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Abstract

This thesis analyzes the connections between resolution proofs and satisfiability
search procedures. It is well known that DLL search algorithms that do not use
learning are equivalent to tree-like resolution in terms of proof complexity. To
generalize this result to DLL algorithms that use learning, two natural gener-
alizations of regular resolution that are based on resolution trees with lemmas
(RTL) are introduced. It is shown that dag-like resolution is equivalent to these
resolution refinements when there is no regularity condition. On the other hand
an exponential separation between the regular versions (regular weak resolution
trees with input lemmas and regular weak resolution trees with lemmas) and
regular dag-like resolution is given.
It is proved that executions of DLL algorithms that use learning based on
the conflict graph and unit propagation, like most of the current state of the
art SAT-solvers, can be simulated by regular WRTL. Inspired by this simula-
tion, a new generalization of learning in DLL algorithms, which is polynomially
equivalent to regular WRTL, is presented. This algorithm can simulate general
resolution without doing restarts.
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Preface

Contents

The satisfiability problem of the propositional logic (SAT) is one of the most
studied algorithmic problems in computer science. It has been the first problem
proved to be NP-complete and up to now a polynomial time algorithm for SAT
could not be found.
There exist SAT-solvers that can decide SAT on present-day computers for
many formulas that are relevant in practice. Nearly all of the fastest determin-
istic SAT-solvers are based on a proof search algorithm schema that is known
as DLL algorithm. The schema is called a proof search procedure because an
execution of a DLL algorithm on an unsatisfiable CNF formula corresponds to
a resolution refutation of that formula.
This thesis analyzes the properties of resolution refutations that correspond to
different variants of the DLL algorithm with a view to understand and improve
state-of-the-art SAT-solvers.
In Chapter 1 propositional logic, the satisfiability problem and proof systems
are introduced.
Chapter 2 presents three versions of the DLL algorithm schema. In Section
2.1 the classical DLL algorithm is defined through the algorithm schema DLL.
Section 2.2 gives a recursive definition of the variation of the DLL algorithm
that is used in modern SAT-solvers. This algorithm schema is called DLL-L-
UP since its most important features are learning and unit propagation. In
Section 2.3 the algorithm schema DLL-Learn is introduced which is a new
natural generalization of both, DLL and DLL-L-UP.
Chapter 3 describes and analyzes several types of tree-like resolution proofs with
respect to their relations to DLL algorithms. Section 3.2 proves the well-known
fact that every execution of DLL with an unsatisfiable input formula can be
seen as a resolution tree with a node for every recursive call of the execution
and that every resolution tree can be used to define an execution of DLL that
performs at most one recursive call for every node in the tree. In Section 3.4 an
analogous statement is shown for the algorithm schema DLL-Learn and regu-
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lar weak resolution trees with lemmas (regular weak RTL) that are introduced
in Section 3.3. Finally, it is proved in Section 3.5 that an execution of DLL-L-
UP can be transformed into a regular weak resolution tree with input lemmas
(regular weak RTI) which size is quadratic in the number of the recursive calls
of the execution. Therefrom it follows that DLL-L-UP can be polynomially
simulated by DLL-Learn.
In Chapter 4 the introduced tree-like resolution refinements are compared to
(regular) dag-like resolution proofs and known lower bounds and separations are
applied to the DLL algorithms. The main results are the polynomial equivalence
of dag-like resolution, RTL, RTI, weak RTL and weak RTI (Section 4.1); an
exponential lower bound on the running times of all algorithms that are based on
DLL, DLL-L-UP or DLL-Learn; and an exponential separation of DLL and
DLL-L-UP (Section 4.2). Furthermore it is shown in Section 4.1 that regular
dag-like resolution proofs can be simulated by regular RTI and in Section 4.3
an exponential separation of regular RTI from regular dag-like resolution is
given. Another major result that is presented in Section 4.3 is the simulation
of general resolution by the algorithm DLL-Learn.
Chapter 5 contains some notes on the representation of resolution proofs. In
Section 5.1 sequence-like resolution proofs are introduced and in Section 5.2
it is shown that it is NP-complete to decide for a given sequence of clauses
whether it is a regular resolution poof.
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Chapter 1

Propositional Proof
Complexity

1.1 Propositional Logic

A logic is a formal system that consists of symbols, formulas and models. The
formulas are composed of the symbols according to given rules and a model of
a formula is a interpretation of the symbols such that the formula evaluates to
a specific value. Even though there are logics (so called multi-valued and fuzzy
logics) in which formulas can evaluate to as far as infinite many values, this
value is most often defined to be either true or false.
The propositional logic or Boolean logic was already studied by George Boole
in the mid 19th century and its roots go back to Aristoteles. It is maybe the
simplest and most natural logic. The formulas of propositional logic consist of
propositional variables that are adjunct with logical connectives and, or and not.
The propositional models are variable assignments that define the propositional
variables to be either true or false. If a total variable assignment is applied to
a formula then the formula evaluates to true or false.

Definition (Propositional Formulas) The set of propositional variables V
is an infinite set of variables with V ∩ {∧,∨,¬} = ∅.
The set of formulas (over V) is the smallest set F such that

1) V ⊆ F .

2) If F ∈ F then ¬F ∈ F .

3) If F0 ∈ F and F1 ∈ F then (F0 ∧ F1) ∈ F and (F0 ∨ F1) ∈ F .

Variables, i.e., elements of V, are often named x, y, z, x1, x2, . . . in this paper.
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Sometimes the braces of a formula are left out. For example F0 ∧ F1 ∧ F3 is
written instead of ((F0 ∧ F1) ∧ F3).

Definition Let F be a formula. Var(F ) ⊆ V is defined to be set of variables
that occur as symbols in F .
The size |F | of F is the number of symbols in F other then parentheses, i.e.,

|x| = 1 |¬F | = 1 + |F |
|F0 ∧ F1| = |F0|+ |F1|+ 1 |F0 ∨ F1| = |F0|+ |F1|+ 1

Definition A variable assignment α is a mapping α : dom(α) → {0, 1} with
dom(α) ⊆ V. α is identified with the set { (x, α(x)) | x ∈ dom(α) }.
An assignment α is called total for the formula F if Var(F ) ⊆ dom(α).
To point out that a given assignment α is potentially not total for a formula
F , α is called partial for F , i.e., every assignment for a formula is a partial
assignment. In this case α is also called a restriction.

If α(x) = 1 for a variable x then x is set to true by α. If α(x) = 0 then x is set
to false. Otherwise x is unset by α.
A given total assignment for a formula defines it either to be true or false
according to the following definition.

Definition Let α be an assignment and let Fα = {F ∈ F | α is total for F}.
Then α can be extended recursively to a function α : Fα → {0, 1} as follows.

α(¬F ) = 1− α(F )
α(F0 ∧ F1) = α(F0) · α(F1)
α(F0 ∨ F1) = 1− ((1− α(F0)) · (1− α(F1))

If α(F ) = 1 for a formula F then F is satisfied by α. In that case one also
writes α � F and calls α a satisfying assignment of F .
F is satisfiable if it has a satisfying assignment. Otherwise F is unsatisfiable.
F is called a tautology if α � F for every total assignment α of F . One also
writes � F to state that F is a tautology.

Definition Let F and G be formulas. F and G are equivalent, in signs F ≡ G,
iff α(F ) = α(G) for every assignment α that is total for F and G.

The usual formula abbreviations are defined as follows.

Definition Let x0 be a variable. Define 0 to be the formula x0∧¬x0 and define
1 to be the formula x0 ∨ ¬x0. Sometimes one writes 2 instead of 0.
Let F0 and F1 be formulas. Then (F0 → F1) is the formula ¬F0 ∨ F1.
It is convenient to put Var(0) = Var(1) = ∅.
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There are other ways to define the formulas 0 and 1. They should only satisfy
Proposition 1.1.1.

Proposition 1.1.1 The formula 0 is unsatisfiable and the formula 1 is a tau-
tology.

Since there are infinitely many variables, it is assumed w.l.o.g that 0 and 1 are
the only formulas that contain the variable x0.
Tautologies are related to unsatisfiable formulas in the following way.

Proposition 1.1.2 Let F be a formula. F is a tautology if and only if ¬F is
unsatisfiable.

Proof F is a tautology iff α(F ) = 1 for every total assignment α iff
α(¬F ) = 0 for every total assignment α iff ¬F is unsatisfiable. �

The next proposition is helpful in the following chapters.

Proposition 1.1.3 Let F be a formula. Then � F → 0 if and only if F is
unsatisfiable.

Proof By definition F → 0 is the formula G = 0 ∨ ¬F . Thus � G iff
α(¬F ) = 1 for every total assignment α for G iff ¬F is a tautology iff F
is unsatisfiable. Thereby the last implication follows from Proposition 1.1.2. �

Definition (SAT) The Boolean satisfiability problem (SAT) is the algorithmic
problem to decide for a given propositional formula whether it is satisfiable.
coSAT is defined to be the complementary problem to SAT, i.e., to decide for
a given formula whether it is unsatisfiable.

In terms of deterministic algorithms the problems SAT and coSAT are identi-
cal. But for non-deterministic algorithms SAT and coSAT differ since a non-
deterministic algorithm for SAT can not be used directly to solve coSAT. In
fact there is a non-deterministic polynomial time algorithms for SAT but there
is no such algorithm for coSAT unless NP=coNP, which is widely believed to
be false.
In general an algorithmic problem is called decidable if there exists an algorithm
that solves the problem. For logics with quantifiers, the problem whether a
given formula is satisfiable is often undecidable. But there is a trivial algorithm
for SAT.

Theorem 1.1.4 SAT is decidable.
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Proof The following algorithm decides SAT. Let F be a formula. Then the
number of variables |Var(F )| = n is finite. Thus there are 2n different total
assignments for F . These assignments are picked systematically one after an-
other and it is checked whether F is satisfied by the picked assignment. For
a given total assignment α the value α(F ) can be computed in linear time by
simply following the recursive definition from above. Therefore the described
algorithm runs in time O(|F |2n). �

The above algorithm is called the trivial algorithm for SAT. Every deterministic
algorithm for SAT can also be used to decide whether a formula is a tautology
in the same running time.

Definition (TAUT) The Boolean tautology problem (TAUT) the algorithmic
problem to decide for a given propositional formula whether it is a tautology.

Corollary 1.1.5 TAUT is decidable.

Proof Let F be a formula. By Proposition 1.1.2 is F tautological iff ¬F is
unsatisfiable. But the latter can be decided by the trivial algorithm for SAT.�

1.2 The Complexity of the SAT-Problem

Apart from the philosophic attraction of the analysis of the propositional logic,
propositional formulas have also important applications in the field of computer
science.
On the one hand they are related to Boolean circuits and an understanding of
the propositional logic conveys to an understanding of the capabilities and limits
in the design of digital circuits, which are the fundamental unit of computer
hardware.
On the other hand many important algorithmic problems can be expressed effi-
ciently in terms of propositional formulas. The maybe most important result in
that area is the theorem of Cook [13] which states that SAT is decidable deter-
ministically in polynomial time if and only if P = NP, i.e., iff every algorithmic
problem that can be solved by a non-deterministic algorithm in polynomial
time can also be solved deterministically in polynomial time.

Theorem 1.2.1 (Cook 1971) SAT is NP-complete.

The proof (see [13]) of Cook’s theorem is constructive and therefore algorithms
with a running time O(f(n)) for SAT can be used to solve a problem in NP in
time O(f(p(n))) where p is a polynomial if f is a non-decreasing function.
It is generally assumed in this paper that every time bound function f as above
is non-decreasing.
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Even though the question is still unsolved, it is widely believed that P 6= NP. In
that case it would be impossible to find a polynomial time algorithm for SAT.
By definition coSAT is coNP-complete and therefore it follows from Proposition
1.1.2 that TAUT is coNP-complete, too.

Corollary 1.2.2 coSAT and TAUT are coNP-complete.

It is shown next that a restriction of the syntax of the propositional formulas is
already enough to study the computational complexity of SAT. This restricted
syntax is called conjunctive normal form (CNF) and every formula F can be
transformed in polynomial time into a CNF formula F ′ such that F is satisfiable
if and only if F ′ is satisfiable.

Definition (Conjuctive Normal Form) A formula l is a literal if there is a
variable x ∈ V with l = x or l = ¬x.
A formula C is called a clause if C = 2 or if there exist an integer k ≥ 1 and
literals l1, . . . , lk with C = l1 ∨ . . . ∨ lk. If k = 1 then C is called unit clause.
If C = 2 then C is called the empty clause. Identify l1 ∨ . . . ∨ lk with the set
{l1, . . . , lk} and identify 2 with the empty set ∅.
A clause C is called tautological iff there is a variable x with {x,¬x} ⊆ C.
Let F be a formula. F is in conjunctive normal form (CNF) if there are clauses
C1, . . . , Cm such that F = C1 ∧ . . . ∧ Cm (m > 0). In that case F is identified
with the set {{l1, . . . , lk} | l1 ∨ . . . ∨ lk = Ci for a i ∈ {1, . . . ,m}.
F is in k-CNF iff every clause in F has at most k literals.

Note that by definition the formulas 0 and 1 are CNF formulas.
It is convenient to introduce the following notation.

Definition Let C be a clause, x a variable and l a literal with Var(l) = {x}.
Let ε ∈ {0, 1}. Define

xε =
{

x if ε = 1
¬x if ε = 0

, l̄ = x1−ε if l = xε and C̄ = { l̄ | l ∈ C }

The proof of the following theorem shows how to transform a formula into a
CNF formula. For the proof, the notion of a subformula is needed.

Definition (Subformula) Let F be a formula. The set Sub(F ) of subformulas
of F is defined recursively as follows.

Sub(x) = {x} Sub(F0 ∨ F1) = {(F0 ∨ F1)} ∪ Sub(F0) ∪ Sub(F1)
Sub(¬F ) = {¬F} ∪ Sub(F ) Sub(F0 ∧ F1) = {(F0 ∧ F1)} ∪ Sub(F0) ∪ Sub(F1)
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Theorem 1.2.3 For every formula F exists a CNF formula CNF (F ) with
|CNF (F )| = O(|F |) such that CNF (F ) is satisfiable if and only if CNF (F )
is satisfiable. CNF (F ) is computable in polynomial time.

Proof For every subformula G of F let vG be the variable x if G = x and let vG

otherwise be a new variable such that vG 6= vG′ for G 6= G′ with G, G′ ∈ Sub(F ).
For every G ∈ Sub(F ) the set of clauses CG states that vG is true if and only if
G is true. CG is defined as follows.

