. C is then able to execute under the
assumption that one token has been consumed and still restore
the invariant P , thus making a token available for possible
future loop iterations.

The tokens ♦ can be freely mixed with other predicates
using the usual connectives of separation logic. For instance,
the formula x 7→ 10∨ (x 7→ ∗♦) expresses that the heap-cell
referred to by the variable x points to 10, or the heap-cell
points to an arbitrary value and a token is available. Together
with the frame rule, the tokens enable modular reasoning about
quantitative resource usage.

Concurrent Separation Logic: Concurrent separation
logic (CSL) is an extension of separation logic that is used to
reason about concurrent programs [14]. The idea is that shared
memory regions are associated with a resource invariant. Each
atomic block that modifies the shared region can assume that
the invariant holds at the beginning of its execution and must
ensure that the invariant holds at the end of the atomic block.

The original presentation of CSL [14] uses conditional
critical regions (CCRs) for shared variables. In this article,
we follow Parkinson et al. [18] and assume a global shared
region with one invariant so as to simplify the syntax and the
logic. An extension to CCRs is possible. For predicates I ,P ,
and Q, the judgment I ` [P ]C [Q] states that under the global
resource invariant I , in a state where P holds, the execution
of the concurrent program C is safe and terminates in a state
that satisfies Q.

Concurrent execution of programs C1 and C2 is written as
C1 ‖ C2. We assume that shared variables are only accessed
within atomic regions using the command atomic(C) and that
atomic blocks are not nested. An interpretation of the resource

invariant I is that it specifies a part of the heap owned by the
shared region. The logical rule ATOM for the command atomic
transfers the ownership of this heap region to the executing
thread.

emp ` [P ∗ I]C [Q ∗ I]
I ` [P ] atomic{C} [Q]

(ATOM)

Because the atomic construct ensures mutual exclusion, it is
safe to share I between two programs that run in parallel.
Pre- and post-conditions of concurrent programs are however
combined by use of the separating conjunction2:

I ` [P1]C1 [Q1] I ` [P2]C2 [Q2]

I ` [P1 ∗ P2]C1 ‖ C2 [Q1 ∗Q2]
(PAR)

Most of the other rules of sequential separation logic can be
used in CSL by just adding the (unmodified) resource invariant
I to the rules. The invariant is only used in the rule ATOM.

A technical detail that is crucial for the soundness of the
classic rule for conjunction [24] is that we require the resource
invariant I to be precise [14] with respect to the heap [26].
This means that, for a given heap H and stack V , there is at
most one sub-heap H ′ ⊆ H such that the sate (H ′, V ) satisfies
I . All invariants we use in this article are precise. Note that
precision with respect to the resource tokens ♦ is not required
since they are affine and not linear entities.

V. FORMALIZED QUANTITATIVE REASONING TO PROVE
LOCK-FREEDOM

In the following, we show how quantitative concurrent
separation logic can be used to formalize the quantitative
compensation scheme that we exemplified with Treiber’s non-
blocking stack in §III. The most important rules of this logic
are described in §IV. The logic is formally defined and proved
sound in Appendix II.

Before we verify realistic non-blocking data structures, we
describe the formalized quantitative reasoning for a simpler
producer and consumer example. Since the focus of this article
is the verification of non-blocking algorithms we cannot rely
on locks or fair scheduling. As a result, the example is non-
standard but it illustrates our novel reasoning technique.

Producer and Consumer Example: In the example in
Figure 3, we have a heap location B that is shared between a
number of producer and consumer threads. A producer checks
whether B contains the integer 0 (i.e., B is empty). If so
then it updates B with a newly produced value and terminates.
Otherwise, it leaves B unchanged and terminates. A consumer
checks whether B contains a non-zero integer (i.e, B is non-
empty). If so then it consumes the integer, sets the contents of
B to zero, and loops to check if B contains a new value to
consume. If B contains 0 then the consumer terminates.

If we verify this program using our quantitative separation
logic then we prove that the number of tokens specified by
the precondition is an upper bound on the number of loop
iterations of the program. Since the number of specified tokens
is always finite, we have thus proved termination.

2We omit the variable side-conditions here for clarity. They are included in
the full set of derivation rules in Appendix II.
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Consumer() ,
[♦]
x := 1
[♦ ∨ x = 0] // loop inv.
while x != 0 do {
//While rule antecedent:
//(♦ ∨ x = 0) ∧ ¬(x = 0)⇒ emp ∗ ♦
[emp]
atomic {
[B 7→ u ∗ (u = 0 ∨ ♦)] //atomic
b := [B]
if b != 0 then {
[B 7→ b ∗ (b = 0 ∨ ♦) ∧ ¬(b = 0)]
[B 7→ b ∗ ♦]
x := b
[B] := 0
[B 7→ 0]
[I ∗ ♦]
[I ∗ (♦ ∨ x = 0)]

} else {
[B 7→ u ∗ (u = 0 ∨ ♦)]
x := 0
[I ∗ (♦ ∨ x = 0)]

} } [(♦ ∨ x = 0)] // end atom. block
}[(♦ ∨ x = 0) ∧ (x = 0)] //end while
[emp]

Producer(y) ,
[♦]
atomic {
[♦ ∗ I] // atom. block
if [B] = 0 then {
[♦ ∗ B 7→ u ∗ (u = 0 ∨ ♦)]
[B] := y
[♦ ∗ B 7→ y]
[(♦ ∨ y = 0) ∗ B 7→ y]
[I]

} else {
[I]
skip
[I]

}
}[emp] // end atom. block

Fig. 3. A lock-free data structure B with the operations Consumer and
Producer. The operation Consumer terminates if finitely many Producer
operations are executed in parallel. The verification of lock-freedom and
memory safety uses a compensation scheme and quantitative concurrent
separation logic.

The challenge in the proof is that the loop iterations of
the operation Consumer depend on the scheduler and on the
number of Producer operations that are executed in parallel.
However, it is the case that a program that uses n Consumer
operations and m Producer operations performs at most n+m
loop iterations. We can prove this claim using our quantitative
separation logic by deriving the following specifications.

I ` [♦]Consumer() [emp] and I ` [♦]Producer(y) [emp]

However, the modular and local specifications of these op-
erations only hold in an environment in which all programs
adhere to a certain policy. This policy can be expressed as
a resource invariant I in the sense of concurrent separation
logic. Intuitively, I states that the shared memory location B is
read-writable, and either is empty (B = 0) or there is a token
♦ available. We define

I , ∃u. B 7→ u ∗ (u = 0 ∨ ♦) .
Now we can read the specifications of Consumer and Producer
as follows. The token ♦ in the precondition of Consumer is
used to pay for the first loop iteration. More loop iterations
are only possible if some producer updated the contents of
heap location B to a non-zero integer v before the execution
of the atomic block of Consumer. We then rely on the fact
that the producer respected the resource invariant I . If B 7→ u
and u 6= 0 then the only possibility of maintaining I is by
providing a token ♦. The operation Consumer then updates B
to zero and can thus establish the invariant I without using a
token. So the token in the invariant becomes available to pay
for the next loop iteration. Figure 3 contains an outline of the
proof for Producer and Consumer. Note that our proof also
verifies memory safety.

From Local Proofs to Lock-Freedom: Using the derived
specifications of the operations and the frame rule, we induc-
tively prove I ` [♦k] op1; . . . ; opk [emp] where each opi is
a Consumer or Producer operation. In other words, we have
then proved [♦k] s [emp] for all s ∈ Sk (recall the definition
from §II). Let now si ∈ Smi for 1 ≤ i ≤ n. Using the rule
PAR, we can then prove for m =

∑
i=1,...,nmi that

I ` [♦m]
n

i=1,...,n

si [emp] .

This shows that the program
f
i=1,...,n si performs at most

m+1 loop iterations (one token can be present in the resource
invariant I) when it is executed. Following the discussion in
§II, this proves that every program p ∈ P terminates and that
(B;Producer,Consumer) is a lock-free data structure.