If G = x then Cx = ∅
If G = ¬H then CG = {{vG ∨ vH}, {¬vG ∨ ¬vH}}
If G = (H0 ∧H1) then CG = {{¬vH0 ∨ ¬vH1 ∨ vG}, {¬vG ∨ vH0}, {¬vG ∨ vH1}}
If G = (H0 ∨H1) then CG = {{¬vG ∨ vH0 ∨ vH1}, {¬vH0 ∨ vG}, {¬vH1 ∨ vG}}

Let CNF (F ) =
⋃
{ CG | G ∈ Sub(F ) } ∪ {{vF }} be the union of {{vF }} with

all clause sets CG. Then F is satisfiable if and only if CNF (F ) is satisfiable.
For the “if part”, let α̃ be an assignment with α̃ � CNF (F ). Then it follows
by induction on G that for every G ∈ Sub(F ), α(G) = α(vG). But since
{vF } ∈ CNF (F ), α(vF ) = 1 and thus α(F ) = 1.
For the “only if part”, let α be an assignment with α � F . Define the total
assignment α̃ for CNF (F ) by α̃(vG) = α(G). Then it follows directly from the
definition of CNF (F ) that α̃ � CNF (F ). �

Note that there are formulas F1, F2, . . . with |Fk| = O(k) such that |Gk| ≥ k2k

for every CNF formula Gk with Gk ≡ Fk. Thus it is generally impossible to
transform a formula in a equivalent CNF formula with polynomial blow-up.

Definition The algorithmic problem CNF-SAT is to decide for a CNF formula
F whether F is satisfiable.
Let k > 1. The problem k-SAT is to decide for a k-CNF formula whether it is
satisfiable.

Since SAT is in NP, CNF-SAT is in NP and because Theorem 1.2.3 is a reduction
of SAT to 3-SAT, 3-SAT and CNF-SAT are NP-complete.

Corollary 1.2.4 3-SAT and CNF-SAT are NP-complete.

The following theorem is given without a proof and not used during this thesis.
For a proof see [13] and [16].

Theorem 1.2.5 2-SAT is decidable in polynomial time.

Example (The Ordering Principle) The ordering principle for n > 1 is
the fact that there is a minimal element in every total order ≺ of the set
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{1, 2, . . . , n}. A generalization of the ordering principle, namely the well-
ordering priciple, is one of most fundamental theorems of mathematics and
equivalent to the axiom of choice in the Zermelo-Fraenkel set theory.
The unsatisfiable CNF formulas OPn (n > 1) are a formalization of the negation
of the ordering principle in terms of CNF-SAT, i.e., OPn is satisfiable if there is a
total order of {1, 2, . . . , n} that has no minimal element. Thereby Var(OPn) = {
xij | i, j ∈ {1, . . . , n}, i 6= j } and a total assignment α of OPn corresponds to
the order ≺α with i ≺α j iff α(xij) = 1. OPn consists of the following clauses.

(x̄ij ∨ x̄ji) ∧ (xij ∨ xji) for 1 ≤ i < j ≤ n (antisymmetric)
x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 for any distinct i1, i2, i3 ∈ {1, . . . , n} (transitive)∨

1≤k≤n,k 6=j

xkj for j ∈ {1, . . . , n} (no mininmal)

The transitivity axioms are written differently from the usual form xi1i2∧xi2i3 →
xi1i3 . The symmetric form used here is more convenient for the following ex-
amples and equivalent to the usual form because of the antisymmetry clauses.
Note that there are exactly two such transitivity axioms for any set of three
distinct i1, i2, i3 ∈ {1, . . . , n}.

(x12 ∨ x21), (x̄12 ∨ x̄21), (x13 ∨ x31), (x̄13 ∨ x̄31), (x14 ∨ x41), (x̄14 ∨ x̄41)
(x23 ∨ x32), (x̄23 ∨ x̄32), (x24 ∨ x42), (x̄24 ∨ x̄42), (x34 ∨ x43), (x̄34 ∨ x̄43)

(x̄12 ∨ x̄23 ∨ x̄31), (x̄13 ∨ x̄32 ∨ x̄21), (x̄12 ∨ x̄24 ∨ x̄42), (x̄14 ∨ x̄42 ∨ x̄21)
(x̄13 ∨ x̄34 ∨ x̄41), (x̄14 ∨ x̄43 ∨ x̄31), (x̄23 ∨ x̄34 ∨ x̄42), (x̄24 ∨ x̄43 ∨ x̄32)

(x21 ∨ x31 ∨ x41), (x12 ∨ x32 ∨ x42), (x13 ∨ x23 ∨ x43), (x14 ∨ x24 ∨ x34)

Figure 1.1: OP4, the ordering principle for n = 4

The unsatisfiable CNF formula OP4 (see Figure 1.1 ) is used as a running
example to present definitions and concepts in this thesis. A proof of its unsat-
isfiability can be found in Section 3.1.
If a given assignment α is partial for a formula F then one can apply α to F
anyway to obtain the restricted formula F |α. The idea is to look at F |α with
regard of the total assignments β for F with β ⊇ α in order to determine for
example if already β(F ) = 0 or β(F ) = 1 for all of these β.
Although it is possible to define restrictions for arbitrary formulas, it is done
here only for CNF formulas since it is easier and sufficient for this paper.

Definition (Restriction) Let C be a clause, F a CNF formula and α an
assignment. The restriction of C under α is the formula

C|α =


1 if there is a l ∈ C with α(l) = 1
2 if α(l) = 0 for every l ∈ C
{ l ∈ C | l 6∈ dom(α) } otherwise
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The restricted CNF formula or the restriction F |α of F under α is defined as
follows.

F |α =


0 if there is a C ∈ F with C|α = 0
1 if C|α = 1 for every C ∈ F
{ C|α | C ∈ F } − {1} otherwise

If F |α = 1 then α is called a partial satisfying assignment for F .

Note that 0 and 1 in the above definition are not numbers but formulas. The
next lemma states that the restriction of a formula has the mentioned proper-
ties.

Lemma 1.2.7 Let F be a CNF formula, α an assignment and x a variable
with x ∈ Var(F ) − dom(α). Let β be a total assignment for F with α ⊆ β.
Then

(a) β � F if and only if β � F |α

(b) F |α is satisfiable if and only if F |α∪{(x,0)} or F |α∪{(x,1)} is satisfiable.

Proof It is shown first that β � F iff β � F |α. Therefore it suffices to show
that β(C|α) = β(C) for all C ∈ F . But β(C) = 1 iff there is an l ∈ C with
β(l) = 1 iff there is an l ∈ C with α(l) = 1 or (β − α)(l) = 1 iff β(C|α) = 1.
To show the second part of the lemma let at first β be an assignment with
β � F |α and α ⊆ β. Then by (a) β � F and since β ⊇ α ∪ {(x, ε)} for an
ε ∈ {0, 1} it follows by (a) β � F |α∪{(x,0)} or β � F |α∪{(x,1)}.
Let on the other hand α′ = α ∪ {(x, ε)} and let β � F |α′ for an ε ∈ {0, 1}.
Assume again w.l.o.g that α ⊆ β. Let β′ = (β − {(x, β(x))}) ∪ {(x, ε)}. Then
α ⊆ α′ ⊆ β′ and β′ � F |α′ because x 6∈ Var(F |α′ . Thus one can apply (a) twice
to get first β′ � F and then β′ � F |α. �

1.3 Proof Systems

Proofs in a logic are exactly defined mathematical objects that show that formu-
las are tautological. Although proofs are maybe the most important concept in
mathematics, an attempt of an exact definition has been done first by Gottlob
Frege in the late 19th century ([20]).
Historically a proof for a tautology is something that can be obtained from
a set of axioms by applying inference rules. A common inference rule is for
example x, (x→ y) ` y which is called modus ponens. Besides the correctness,
the only demand on the inference rules and axioms is, that it should be easy
to check whether the rule can be applied or whether a formula is an axiom,
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respectively. A formal definition of easy in the above definition is at least
computable in polynomial time. Such a collection of axioms and inference rules
is called a calculus for the propositional logic. Rule based proof systems that
are implicationally complete and that have axioms and rules of inference that
are closed and substitution are called Frege systems.
This common notion of a proof system has been generalized 1979 by Cook
and Reckhow in [14]. In their definition a proof does not necessary have to
be obtained from inference rules but only needs to be a string for which it is
computable in polynomial time whether it is a valid proof for a given formula or
not. Frege systems match this definition since the inference rules are decidable
in polynomial time and it is decidable in polynomial time whether a formula is
an axiom.

Definition (Proof System) A proof system is a binary relation R ⊆ F ×Σ∗

between formulas and strings over an alphabet Σ such that R is decidable in
polynomial time and a formula F is a tautology if and only if there exists a
ω ∈ Σ∗ with R(F, ω).
If R(F, ω) then ω is called a R-proof of F .

The subject of propositional proof complexity is the analysis of the size of the
proofs in different proof systems. A proof system is considered to be efficient or
strong if tautologies have short proofs in that system. The following definition
is essential for a analysis of the strength of proof systems.

Definition Let R ⊆ F × Σ∗ be a proof system, F a tautology and ω ∈ Σ∗.
The size |ω| of ω is the number of symbols in ω, i.e., |ω| = k iff ω ∈ Σk.
The complexity CR(F ) of F in R is the size of the smallest R-proof for F , i.e.,
CR(F ) = min{ |ω| | R(F, ω) }.
R is polynomially bounded iff there is a polynomial p such that CR(F ) ≤ p(|F |)
for every tautology F .

One of the results that has been proved in [14] is Theorem 1.3.1. It states that
it would follow from the existence of a polynomially bounded proof system that
NP = coNP and this is believed to be false for reasons that are similar to those
in the case P vs NP.

Theorem 1.3.1 There exists a polynomially bounded proof system if and only
if NP = coNP.

Proof It is known from complexity theory (see for example [29]) that there
exists a non-deterministic, polynomial time Turing machine for a problem L
if and only if there is a polynomially decidable relation R and a polynomial p
such that x ∈ L iff R(x, ω) for a ω with |ω| ≤ p(|x|).
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Therefrom the theorem follows immediately: If R is a polynomial bounded
proof system then R is decidable in polynomial time and there is a polynomial
p such that for every tautology F there is a ω with |ω| ≤ p(|F |) and R(F, ω).
By the above this is the case if and only if TAUT is in NP. But since TAUT is
coNP-complete by Corollary 1.2.2, the latter is true if and only if NP = coNP.�

Since deterministic complexity classes are closed under complement, P 6= NP is
a consequence of NP 6= coNP and the next corollary follows immediately from
Theorem 1.3.1.

Corollary 1.3.2 If there is no polynomially bounded proof system then P 6=
NP.

To show that a proof system R is not polynomially bounded one has to find
a sequence of formulas F1, F2, F3, . . . such that |Fk| ≤ p(k) for a polynomial p
but CR(Fk) ≥ f(k) for a superpolynomial function f . Such an f is called a
superpolynomial lower bound for R.
Up to the present, there are a couple of proof systems which are already known
to have superpolynomial lower bounds (see [4] for a survey) and there are at-
tempts to prove lower bounds for stronger and stronger proof systems until
enough techniques are developed to prove a superpolynomial lower bound for
all proof systems and thus NP 6= coNP. This research enterprise is often called
Cook’s program.
In this paper lower bounds for the proof systems resolution and regular resolu-
tion are presented in Chapter 2.
To compare different proof systems in terms of there efficiency, the following
notions are helpful.

Definition Let R and Q be proof systems.
If there is a polynomial p such that CR(F ) ≤ p(CQ(F )) for each tautology F ∈ F
then R simulates Q and one writes Q ≤ R. Otherwise Q is separated from R.
If R ≤ Q and Q ≤ R then one writes Q ≡ R and calls Q and R equivalent.
If R ≤ Q and Q is separated from R then R < Q and Q is called stronger than
R.
If neither R ≤ Q nor Q ≤ R then Q and R are incomparable.

For example it has been shown in [14] that all Frege systems are equivalent.
The subject of this thesis is the connection between proof systems and algo-
rithms for SAT. A run of a SAT algorithm on a unsatisfiable formula F can be
seen as a proof for the tautology ¬F and by this means the algorithm defines
a proof system.
Thanks to Theorem 1.2.3 the statement holds also for CNF-SAT algorithms.
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Proposition 1.3.3 Let A be an algorithm for SAT or CNF-SAT which runs
in time f(|F |). Then there is a proof system RA such that CRA

(F ) ≤ f(c|F |)
for every tautology F and a constant c.

Proof Let A be an algorithm for SAT or CNF-SAT. In both cases the alphabet
Σ of the proofs consists only of one symbol 0, i.e., Σ = {0}. Note that f is
assumed to be a non-decreasing function.
If A is a SAT algorithm then RA ⊆ F×Σ is defined through RA(F, ω) iff A(¬F )
terminates after at most |ω| steps and returns that ¬F is unsatisfiable. The
latter can be obviously decided in time O(|ω|) and F is a tautology if and only
if RA(F, 0f(|F |). Thus CRA

(F ) ≤ f(|F |) and RA is as wanted.
If A is a CNF-SAT algorithm then define RA(F, ω) iff A(CNF (¬F )) terminates
in time |ω| and returns unsatisfiable whereby CNF (¬F ) is the CNF formula
from Theorem 1.2.3 for ¬F .
By Theorem 1.2.3 there is a constant c such that |CNF (G)| ≤ c|G| for every
formula CNF (G). Thus F is a tautology if and only if RA(F, 0f(c|F |)) and thus
CRA

(F ) ≤ f(c|F |). Since RA is decidable in linear time it is a proof system as
wanted. �

By applying Proposition 1.3.3 to the trivial algorithm one gets the following
corollary.

Corollary 1.3.4 There is a proof system R such that CR(F ) = O(|F |2n) for
every tautology F .

Despite of this this trivial relation of SAT algorithms and proof systems, there
are surprisingly strong connections between SAT algorithms and natural, rule
based proof systems. For one thing lower bounds of the natural systems can
be used to derive lower bounds for whole families of algorithms and for another
thing the relationship of different families of algorithms can be analyzed by
comparing the corresponding proof systems.
Both is accomplished for variations of DLL algorithms and resolution in the
next chapters.
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Chapter 2

DLL Algorithms

2.1 The Basic DLL Algorithm

A trivial way to decide whether a given Boolean formula F over n variables is
satisfiable, is to go through all 2n possible assignments α and determine whether
α � F . Since the latter can be decided in linear time, this algorithm runs in
time O(|F |2n).
A significant improvement of the trivial search algorithm is to set the n vari-
ables of an assignment one after another and test for each partial assignment α
whether the given formula F is already satisfied or falsified by α, i.e., whether
F |α = 1 or F |α = 0. In the first case every total assignment β ⊇ α satisfies F
and in the second case it is possible to skip the testing of all assignments that
set the first variables to same values as α (that are 2n−|α| many).
This improved search algorithm is called DLL algorithm after the authors Davis,
Logeman and Loveland, who first considered it in [15]. Below is a recursive
definition of the basic DLL algorithm in pseudo-code. The input is a CNF F
and an assignment α with dom(α) ⊆ Var(F ). The top level call DLL(F, ∅)
returns UNSAT if F is unsatisfiable or else a satisfying assignment for F .

Algorithm 2.1.1 (Basic DLL Algorithm)

DLL(F, α)
1 if F |α = 0 then
2 return UNSAT
3 if F |α = 1 then
4 return α
5 choose x ∈ Var(F |α)
6 β ←DLL(F, α ∪ {(x, 0)})
7 if β 6= UNSAT then
8 return β
9 else
10 return DLL(F, α ∪ {(x, 1)})
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A variable that is chosen in line 5 of DLL is called a branching variable.
Note that this definition does not describe a single deterministic algorithm be-
cause it depends on the choices of the variables in line 5. It would therefore
be more exact to call it either a non-deterministic algorithm or an algorithm
schema for deterministic and randomized algorithms. Because only the deter-
ministic versions of DLL algorithms are of interest in this paper, the latter point
of view is taken here.
Good choices of branching variables in line 5 improve the experimental running
time of the algorithm enormously. It can be, for example, helpful to first select
variables that occur in short clauses of the current restricted formula. It can
also be faster to choose variables that occur in many clauses before variables
that occur rarely. For an overview on variable branching heuristics see for
example [19] or [28].
For satisfiable formulas it often makes a big running time difference if the branch
with the current variable x set to 1 or the branch with x set to 0 is searched
first. Some heuristics of selecting the first value can be found in [19] and [28],
too. But since unsatisfiable formulas are the ones of more interest in this paper
and the choice of the first value of the branching variable causes no running
time differences for these, it is assumed that 0 is always the first value that is
assigned to the branching variable.
The next theorem states that every choice of the branching variables leads to
correct and complete algorithms for SAT.

Theorem 2.1.2 (Correctness of DLL) Let F be a formula. Then every
execution of DLL(F, ∅) terminates and returns a partial satisfying assignment
if F is satisfiable and UNSAT otherwise.

Proof Let F be a formula, α a partial assignment and n = |Var(F |α)|.
It is shown by induction on n that DLL(F, α) terminates and that it returns
UNSAT if F |α is unsatisfiable or a partial satisfying assignment α′ ⊇ α for F if
F |α is satisfiable.
Induction Basis: If there are no variables in F |α then either F |α = 0 or F |α =
1 and the algorithm terminates within the first 4 lines. In the former case
F |α is unsatisfiable and the algorithm returns UNSAT. In the latter case F |α is
satisfiable and the partial satisfying assignment α is returned.
Induction Step: Let n > 0, x ∈ Var(F |α) and αi = α ∪ {(x, i)} for i = 0, 1.
Then F |αi contains at most n − 1 variables. If F |α is unsatisfiable then F |αi

is unsatisfiable for i = 0 and i = 1 by Lemma 1.2.7. Therefore DLL(F, αi)
terminates by induction for i = 0, 1 and in both cases UNSAT is returned. Thus
DLL(F, α) also terminates and returns UNSAT by definition.
Assume now that F |α is satisfiable. Then it follows by Lemma 1.2.7 that F |αi

is satisfiable for i = 0 or i = 1. If F |α0 is satisfiable then by induction the
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execution of DLL(F, α0) terminates and returns a partial satisfying assign-
ment and thus so does DLL(F, α). If F |α0 is unsatisfiable then the execution
of DLL(F, α0) terminates and returns UNSAT by and furthermore F |α1 must
be satisfiable. Therefore by induction the execution of DLL(F, α1) returns a
partial satisfying assignment and thus, so does DLL(F, α). �

The following lemma is needed for a later proof. It follows immediately from
the correctness theorem.

Lemma 2.1.3 Let F be an unsatisfiable formula. Then an execution of
DLL(F, α) performs an even number of recursive calls

Proof By induction on the number of recursive calls. If there are no recursive
calls then the statement holds since 0 is even. Now assume the DLL(F, α)
performs r > 0 recursive calls. From Theorem 2.1.2 it follows that DLL returns
UNSAT. Thus by definition there are calls of DLL in line 6 and in line 10 that
performs r0 and r1 recursive calls, respectively. Then r0 + r1 + 2 = r. But by
induction r0 and r1 are even. �

As mentioned above, good choices of the branching variables are important to
obtain fast real world DLL algorithms. The next proposition describes a simple
choice of the branching variables which leads already to a k-SAT algorithm that
has a better upper bound than the trivial search algorithm. The idea is just to
pick one clause after another and to branch first on every variable in the picked
clause.

Proposition 2.1.4 Let F be a k-CNF formula over n variables. Then there is
a branching heuristic such that DLL(F, ∅) runs in time O(|F |(2k − 1)

n
k ).

Proof Let F = {C1, . . . , Cm} be a k-CNF formula over n variables. Select
the branching variables in line 5 of DLL in the order π = x1,1, . . . , x1,k1 , x2,1,
. . . , x2,k2 , x3,1, . . . , xm′,1, . . . xm′,km′ where xi,1, . . . xi,ki

are the variables of the
clause Ci that do not occur in a clause Cj for a j < i. It is assumed w.l.o.g
that all variables of F occur in the first m′ clauses such that that every of these
clauses contains at least one new variable.
To estimate the running time of DLL(F, ∅) with that heuristic, a bound on the
size of the resulting recursion tree is given. By branching over the ki variables
of the clause Ci that do not accur in a clause Cj for a j < i, there are at most
2ki possible assignments of these variables and therefore at most 2ki recursive
calls of DLL. But if the first k1 branching variables are selected according
to π then there is exactly one assignment that falsifies C1 and hence one of
the corresponding recursive calls of DLL terminates immediately and has no
children in the recursion tree.
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Equally in every group of the ki unset variables of the clause Ci that are selected
according to π there is at least one clause in F that is falsified by one of the
2ki possible assignments. Therefore there are at most (2ki − 1) inner nodes
in the recursion tree for every group of unset variables of a clause that are
selected according to π. Since F has n variables, there are over all less then
(2k1 − 1) · . . . · (2km′ − 1) inner notes in the recursion tree for integers ki with
ki ≤ k and k1 + . . . + km′ = n. By the convexity of this function it follows that
the algorithm runs in time O(|F |(2k − 1)

n
k ). �

One could think that there might be a great, undiscovered strategy in the
choosing of the branching variables of the basic DLL algorithm that leads to
a k-SAT algorithm with a sub exponential worst case running time. It is not
obvious to see that all algorithms that can be derived from the basic DLL
algorithm schema are cursed to have an exponential worst case running time.
Actually it is shown in Section 4.2 that there are k-CNF formulas F1, F2, F3, . . .
and a constant c > 1 such that DLL(Fi, ∅) needs time Ω(ci) for every possible
choice of the branching variables.
Like basic DLL algorithms, all other known algorithms for SAT have a worst
case running time that is exponential in the number of the variables of the input
formula. Nevertheless there are different ways to implement and to improve the
basic DLL algorithm in order to solve real-word SAT problems with today’s
computers (see [19], [32]).
Most of the fastest complete SAT solvers like Chaff ([27]) use these improved
versions of the basic DLL algorithm. Thereby it is common practice to imple-
ment an imperative version of the algorithm as well as efficient data structures
that allow a fast undo of variable assignments as described in [18].

2.2 DLL with Learning by Unit Propagation

Two of the most successful improvements of DLL that are used by most of the
modern SAT solvers are unit propagation and learning.
Unit clause propagation was already studied by Davis and Putnam in [16] and is
based on the following observation. Suppose there is a recursive call DLL(F, α)
of DLL. As long as there is a clause C = {l} in F |α that has only one unset
literal, one can set the variable x of l so as to satisfy C since the other assignment
would falsify F . Such a clause C is called a unit clause, and the assignment of
a value to x to satisfy C is called a unit clause assignment. It is possible that a
new unit clause appears after a unit clause assignment. In that case, or if there
is another unit clause in F |α, the variable of this clause can be set to satisfy
the unit clause. If the empty clause 2 occurs after a sequence of unit clause
assignments then one speaks of a conflict by unit propagation. The term unit
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propagation is used to name the process of assigning unit clauses until a the
empty clause occurs or no unit clauses are left. Sometimes unit propagation is
also called logical implication in the literature.
Note that the basic DLL algorithm schema given in Section 2.1 is able to sim-
ulate unit propagation by choosing the variables that appear in unit clauses as
branching variables in line 5. Thus the lower bound for DLL algorithms that is
given in Section 4.2 holds also for DLL algorithms that use unit propagation.
The concept of learning in DLL algorithms was first introduced by Silva and
Sakallah [32]. It is based on the idea that if a restricted formula F |α is unsatisfi-
able then this information can be coded in a clause Cα such that F ∪{Cα} ≡ F
and it is possible to continue the search for truth assignments on the formula
F ∪ {Cα}. The clause Cα is easy to find: it is the largest clause that is falsified
by α.
The advantage of continuing the search on F ′ = F ∪{Cα} is that the algorithm
is able to stop searching for satisfying assignments β′ ⊃ β each time it tries an
assignment β ⊇ α, since F ′|β = 0.
The following lemma shows that adding clauses Cα as described above does
not affect the behavior of a formula F under assignments, i.e., that F ≡ F ∪
{Cα}. On the other hand every clause C with F ≡ F ∪ {C} corresponds to
an assignment for which F |α is unsatisfiable. That is why the only way to
learn clauses is to use the information F |α → 0 for an assignment α directly or
indirectly.

Definition Let α be an assignment. Then Cα is defined as the the clause {¬x
| α(x) = 1} ∪ {x | α(x) = 0}, i.e., Cα is the largest clause that is falsified by α.

Lemma 2.2.1 Let F be a formula and α an assignment. Then F ≡ F ∪ {Cα}
if and only if F |α is unsatisfiable.

Proof “⇒”: By contradiction. Let G = F |α be satisfiable and suppose that
β is an assignment with G|β = 1. Then it follows for γ = β ∪ α that F |γ = 1
but Cα|γ = 0 and therefore F 6≡ F ∪ {Cα}.
“⇐”: Let G = F |α be unsatisfiable and β a total assignment. It suffices to show
that if F |β = 1 then Cα|β = 1. Therefore suppose that F |β = 1. Then α 6⊆ β
because otherwise β −α would be a satisfying assignment for F |α. But since β
is a total assignment and Var(Cα) ⊆ dom(α) there exists a literal a ∈ Cα with
β(a) = 1 and thus Cα|β = 1. �

Note that it is NP-hard to decide for a formula F and an arbitrary assignment
α whether F |α is satisfiable because the problem is a generalization of SAT.
Therefore one has to find a way to provide the information F |α → 0 during the
run of a DLL algorithm efficiently in order to learn clauses.
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Obviously F |α → 0 follows every time if DLL(F, α) returns UNSAT. But the
clause Cα is worthless for the rest of the execution since no assignment β ⊇ α
is tried anymore during a recursive execution of DLL and thus Cα is never fal-
sified. For that reason one provides additional information during an execution
of DLL to discover small assignments α′ ⊂ α with F |α′ → 0.
The first, and to the knowledge of the author so far only, method of finding
these small assignments in DLL algorithms is learning by unit propagation as
presented first in [32]. Almost all deterministic state of the art SAT solvers
that are fast according to SAT competitions (see [7], [8] and [9]) like Chaff
[27], Zchaff [26] or MiniSAT [17] use DLL algorithms with learning by unit
propagation.
The idea is to keep track of the exact variable assignments which cause a variable
to be set by unit propagation. If there appear two contradicting clauses {x}
and {¬x} in F |α then F |α is unsatisfiable and the clause that corresponds to
variables that causes x = 0 and x = 1, respectively, is learned. One can think
of the variable settings that are represented in this clause as the reasons for the
conflict.
To provide an easy way to compute a set of variables that are responsible for
a conflict, the reasons for every unit propagation are saved in a data structure
that is called UP-graph in this paper.

Definition (UP-Graph) Let F be a CNF formula. A UP-graph G for F is a
directed acyclic graph (dag) G = (V,E) with V ⊆ Var(F )∪{ ¬x | x ∈ Var(F ) }
such that

• |V ∩ {x,¬x}| ≤ 1 for every x ∈ Var(F )

• every v ∈ V has in-degree 0 or there is a clause Cv ∈ F with Cv = {v}∪{
l̄ | (l, v) ∈ E }.

Define αG = { (x, ε) | xε ∈ V } to be the partial assignment induced by G.

A leaf (i.e., a vertex with in-degree 0) in a UP-graph represents a setting of
a branching variable in the DLL algorithm and an inner node v represents an
assignment that has been forced by unit propagation with respect to a unit
clause {v} that arises out of F by satisfying the predecessors of v.
If a conflict occurs in the formula F restricted by the induced assignment of
a UP-graph G, i.e., {x} ∈ F |αG and {¬x} ∈ F |αG for a variable x, then one
speaks of a conflict and can extend G to a conflict graph as follows.

Definition (Conflict Graph) Let F be a CNF formula and G = (V,E)
a UP-graph for F . Let C1, C2 ∈ F be clauses with C1|αG = {y} and
C2|αG = {¬y}. Then the dag G′ = (V ′, E′) with V ′ = V ∪ {y,¬y, 2} and
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E′ = {(y, 2), (¬y, 2)} ∪ { (v̄, y) | v ∈ C1, v 6= y } ∪ { (v̄,¬y) | v ∈ C2, v 6= ¬y }
is called a conflict graph for F and y is called the conflict variable of G′.
The conflict clause of G′ is the clause CG′ = { l̄ | l ∈ V has in-degree 0 and
there is a path from l to 2 in G′ }.

x31

x41

x13

x21

x14

x32

x42

x23

x24

x12

x12

�

Figure 2.1: A UP-graph for OP4 that is extended to a conflict
graph with the nodes x12, x̄12 and 2. The conflict clause is (x31 ∨
x41).

The conflict clause CG of a conflict graph G codes the fact that F |β is unsatisfi-
able for β = { (x, ε) | x1−ε ∈ CG }. This follows from Lemma 2.2.1 and Lemma
2.2.2 which is proved below.
In order to prove Lemma 2.2.2 the following definitions are useful.

Definition Let G = (V,E) be a dag and u ∈ V . Define

V 0
G = {v ∈ V | v has in-degree 0 }

DepthG(u) =
{

0 if u ∈ V 0
G

1 + max{ DepthG(v) | (v, u) ∈ E } otherwise

VGdu
= { v ∈ V | there is a path from v to u in G }

EGdu
= E ∩ (VGdu

× VGdu
)

Gdu = (VGdu
, EGdu

), the subgraph of u in G

With the above notation follows for a conflict graph G that CG = V 0
Gd2

.

Lemma 2.2.2 Let F be a CNF formula. If G = (V,E) is a conflict graph for
F then F ≡ F ∪ {CG}.

Proof Let F and G be as above, put α = { (x, ε) | x1−ε ∈ CG } and let x be
the conflict variable of G.
Let β be an assignment with β ⊇ α and β � F . It is shown by induction on
DepthG(v) that β(v) = 1 for each v ∈ V , v 6= 2. But since x ∈ V and ¬x ∈ V
such an assignment β can not exist and thus F |α is unsatisfiable.
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For the induction basis let v ∈ V be a vertex with DepthG(v) = 0. Then
β(v) = α(v) = 1 by the definition of αG.
For the induction step let DepthG(v) = n + 1. By induction it holds β(u) = 1
for every predecessor u of v. By the definition of a conflict graph there is a
clause Cv = {v} ∪ { l̄ | (l, v) ∈ E } ∈ F and since β � F , β(v) = 1.
That completes the induction and proves that F |β = 0 for every assignment
β ⊇ α. From Lemma 1.2.7 it follows hence that F |α is unsatisfiable. But
CG = Cα and by Lemma 2.2.1 F ≡ F ∪ {CG}. �

Apart from the conflict clauses, there is another type of clauses C with F ≡ F ∪
{C} that can be learned from a conflict graph G for the CNF F : if an assignment
satisfies all the leaves l1, . . . , lk from which an inner node v is reachable then
v must be satisfied in order to satisfy F . This fact can be coded in the clause
C = {v, l̄1, . . . , l̄k}.