Similarly, we can in general derive a termination proof for
every program in P from such specifications of the operations
of a data structure. Assume that a shared-memory data structure
(S;π1, . . . , πk) is given. Assume furthermore that we have
verified for all 1 ≤ i ≤ k the specification I(n) ` [♦f(n) ∗
P ]πi [P ] . The notations I(n) and f(n) indicate that the proof
can use a meta-variable n which ranges over N. However, the
proof is uniform for all n. Additionally, P might contain a
variable tid for the thread ID. From this specification follows
already the lock-freedom of S. To see why, we can argue
as in the producer-consumer example. First, it follows for
every n and s ∈ Sm that I(n) ` [♦m·f(n) ∗ P ] s [P ] . Second,
a loop bound for p =

f
i=1,...,n si ∈ Pn with si ∈ Smi is

derived as follows. We use the rule PAR to prove for m =∑
i=1,...,nmi · f(n) that

I(n) ` [♦m ∗ ~
0≤tid<n

P (tid)] p [ ~
0≤tid<n

P (tid)] .

Thus every p ∈ P terminates and according to the proof in §II,
the data structure (S;π1, . . . , πk) is lock-free.

VI. LOCK-FREEDOM OF TREIBER’S STACK
We now formalize the informal proof of the lock-freedom

of Treiber’s stack that we described in §III. In Appendix III,
we outline how the proof can be easily extended to also verify
memory safety. Figure 4 shows the implementation of Treiber’s
stack in the while language we use in this article.

Each thread that executes push or pop operations can be
in one of two states. It either has some expectation on the
contents of the shared data structure S (critical state) or it does
not have any expectation (non-critical state). More concretely,
a thread is in a critical state if and only if it is executing a
push or pop operation and is in between the two atomic blocks
in the while loop. The thread then expects that t = [S]. The
resource invariant that we will formalize in quantitative CSL
can be described as follows.

For each thread T in the system one of the following holds.
(1) The thread T is in a critical state and its expectation
on the shared data structure is true. (2) The thread T is
in a critical state and some other thread provided T with
a token. (3) The thread T is in a non-critical state.

To formalize this invariant, we have to expose the local
assumption of the threads (t = [S]) to the global state. This is
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S := alloc(1); [S] := 0;
A := alloc(max_tid); C := alloc(max_tid);

push(v) ,
pushed := false;
x := alloc(2);
[x] := v;
[(pushed ∨ ♦n) ∗ γr(tid, _, _)] // loop invariant
while ( !pushed ) do {
//While rule antecedent:
((pushed ∨ ♦n) ∗ γr(tid, _, _)) ∧ !pushed ⇒ ♦n−1 ∗ γr(tid, _, _) ∗ ♦
[♦n−1 ∗ γr(tid, _, _)]
atomic {

[♦n−1 ∗ γr(tid, _, _) ∗ S 7→ u ∗ α(tid, u) ∗ I′(tid, u)] // atom block

[♦n−1 ∗ γ(tid, _, _) ∗ S 7→ u ∗ I′(tid, u)] // impl. & read perm.
t := [S];

[♦n−1 ∗ γ(tid, _, _) ∗ (S 7→ u ∧ t = u) ∗ I′(tid, u)] // read & frame
C[tid] := 1

[♦n−1 ∗ γ(tid, _, 1) ∗ (S 7→ u ∧ t = u) ∗ I′(tid, u)] // assignment
A[tid] := t

[♦n−1 ∗ (A[tid] 7→ t ∧ t = u) ∗ C[tid] 7→ 1 ∗ S 7→ u ∗ I′(tid, u)]
[♦n−1 ∗ γr(tid, t, 1) ∗ S 7→ u ∗ α(tid, u) ∗ I′(tid, u)] // perm.

[♦n−1 ∗ γr(tid, t, 1) ∗ I] // exist. intro & (3)
};

[♦n−1 ∗ γr(tid, t, 1)] // atomic block & frame
// [x+1] := t; this is not essential for lock-freedom
atomic {

[♦n−1 ∗ γr(tid, t, 1) ∗ I] // atomic block

[♦n−1 ∗ γr(tid, t, 1) ∗ S 7→ u ∗~1≤i≤n α(i, u)] // exist. elim.
s := [S]; if s == t then {

[♦n−1 ∗ γ(tid, _, _) ∗ S 7→ t ∗~1≤i≤n\{tid}(γ(i, _, _))]
[S] := x;
[γ(tid, _, _) ∗ S 7→ x ∗ I′(tid, x)] // permissions & (4)
pushed := true
[(pushed ∨ ♦n) ∗ γ(tid, _, _) ∗ ∃u. S 7→ u ∗ I′(tid, u)]
} else {

[♦n−1 ∗ t 6= u ∧ γr(tid, t, 1) ∗ α(tid, u) ∗ S 7→ u ∗ I′(tid, u)]
[♦n ∗ γ(tid, t, 1) ∗ S 7→ u ∗ I′(tid, u)] // impl. using (5)
skip
[(pushed ∨ ♦n) ∗ γ(tid, _, _) ∗ ∃u. S 7→ u ∗ I′(tid, u)]
};
C[tid] := 0
[(pushed ∨ ♦n) ∗ γ(tid, _, 0) ∗ S 7→ u ∗ I′(tid, u)]
// write & exist. elim (above) and permissions & impl.
[(pushed ∨ ♦n) ∗ γr(tid, _, _) ∗ α(tid, u) ∗ S 7→ u ∗ I′(tid, u)]
[(pushed ∨ ♦n) ∗ γr(tid, _, _) ∗ I] // exist. intro
};
[(pushed ∨ ♦n) ∗ γr(tid, _, _)] // atomic block end
}

Fig. 4. An implementation of the push operation of Treiber’s lock-free stack
in our language and the verification of the while loop. The CAS operation
is implemented using an atomic block that updates the local variable pushed.
The auxiliary array A contains in A[tid] the value of the local variable t of
the thread with ID tid or zero if the thread does not assume t = [S]. The loop
invariant pushed ∨ ♦n states that either the new element x has been pushed
to the stack S or there are n tokens available. The predicates γ and γr are
defined in (1).

why we use auxiliary array A. If the thread with the thread
ID tid is in a critical state then A[tid ] contains the value of
its local variable t. Otherwise A[tid ] contains 0. Similarly, we
have a second auxiliary array C such that C[tid ] contains a
non-zero integer if and only if the thread with ID tid is in a
critical state. As shown in Figure 4, the arrays A and C are
never used on the right-hand side of an assignment and are
only updated in the two atomic blocks of each operation.

Let n be the number of threads in the system. We define
I , ∃u. S 7→ u ∗ ~

0≤i<n
α(i, u)

α(i, u) , ∃a, c. C[i] 7→r c ∗A[i] 7→r a ∗ (c = 0 ∨ a = u ∨ ♦)

The resource invariant I states that the shared region has a
full permission for the heap location S that points to the value
u. Additionally, the predicate α(i, u) states for each thread i
that the shared region has read permissions for C[i] and A[i];
and that thread i is in a non-critical section (c = 0), that the
local variable t contains the value [S] (a = u), or that there is
a token ♦ available.

We use read permissions since threads need access to the
local predicate A[tid ] 7→r t at some point to infer that A[tid ]
contains the value of the local variable t. This relation of the
local variable t with the array A is the only technical difficulty
in the proof. Just as in safety proofs, we can now use the rules
of our quantitative concurrent separation logic to verify the
following Hoare triples.

I ` [γr(tid , , ) ∗ ♦n] push(v) [γr(tid , , )]

I ` [γr(tid , , ) ∗ ♦n] pop() [γr(tid , , )]

Where γ and γr are defined as:
γ(t, a, c) , A[t] 7→ a ∗ C[t] 7→ c (1)

γr(t, a, c) , A[t] 7→r a ∗ C[t] 7→r c (2)
Thus, the execution of any operation requires n tokens and
read permission to the heap locations A[tid ] and C[tid ]. After
execution, the tokens are consumed and we are left with the
read permissions. Figure 4 contains a proof outline for the
while loop of push. We use the following abbreviation for parts
of the invariant I that are not needed in the local proof.