Definition Let G = (V,E) be a conflict graph or a UP-graph and let u ∈
V − (V 0

G ∪ {2}). The induced clause of Gdu is CGdu
= V 0

Gdu
∪ {u}.

Lemma 2.2.3 Let F be a CNF formula, G = (V,E) a UP-graph for F and
u ∈ V − (V 0

G ∪ {2}). Then F ≡ F ∪ {CGdu
}.

Proof Let α = { (x, ε) | x1−ε ∈ CGdu
}. Since CGdu

= Cα and by Lemma
2.2.1, it suffices to show that F |α is unsatisfiable.
Let {l1, . . . , lk} be the set of leaves of G from which u is reachable, u = xε and
α′ = α − {(x, 1 − ε)}. Let β ⊇ α′ be an assignment that satisfies F . Then it
can be shown analogous to the proof of Lemma 2.2.2 that β(v) = 1 for every
predecessor v of a li. But since α(u) = 0, it follows from Lemma 1.2.7 that F |α
is unsatisfiable. �

The following algorithm schema DLL-L-UP is a modification of the schema
DLL. In addition to the input formula and the actual assignment it receives
a UP-graph as third argument and in addition to a satisfying assignment or
UNSAT, it returns a modified formula that might include learned clauses, i.e.,
if F is a CNF formula, G is a UP-graph for F and α is an assignment then
DLL-L-UP(F,G, α) returns (F ′, α′) for a formula F ′ ⊇ F such that F ′ ≡ F
and α is an partial satisfying assignment for F or UNSAT.
If a unit clause C|α = {xε} occurs in the restricted formula F |α during a call
of DLL-L-UP(F,G, α) then no branching variable is chosen but x is set to ε
in order to satisfy {xε} and this information is coded in the UP-graph G for
future recursive calls by edges from vertices of the other literals in C to xε.
If there is no unit clause in F |α then a branching variable x is chosen and set
to a value ε. That is represented in the UP-graph by adding a new leaf xε.
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Either DLL-L-UP finally finds a satisfying assignment on the search path or
it runs into conflict, i.e., there are two conflicting unit clauses {x} and {¬x}
in the restricted formula F |α. In that case the UP-graph G is expanded to a
conflict graph G′ and a set of clauses C is learned from G′ and added to F .
To derive the results of Section 3.5, the choice of C is restricted to a set of
clauses that corresponds to a compatible set of subgraphs of G. It is possible
that there are generalizations of this restriction that lead also to the results in
Section 3.5 and it is planned to study these generalizations in a future paper
with Sam Buss. Nevertheless, the notion of compatible subgraphs includes
nearly all learning strategies that are used in algorithms like GRASP.
A proper sub conflict graph of G′ is a subgraph H = (V,E) of G′ that is a
conflict graph such that there is no path from a u ∈ V − V 0

H to a v ∈ V 0
H in G′.

Definition (Proper Sub Conflict Graph) Let F be a CNF formula, G =
(V,E) a conflict graph for F and H = (V ′, E′) a subgraph of G.
H is called sub conflict graph of G if H is a conflict graph for F .
H is proper iff V ′ ∩ VGdu

⊆ V 0
H for every u ∈ V 0

H .
If H is a proper sub conflict graph of G then V 0

H is called a proper cut in G.

The definition of a proper sub conflict graph generalizes the concept of a cut in
a conflict graph (see Figure 2.2 ) that was introduced in [32] and that is used
in all well known SAT solvers to select sub conflict graphs.
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Figure 2.2: The conflict graph G for OP4 with a proper sub con-
flict graph and the corresponding cut. The conflict clause of the
subgraph is C = (x̄14 ∨ x̄21 ∨ x32). It is possible to include G and
the UP-graph Gdx̄32 in a compatible set of subgraphs and to learn
the clauses C and {x̄32, x41, x31}.

Definition (Compatible Subgraphs) Let G be a conflict graph. A set C of
subgraphs of G is compatible if C = ∅ or if C = {H1, . . . Hs} ∪ {Gdv1 , . . . , Gdvt}
and

• Hs is a sub conflict graph of G
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• Hi is a proper sub conflict graph of Hi+1 for every 1 ≤ i < s

• |VH1d2
| > 3

• vj ∈ V 0
Hs
− V 0

G for every 1 ≤ j ≤ t

The conflict clauses of C are CC(C) = { CH | H ∈ C }.

The clauses CGdu
that are learned from the sub UP-graphs Gdu can be seen

as a generalization of the concept of unique implication points that has been
introduced in [32].

Algorithm 2.2.4 (DLL with Learning by Unit Propagation)

DLL-L-UP(F, (V,E), α)
1 if F |α = 1 then return (F, α)
2 if there is a y ∈ Var(F ) with {y}, {¬y} ∈ F |α then
3 V ← V ∪ {y,¬y, 2}
4 choose C1, C2 ∈ F with C1|α = {y} and C2|α = {¬y}
5 N ← { (v̄, y) | v ∈ C1, v 6= y } ∪ { (v̄,¬y) | v ∈ C2, v 6= ¬y }
6 E ← E ∪ {(y, 2), (¬y, 2)}) ∪N
7 if N 6= ∅ then choose a compatible set C
8 of subgraphs of (V,E)
9 F ← F ∪ CC(C) -- learn clauses
10 return (F, UNSAT)
11 if there is a unit clause {xε} ∈ F |α then
12 choose D ∈ F with D|α = {xε}
13 V ← V ∪ {xε}
14 E ← E ∪ { (v̄, xε) | v ∈ D, v 6= xε }
15 return DLL-L-UP(F, (V,E), α ∪ {(x, ε)})
16 choose x ∈ Var(F |α) and ε ∈ {0, 1}
17 (G, β)←DLL-L-UP(F, (V ∪ {xε}, E), α ∪ {(x, ε)})
18 if β 6= UNSAT then return (G, β)
19 if G|α = 0 then return (G, UNSAT) -- fast backtracking
20 else return DLL-L-UP(G, (V ∪ {x1−ε}, E), α ∪ {(x, 1− ε)})

Note that this algorithm schema is not a generalization of schema DLL because
DLL-L-UP is not able to branch on arbitrary variables since unit propagation
always takes priority.
Algorithms that match the schema DLL-L-UP can differ in the choice of the
branching variable, the choice of the unit clauses in line 4 and line 12 and
the selection of the compatible subgraphs in line 7. The running time of the
algorithms depend highly on these choices and there are some examples given
below of how well known SAT solvers like GRASP, zChaff and MiniSAT take
these decisions.
The next branching variable can be a variable that occurs in a short clause or a
variable that occurs in many clauses. Some SAT solvers make the choice with
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respect to the number of conflicts in which the variable has occurred so far. For
an overview on branching heuristics see for example [28].
It appears that SAT solvers like Zchaff that use learning by unit propagation
select the unit clauses in lines 3 and 12 in an arbitrary way that depends on
the data structures.
A choice of the compatible subgraphs C in line 8 could be for example just
{G}. That strategy is sometimes called decision since the corresponding conflict
clause contains only variables that have been chosen as branching variables (or
decision variables) in the DLL algorithm. But often it is more convenient to
select subgraphs that lead to smaller conflict clauses. Most of the strategies that
try to achieve that goal, such as those used in Zchaff and GRASP, compute so
called unique implication points, which are cutting vertices in the conflict graph,
to reduce the size of the learned clauses. On the other hand it has also turned
out in practice that it is not the best strategy to learn only small conflict clauses.
An overview on learning heuristics for DLL algorithms is given by Zhang et.
al. in [34].
For the decision whether to keep a learned clause it seems to be the a good
strategy to include mostly short clauses and to delete clauses that have not
contributed to conflicts for a longer time. A similar strategy is for example
used by Zchaff.
The last goal of this section is to show that algorithms that match DLL-L-UP
are complete and correct algorithms for SAT. The next lemma states that F |α is
unsatisfiable if DLL-L-UP(F,H, α) returns (G, UNSAT). It follows easily from
results in Chapter 3 and is hence proved there.

Lemma 2.2.5 Let F be a CNF formula, H a UP-graph for F and α an assign-
ment. If DLL-L-UP(F,H, αH) returns (F ′, UNSAT) then F |αH is unsatisfiable.

Proof See Section 3.5. �

With the help of Lemma 2.2.5 it is easy to proof the following theorem.

Theorem 2.2.6 (Correctness of DLL-L-UP) Let F be a CNF formula.
Then every execution of DLL-L-UP(F, (∅, ∅), ∅) terminates. It returns (F ′, α)
for a partial satisfying assignment α and a formula F ′ ⊇ F if F is satisfiable
and (F ′, UNSAT) otherwise.

Proof It is evident that every execution of DLL-L-UP(F, (∅, ∅), ∅) termi-
nates and by Lemma 2.2.5 it follows that F is unsatisfiable if the algorithm
returns (F ′, UNSAT).
Thus it suffices to show that that F |α′ = 1 if DLL-L-UP(F,H, α) returns
(F ′, α′) for an assignment α.
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It is shown to this end by induction on the number of recursive calls s that
F ′ ≡ F if DLL-L-UP(F,H, α) returns (F ′, α′) and F |α′ = 1 if α′ 6= UNSAT.
Induction basis: If there are no recursive calls and α′ 6= UNSAT then F ′ = F ,
α = α′ and F |α = 1.
If there are no recursive calls and α′ = UNSAT then F ′ = F ∪ CC(C) for a
compatible set of subgraphs C of the confilct graph (V,E) for F . Then it
follows F ≡ F ∪ CH′ for every H ′ ∈ C from Lemma 2.2.2 and Lemma 2.2.3.
Thus F ≡ F ′.
Induction step: Let DLL-L-UP(F,H, α) perform s > 0 recursive calls. If
(F ′, α′) is the return value of a recursive call in line 15 or in line 17 then the
statement follows by induction since these executions perform less recursive
calls.
Otherwise DLL-L-UP(F,H, α) performs two recursive calls. It follows by in-
duction that F ≡ G for the return value (G, β) of the first recursive call in
line 17 and the return value (F ′, α′) of the second recursive call is returned by
DLL-L-UP(F,H, α). By induction G ≡ F ′ and G|α′ = 1 if α′ 6= UNSAT. But
since G ≡ F , also F ′ ≡ F and F |α′ = 1 if α′ 6= UNSAT. �

SAT competitions and other experimental results (see for example [32] and [9])
have shown that DLL algorithms that use learning by unit propagation out-
perform basic DLL algorithms widely. In the following chapters a theoretical
approval for that observation is given. It is proved in Section 3.5 that execu-
tions of DLL-L-UP can be transformed to proofs of a proof system that is
exponentially stronger than the basic DLL algorithm. In [2] it was shown that
there exist formulas Fi for i ∈ N such that every basic DLL algorithm needs
exponential time and in contrast there is an unit propagation learning heuristic
such that DLL-Learn(Fi) runs in polynomial time. Section 4.2 presents a
similar result.
Learning by unit propagation can be extended by the possibility of doing so-
called restarts during an execution of DLL-L-UP. This is based on the ob-
servation that the opportunity to learn a clause depends on two factors: on
the clauses that are learned so far and on the current assignment that falsifies
the input formula. Thus different choices of the branching variables result in
different opportunities to learn clauses.
To enhance the capabilities to learn clauses it is therefore helpful to run DLL-
L-UP several times partially with different branching variable orders and save
the learned clauses after each call.
It has been shown by experiments (see [24] and references therein) that restarts
can highly improve the running time of SAT algorithms. Hence restarts are
used by the fastest complete SAT solvers that are based on DLL. Zchaff for
example restarts constantly after some interval.
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To date, no examples have been found that demonstrate the superiority of DLL
with learning and restarts, i.e., there are no formulas known on which every
algorithm that matches the schema DLL-L-UP needs super-polynomial time
while algorithms that use restarts are able to decide the satisfiability of those
formulas in polynomial time.
It has be shown in [2] that DLL with learning by unit propagation and restarts
can simulate the proof system dag-like resolution that is introduced in Chapter
4.

2.3 A Generalization of Learning by Unit Propaga-
tion

In this section a new natural generalization of DLL with learning by unit prop-
agation is presented by means of the algorithm schema DLL-Learn.
There are two main extensions with respect to learning by unit propagation.
On the one hand the possibility of learning is separated from the need to do
unit propagation, which means that the algorithm can do unit propagation as
part of its branching heuristic or not, while being able to learn clauses in both
cases.
On the other hand DLL-Learn uses more of the information that is provided
during an execution of a DLL algorithm. If DLL(F, α) branches on a variable
x and performs two recursive calls that both return UNSAT then it follows that
F |α is unsatisfiable. This information is not used when doing learning by unit
propagation.
The idea of DLL-Learn is to extend DLL to provide a small clause CDLL(F,α)

with CDLL(F,α)|α = 0 and F ≡ F ∪ {C} for every call DLL(F, α).
If F |α = 0 then CDLL(F,α) is simply a clause C ∈ F with C|α = 0. If F |α 6= 0
and F |α 6= 1 then a branching variable x is chosen. If there is no fast back-
tracking then the DLL-Learn(F, α) performs two recursive calls and the clause
CDLL(F,α) = (C0 − {x1−ε}) ∪ (C1 − {xε}) is learned whereby C0 ⊆ Cα∪{(x,0)}
and C1 ⊆ Cα∪{(x,1)} are the clauses that are provided by the recursive calls.
Since x does not have to occur in Var(C0) or in Var(C1), C arises out of C0

and C1 by means of a weak resolution rule.
A feature of the algorithm that the reader might find strange is that it can
continue to branch on variables even if the formula is already unsatisfied. This
feature is called continued learning and is needed for a direct proof of the results
in Section 3.4.
Besides it could be also helpful in an implementation of the algorithm: Think
of a call of DLL(F, α) such that F |α = 0 and suppose that all of the falsified
clauses C ∈ F contain nearly all variables that are set by α and recall that one
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wants to provide a small clause CDLL(F,α). It might, for example, be the case
that F |α contains two conflicting unit clauses C0|α = {x} and C1|α = {¬x} such
that C0 and C1 are small. In that case, and in similar cases, it could be better
to set the variable x and start the learning process with the clauses C0 and
C1. Therefore DLL-Learn has the possibility to continue to chose branching
variables even if the formula is already falsified by the current assignment. For
the same reasons it is also possible to skip fast backtracking.
Algorithm 2.3.1 (DLL with Learning)

DLL-Learn(F, α)
1 if F |α = 1 then return (F, α)
2 if F |α = 0 then do optionally -- cont. learning?
3 tag a C ∈ F with C|α = 0 as new
4 return (F, UNSAT)
5 if Var(F )− dom(α) = ∅ then -- F |α = 0
6 tag a C ∈ F with C|α = 0 as new
7 return (F, UNSAT)
8 choose x ∈ Var(F )− dom(α) and a value ε ∈ {0, 1}
9 (G, β)←DLL-Learn(F, α ∪ {(x, ε)})
10 if β 6= UNSAT then return (G, β)
11 if G|α = 0 then optionally return (G, UNSAT) -- fast backtracking
12 (H, γ)←DLL-Learn(G, α ∪ {(x, 1− ε)})
13 if γ 6= UNSAT then return (H, γ)
14 select the newest C0 ∈ G and the newest C1 ∈ H
15 C ← (C0 − {x1−ε}) ∪ (C1 − {xε})
16 H ← H ∪ {C} -- learn a clause
17 if C0 6∈ F then do optionally H ← H − {C0} -- keep clauses?
18 if C1 6∈ F then do optionally H ← H − {C1}
19 return (H, UNSAT)

In the above algorithm the clause CDLL(F,α) that is learned in line 16 in an
execution of DLL-Learn(F, α) is always included in F until it has been used
to derive the clause CDLL(F,α′) that is learned on the next higher level in the
recursion tree during the execution of DLL-Learn(F, α′) with α′ = α−{(x, ε)}
that has called DLL-Learn(F, α) in line 9 or in line 12. Thereafter one can
decide to keep it or to delete it from F in the lines 17 and 18.
Since the maximal height of the recursion tree is n = |Var(F )| there are at
most n learned clauses CDLL(F,α) that have to be stored to derive other clauses
in an execution of DLL-Learn.
The algorithm schema DLL-Learn is a generalization of the basic DLL algo-
rithm schema DLL since every execution of DLL can be simulated by DLL-
Learn in the following way. Chose in DLL-Learn the same branching vari-
ables as in DLL, always delete clauses in the lines 16 and 17 and never do fast
backtracking or continued learning.
It is proved in Section 3.5 that DLL-Learn can also simulate DLL-L-UP, i.e.,
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if there is an execution of DLL-L-UP(F, (∅, ∅), ∅) that performs s recursive
calls then there is an execution of DLL-Learn(F, ∅) that does at most 2n(s+2)
recursive calls whereby n = min{|Var(F )|, s}.
The soundness and completeness of DLL-Learn are proved in Section 3.4.
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Chapter 3

Tree-Like Resolution

3.1 Resolution Trees

Proof systems that are based on resolution are some of the best known and
most studied in the literature. One can use resolution directly to prove a
given CNF formula to be unsatisfiable. Thus resolution proofs are often called
resolution refutations. But since a formula F is tautological if and only if the
CNF formula CNF (¬F ) is unsatisfiable, one can consider a resolution refutation
for CNF (¬F ) as a proof for � F and therefore resolution as a proof system in
terms of Section 1.3.
Resolution refutations are based one a single inference rule which is called
resolution rule.

Definition (Resolution Rule) Let C0, C1 and C be clauses and let x be a
variable. C can be obtained by the resolution rule from C0 and C1 according
to x if x ∈ C0, ¬x ∈ C1 and C = (Co − {x}) ∪ (C1 − {¬x}).
In that case we write C0, C1 `x C or C0, C1 ` C and call C a resolvent of C0

and C1.

A resolution refutation of a CNF F consists of repeated application of the
resolution rule to the clauses of F and the resulting resolvents such that finally
the empty clause 2 appears as a resolvent. Because � (C0 ∧ C1) → C if
C0, C1 ` C, it follows � F → 0 and hence F is unsatisfiable.
The following lemma states the correctness of the resolution rule.

Lemma 3.1.1 Let α be an assignment and let C0, C1 and C be clauses with
C0, C1 `x C. If C0|α = C1|α = 1 then C|α = 1.

Proof Let x ∈ C0, ¬x ∈ C1 and C = (Co − {x}) ∪ (C1 − {¬x}). Let α
be an assignment with C0|α = C1|α = 1. It holds x 6∈ dom(α), α(x) = 0 or
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α(¬x) = 0. Therefore there is a literal l ∈ (C0 ∪ C1) − {x,¬x} with α(l) = 1.
But (C0 ∪ C1)− {x,¬x} = C and thus C|α = 1. �

To the best of the author’s knowledge the first resolution based proof system
was suggested 1930 by Herbrand [23] and it should be mentioned that resolution
can also be used as a proof system for first order logic due to results that are
based on the work of Löwenheim, Herbrand and others (see [31] and [16]). Many
first order theorem provers and logic programming tools like Prolog interpreters
are based on resolution.
In the framework of proof complexity, resolution proofs were studied initially by
Tseitin [33] and there are different ways of both, representing a resolution proof
and measuring its size (see also Chapter 5). A recapitulation of the different
types of resolution and their relation has been given by Rachinsky [30].
In this chapter resolution proofs are considered to be trees. This means that
every resolvent is used exactly once to derive another resolvent and if a clause
C is used k times for a resolution in a proof then it has to be derived k times
from F . Proofs in which a resolvent can be used arbitrarily often are called
dag-like resolution proofs and discussed in Chapter 4.
A resolution tree for a CNF F as defined below is a binary tree such that the
leaves are labeled with clauses from F and every inner node is a resolvent of its
children.

Definition (Resolution Tree) Let F be a CNF formula, C a clause and T
a binary tree in which the nodes are labeled with clauses and the edges are
labeled with variables. T is a resolution tree for C from F if

• the root of T is labeled with the clause C,

• each leaf of T is a labeled with a clause D ∈ F ,

• if the inner node is labeled with D and has two children that are labeled
with D0 and D1 then D0, D1 `x D for a variable x and the edges between
the node and its children are labeled with x.

The size |T | of T is the number of nodes in T .
Var(T ) = { x | there is an edge labeled with x in T } is the set of the variables
in T and Cl(T ) = { C | C is the label of a node in T} is the set of clauses in T .

Remark 3.1.2 A node and its label are often identified in a resolution tree.
In that terms a resolution tree T for C from F can be defined as follows. C
is the root of T , every leaf in T is a clause in F and D0, D1 `x D if D is the
parent of D0 and D1.
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Figure 3.1: A resolution tree of 2 from OP4∧(x21∨x31)∧(x12∨x32)
the additional clauses can be resolved from OP4 analogously to
(x13 ∨ x23).

The above definition of the size |T | of a resolution tree T for the CNF F does
not depend on the size of clause labels in the tree. Even though, that is a little
imprecise, it suffices since polynomial factors are of less interest in this paper
and the clause size is bounded by |Var(F )| since Var(Cl(T )) ⊆ Var(F ). Thus
every clause label in T can be stored in space O(|Var(F )|).
Note also that the size of the clauses in Cl(T ) and the size of T itself are highly
related, i.e., T is large if and only if T contains large clauses. This result applies
for dag-like and tree-like resolution and details can be found in [6].
As mentioned above, resolution trees can be regarded as a proof system in the
following way.

Definition (The Proof System RT) Let F be a formula. The proof system
RT is defined through: RT(F, T ) if and only if T is a resolution tree for 2 from
CNF (¬F ).

The next lemma shows the soundness of RT. The completeness of RT is shown
in Section 3.2. Since one can verify in polynomial time whether C0, C1 ` C for
clause C0, C1 and C, it is also computable in time p(|T |+ |F |) for a polynomial
p if a tree T is a resolution tree for 2 from a given CNF formula F . Thus, and
since CNF (¬F ) is computable in polynomial time, RT is a well defined proof
system.

Lemma 3.1.3 Let F be a CNF formula and let T be a resolution tree for the
clause C from F . Then C|α = 1 for every assignment α with F |α = 1.
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Proof The statement is proved by induction on d = DepthT (C).
If C is a leaf then C ∈ F and C|α = 1 follows from F |α = 1 by definition.
If d > 0 then C has two children C0 and C1 with C0, C1 `x D for a variable
x. Since DepthT (C0) < d and DepthT (C1) < d, it follows by induction that
C0|α = C1|α = 1. But then C|α = 1 by Lemma 3.1.1. �

Corollary 3.1.4 (Soundness of RT) Let F be a CNF formula and let T be
a resolution tree for 2 from F . Then F is unsatisfiable.

Proof Suppose for the purpose of contradiction that α is a satisfying assign-
ment for F . Then F |α = 1 and, by Lemma 3.1.3, 2|α = 1 which contradicts
the definition of 2. �

3.2 DLL Algorithms and Regular Resolution Trees

There is a strong connection between resolution and DLL algorithms that has
been well known already as the first DLL algorithm has been presented by
Davis, Logemann and Loveland in [15]. In fact DLL has been introduced there
as a variation of the resolution based proof search presented in [16].
Particularly a run DLL can be considered as a resolution tree with an additional
property: On every path from a leaf to the root there is for each variable x at
most one edge that is labeled with x, i.e., one resolves at most once on a variable
per path. A resolution tree with this property is called regular. A proof system
based on regular resolution proofs was considered first in terms of complexity
by Tseitin in [33].

Definition (Regular Resolution Tree) Let T be a resolution tree. T is
called x-regular if every path from the root to a leaf contains at most one edge
labeled with x. T is called regular if T is x-regular for every variable x.

Definition (regRT) Let F be a formula. The proof system regRT is defined
through: regRT(F, T ) if and only if T is a regular resolution tree for 2 from
CNF (¬F ).

The resolution tree in Figure 3.1 on the preceding page is regular.
Since it is easy to check with a depth first search in polynomial time whether a
resolution tree is regular, the relation regRT(F, T ) can be decided in polynomial
time. The soundness of regRT follows from Lemma 3.1.3 and the completeness
is shown below. Thus regRT is a proof system.
The next proposition shows that a resolution tree can be transformed into a
regular resolution tree without any increase of the tree-size.
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Lemma 3.2.1 If there exists a resolution tree of size s for 2 from F then there
is also a regular resolution tree of size at most s for 2 from F .

Proof Let F be a CNF formula and let T be a resolution tree of size s for 2

from F . Let x ∈ Var(T ) (if Var(T ) = ∅ then T is already regular). It suffices
to show by induction that T can be transformed into a x-regular tree Tx of
size at most s such that Tx is y-regular for each variable y 6= x for which T is
y-regular . Therefore let d be the number of edges e that are labeled with x
such that there is another edge labeled with x on the path from e to 2.
If d = 0 then T is already x-regular.
Let d > 0. Then there is an edge e in T that is labeled with x such that there is
another edge labeled with x on the path from e to 2. Let e correspond to the
resolution inference C0, D0 `x C1 and let C1, C2, . . . , Cn = 2 be the sequence
of clauses that appear on the path from e to 2. Let furthermore e′ be the first
edge on the path that is labeled with x and let e′ correspond to the resolution
inference Ck, Dk `x Ck+1 .
T is now transformed into a resolution tree T ′ for 2 from F that does not
contain the inference C0, D0 `x C1 anymore. Assume therefore w.l.o.g. that
C1 = (C0 − {x}) ∪ (D0 − {¬x}) and Ck+1 = (Ck − {x}) ∪ (Dk − {¬x}) (the
other cases are symmetric). To start with, remove D0 and all its predecessors
(i.e., its derivation) from T and substitute the subtree TC0 of T with root C0

(i.e., the derivation of C0) for C1.
To make T ′ a valid resolution tree, the clauses Ci are either deleted or replaced
by a clause C ′

i+1 for i = 1, . . . , n such that C ′
i+1 ⊆ Ci+1 ∪ {x} for i < k

and C ′
i+1 ⊆ Ci+1 for i ≥ k as follows. Let Ci, Di `xi Ci+1 be the resolution

inference of Ci+1 in T and Ci+1 = (Ci−{xε
i})∪(Di−{x1−ε

i }. If xε
i ∈ C ′

i then let
C ′

i+1 = (C ′
i−{xε

i})∪(Di−{x1−ε
i } and replace Ci+1 by C ′

i+1. Else let C ′
i+1 = C ′

i,
delete Di together with its derivation (i.e., the subtree TDi of T ) and replace
Ci+1 by the subtree T ′

C′
i

of the modified tree T ′.

The resulting tree T ′ is a resolution tree. Since at least two clauses have been
deleted from T , s′ = |T ′| < s and by induction T ′ can be transformed into a
regular resolution tree for 2 from F of size at most s′. �

Theorem 3.2.2 follows immediately from Lemma 3.2.1.

Theorem 3.2.2 regRT ≡ RT

The following lemma shows how a regular resolution tree can be constructed
from an execution of DLL.

Lemma 3.2.3 Let F be a CNF formula and α an assignment. If there is an
execution of DLL(F, α) that returns UNSAT and performs s recursive calls then
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there exists a clause C with C|α = 0 such that C has a regular resolution tree
T from F with |T | ≤ s + 1 and Var(T ) ∩ dom(α) = ∅.

Proof By induction on s. Fix an execution of DLL(F, α) that returns UNSAT
after s recursive calls. Recall that by Lemma 2.1.3 s is even.
If s = 0 then the algorithm performs no recursive calls and since it returns
UNSAT there must be a clause C in F with C|α = 0. Thus the resolution tree
that consists only of a root labeled with C satisfies the conditions.
For the induction step assume that s = r + 2 for an even integer r. Since
DLL(F, α) does not terminate within the first 4 lines, there is a branching
variable x which is chosen in line 5. Because the algorithm returns UNSAT there
is a call of DLL(F, α0) in line 6 that execute s0 recursive calls and a call of
DLL(F, α1) in line 10 that execute s1 recursive calls, whereby αi = α∪{(x, i)}
and s = s0+s1+2. Since both of the calls return UNSAT the induction hypothesis
states that there are clauses C0, C1 such that Ci|αi = 0 and Ci has a regular
resolution tree Ti with |Ti| ≤ si + 1 and Var(Ti) ∩ dom(αi) = ∅ for i = 0 and
i = 1. If x /∈ C0 or ¬x /∈ C1 one can put T = T0 or T = T1, respectively and it
follows immediately that T is as stated in the lemma. Otherwise note that T0

and T1 do not contain edges labeled with x. Hence a regular resolution tree T
can be derived from T0 and T1 by connecting the roots of T0 and T1 with a the
new root C = (C0 − {x}) ∪ (C1 − {¬x}) and labeling the edges with {x}. By
choice ¬x /∈ C0 and x /∈ C1. So C ⊆ (C1∪C2)−{x,¬x} and therefore C|α = 0.
Since |T | = |T0| + |T1| + 1 ≤ (s0 + 1) + (s1 + 1) + 1 = s + 1, T is a regular
resolution tree as wanted. �

The other direction of Lemma 3.2.3 holds, too, i.e., a given regular resolution
tree can be transformed directly in a run of DLL. While Lemma 3.2.3 appears
often in literature (for example in [5]) Lemma 3.2.4 has not been seen by the
author yet but is well-known among experts. The idea of the proof is to use
the structure of the resolution tree as a variable branching heuristic in DLL.