I ′(j, u) , ~
i∈{0,...,n−1}\{j}

α(i, u)

We have for all values u and j ∈ {0, . . . , n−1} that
I = ∃u. S 7→ u ∗ α(j, u) ∗ I ′(j, u) (3)

♦n−1 ~
i∈{0,...,n−1}\{j}

(γr(i, , )) =⇒ I ′(j, u) (4)

t 6= u ∧ γr(j, t, 1) ∗ α(j, u) =⇒ ♦ ∗ γ(j, t, 1) (5)
Using these assertions, the verification of push and pop is a
straightforward application of the rules of our logic. Figure 4
describes the main part—the while loop—of the proof of push.
The loop invariant pushed ∨ ♦n states that either the new
element x has been pushed onto the stack S or there are
n tokens available. In the first atomic block we leave the
assumptions I ′(tid , u) of the other thread untouched and just
establish A[tid ] 7→r t ∗ C[tid ] 7→r 1.

The key aspect of the proof is the second atomic block which
corresponds to the CAS operation in the original code. In the
if case, we possibly break the assumptions of the other threads
([S] := x). Then we have to use n− 1 tokens and implication
(4) to re-establish I ′(tid , u). Since the variable pushed is set
to true, we can maintain the loop invariant without using
another token. In the else case we use the inequality t 6= u
and implication (5) to derive the loop invariant. Finally, we
re-establish α(tid , u) using C[tid ] 7→ 0.

The verification of the while loop of pop is similar. By
applying the proof from the end of §V to the specifications
of push and pop, we have then proved the lock-freedom of
Treiber’s stack.
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An interesting aspect of the proof is that it is not essential for
a thread to know the entire resource invariant I . The only part
that is needed is the implication S 7→ ∗♦n ∗~0≤i<nA[i] 7→r

=⇒ I . This can be used to make the assumptions
A(i) of the threads on the global data structure abstract.
The implication S 7→ ∗ ♦n ∗ ~0≤i<nA[i] 7→r =⇒
∃u. S 7→ ∗~0≤i<n((A[i] 7→r ∗ ♦) ∨ A(i, u)) holds for all
predicates A(i, u). A natural candidate for such an abstraction
is (concurrent) abstract predicates [27], [28]. However, such an
abstraction is not needed for our goal of verifying non-blocking
data structures in this paper.

VII. ADVANCED LOCK-FREE DATA STRUCTURES
In this section we investigate to what extent our quantitative

proof technique can be used to prove the lock-freedom of more
complex shared-memory data structures.

In many cases, it is possible to derive a bound on the total
number of loop iterations like we do for Treiber’s stack. Table 5
gives an overview of our findings. It describes for several
different non-blocking data structures the number t(n) of tokens
that are needed per operation in a system with n threads. The
derived loop bound on a system with n threads that executes m
operations is then t(n)∗m. In the hazard-pointer data structures,
the natural number ` is a fixed global parameter of the data
structure. The details are discussed in the following.

Michael and Scott’s Non-Blocking Queue: Michael and
Scott’s non-blocking queue [7] implements a FIFO queue using
a linked list with two pointers to the head and the tail of the
list. New nodes are inserted at the tail and nodes are removed
from the head.

To implement the queue in a lock-free way, the insert oper-
ation can leave the data structure in an apparently inconsistent
state: The new node is inserted at the tail using a CAS-guarded
loop, similar to Treiber’s stack. The pointer to the tail is then
updated by a second CAS operation, allowing other threads to
access the data structure with an inaccurate tail pointer.

To deal with this problem, the operations of the queue
maintain the invariant that the tail pointer points to the last or
second-to-last node during the execution and to the last node
after the execution of the operation. To maintain this invariant,
each CAS-guarded loop checks if the tail pointer points to a
node whose next pointer is Null. In this case, the tail pointer
is up to date and the current iteration of the while loop can
continue. Otherwise, the tail pointer is updated to point to the
last node of the list and the while loop is restarted.

To prove the lock-freedom of Michael and Scott’s queue,
we extend the invariant I that we used in the verification of
Treiber’s stack with an additional condition: The next pointer
of the node pointed to by the tail pointer is Null or there is a
token that can be used to pay for an additional loop iteration.

∃u, t, w.heap 7→ u ∗ tail 7→ t ∗ tail + 1 7→ w∗
~

0≤i<n
β(i, u, t) ∗ (w = nil ∨ ♦)

The formulas β(i, u, t) are analogous to the formulas α(i, u)
in the invariant that we used for the verification of Treiber’s
stack. With this invariant in a system with n threads, we can

Data Structure Tokens per Operation

Treiber’s Stack [6] n

Michael and Scott’s Queue [7] n+ 1

Hazard-Pointer Stack [8] n+ (` · n)
Hazard-Pointer Queue [8] (n+ 1) + (` · n)
Elimination-Backoff Stack [9] n(n+ 1)

Fig. 5. Quantitative reasoning for popular non-blocking data structures. The
table shows the number t(n) of tokens that are needed per operation in a
system with n threads. The derived loop bound on a system with n threads
that executes m operations is then t(n) ∗m. ` is a fixed global parameter of
the data structure.

verify the operations of the queue using n+ 1 tokens in the
respective preconditions.

Hazard Pointers: A limitation of Treiber’s non-blocking
stack is that it is only sound in the presence of garbage
collection. This is due to the ABA problem (see for instance [8])
which appears in many algorithms that use compare-and-swap
operations: Assume that a shared location which contains A
is read by a thread t1. Then thread t2 gets activated by the
scheduler, modifies the shared location to B, and then back
to A. Now thread t1 gets activated again, falsely assumes that
the shared data has not been changed, and continues with its
operation. The result can be a corrupted shared data structure,
invalid memory access or an incorrect return value.

Michael [8] proposes hazard pointers to enable the safe
reclamation of memory while maintaining the lock-freedom
of non-blocking data structures. The idea is to introduce a
global array that contains for each thread a number of hazard
pointers3 to data nodes that are currently in use by the thread.
Additionally, each thread stores a local list of pointers that it
wants to remove from the shared data structure (for instance
by using pop in the case of a stack). After each successful
removal of a node a thread checks if this local list has reached
a fixed length threshold. If so, it checks the hazard pointers
of each other thread to ensure that the pointers are not in use
before reclaiming the space.

The use of hazard pointers does not affect the global resource
invariants that we use in our quantitative verification technique.
The reason is that hazard pointers only affect parts of the
operations that are outside the loops that are guarded by CAS
operations. Moreover, the worst-case number of loop iterations
in this additional code can be easily determined: It is the
maximal length ` of the local list multiplied with the maximal
number of threads in the system.

For Treiber’s stack with hazard pointers, the specifications
of push and pop are:

I ` [γr(tid , , ) ∗ ♦n] push(v) [γr(tid , , )]

I ` [γr(tid , , ) ∗ ♦n+(`∗n)] pop() [γr(tid , , )]

Where γr is defined as in (1). The resource invariant I is
the same as in the specification of the version without hazard
pointers.

3In most cases, this set is just a singleton.
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Elimination Backoff: To improve the performance of
Treiber’s non-blocking stack in the presence of high contention,
one can use an elimination backoff scheme [9]. The idea is
based on the observation that a push operation followed by a
pop results in a stack that is identical to the initial stack. In this
case, the two operations can be eliminated without accessing
the stack at all: The two threads use a different shared-memory
cell to transfer the stack element.

Our method can also be used to prove that Hendler et al’s
elimination-backoff stack [9] is lock-free. The main challenge
in the proof is that the push and pop operations consist of two
nested loops that are guarded by CAS operations. Assume again
a system with n threads. The inner loop can be just treated as in
Treiber’s stack using n tokens in the precondition and 0 tokens
in the postcondition. As a result, the number of tokens needed
for an iteration of the outer loop is n+ 1. That means that a
successful thread needs to transfer (n− 1) · (n+ 1) = n2 − 1
tokens to the other threads to account for additional loop
iterations in the other threads. Given this, we can verify the
elimination-backoff stack using n2 tokens in the precondition.

More details on the verification can be found in Appendix IV.
Non-Blocking Maps and Sets: Quantitative compensation

schemes can also be used to prove the lock-freedom of non-
blocking maps and sets (e.g., [29], [30]).

As in other lock-free data structures, interference in the map
and set operations is only caused if the operation of another
thread makes progress. For example, in the case of Harris’ non-
blocking linked list [29], a thread will only make an additional
traversal (of the list) if there is interference caused by another
thread that makes a successful traversal. The number of these
additional unsuccessful traversals can be bounded using the
same quantitative compensation scheme as in our previous
examples.