Lemma 3.2.4 Let F be a CNF formula and let C be a clause that has a regular
resolution tree T of size s from F . Let α be an assignment with C|α = 0 and
Var(T ) ∩ dom(α) = ∅.Then there is an execution of DLL(F, α), that returns
UNSAT after at most s− 1 recursive calls.

Proof The lemma is proved by induction on s. Note therefore that every
resolution tree has an odd number of nodes.
Let for the induction basis s = 1. Then by definition C ∈ F and Var(T ) = ∅.
Let now α be an assignment with C|α = 0. Then F |α = 0 and DLL(F, α)
terminates without any recursive calls and returns UNSAT in line 2.
Suppose for the induction step that that T has size s + 2 for an odd integer
s. Removing the root C from T generates two sub trees T0, T1 of T with
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|T0|+|T1|+1 = |T | and roots C0, C1, respectively. Let x be the label of the edges
between C and C0, C1 and assume w.l.o.g. that C = (C0 − {x} ∪ (C1 − {¬x})
(otherwise swap T0 and T1). Suppose that α is an assignment with C|α = 0
and Var(T )∩ dom(α) = ∅. Consider a call of DLL(F, α). Since x ∈ Var(T ) it
follows x /∈ dom(α).

C

C0

x

T0

C1

T1

If D|α = 0 for a clause D ∈ F then DLL(F, α) returns
UNSAT in line 2 without any recursive calls and the state-
ment holds.
If F |α 6= 0 then it is shown by contradiction that x ∈
Var(F |α). Suppose therefore x 6∈ Var(F |α). Then every
clause D with x ∈ Var(D) is satisfied by α. But it follows
that x ∈ Var(C0) and thus there is a leaf L in T that
contains x and is therefore satisfied by α. Let l ∈ L be

the literal that is satisfied by α. Since Var(T ) ∩ dom(α) = ∅ it follows l ∈ C
which leads to a contradiction because C|α = 0. Thus x ∈ Var(F |α) and it is
possible to chose x in line 5 of the DLL algorithm.
The algorithm calls DLL(F, α0) in line 6, with α0 = α ∪ {(x, 0)}. By the
definition of resolution trees C0, C1 `1 C and therefore (w.l.o.g.) C0 ⊆ C ∪ {x}
and C1 ⊆ C ∪ {¬x}. Hence it follows that C0|α0 = 0. Since T is regular,
x /∈ Var(Ti) and Var(Ti) ∩ dom(α) = ∅ hold. So it follows by induction that
there is an execution of DLL(F, α0) that performs less than |T0| − 1 recursive
calls and returns UNSAT.
Therefore DLL(F, α1) is called in line 6 with α1 = α∪{(x, 1)}. Again it follows
by induction that there is an execution of DLL(F, α1) that performs less than
|T1| − 1 recursive calls and returns UNSAT. Therefore there exists an execution
of of DLL(F, α) that makes overall 2+ |T0| − 1+ |T1| − 1 = s+1 recursive calls
and returns UNSAT in line 10. �

Overall it has been proved that the algorithm schema DLL corresponds exactly
to the proof system RT is the following way.

Theorem 3.2.5 If F is a CNF formula then there is an execution of DLL(F, ∅)
that executes less than s recursive calls if and only if there exists a regular
resolution tree for 2 of size less than s + 1 from F .

Proof “⇐”: Follows from Lemma 3.2.4 with C = 2 and α = ∅.
“⇒”: Because 2 is the only clause C with C|∅ = 0 this is a direct conclusion
from Lemma 3.2.3 applied to α = ∅. �

Corollary 3.2.6 (Completeness of regRT) For every unsatisfiable CNF for-
mula F with n = |Var(F )| there is a regular resolution tree of size at most 2n

for 2 from F .
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Proof Let F be an unsatisfiable CNF formula. Then DLL(F, ∅) returns
UNSAT by Theorem 2.1.2. Thus there is a regular resolution tree T for 2 from
F by Theorem 3.2.5. It follows directly from the definition of regularity that
|T | ≤ 2n. �

Since regRT is complete, RT is also complete.
The idea of the proof of Lemma 3.2.3 can be used to define a version of the
DLL algorithm schema that returns either a satisfying assignment or are regular
resolution tree for 2 from the input formula.

Algorithm 3.2.7

DLL+(F, α)
1 if F |α = 0 then return a C ∈ F with C|α = 0
2 if F |α = 1 then return α
3 choose x ∈ Var(F |α)
4 β ← DLL+(F, α ∪ {(x, 0)})
5 if β is an assignment then return β
6 else
7 δ ← DLL+(F, α ∪ {(x, 1)})
8 if δ is an assignment then return δ
9 let C0 be the root of β and C1 the root of δ
10 if C0|α = 0 then return β
11 if C1|α = 0 then return δ
12 return the tree T that arises out of β and δ by adding
13 a new root C = (C0 − {x}) ∪ (C1 − {¬x}) and an edge from
14 C to Ci that is labeled with {x} for i = 0 and i = 1

Note that there is an polynomial time execution of the basic DLL algorithm
DLL(F ) if and only if there is a polynomial time execution of DLL+(F ).

3.3 Resolution Trees with Lemmas

As mentioned in Section 3.1, a clause in a resolution tree is derived from scratch
every time it is used in a resolution inference i.e., if a clause C is used k times
for resolution in the proof the it has to be derived k times from F .
In this section resolution trees with lemmas are defined to remove that short-
coming of resolution trees such that every clause needs only to be derived once
regardless of the number of resolution inferences it is used in. The idea is, to
have the possibility to reuse clauses that appear “earlier” in the proof.
Thereby a resolution tree for a formula F can be visualized as a proof that is
generated step by step from left to right. One starts with clauses from F as
leaves and then builds the tree from left to right using the resolution rule. If
a clause C that has been already derived and is needed for another resolution
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inference during the construction then one can include C just as a new leaf
instead of giving another proof for C.

Definition Let T be a binary tree. T induces a total order <T on the nodes
V of T as follows. Let v be an inner node of T , let l be a successor of v in the
left subtree below v and let r be a successor of v in the right subtree below v.
Then l <T r <T v.

Definition (RTL) Let F be a CNF formula, C a clause and T a binary tree
in which the nodes are labeled with clauses and the edges are labeled with
variables. Identify the nodes of T with their labels. T is a resolution tree with
lemmas (RTL) for C from F if

• C is the root of T ,

• if D is a leaf in T then D ∈ F or D = D′ for some node D′ with D′ <T D,

• if D is an inner node and the two children of D are D0 and D1 then
D0, D1 `x D for a variable x and the edges between D and its children
are labeled with x.

The size |T | of T is the number of nodes in T and the regularity of T , Var(T )
and Cl(T ) are defined as for resolution trees.

Remark 3.3.1 A node and its label are identified in RTL. So if it is written
C = D for some nodes C and D then this usually means that the labels of
the nodes are identical, not the nodes. Of course D <T C always refers to the
nodes and C,C ′ `x D always refers to the labels of the nodes.

(Regular) resolution trees with lemmas have been considered first by Reinhold
Letz [25] and it is shown in Chapter 4 that a RTL is nothing else then a different
view on a dag-like resolution proof, i.e., dag-like resolution proofs and resolution
trees with lemmas can be transformed into each other with a constant blow up.
Every resolution tree T for C from F is also a RTL for C from F . Thus it is
trivial that every CNF formula F that has a resolution tree of size s for a clause
C has also a RTL of size s for C.

Proposition 3.3.2 Let F be a CNF formula and C a clause. If C has a
(regular) resolution tree of size s from F then C has also a (regular) RTL of
size s from F .

Definition (RTL) Let F be a formula. The proof system RTL is defined
through: RTL(F, T ) if and only if T is a resolution tree with lemmas for 2

from CNF (¬F ).
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Figure 3.2: A regular RTL of 2 from OP4∧(x21∨x31)∧(x12∨x32).
Compare it to the regular resolution tree in Figure 3.1. The clause
(x13 ∨ x23) has been used as lemma.

With a similar algorithm as described above for RT, RTL it is decidable in poly-
nomial time. The completeness of RTL follows from Corollary 3.2.6 and the
soundness can be proved analogous to RT. Thus RTL is a proof system.

Proposition 3.3.3 (Soundness of RTL) Let F be a CNF formula and let T
be a RTL for 2 from F . Then F is unsatisfiable.

Proof Analogous to Lemma 3.1.3 and Corollary 3.1.4. �

Corollary 3.3.4 (Completeness of RTL) For every unsatisfiable CNF for-
mula F there is a regular resolution tree with lemmas of F for 2.

Proof Since every resolution tree is also a resolution tree with lemmas, the
completeness of RTL follows directly form Corollary 3.2.6. �

In Section 3.2 it has been shown that there is a correspondence between DLL
algorithms and regular resolution trees in terms of complexity: There is a poly-
nomial p such that for a given unsatisfiable CNF formula F the difference
between the fastest execution time of DLL(F, α) and the size of the smallest
RTL for 2 from F is not bigger then p(|F |).
In the next section it is shown that there is the same connection between DLL
algorithms with learning and a generalization of regular resolution trees with
lemmas, namely regular weak resolution trees.
Regular weak RTL are based on a generalization of the resolution rule that
is called weak resolution. It is defined in the same way the resolution rule is
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defined except that the assumptions must contain the variable according to
which is resolved.

Definition (Weak Resolution Rule) Let C0, C1 and C be clauses and let x
be a variable. C can be obtained by the resolution rule from C0 and C1 with
respect to x iff C = (Co−{x})∪ (C1−{¬x}) or C = (Co−{¬x})∪ (C1−{x}).
Write C0, C1 `w

x C in that case.

Regardless of the fact that the weak resolution rule is a generalization of the
resolution rule it is called weak because it combines the resolution rule with an
inference rule that is widely called weakening rule.
The weakening rule can be used to infer arbitrary clauses C ′ with C ′ ⊇ C from
a clause C. In combination with the resolution rule it is possible to simulate
a weak resolution inference C0, C1 `w

x C by an application of the resolution
rule and two applications of the weakening rule as follows: C0 ` C0 ∪ {x},
C1 ` C1 ∪ {¬x}, C0 ∪ {x}, C1 ∪ {¬x} `x C.
Weak RTL differ from RTL only in one way: in a weak RTL the weak resolution
rule is used instead of the resolution rule.

Definition (WRTL) Let F be a CNF formula, C a clause and T a binary
tree in which the nodes are labeled with clauses and the edges are labeled with
variables. Identify the nodes of T with their labels. T is a weak resolution tree
with lemmas (WRTL) for C from F if

• the root of T is labeled with C,

• if D is a leaf in T then D ∈ F or D = D′ for a node D′ with D′ <T D,

• if D is an inner node and the two children of D are D0 and D1 then
D0, D1 `w

x D for a variable x and the edges between D and its children
are labeled with x.

Var(T ), Cl(T ) and the size and the regularity of T are defined analogously to
RTL.

Definition (WRTL and regWRTL) Let F be a formula. The proof system WRTL
(regWRTL) is defined through: WRTL(F, T ) (reg WRTL(F, T )) if and only if T is
a weak (regular) resolution tree with lemmas for 2 from CNF (¬F ).

The following proposition follows directly from the definition since every reso-
lution inference according the resolution rule is also an inference according to
the weak resolution rule.

Proposition 3.3.5 Let F be a CNF formula and C a clause. If C has a
(regular) RTL of size s from F then C also has a weak (regular) RTL of size s
from F .
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For non-regular RTL the other direction of Proposition 3.3.5 holds, too. The
proof is is given in Section 4.1.

Theorem 3.3.6 Let F be a CNF formula and C a clause. If C has a WRTL
of size s from F then C also has a RTL of size s from F .

Proof See Theorem 4.1.4 on page 61. �

It is an open question whether Theorem 3.3.6 also holds for regular WRTL or,
more exactly, whether there is a polynomial p such that for a regular WRTL for
C of size s from F there is always a regular RTL for C from F of size smaller
than p(s).

Corollary 3.3.7 WRTL and regWRTL are sound and complete.

Proof Follows from Proposition 3.3.5 and Theorem 3.3.6. �

In particular the following lemma holds.

Lemma 3.3.8 Let F be a CNF formula and let T be a WRTL for the clause
C from F . Then C|α = 1 for every assignment α with F |α = 1.

Proof Analogous to Lemma 3.1.1 and Lemma 3.1.3. �

Corollary 3.3.9 RT ≤ regRTL ≤ regWRTL ≤ WRTL ≡ RTL

In Chapter 4 it is shown that RT 6≡ regRTL. The questions whether regRTL ≡
regWRTL and whether regWRTL ≡ WRTL are open.

3.4 DLL with Learning and Regular Weak RTL

The goal of this section is to show that there is a correspondence between
regular WRTL and DLL algorithms with learning. It is proved that there is
a polynomial p such that for every unsatisfiable CNF formula F the difference
between the fastest execution time of DLL-Learn(F, α) and the size of the
smallest regular WRTL for 2 from F is not bigger then p(|F |).
First it is shown that if one removes the root from a given regular WRTL T from
a given formula F then the right remaining subtree of T is a regular WRTL
from F conjoined with the set of clauses of the left subtree of T . The other
direction of that statement holds too. Both are helpful in the future proofs in
this section.

Lemma 3.4.1 Let F be a CNF formula and let C0, C1 and C be clauses.



3.4. DLL with Learning and Regular Weak RTL 41

(a) Let T be a regular WRTL for C from F and let T0 be the left and T1 be
the right subtree of T that arises out of T by removing C. If C0 is the
root of T0 and C1 is the root of T1 then T0 is a regular WRTL for C0 from
F and T1 is a regular WRTL for C1 from F ∪ Cl(T0).

(b) Let T0 be a regular WRTL for C0 from F , T1 a regular WRTL for C1 from
F ∪Cl(T0) and x 6∈ Var(T0) ∪Var(T1). Let T be the tree that arises out
of T0 and T1 by adding the the new node C = (C0 − {x}) ∪ (C1 − {¬x})
and two edges from C to C0 and C1 that are labeled with x such that
C0 ≤T C1. Then T is a regular WRTL for C from F .

Proof (a) It is obvious that T0 is a regular WRTL for C0 from F . To prove
that T1 is a regular WRTL for C1 from F ∪ Cl(T0), the three parts of the
definition of a WRTL have to be shown. The first and the third property hold
since T is a WRTL. To show the second property let L be a leaf in T1. Since
T is a WRTL there is a clause D in Cl(T )− {C} with D ≤T L and D = L. If
D ∈ Cl(T1) then D ≤T1 L. Otherwise D ∈ Cl(T0). In both cases the second
property holds for L. Since T is regular, T1 is regular, too. Thus T1 is as stated.
(b) It is clear that the first and the third property of the definition of a WRTL
hold. It follows also that the second property holds for all leaves of T0. So let
L be a leaf in T1. By the definition of T1, L ∈ Cl(T0), L ∈ F or there is a
D ∈ Cl(T1) with D ≤T1 L and D = L. But since Cl(T0) ⊆ Cl(T ) therefore
L ∈ F or D ≤T L and D = L for a D ∈ Cl(T ). Finally it follows directly from
the assumptions that T is regular. �

Second it is shown that for a given regular WRTL of size s there is a run of
DLL-Learn (see page 26) that does exactly s− 1 recursive calls. The proof is
similar to the proof of Lemma 3.2.4.

Lemma 3.4.2 Let F be an unsatisfiable formula in CNF and C a clause that
has a regular WRTL T of size s from F . Let α be an assignment with C|α = 0
and dom(α) ∩ Var(T ) = ∅. Then there is an execution of DLL-Learn(F, α)
that performs exactly s − 1 recursive calls and returns (F ∪ Cl(T ), UNSAT) so
that C is tagged as the newest clause in F ∪ Cl(T ).

Proof The lemma is shown by induction on s.
Induction basis: s = 1. Then T consists only of the clause C and by definition
of a WRTL C ∈ F . Since C|α = 0 it follows F |α = 0 and DLL-Learn(F, α)
can terminate in line 4 without any recursive calls and C can be chosen and
tagged as new in line 3.
Induction step: |T | = s+2. Let then T0 be the left and T1 be the right subtree
of T that arises after removing the root C from T . Let C0 be the root of T0,
C1 the root of T1 and let x be the label of the edges between C and C0,C1, i.e.,
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C0, C1 `w
x C. Since the other case is fully symmetric assume for the purpose of

simplicity that C = (C0 − {x}) ∪ (C1 − {¬x}).

C

C0

x

T0

C1

T1

Because x ∈ Var(T ) and Var(T ) ∩ dom(α) = ∅, x ∈
Var(F )−dom(α). Thus it is possible to skip a termination
without recursive calls in line 4 or line 7 and to choose x
as branching variable in line 8.
Choose 0 as the first value of ε in line 8 and let αi = α ∪
{(x, i)} for i = 0 and i = 1. Then DLL-Learn(F, α0) is
called in line 9. Since C|α = ∅ and C = (C0−{x})∪(C1−
{¬x}) by assumption it follows C0|α0 = ∅. Because T is
regular, T0 is a regular WRTL and dom(α0)∩Var(T0) = ∅. Hence the induction
hypothesis states that there is an execution of DLL-Learn(F, α0) that makes
|T0| − 1 recursive calls and returns (G, UNSAT) such that G = G ∪ Cl(T0) and
C0 is the newest clause in G.
Since the execution of line 11 is optional, it is possible to call DLL-
Learn(G, α1) in line 12. By Lemma 3.4.1 (a) T1 is a regular WRTL for
C1 from G. Since T is regular and by the assumption it follows again that
dom(α1)∩Var(T1) = ∅ and that C1|α1 = 0. Thus there exists by induction an
execution of DLL-Learn(G, α1) that makes |T1|−1 recursive calls and returns
(H, UNSAT) such that H = G ∪ Cl(T1) and C1 is the newest clause in H.
Because of the lines 14,15 and 16 of the algorithm DLL-Learn(F, α) returns
then (H∪{C}, UNSAT) and H∪{C} = G∪Cl(T1)∪{C} = F ∪Cl(T0)∪Cl(T1)∪
{C}.
Therefore there is an execution of DLL-Learn(F, α) that makes overall |T0|+
|T1| − 2 + 2 = |T | − 1 recursive calls and returns (F ∪Cl(T ), UNSAT) whereby C
is the newest clause in H. �

The next lemma shows that the opposite direction of Lemma 3.4.2 holds too:
for an execution of DLL-Learn that returns (F ′, UNSAT) there exists a regular
RTL of size at most 2s + 1. The blowup by the factor 2 in this direction is
caused by the fast backtracking step in line 11 of DLL-Learn.
Note that continued learning is used in the proof. It is open whether continued
learning is needed for the proof of Lemma 3.4.3.

Lemma 3.4.3 Let F be a CNF formula and let α be an assignment such that
there exists an execution of DLL-Learn(F, α) that makes s recursive calls and
returns (G, UNSAT). Let C be the newest clause in G. Then C|α = 0 and there
is a regular WRTL T for C from F with |T | ≤ 2s + 1, Var(T ) ∩ dom(α) = ∅
and G ⊆ F ∪ Cl(T ).

Proof The lemma is proved by induction on s. Fix an execution of DLL-
Learn(F, α) that makes s recursive calls and returns (G, UNSAT) and let C be
the newest clause in G.
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Induction Basis: s = 0, i.e., DLL-Learn(F, α) makes no recursive calls. This
means that the algorithm returns (G, UNSAT) in line 4 or line 7. In both cases
F |α = 0 and a C ∈ F with C|α = 0 is tagged as the newest clause in line 3 or 6,
respectively. Thus the WRTL T that consists only of the clause C is as stated
in the lemma.
Induction Step: DLL-Learn(F, α) makes s > 0 recursive calls. Then a branch-
ing variable x ∈ Var(F ) − dom(α) and a value ε ∈ {0, 1} is chosen in line 8.
Since the other case is symmetric it is assumed that ε = 0. Let αi = α∪{(x, i)}
for i = 0 and i = 1.
By the choice of x and ε, DLL-Learn(F, α0) is called in line 9. The execution
after that call consists of s0 < s recursive calls and (G, UNSAT) is returned
by DLL-Learn(F, α0). Let C0 be the newest clause in G. By the induction
hypotheses it follows that C0|α0 = 0 and there is a regular WRTL T0 for C0

from F with |T0| ≤ 2s0 + 1, Var(T0) ∩ dom(α) = ∅ and G ⊆ F ∪ Cl(T0).
Now there is the possibility to do fast backtracking and two cases have to be
distinguished.

T0

C
′

0

C0

x

...

D

...

D

Case 1 : DLL-Learn(F, α) returns (G, UNSAT) in
line 11. Then G|α = 0. If x 6∈ C0 then C0|α = 0
and since (G, UNSAT) is returned after s0 + 1 recur-
sive calls T0 is a regular weak RTL as wanted. If
otherwise x ∈ C0 then D|α = 0 for a D ∈ G with
D 6= C0. Thus D ∈ F ∪Cl(T0) and the tree T ′

0 that
arises out of T0 by adding a new leaf D and a new
root C ′

0 = (C0 − {x}) ∪D as well as edges from C ′
0

to C0 and D is a regular WRTL for C ′
0 from F . It holds Cl(T ′

0) ⊆ Cl(T0),
C ′

0|α = 0 and |T ′
0| = |T0| + 2 and since there are s = s0 + 1 recursive calls in

the whole execution is follows |T ′
0| ≤ 2s0 + 1 + 2 = 2s + 1 and T ′

0 is as wanted.

C

C0

x

T0

C1

T1

Case 2 : DLL-Learn(G, α1) is called in line 12. The exe-
cution of that call does overall s1 = s− (s0 +2) < s recur-
sive calls and returns (H, UNSAT). Let C1 be the newest
clause in H. By induction it follows C1|α1 = 0 and there
is a regular WRTL T1 for C1 from G with |T1| ≤ 2s1 + 1,
Var(T1) ∩ dom(α) = ∅ and H ⊆ F ∪ Cl(T1).
Let T be the tree that arises out of T0 and T1 by adding a
new root C = (C0−{x})∪ (C1−{¬x}) and edges from C

to C0 and C1 that are labeled with x such that C0 ≤T C1. Since x ∈ dom(αi),
x 6∈ Var(Ti) for i = 0 and i = 1. Thus it follows by Lemma 3.4.1 (b) that T is
a regular WRTL for C from F . Furthermore C|α = 0, Var(T ) ∩ dom(α) = ∅,
|T | = |T0|+ |T1|+1 ≤ 2s0 +2s1 +1 ≤ 2s+1 and H ⊆ G∪Cl(T1) ⊆ F ∪Cl(T ).
By definition DLL-Learn(F, α) returns (H ∪ {C}, UNSAT). And since C ∈
Cl(T ), H ∪ {C} ⊆ F ∪ Cl(T ) and T is as stated. �
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Theorem 3.4.4 Let F be an unsatisfiable CNF formula.

(a) If there exists a regular WRTL for 2 from F of size s then there is an
execution of DLL-Learn(F, ∅) that performs exactly s−1 recursive calls.

(b) If there exists an execution of DLL-Learn(F, ∅) that performs s recur-
sive calls then there is a regular WRTL for 2 from F of size at most
2s + 1.

Proof (a) Apply Lemma 3.4.2 to F , C = 2 and α = ∅.
(b) Apply Lemma 3.4.3 to F and α = ∅. Then C = 2 since the empty clause
2 is the only clause that is falsified by α. �

Compare Theorem 3.4.4 also to Theorem 4.3.7 in Section 4.3 which states that
DLL-Learn can also simulate general resolution in a less efficient way.
Now the correctness of DLL-Learn follows easily form Theorem 3.4.4.

Corollary 3.4.5 (Correctness of DLL-Learn) Let F be a CNF formula.
Then every execution of DLL-Learn(F, ∅) terminates. It returns (F ′, α) for
a partial satisfying assignment α and a formula F ′ ⊇ F if F is satisfiable and
(F ′, UNSAT) otherwise.

Proof It is easy to see that DLL-Learn(F, ∅) always terminates and
by Lemma 3.4.3 it follows that F is unsatisfiable if the algorithm returns
(F ′, UNSAT).
Therefore it suffices to show that that F |α′ = 1 if DLL-Learn(F, α) returns
(F ′, α′) for an assignment α.
It is shown by induction on the number of recursive calls s that F ′ ≡ F if
DLL-Learn(F, α) returns (F ′, α′) and F |α′ = 1 if α′ 6= UNSAT.
Induction basis: If there are no recursive calls then F ′ = F , α = α′ and F |α = 1
if α 6= UNSAT.
Induction step: Let DLL-Learn(F, α) perform s > 0 recursive calls. If (F ′, α′)
is the return value of a recursive call in line 9 that is returned in line 10 or
line 11 then the statement follows by induction since these calls perform less
recursive calls.
Otherwise DLL-Learn(F, α) performs two recursive calls. It follows by induc-
tion that F ≡ G for the return value (G, UNSAT) of the first recursive call in line
9. Furthermore it follows by induction that G ≡ H if (H, γ) is the value re-
turned by the second recursive call DLL-Learn(G, α′) in line 12. Thus F ≡ H.
By induction G|α′ = 1 if α′ 6= UNSAT holds and the statement is proved in that
case. If α′ = UNSAT then DLL-Learn returns (F ′, UNSAT) for F ′ = H ∪ {C}
and a new clause C in line 19. Since C is the newest clause in F ′, holds by
Lemma 3.4.3 that there is a regular WRTL for C from F . But then � F → C
by Lemma 3.3.8 and therefore F ≡ F ∪ {C} ≡ H ∪ {C} since F ≡ H. �
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As in Section 3.2 DLL-Learn(F, α) can be improved to return a regular WRTL
instead of UNSAT if the restricted formula F |α is unsatisfiable.

Algorithm 3.4.6

DLL-Learn′(F, α)
1 if F |α = 1 then return (F, α)
2 if F |α = 0 then do optionally -- cont. learning?
3 tag a C ∈ F with C|α = 0 as new
4 return (F,C)
5 if Var(F )− dom(α) = ∅ then -- F |α = 0
6 tag a C ∈ F with C|α = 0 as new
7 return (F,C)
8 choose x ∈ Var(F )− dom(α) and a value ε ∈ {0, 1}
9 (G, β)←DLL-Learn′(F, α ∪ {(x, ε)})
10 if β is not a reg. WRTL then return (G, β)
11 if G|α = 0 then do optionally -- fast backtracking
12 let C0 be the root of β
13 if C0|α = 0 then return (G, β)
14 fix a clause D ∈ G with D|α = 0
15 let T be the tree that arises out of β by adding a
16 new root C = (C0 − {x1−ε}) ∪D, a new leaf D and edges
17 from C to C0 and D that are labeled with {x}
18 return (G, T)
19 (H, γ)←DLL-Learn′(G, α ∪ {(x, 1− ε)})
20 if γ is not a reg. WRTL then return (H, γ)
21 select the newest C0 ∈ G and the newest C1 ∈ H
22 C ← (C0 − {x1−ε}) ∪ (C1 − {xε})
23 H ← H ∪ {C} -- learn a clause
24 if C0 6∈ F then do optionally H ← H − {C0} -- keep clauses?
25 if C1 6∈ F then do optionally H ← H − {C1}
26 let T be the tree that arises out of β and γ by adding
27 a new root C = (C0 − {x}) ∪ (C1 − {¬x}) and an edge from
28 C to Ci that is labeled with {x} for i = 0 and i = 1
29 return (H,T)

Note that the above algorithm can run in polynomial time if and only if DLL-
Learn can run in polynomial time.

3.5 Learning by Unit Propagation and Regular
WRTI

A natural, resolution based proof system that corresponds directly to DLL-
L-UP one to one such as regular WRTL to DLL-Learn has not been found.
But it is proved in this section that every execution of DLL-L-UP can be
transformed with polynomial blowup into regular WRTL that only uses learning
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by input resolution. Learning by input resolution means that all lemmas that
are used in the RTL occur earlier as the root of a linear tree.
As an application of this theorem, it is shown that the algorithm schema DLL-
Learn can simulate the schema DLL-L-UP, i.e., for every execution of DLL-
L-UP there is an execution of DLL-Learn so that the difference between the
running times of the executions is bounded by a polynomial.
To start with it is shown that a conflict graph can be transformed into a simple
linear resolution tree for the conflict clause, namely an input resolution tree.
See Figure 3.3 on page 48 for an example of the construction. This result has
been proved earlier in [12] and [2]. In these papers one can also find proofs for
the other direction of Lemma 3.5.1, i.e., transforming a regular input resolution
proof into a conflict graph.

Definition (Input Resolution Tree) A resolution tree T is called input res-
olution tree iff every inner node of T has a child that is a leaf.

For the next lemma recall the definitions on page 19.

Lemma 3.5.1 Let F be a CNF formula, G = (V,E) a conflict graph for F

with |VGd2
| > 3. Then CG = V 0

Gdu
has a regular input resolution tree TG from

F with Var(TG) ⊆ Var(VGd2
)−Var(CG) ⊆ Var(V )−Var(V 0

G).

Proof By induction on k = |V − V 0
G|, i.e., the number of inner nodes of G.