The number of loop iterations within each list traversal
depends however on the length of the list. Nevertheless,
it is possible to prove an upper bound on the number of
loop iterations executed by programs in P . The reason is
that each of the n threads executes a fixed number mi of
operations. Thus the total number of operations is bounded
by m =

∑
i=1,...,nmi. In many important shared-memory

data structures, such as lists or maps, m (or a function of
m) constitutes an upper bound on the size of the shared data
structure. One can then use this bound to prove an upper bound
on the number of loop iterations by introducing ♦m in the
global resource invariant. Like Atkey [19] we can use ideas
from amortized resource analysis [31] to deal with variable-
size data structures. By assigning tokens to each element of
a data structure we derive bounds that depend on the size of
the data structure without explicitly referring to its size. For
instance, an inductive list-predicate that states that k · |`| tokens
are available, where ` is the list pointed to by u can be defined
as follows.
LSeg ′(x, y, k)⇔(x = y ∧ emp)∨

(∃v, z x 7→ v ∗ x+ 1 7→ z ∗ LSeg ′(z, y, k) ∗ ♦k)

VIII. RELATED WORK
There is a large body of research on verifying safety proper-

ties and partial correctness of non-blocking data structures. See
for instance [18], [32], [33] and the references therein. This
work deals however with the verification of the complementary
liveness property of being lock-free, which in comparison has
received little attention.

Colvin and Dongol [10], [34] use manually-derived global
well-founded orderings and temporal logic to prove the lock-
freedom of Treiber’s stack [6], Michael and Scott’s queue [7],
and a bounded array-based queue. Their technique is not
modular but rather a whole program analysis of the most
general client of the data structure. It is unclear whether the
approach applies to data-structure operations with nested loops.
In contrast, our method is modular, can deal with nested loops,
and does not require temporal logic.

Petrank et al. [11] attempt to reduce lock-freedom to a safety
property by introducing the more restrictive concept of bounded
lock-freedom. It states that, in a concurrent program, there has
to be progress after at most k steps, where k can depend on
the input size of the program but not on the number of threads
in the system. They verify bounded lock-freedom with a whole
program analysis using temporal logic and the model checker
Chess. The technique is demonstrated by verifying a simple
concurrent program that uses Treiber’s stack. Our compensation-
based quantitative reasoning does not provide such an explicit
bound on the steps between successful operations but rather a
global bound on the number of loop iterations in the system.
Additionally, our bound depends on the number of threads
in the system and not on the size of the input. A conceptual
difference of our work is that we prove the lock-freedom of a
given data structure as opposed to the verification of a specific
program. Moreover, our proofs are local and modular, and not a
whole program analysis. We also show that compensation-based
reasoning works for many advanced lock-free data structures.

Gotsman et al. [13] reduce lock-freedom proofs to termina-
tion proofs of programs that execute n single data structure
operations in parallel. They then prove termination using
separation logic and temporal rely-guarantee reasoning by
layering liveness reasoning on top of a circular safety proof.
Using several tools and manually formulating appropriate
proof obligations, they are able to automatically verify the
lock-freedom of involved algorithms such as Hendler et al.’s
non-blocking stack with elimination backoff [9]. While these
automation results are very impressive, the used reduction
to termination is not intended to be applied to shared data
structures that use thread IDs or other system information (see
§II for details). In comparison, our compensation reasoning
does not restrict the use of thread IDs or other system
information. However, the termination proofs of [13] would
also work for a modification of the reduction that we introduced
in this paper.

Tofan et al. [12] describe a fully-mechanized technique based
on temporal logic and rely-guarantee reasoning that is similar
to the work of Gotsman et al. However, they assume weak
fairness of the scheduler while we do not pose any restriction



Preprint – March 28, 2013

on the scheduler. Kobayashi and Sangiorgi [35] propose a type
system that proves lock-freedom for programs written in the
π-calculus. The target language and examples seem however
to be quite different from the programs we prove lock-free in
this article.

IX. CONCLUSION

We have shown that lock-freedom proofs of shared-memory
data structures can be reduced to safety proofs in concurrent
separation logic (CSL). To this end, we proposed a novel
quantitative compensation scheme which can be formalized
in CSL using a predicate ♦ for affine tokens. While similar
logics have been used to verify the resource consumption of
sequential programs [19], this is the first time that a quantitative
reasoning method has been used to verify liveness properties
of concurrent programs.

In the future, we plan to investigate the extent to which
quantitative reasoning can be applied to other liveness proper-
ties of concurrent programs. The quantitative verification of
wait-freedom seems to be similar to the verification of lock-
freedom if we require that tokens cannot be transferred among
the threads. Obstruction-freedom might require the creation of
tokens in case of a conflict. We also plan to adapt our method
to prove liveness properties of locking data structures, such
as fairness and starvation-freedom. These properties are more
challenging to verify with our quantitative method since they
rely on a fair scheduler, which is in contrast to the progress
properties of non-blocking algorithms. To enable such proofs,
we plan to extend our compensation scheme to include the
behavior of the scheduler.

Ultimately, we envision to integrate our compensation-
based proofs into a logic for termination-sensitive contextual
refinement. We are currently developing such a logic but its
description is beyond the scope of this work.
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APPENDIX

I. FURTHER PRELIMINARY EXPLANATIONS

Permissions: It is sometimes necessary to share informa-
tion in the form of a predicate between the invariant and a
local assertion. This can be achieved in CSL by the use of
permissions [21].

The predicate E 7→ F expresses that the heap location
denoted by E contains the value that F denotes. Another
natural reading of the predicate in the context of separation
logic is that E 7→ F grants the permissions of reading from
and writing to the heap location denoted by E (permission
reading). Building upon this interpretation, read permissions
state that a full read/write permission E 7→ F can be shared
by two threads if the heap location denoted by E will not be
modified. A full permission and two read permissions can be
interchanged using the following equivalence.4

E 7→ F ⇔ E 7→r F ∗ E 7→r F

The two read permissions can then be shared between two
threads. To write into a location, a thread needs a full
permission and to read a location it only needs a read
permission.

[x 7→ ] [x] := E [x 7→ E] (WRITE)

[E 7→r F ]x := [E] [E 7→r F ∧ x=F ] (READ)

The remaining rules of the concurrent separation logic can
remain unchanged in the presence of permissions.

Auxiliary Variables: If the rules of (concurrent) separation
logic are not sufficient to prove a property of a program then
we sometimes have to use auxiliary variables [20]. These
are variables that we add to the program to monitor but not
influence the computation of the original program. Thus, if we
prove a property about a program using auxiliary variables then
this property also holds for the program without the auxiliary
variables.

More formally, we say a set Aux of variables is auxiliary
for a program P if the following holds. If x := E is an
assignment in P and E contains a variable in Aux then x ∈
Aux . Additionally, auxiliary variables must not occur in loop
or conditional tests.

II. FORMAL DEVELOPMENT AND SOUNDNESS

In the following, we give the formalization and soundness
proof of our quantitative concurrent separation logic for total
correctness. The proof is inspired by Vafeiadis’ soundness
proof [26] of concurrent separation logic and Atkey’s soundness
proof of his (sequential) quantitative separation logic [19]. How-
ever, we not only prove memory safety but also termination.

First, we address the syntax and semantics of our language
and logic in detail. See Figure 8 for the full operational
semantics of our language and Figure 9 for the Hoare-style
derivation rules of the logic. The semantics are standard with

4A read permission is equivalent to a fractional permission with the fraction
0.5.

E ::= x | n | E + E | E − E | . . .
B ::= E = E | E < E | ¬B | B ∨B | . . .
C ::= skip | x := E | x := [E] | [E] := E | x := alloc(n)

| dispose(E) | C;C | C ‖ C | if B then C else C
| while B do C | atomic C | {C}

Fig. 6. A basic while language with concurrency and dynamic allocation.

the exception of the WHILE-LOOP, WHILE-SKIP, and WHILE-
ABORT rules, which deal with safe and unsafe loops in a
program. Similarly, the derivation rules include an extended
WHILE rule that provides a logical specification that ensures
that while loops are terminating.

Language: We use a basic while language with concur-
rency as commonly used in the context of concurrent separation
logic [36], [14], [26]. As defined in Figure 6, it is built from
integer expressions E, boolean expressions B, and commands
C. As in Parkinson et al. [18], we assume a global shared
heap region. An extension to conditional critical regions [14]
is possible but omitted in favor of clarity. We assume that each
built-in function terminates. For simplicity, we do not include
procedure calls in the language. This is an orthogonal issue
that is dealt with elsewhere [27].

Semantics: Formulas and programs are interpreted with
respect to a program state using a small-step operational
semantics. Since the logic includes a consumable resource
predicate, a program state consists not only of a heap and
a stack but also of a natural number t which represents the
number of consumable resources that are currently available
to the program. To execute the body of a while loop there
has to be at least 1 resource available, that is t > 0. After the
execution of the loop body, there are t− 1 resources left.

Let Stack = Var → Val be the set of stacks and Heap =
Loc →fin Val be the set of heaps. Then, the set of program
states is State = Heap × Stack × N. The last component
describes the number of available tokens.

The rules of the semantics are defined in Figure 8. They
define an evaluation judgment of the forms

C, σ → C ′, σ′ or C, σ → ⊥

where C and C ′ are commands and σ, σ′ ∈ State . Intuitively,
this judgment states the following. If we execute the command
C in the state σ then the next computational step results in an
error (C, σ → ⊥), or it transforms the program state to σ′ and
execution continues with command C ′. A deviation from the
standard rules is in the semantics for a while loop. They ensure
that a token is consumed if the body of the loop is executed. If
the loop condition is satisfied and no token is available (t = 0)
in the current state, then the result is an error.

An interesting feature of our semantics is that it does
not admit infinite chains of execution steps. We prove this
by defining a well-founded order ≺ on program states and
commands. To this end, we first define the size |C| of a
command C as follows.
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Definition 1 (Size of Commands). Let C be a command. |C|
is inductively defined as follows.

|skip| = 0

|C1;C2| = |C1|+ |C2|+ 1

|C1 ‖ C2| = |C1|+ |C2|+ 1

|if B then C1 else C2| = max(|C1|, |C2|) + 1

|while B do C| = |C|+ 1

|atomic C| = |C|+ 1

|{C}| = |C|
|C| = 1 otherwise

Definition 2 (Well-Founded Order). Let σ = (H,V, t), σ′ =
(H ′, V ′, t′) be program states and let C,C ′ be commands. We
define (C ′, σ′) ≺ (C, σ) iff t′ < t or (t′ = t and |C ′| < |C|).

Proposition 1. The relation ≺ is a well-founded order on
program states.

Lemma 1. If C, σ → C ′, σ′ then (C ′, σ′) ≺ (C, σ).

Proof. By inspection of the operational semantics rules.

As a consequence of Lemma 1 and the well-foundedness of
< on the natural numbers, there are no infinite chains of the
form C1, σ1 → C2, σ2 → · · · .

Theorem 2. There exist no infinite chains of the form C1, σ1 →
C2, σ2 → · · · .

Definition 3. For a program state σ and a command C we
write C, σ ⇓ σ′ if C, σ →∗ skip, σ′. Similarly, we write C, σ ⇓
⊥ if C, σ →∗ ⊥.

An inspection of the rules of the operational semantics shows
that each terminal state has the form skip, σ.

Definition 4 (Termination). We say that a program C termi-
nates from an initial state σ if not C, σ ⇓ ⊥.

Because our semantics do not allow infinite evaluation chains,
we relate this definition to a usual small-step semantics without
tokens. Since this relation is not important for the formal
development we keep the discussion short. This semantic
judgement is of the form C, τ ⇒ C ′, τ ′ or C, τ ⇒ ⊥, where
C,C ′ are commands and τ, τ ′ ∈ Heap×Stack . The rules of the
semantics are identical to the rules of our quantitative semantics
with the token component removed. The only exceptions are
the rules for while loops which are replaced by the following
rules.

JBK(V )

{while B do C}, (H,V )⇒ {C;while B do C}, (H,V )
(W-LOOP)

¬JBK(V )

{while B do C}, τ ⇒ skip, τ
(W-SKIP)

Theorem 3. Let C be a command and let σ = (H,V, t)
by a state. If not C, σ ⇓ ⊥ then there is no infinite chain
of the form C, (H,V ) ⇒ C1, τ1 ⇒ C2, τ2 ⇒ · · · and not
C, (H,V )⇒∗ ⊥.

σ |= ♦⇔ t > 0 ∧ dom(H) = ∅
σ |= P ∗Q⇔ ∃H1, H2, t1, t2. H = H1 ⊕H2∧

t = t1 + t2 ∧ (H1, V, t1) |= P∧
(H2, V, t2) |= Q

σ |= P −∗ Q⇔ ∀H ′, t′. if H ⊕H ′ defined ∧ (H ′, V, t′) |= P

then (H ⊕H ′, V, t+ t′) |= Q

σ |= E 7→ F ⇔ dom(H) = JEK(V )

∧H(JEK(V )) = (JF K(V ),>)
σ |= E 7→r F ⇔ dom(H) = JEK(V )

∧H(JEK(V )) = (JF K(V ), r)

Fig. 7. A sample of the semantics of assertions over a state σ = (H,V, t).
The semantics of the other connectives and predicates are standard.

To prove the theorem, we first prove for every t ∈ N and
every program state τ = (H,V ) that if C, τ ⇒ C ′, (H ′, V ′)
then either C, (H,V, t) → C ′, (H ′, V ′, t′) for some t′ or
C, (H,V, t)→ ⊥. This follows immediately by an inspection
of the rules. The only interesting case is the treatment of while
loops for which the property is easily verified.

Given this, we see that the notion of termination C, σ ⇓ σ′
corresponds exactly to the standard notion of termination under
a semantics without a resource component.

Concurrent Separation Logic with Quantitative Reasoning:
Following the presentation of Atkey [19], we define the
predicates of quantitative separation logic as follows. Since we
only deal with one resource at a time we write ♦ instead of
Atkey’s R.
P ::= B | P ∨ P | P ∧ P | ¬P | P ⇒ P | ∀x.P | ∃x.P

| ♦ | emp | E 7→ E | E 7→r E | P ∗ P | P −∗ Q | ~
i∈I

P

Following previous work [21], [26], we model assertions in the
logic with permission heaps. Heap locations are instrumented
with a permission in {r,>} where r is read-only and > is
full permission. Permission heaps can be added using the ⊕
operator, which adds permissions where they overlap (and
are both r), and takes the disjoint union elsewhere. The
operational semantics is independent of the permissions. So
we define it for heaps without permissions, which can be
derived from permission heaps by deleting the permission
component. Figure 7 contains the semantics of the most
interesting connectives and predicates.

The rules of the program logic are given in Figure 9
Soundness: In keeping with the presentation given in [26],

we define satisfaction of Hoare triples according to the
inductively defined predicate safen(C, σ, I,Q) which states
that command C will execute safely for up to n steps starting
in state σ under resource invariant I and if it terminates, the
resulting state will satisfy Q.



Preprint – March 28, 2013

{x := E}, (H,V, t)→ skip, (H,V |x=JEK(V ), t)
(ASSIGN)

` = JEK(V ) ` ∈ dom(H)

{x := [E]}, (H,V, t)→ skip, (H,V |x=H(`), t)
(LOOKUP)

JEK(V ) 6∈ dom(H)

{x := [E]}, (H,V, t)→ ⊥
(LOOKUP-ABORT)

` = JEK(V ) ` ∈ dom(H)

{[E] := F}, (H,V, t)→ skip, (H |`=JF K(V ), V, t)
(MUTATE)

JEK(V ) 6∈ dom(H)

{[E] := F}, (H,V, t)→ ⊥
(MUTATE-ABORT)

∀i ∈ {0, . . . , n− 1} . `+ i 6∈ dom(H)

{x := alloc(n)}, (H,V, t)→ skip, (H |`+0,...,`+n−1=0, V |x=`, t)
(ALLOC)

` = JEK(V ) ` ∈ dom(H)

dispose(E), (H,V, t)→ skip, (H\`, V, t)
(DISPOSE)

JEK(V ) 6∈ dom(H)

dispose(E), (H,V, t)→ ⊥
(DISPOSE-ABORT)

C1, σ → C′1, σ
′

{C1;C2}, σ → {C′1;C2}, σ′
(SEQ1)

{skip;C2}, σ → C2, σ
(SEQ2)

C1, σ → ⊥
{C1;C2}, σ → ⊥

(SEQ-ABORT)

C1, σ → C′1, σ
′

{C1 ‖ C2}, σ → {C′1 ‖ C2}, σ′
(PAR1)

C2, σ → C′2, σ
′

{C1 ‖ C2}, σ → {C1 ‖ C′2}, σ′
(PAR2)

{skip ‖ skip}, σ → skip, σ
(PAR3)

C1, σ → ⊥
{C1 ‖ C2}, σ → ⊥

(PAR-ABORT1)
C2, σ → ⊥

{C1 ‖ C2}, σ → ⊥
(PAR-ABORT2)

JBK(V )

{if B then Ct else Cf}, (H,V, t)→ Ct, (H,V, t)
(IF-TRUE)

¬JBK(V )

{if B then Ct else Cf}, (H,V, t)→ Cf , (H,V, t)
(IF-FALSE)

JBK(V ) t > 0

{while B do C}, (H,V, t)→ {C;while B do C}, (H,V, t− 1)
(WHILE-LOOP)

¬JBK(V )

{while B do C}, σ → skip, σ
(WHILE-SKIP)

JBK(V ) t = 0

{while B do C}, σ → ⊥
(WHILE-ABORT)

C, σ →∗ skip, σ′

{atomic C}, σ → skip, σ′
(ATOM)

C, σ →∗ ⊥
{atomic C}, σ → ⊥

(ATOM-ABORT)

Fig. 8. Small-step operational semantics

I ` [P ] skip [P ]
(SKIP)

x 6∈ fv(I)

I ` [P [E/x]]x := E [P ]
(ASSIGN)

x 6∈ fv(I, E, F )

I ` [E 7→r F ]x := [E] [E 7→r F ∧ x = F ]
(LOOKUP)

I ` [E 7→ ] [E] := F [E 7→ F ]
(MUTATE)

x 6∈ fv(I)

I ` [emp]x := alloc(n) [x+ 0 7→ 0 ∧ . . . ∧ x+ n− 1 7→ 0]
(ALLOC)

I ` [E 7→ ] dispose(E) [emp]
(DISPOSE)

I ` [P ]C1 [Q] I ` [Q]C2 [R]

I ` [P ]C1;C2 [R]
(SEQ)

I ` [P1]C1 [Q1] I ` [P2]C2 [Q2]
fv(I, P1, C1, Q1) ∩ wr(C2) = ∅ fv(I, P2, C2, Q2) ∩ wr(C1) = ∅

I ` [P1 ∗ P2]C1 ‖ C2 [Q1 ∗Q2]
(PAR)

I ` [P ∧B]Ct [Q] I ` [P ∧ ¬B]Cf [Q]

I ` [P ] if B then Ct else Cf [Q]
(IF)

P ∧B =⇒ P ′ ∗ ♦ I ` [P ′]C [P ]

I ` [P ]while B do C [P ∧ ¬B]
(WHILE)

emp ` [P ∗ I]C [Q ∗ I]
I ` [P ] atomic C [Q]

(ATOM)
I ∗ J ` [P ]C [Q]

I ` [P ∗ J ]C [Q ∗ J ] (SHARE)

I ` [P ]C [Q] fv(R) ∩ wr(C) = ∅
I ` [P ∗R]C [Q ∗R] (FRAME)

I ` [P ]C [Q] P ′ ⇒ P Q⇒ Q′

I ` [P ′]C [Q′]
(CONSEQUENCE)

I ` [P1]C [Q] I ` [P2]C [Q]

I ` [P1 ∨ P2]C [Q]
(DISJUNCTION)

I ` [P ]C [Q] x 6∈ fv(C)

I ` [∃x.P ]C [∃x.Q]
(EXISTENTIAL)

I ` [P ]C [Q1] I ` [P ]C [Q2] I precise
I ` [P ]C [Q1 ∧Q2]

(CONJUNCTION)

Fig. 9. Derivation rules. fv gives the set of free variables in a command or predicate. wr gives the set of variables which are modified by a command.
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Definition 5 (Safety). For any state σ = (H,V, t), command
C, and predicates I,Q:

• safe0(C, σ, I,Q) holds.
• safen+1(C, σ, I,Q) holds when all of the following are

true:

1) If C = skip then σ |= Q.
2) For all tI ∈ N and all HI , HF ∈ Heap such that

(HI , V, tI) |= I and H ⊕ HI ⊕ HF is defined,
C, (H ⊕HI ⊕HF , V, t+ tI) 6→ ⊥.

3) For all tI , t′ ∈ N, HI , HF , H
′ ∈ Heap, and V ′ ∈

Stack such that (HI , V, tI) |= I and H ⊕ HI ⊕
HF is defined, if C, (H ⊕HI ⊕HF , V, t + tI) →
C ′, (H ′, V ′, t′), then there exist H ′′, H ′I and t′′ such
that H ′ = H ′′⊕H ′I⊕HF , t′′ ≤ t′, (H ′I , V ′, t′′) |= I
and safen(C

′, (H ′′, V ′, t′ − t′′), I, Q).

When n > 0, the first condition specifies that if the execution
is in a terminal state, then that state satisfies the postcondition Q.
The second condition states that the execution will not go wrong.
The third condition ensures that each step preserves the resource
invariant I , and that after executing one step, the resulting
program is safe for another n−1 steps. In the second and third
conditions, HI and tI represent the resources required to satisfy
the global invariant I . HF represents additional heap cells
which may be needed by other parts of the program. Note that
we do not include a frame tF of consumable resources. Since
predicate satisfaction is monotonic with respect to consumable
resources, we do not need to distinguish between consumable
resources in the shared region (tI ) and those in the frame.
Also, since the operational semantics only work on concrete
heaps, in condition (3) HF will necessarily contain any heap
locations that an executing thread has read permission to. By
using the same HF before and after an execution step we thus
ensure that a thread cannot modify a heap location unless it
has full permission at that location.

Given this, we say that a Hoare triple [P ]C [Q] is satisfiable
under an invariant I if and only if for all n ∈ N and
all states σ |= P , safen(C, σ, I,Q) holds. For a discussion
of the motivations behind this particular characterisation of
satisfaction, see [26].

Before we present the proof of soundness of the logic, we
need to consider two aspects of the logic and how they interact
with consumable resources: Permission Heaps [21] and Precise
Assertions [14].

Permission Heaps: Let Perm = {r,>} be a permissions
set, with r indicating read-only permission and > indicating
full permission. Then, let PHeap = Loc →fin Val ×Perm be
the set of permission heaps. A permission heap H ∈ PHeap
is a finite mapping from locations to pairs of values and
permissions. Perm is equipped with a commutative partial
operator ⊕ defined as r ⊕ r = >, and undefined otherwise.

We extend the permission operator ⊕ to value-permission
pairs as follows:

(v1, p1)⊕(v2, p2) =

{
(v1,>) if v1 = v2 and p1 = p2 = r

undefined otherwise

We further extend ⊕ to permission heaps H1 and H2 that agree
on the values at overlapping locations:

(H1⊕H2)(`) =


H1(`)⊕H2(`) if ` ∈ dom(H1) ∩ dom(H2)

H1(`) if ` ∈ dom(H1) \ dom(H2)

H2(`) otherwise
Given this, we model assertions in the logic with permission

heaps (see Figure 7). As in Vafeiadis [26], assertions are
modeled with permission heaps but the operational semantics
act on concrete heaps. To reconcile this, we consider regular
heaps as a subset of permission heaps where the permission is
always >

Heap = Loc →fin Val × {>}
Then, for any permission heap H there exists a complementary
permission heap H ′ for which H ⊕ H ′ is a concrete heap.
Specifically, H ′ must contain the sub-heap of H that includes
all the locations at which H has read permission. Define
read(H) to be such a sub-heap:

read(H) , {(v, p) | (v, p) ∈ H ∧ p = r}
Then,

∀H ∈ PHeap. H ⊕ read(H) ∈ Heap

Now consider Definition 5 of safen(C, σ, I,Q). In the defini-
tion, every time the small-step judgement → is invoked, the
heap is H⊕HI⊕HF , which includes the universally quantified
HF . Thus, HF will always include read(H)⊕read(HI). This
means that H ⊕HI ⊕HF is a concrete heap, so the definition
makes sense. Furthermore, since HF is not modified by the
step in condition (3), C cannot modify locations in the heap
to which H has only read access.

Precise Assertions: As shown in [14], [26], in order for
the logic to be sound, we require that the global resource
invariant be precise in the CONJUNCTION rule. We define
precise assertions [37], [14], [26] as follows. An assertion P
is precise when it is satisfied by exactly one sub-heap of any
heap.

Definition 6 (Precise Assertions). Let V ∈ Stack , t ∈ N
and let P be an assertion. P is precise if and only if for all
H1, H2, H

′
1, H

′
2 ∈ PHeap such that H1 ⊕H2 is defined and

H1 ⊕H2 = H ′1 ⊕H ′2, if (H1, V, t) |= P and (H ′1, V, t) |= P ,
then H1 = H ′1.

This definition does not consider our consumable resources.
Since the assertion ♦k is satisfiable by any set of at least k
resources, it is impossible for a predicate to specify an exact
set of resources. Regardless, since the tokens are affine entities
as we see in the following proof, the soundness of the logic is
unaffected.

Before we prove the soundness of the rules, we have to
prove two additional lemmas that are needed in the case of
the rule WHILE.

Lemma 2. Let σ = (H,V, t) be a program state, I,Q,R
predicates, C1;C2 a command, and n a natural number. If
safen(C1, σ, I,Q) and for all m ≤ n and σ′ with σ′ |= Q,
safem(C2, σ

′, I, R) then safen(C1;C2, σ, I, R).
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The proof of Lemma 2 is identical to the proof of the same
lemma in (the formalized proof of) [26].

Lemma 3. Let σ = (H,V, t) be a program state,
while B do C a command, and I, P, P ′ predicates such that
P ∧ B =⇒ P ′ ∗ ♦. If [P ′]C [P ] is satisfiable under I and
σ |= P then for all n, safen(while B do C, σ, I, P ∧ ¬B).

Proof. We prove the lemma by induction on n. The base case
for n = 0 follows directly from the definition of safe0.

Assume now that safen(while B do C, σ, I, P ∧ ¬B) holds.
To show safen+1(while B do C, σ, I, P ∧ ¬B), we show that
all three conditions in Definition 5 are satisfied:

1) We have while B do C 6= skip, so this condition holds
vacuously.

2) The only rule in the operational semantics which can
derive {while B do C}, σ → ⊥ is WHILE-ABORT. The
premises of the rule are JBK(V ) and t = 0. We show that
from JBK(V ) it follows that t > 0. Therefore WHILE-
ABORT does not apply. Assume JBK(V ). Since σ |= P
we have then σ |= P ∧B, and thus it follows from the
premises that σ |= P ′ ∗ ♦. From the semantics of ♦ we
derive t ≥ 1. This confirms condition (2).

3) Let tI , t′ ∈ N, HI , HF ∈ PHeap, H ′ ∈ Heap and
V ′ ∈ Stack such that (HI , V, tI) |= I and H ⊕ HI ⊕
HF is defined, and C, (H ⊕ HI ⊕ HF , V, t + tI) →
C ′, (H ′, V ′, t′). Then the rules WHILE-LOOP or WHILE-
SKIP have been applied. Since non of these rules modifies
the heap (nor stack), H ′ = H⊕HI⊕HF , so let H ′′ = H
and H ′I = HI .
In the case of the rule WHILE-LOOP, we have C ′ =
C;while B do C and t′ = t + tI − 1. Let now t′′ =
tI . Then t ≥ 1 (premise of WHILE-LOOP) and we
have t − 1 ≥ 0, so t′′ ≤ t′. It follows by construction,
(H ′I , V

′, t′′) = (HI , V, tI), which satisfies I . Moreover
(H ′′, V ′, t′ − t′′) |= P ′. Since [P ′]C [P ] is satisfiable
under I , we have safen(C, (H

′′, V ′, t′ − t′′), I, P ). By
induction we have safem(while B do C, σ′, I, P ∧ ¬B)
for all m ≤ n and all σ′ with σ′ |= P . Therefore we
derive safen(C

′, (H ′′, V ′, t′ − t′′), I, P ) with Lemma 2.
In the case of the rule WHILE-SKIP, we have C ′ = skip
and t′ = t+ tI . Let again t′′ = tI . Then t′′ ≤ t′ and it
follows that (H ′I , V

′, t′′) = (HI , V, tI) satisfies I . Fur-
thermore, (H ′′, V ′, t′−t′′) |= P and from the premise of
the WHILE-SKIP we obtain (H ′′, V ′, t′− t′′) |= P ∧¬B.
Thus safen(skip, (H ′′, V ′, t′−t′′), I, P∧¬B). (Condition
(1) follows from the aforesaid and Conditions (2) and
(3) by inspection of the evaluation rules.)

Theorem 4 (Partial Correctness). For any propositions I, P,Q
and any command C, if I ` [P ]C [Q], then [P ]C [Q] is
satisfiable under I .

Proof. The proof is by structural induction over the derivation
rules given in Figure 9. Since the only command which accesses
the resource component of program state is the while loop, the

proof of every rule is essentially the same as in Vafeiadis [26]
except for the rule WHILE. For all of the following, let σ =
(H,V, t) ∈ State , C be a command, and I, P,Q be predicates.

While: Follows directly from Lemma 3.
Conjunction: To see that the definition of precise asser-

tions is sufficient, we consider the CONJUNCTION rule. Let
I be a precise assertion, Q1, Q2 be any assertions, and let
C be a command. We show by induction that for any state
σ = (H,V, t) and any n ∈ N, if safen+1(C, σ, I,Q1) and
safen+1(C, σ, I,Q2) then safen+1(C, σ, I,Q1 ∧ Q2). Again,
we confirm each condition:

1) if C = skip, then σ |= Q1 and σ |= Q2. Thus, σ |=
Q1 ∧Q2.

2) Since this condition does not depend on the post-
condition, it is already verified by the assumption
safen+1(C, σ, I,Q1).

3) Let tI , t′ ∈ N, HI , HF ∈ PHeap, H ′ ∈ Heap and
V ′ ∈ Stack such that (HI , V, tI) |= I and H⊕HI⊕HF

is defined, and assume that C, (H⊕HI⊕HF , V, t+tI)→
C ′, (H ′, V ′, t′).
By our assumption, there exist H ′′1, H ′1I and t′′1 such
that H ′ = H ′′1⊕H ′1I ⊕HF , t′′1 ≤ t′, (H ′1I , V ′, t′′1) |= I
and safen(C

′, (H ′′1, V ′, t′ − t′′1), I, Q1). Likewise for
H ′′2, H ′2I , t′′2 and Q2.
This implies that H ′′1 ⊕ H ′1I = H ′′2 ⊕ H ′2I . Since
I is precise, we know that H ′1I = H ′2I , and thus
H ′′1 = H ′′2. Finally, let t′′ = min(t′′1, t′′2). Then, t′−t′′
will be at least as large as both t′ − t′′1 and t′ − t′′2
and will thus be sufficient to ensure that both Q1 and
Q2 hold if the execution terminates. We conclude that
safen(C

′, (H ′′1, V ′, t′ − t′′1), I, Q1 ∧Q2).

The total correctness of the logic is a direct consequence of
Theorem 4 and Theorem 2.

Theorem 5 (Total Correctness). Let I, P,Q be propositions,
C be a command, and σ be a program state. If σ |= P ∗ I
and I ` [P ]C [Q] then every evaluation of C from the initial
state σ terminates in state σ′ with σ′ |= Q ∗ I .

III. MEMORY SAFETY OF TREIBER’S STACK

To additionally verify memory safety, we have to add
some auxiliary state and extend our resource invariant. The
verification is then similar to the proofs in related work on
verification of safety properties [32], [33]. However, there are
synergies between the lock-freedom and the memory safety
proof.

See Figure 10 for the full implementation of Treiber’s stack
in our while language. The crucial point in the verification
of memory safety are the assignments x := [t+1] and ret val
:= [t] in the method pop. Our goal is to ensure, using the
resource invariant, that these locations are owned by the shared
region. At the evaluation of each assignment there are two
possible cases: Either the memory location that is read is still
part of the stack S or it has been removed from the stack by
another thread. To keep track of the memory locations that
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S := alloc(1); // initialization
[S] := 0;
A := alloc(max_tid); // auxiliary arrays
C := alloc(max_tid); // initialized to 0

push(v) ,
pushed := false;
x := alloc(2);
[x] := v;
while ( !pushed ) do {
atomic {
t := [S]; // expect t = [S]
C[tid] := 1 // critical state starts
A[tid] := t

};
[x+1] := t;
atomic { // pushed := CAS(S,t,x)
s := [S];
if s == t then {
[S] := x;
pushed := true;

} else skip;
C[tid] := 0 // critical state ends

};
consume(1)

}

pop() ,
popped := false;
while ( !popped ) do {
atomic {
t := [S]; // assume t = [S]
C[tid] := 1 // critical state starts
A[tid] := t

};
if t == 0 then { //empty stack
ret_val := 0;
popped := true

} else {
x = [t+1];
ret_val := [t];
atomic { // popped := CAS(S,t,x)
s := [S];
if s == t then {
[S] := x;
popped := true;

} else skip;
C[tid] := false // critical state ends

};
consume(1)

}
};
return := ret_val;

Fig. 10. A full implementation of Treiber’s lock-free stack in our while language.

are pointed to by the stack, we introduce an inductive list
predicate to describe the list pointed to by S. To keep track
of the locations that have been removed from the stack we
introduce an auxiliary variable that points to a second stack G
that contains all the locations that have been removed from S.
To this end, we push a node onto G after it is removed from
S. That is, we replace the last atomic block in pop with the
following code.

atomic { // popped := CAS(S,t,x)
s := [S];
if s == t then {
[S] := x;
popped := true;
g := [G]; // push t onto G
[t+1] := g;
[G] := t

} else skip;
C[tid] := false

}

The invariant I is then extended as follows where n is again
the total number of threads and α(i, u) is defined as before.

I ′ , ∃u. S 7→ u ∗ ~
0≤i<n

α(i, u) ∗G 7→ v

∗(∃u′, v′ LSeg(u, u′) ∗ LSeg(v, v′)) ∧∧
0≤i<n

β(i, u, v)

β(i, u, v) , ∃a, c. C[i] 7→r c ∗A[i] 7→r a

∗(c = 0 ∨ LSeg(u, a) ∨ LSeg(v, a))

The inductive list predicate LSeg is defined as usual [22] by
LSeg(x, y)⇔(x = y ∧ emp)∨

(∃v, z x 7→ v ∗ x+ 1 7→ z ∗ LSeg(z, y))
The invariant ensures for each thread which is in the critical
section that the local variable t points to a location that is used
by the lists pointed to by S and G. Note that we can reuse the

axillary arrays A and C in the formulas β(i, u, v).

IV. VERIFICATION OF HENDLER ET AL’S
ELIMINATION-BACKOFF STACK

To improve the performance of Treiber’s non-blocking stack
in the presence of high contention, one can use an elimination
backoff scheme [9]. The idea is based on the observation that
a push operation followed by a pop results in a stack that
is identical to the initial stack. So, if a stack operation fails
because of the interference of another thread then the executing
thread does not immediately retry the operation. Instead, it
checks if there is another thread that is trying to perform
a complementary operation. In this case, the two operations
can be eliminated without accessing the stack at all: The two
threads use a different shared-memory cell to transfer the stack
element.

Our method can also be used to prove that Hendler et al’s
elimination-backoff stack [9] is lock-free. The main challenge
in the proof is that the push and pop operations consist of two
nested loops that are guarded by CAS operations. Assume again
a system with n threads. The inner loop can be just treated as in
Treiber’s stack using n tokens in the precondition and 0 tokens
in the postcondition. As a result, the number of tokens needed
for an iteration of the outer loop is n+ 1. That means that a
successful thread needs to transfer (n− 1) · (n+ 1) = n2 − 1
tokens to the other threads to account for additional loop
iterations in the other threads. Given this, we can verify the
elimination-backoff stack using n2 tokens in the precondition.
Technically, we need an invariant of the form I ∗ J , where I
is an invariant like in Treiber’s stack (for the inner loop) and
J is like I but with every token ♦ replaced by ♦n.

To make this reasoning more concrete, Figure 11 shows the
loop structures of the push operation of Hendler et al’s stack
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S := alloc(1); // initialization
[S] := 0;
col := alloc(...); // elimination array

A1 := alloc(max_tid); // auxiliary arrays
C1 := alloc(max_tid); // initialized to 0
A2 := alloc(max_tid);
B2 := alloc(max_tid);
C2 := alloc(max_tid);

push(v) ,
pushed := false;
// ...
while ( !pushed ) do {
atomic {
t := [S]; // expect t = [S]
C1[tid] := 1; // critical state 1 starts
A1[tid] := t

};
// ...
atomic { // pushed := CAS(S,t,x)
s := [S]; if s == t then {
[S] := x;
pushed := true;

} else skip;
C1[tid] := 0 // critical state 1 ends

};
if !pushed then { // elimination scheme

// ...
atomic {
pos = GetPosition(...);
B2[tid] := pos;

}
matched := false;
while ( !matched ) do {
atomic {
otherT := col[pos]; // expectation
C2[tid] := 1; // critical state 2 starts
A2[tid] := otherT

};
// ...
atomic {

// pushed := CAS(col+pos,otherT,tid)
c := col[pos]; if c == otherT then {
col[pos] := tid;
matched := true;

} else skip;
C2[tid] := 0 // critical state 2 ends

};
}
// ... } }

Fig. 11. The loop-structure of the push operation of Hendler et al’s stack
with elimination backoff scheme [9].

with elimination scheme in our while language. The auxiliary
arrays A1 and C1 have the same purpose as in Treiber’s stack:
C1[tid ] indicates if thread tid is making an assumption on the
value of the stack pointer S and A1[tid ] contains the value
of the local variable t. They will be used to formulate the
part of the global invariant that is crucial to maintain the loop
invariant of the outer while loop. The inner while loop has the
same structure as the outer loop since it is also guarded by a
CAS operation. However, the address on which the CAS is
performed is not fixed. Thus we need three additional auxiliary
arrays to formulate part of the global invariant that is needed for
the inner loop: C2[tid ] indicates whether thread tid is making
an assumption on the shared state that is stored in otherT. The
array B2 stores the memory address that is affected by this
assumption and the array A2 stores what the assumption is.

The global invariant I can then be defined as follows.
I , ∃u, v1, . . . , vn. S 7→ u ∗ ~

0≤i<n
(δ(i, u) ∗ ζ(i))

∗ ( ~
0≤j<m

col [j] 7→ ∗ ~
0≤i<n

B2[i] 7→r ∧∧
0≤i<n

φ(i))

δ(i, u) , ∃a, c. C1[i] 7→r c ∗A1[i] 7→r a ∗ (c=0 ∨ a=u ∨ ♦n)
ζ(i) , ∃a, c. C2[i] 7→r c ∗A2[i] 7→r a ∗ (c=0 ∨ a=vi ∨ ♦)
φ(i) , ∃b. 0 ≤ b < m ∗B2[i] 7→r b ∗ col [b] 7→ vi

The formulas δ(i, u) are similar to the formulas α(i, u) in the
invariant that we used to verify Treiber’s stack. However, the
single token ♦ is replaced by n tokens ♦n. The formulas ζ(i)
are based on the same idea but are a bit more complicated since
it is dynamically decided to which memory cell the assumption
of thread i applies (namely, col [b] contains the value that is
stored in the thread-local variable otherT ). The formulas φ(i)
form an invariant that relates the variables vi to the value stored
in col [B2[i]]. The loop invariant of the outer loop is

(pushed ∨ ♦n·n) ∗A1[tid ] 7→r ∗ C1[tid ] 7→r

∗A2[tid ] 7→r ∗B2[tid ] 7→r ∗ C2[tid ] 7→r

The loop invariant of the inner loop is
(matched ∨♦n) ∗A2[tid ] 7→r ∗B2[tid ] 7→r ∗C2[tid ] 7→r .

The proof is similar to the proof of Treiber’s stack.