Let x be the conflict variable of G.
Induction basis: k = 2. Then x 6∈ V 0

G or ¬x 6∈ V 0
G. Assume w.l.o.g. x 6∈ V 0

G.
Then there is by definition a clause Cx in F with Cx = {x} ∪ { v̄ | (v, x) ∈ E
}. But since V 0

G = {¬x} ∪ { v̄ | (v, x) ∈ E }, Cx = CG follows and the input
resolution tree that consists only of CG ∈ F is as required.
Induction step: k > 2. Then there is a l ∈ V with DepthG(l) = 1 such that
G′ = (V ′, E′) with V ′ = V and E′ = E−{ (v, l) | v ∈ V, (v, l) ∈ E } is a conflict
graph with k − 1 inner nodes. Let w.l.o.g. l = y for a variable y (l = ¬y is
analogous).
By definition there is a clause Cl ∈ F with Cl = {l} ∪ { v̄ | (v, l) ∈ E }. By
induction there exists an input resolution tree TG′ for CG′ = (CG∪Cl)−{y,¬y}
with Var(TG′) = Var(VG′d2

) − Var(CG′). Thus y 6∈ Var(TG′) and the tree TG

that arises out of TG′ by adding the new root CG, a new leaf Cl and edges
from C0 to CG′ and Cl that are labeled with y is a regular input resolution
tree for CG from F . It holds that Var(TG) = Var(TG′) ∪ {y} ⊆ (Var(VG′d2

)−
Var(CG′)) ∪ {y} ⊆ Var(VGd2

)−Var(CG). �

At next it is shown that a regular input resolution tree that corresponds to a
proper sub conflict graph can be extended to a regular input resolution tree for
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the conflict clause of the super conflict graph. Note that Lemma 3.5.2 does not
in general apply to non-proper sub conflict graphs.

Lemma 3.5.2 Let F be a CNF formula and let n ≥ 1. Let H1, . . . ,Hs = G
be conflict graphs for F such that |VH1d2

| > 3 and Hi is a proper sub conflict
graph of Hi+1 for each 1 ≤ i < s. Then there is a regular input resolution
tree T for CG = V 0

Gd2
from F with CHi ∈ Cl(T ) for every 1 ≤ i ≤ s and

Var(T ) ⊆ Var(VGd2
)−Var(CG).

Proof To start with, let s = 1. By Lemma 3.5.1 there is a regular input
resolution tree T1 for CH1 = V 0

H1d2
from F with Var(T1) ⊆ Var(VH1d2

) −
Var(CH1). Then T = T1 is already as wanted.
Let now s > 1, H = Hs−1 and G = Hs. Let TH be a a regular input resolution
tree for CH = V 0

Hd2
from F with CHi = V 0

Hid2
∈ Cl(TH) for every 1 ≤ i < s

and Var(TH) ⊆ Var(VHd2
)−Var(CH).

It is shown by induction on d = |VGd2
| − |VHd2

| that TH can be extended to a
regular input resolution tree T for CG from F . T is then as required.
Induction basis: d = 0. Then Gd2= Hd2 and T = TH is already as wanted.
Induction step: d > 0. Then m = max{ DepthG(v) | v ∈ V 0

Hd2
} > 0. Pick a

l = xε ∈ V 0
Hd2

with DepthG(l) = m. Since H is a proper sub conflict graph of
G, VGdv

∩ V 0
Hd2

= {v} for all v ∈ V 0
Hd2

.

Let H̃ = (Ṽ , Ẽ) with U = { v | (v, l) ∈ E }, Ṽ = V ′ ∪ U and Ẽ = E′ ∪ {
(u, v) ∈ E | v = l }. H̃ is a sub conflict graph of G.
To show that H̃ is proper for G let v0 ∈ V 0

H̃d2
. Then v0 ∈ V 0

H̃d2
−{l} or v0 ∈ U .

If v0 ∈ V 0
H̃d2
− {l} then Ṽ ∩ VGdv0

⊆ U ∪ V 0
Hd2
⊆ (V 0

Hd2
∪ U) − {l} ⊆ V 0

H̃d2
. If

v0 ∈ U then Ṽ ∩ VGdv0
⊆ U ∪ (V 0

Hd2
− {l}) ⊆ V 0

H̃d2
. Hence H̃ is a proper sub

conflict graph of G with d̃ = |VGd2
| − |VH̃d2

| < d.
Define TH̃ to be tree that arises out of TH by by adding the new root CH̃ , a
new leaf Cl and edges from CH to CH̃ and Cl = {l} ∪ { v̄ | (v, l) ∈ E } that
are labeled with x. Because x ∈ CH holds x 6∈ Var(TH) and by definition of a
conflict graph Cl ∈ F . Thus and since CH = (CH̃ −x1−ε)∪ (Cl−{xε}), TH̃ is a
regular input resolution tree for CH̃ from F and Var(TH̃) = Var(TH) ∪ {x} ⊆
(Var(VHd2

)−Var(CH)) ∪ {x} = Var(VH̃d2
)−Var(CH̃).

Therefore the induction hypothesis applies and TH̃ can be extended to a regular
input resolution tree for CG from F with Var(T ) ⊆ Var(VGd2

)−Var(CG). But
since TH̃ is an extension of TH , T is also an extension of TH . �

Analogous to a conflict graph, a subgraph Gdu of a UP-graph G can be trans-
formed into a regular input resolution tree T for the induced clause CGdu

. There
are more general versions of this result that may appear in a future work with



48 Chapter 3. Tree-Like Resolution
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Figure 3.3: A conflict graph for OP4 with a proper sub conflict
graph and a regular input resolution tree for the conflict clause
(x̄41 ∨ x̄21 ∨ x32) of the sub graph that is extended to a tree of the
conflict clause (x31 ∨ x41).

Sam Buss. But for the definition of compatible subgraphs, that is used in this
thesis, Lemma 3.5.3 is sufficient.

Lemma 3.5.3 Let F be a CNF formula, G = (V,E) a UP-graph for F and
u ∈ V − V 0

G. Then CGdu
= V 0

Gdu
∪ {u} has a regular input resolution tree Tu

from F with Var(Tu) ⊆ Var(VGdu
)−Var(CGdu

).

Proof By induction on k = |VGdu
− V 0

Gdu
|, i.e., on the number of inner nodes

of Gdu.
Induction basis: k = 1. Then VGdu

= {u} ∪ { v | (v, u) ∈ EGdu
} and CGdu

=
{u} ∪ { v̄ | (v, u) ∈ EGdu

} ∈ F is allready an input resolution tree as required.
Induction step: k > 1. Let V 1

Gdu
= { v ∈ VGdu

| DepthGdu
(v) = 1 }. Since

k > 1 there is a l ∈ V 1
Gdu

with l 6= u. Let w.l.o.g l = y for a variable y (l = ȳ is
symmetric).
Put V ′ = VGdu

− {y}, E′ = EGdu
∩ (V ′ × V ′) and H = (V ′, E′). Then Hdu= H

and |V ′ − V 0
H | = k − 1. Thus it follows by induction that there is a input

resolution tree TH for CH = V 0
H ∪ {u} from F with Var(TH) ⊆ Var(V ′) −

Var(CH).
TH can be extended to an input resolution tree Tu for CGdu

= (CH −{y})∪{ v̄
| (v, y) ∈ EGdu

} as follows: By definition of Gdu there is a clause Cy ∈ F with
Cy = {y} ∪ { v̄ | (v, y) ∈ EGdu

}. Let Tu be the tree that arises out of TH by
adding the new leaf Cy, the new root CGdu

and edges from CGdu
to Cy and CH

that are labeled with y. Since CGdu
= (CH − {ȳ}) ∪ (Cy − {y}), Tu is an input
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resolution tree and since y ∈ Var(CH) it follows y 6∈ Var(TH) and thus Tu is
regular. Furthermore Var(Tu) = Var(TH)∪{y} ⊆ (Var(V ′)−Var(CH))∪{y} ⊆
Var(VGdu

)−Var(CGdu
). Thus Tu is as wanted. �

Below is the definition of (weak) resolution trees with input lemmas which are
(W)RTL that satisfy a restriction on the lemmas that are used in the tree: the
only clauses that can be used in the leaves of the tree are clauses C ∈ F or
clauses that are input nodes of the tree. One can think of an resolution tree
with input lemmas as a generalization of linear resolution.

Definition (Input Node) Let T be a WRTL and let C be the label of a node
v of T . Then the tree Tv is the subtree of T that consists of v and all successors
of v.
v is called an input node iff Tv is an input resolution tree.

Often the node v and its label C are identified. Then TC is written instead of
Tv and C is called an input node.

Definition ((W)RTI) Let F be a CNF formula, C a clause and T a binary
tree in which the nodes are labeled with clauses and the edges are labeled with
variables. Identify the nodes of T with their labels. T is a (weak) resolution
tree with input lemmas ((W)RTI) for C from F if

• the root of T is labeled with C,

• if D is a leaf in T then D ∈ F or D = D′ for an input node D′ with
D′ <T D,

• if D is an inner node and the two children of D are D0 and D1 then
D0, D1 `x D (D0, D1 `w

x D) for a variable x and the edges between D
and its children are labeled with x.

Var(T ), Cl(T ) and the size and the regularity of T are defined analogously to
RTL.
ICl(T ) = { C ∈ Cl(T ) | C is a input node } is the set of clauses that are labels
of input nodes.

Definition (regWRTI) Let F be a formula. The proof system regWRTI is de-
fined through: regWRTI(F, T ) if and only if T is a regular WRTI for 2 from
CNF (¬F ).
The proof systems RTI, WRTI and regRTI are defined analogous to RTL, WRTL
and regRTL.
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regWRTI is decidable in polynomial time. The soundness follows from the fact
that every WRTI is also a WRTL and regWRTI is complete because every regular
resolution tree is also a regular WRTI. From similar arguments the same follows
for the proof systems RTI, WRTI and regRTI.

Corollary 3.5.4 The proof systems regWRTI,RTI, WRTI and regRTI are sound
and complete.

The following proposition follows directly from the definition.

Proposition 3.5.5 regRT ≤ regRTI ≤ regWRTI ≤ regWRTL and regRTI ≤
regRTL.

In Section 4.1 it is proved that RTI ≡ WRTI ≡ RTL ≡ WRTL and in Section
4.3 it is shown that RT < regWRTI. On the other side the questions whether
regRTL ≡ regWRTI, regRTL ≡ regRTI or regWRTI ≡ regWRTL are open.
In order to construct a regular WRTI for a a given execution of DLL-L-UP,
Lemma 3.5.6 shows that there is a regular RTI of size |G|2 that contains the
conflict clauses of a given compatible set of subgraphs of G as input clauses.
There are more general versions of this lemma that perhaps will be published
in a future paper with Sam Buss. Figure 3.4 illustrates the proof of Lemma
3.5.6.
For the following lemma recall the definition of compatible subgraphs on
page 21.

Lemma 3.5.6 Let G be a CNF formula, let G = (V,E) be a conflict graph
for F and let C be a compatible set of subgraphs of G. Then there exists
a regular RTI T for CG from F such that |T | ≤ 2(|V | − |CG|)2,Var(T ) ⊆
Var(VGd2

)−Var(CG) and CC(C) ⊆ ICl(T ).

Proof Let C = {H1, . . . Hs} ∪ {Gdv1 , . . . , Gdvt} with sub conflict graphs Hi

and UP-graphs Gdvj be as defined in Section 2.2 on page 18.
Let Var(vj) = xj for all 1 ≤ j ≤ t and let w.l.o.g. DepthG(vj) ≤ DepthG(vk)
for j < k. Then xk 6∈ Var(Gdvj ) for every k > j.
We construct inductively regular RTI T0 for C0, . . . , Tt for Ct from F such that
for every 1 ≤ k ≤ t:

(a) CHi ∈ ICl(Tk) for every 1 ≤ i ≤ s

(b) CGdvj
∈ ICl(Tk) for every 1 ≤ j ≤ k

(c) V 0
Gdv1
∪ . . . ∪ V 0

Gdvk
∪ {v̄k+1, . . . , v̄t} ⊆ Ck ⊆ {v̄k+1, . . . , v̄t} ∪ CG

(d) {xk+1, . . . , xt} ∩Var(Tk) = ∅
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(e) |Tk| ≤ 2(|V | − |CG|) · (k + 1)

By Lemma 3.5.2 there is a regular input resolution tree T0 for CHs from F with
CHi ∈ Cl(T0) for every 1 ≤ i ≤ s and Var(T0) ⊆ Var(VHsd2

) − Var(CHs). T0

satisfies (a) - (e).
Let k > 0 and let Tk−1 be already constructed. By Lemma 3.5.3 there is a a
regular input resolution tree Tvk

for the induced clause CGdvk
= V 0

Gdvk
∪ {vk}

from F with Var(Tvk
) ⊆ Var(VGdvk

) − Var(CGdvk
). It follows that |Tvk

| ≤
2(|V | − CG) and, from the assumption on the order of the vi, {xk+1, . . . , xt} ∩
Var(Tk) = ∅.
Let Tk be the tree that arises out of Tk−1 and Tvk

by adding the new root Ck =
(Ck−1−{v̄k})∪ (CGdvk

−{vk}) and edges labeled with vk from Ck to Ck−1 and
CGdvk

. Since vk ∈ CGdvk
it follows that xk 6∈ Var(Tvk

) and by induction xk 6∈
Var(Tk−1) and v̄k ∈ Ck−1. Thus Tk is a regular RTI from F . (a) (b) and (c) for
Tk follow immediately from (a), (b) and (c) for Tk−1. Because {xk+1, . . . , xt} ∩
Var(Tk) = ∅ and {xk, . . . , xt}∩Var(Tk−1) = ∅, {xk+1, . . . , xt}∩Var(Tk) = ∅.
Since |Tk−1| ≤ 2(|V | − |CG|) · k and |Tvk

| ≤ 2(|V | − |CG|) it follows |Tk| ≤
2|V | · (k + 1).
Finally Tt = T is a regular RTI for CG as stated in the lemma. �

CG

CG⌈vt

vt

Tvt

Ct−1

CG⌈vt−1
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Tvt−1
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C1

CG⌈v1

v1

Tv1

CHs

T0

Figure 3.4: The construction of a regular RTI T corresponding
to the proof of preflem:compatible-¿regRTI. T contains the set of
conflict clauses of a compatible set of subgraphs as input clauses.

Before the proof of the main result of the section is given the next lemma makes
a analogous statement as Lemma 3.4.1 for RTL.

Lemma 3.5.7 Let F be a CNF formula and let C0, C1 and C be clauses. Let
T0 be a regular WRTI for C0 from F , T1 a regular WRTI for C1 from F∪ICl(T0)
and x 6∈ Var(T0) ∪ Var(T1). Let T be the tree that arises out of T0 and T1 by
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adding the new node C = (C0 − {x}) ∪ (C1 − {¬x}) and two edges from C to
C0 and C1 that are labeled with x such that C0 ≤T C1. Then T is a regular
WRTI for C from F .

Proof Analogously to Lemma 3.4.1. �

Now it is shown that an execution of DLL-L-UP can be transformed into a
regular WRTI.

Lemma 3.5.8 Let F be a CNF formula and H = (V,E) a UP-graph for F .
Let there be an execution of DLL-L-UP(F,H, αH) that returns (F ′, UNSAT)
and performs s recursive calls and let n = min{|Var(F )|, s + 1}. Then there
exists a clause C ⊆ V 0

H (i.e., C|αH = 0) and a regular WRTI T for C from F
with |T | ≤ 2n2 · (s + 2), F ′ ⊆ F ∪ ICl(T ) and Var(T ) ∩Var(V 0

H) = ∅.

Proof Fix an execution of DLL-L-UP(F,H, αH) that performs s recursive
calls and returns (F ′, UNSAT). Let α = αH . The statement is proved by induc-
tion on s.
Induction basis: s = 0, i.e., there are no recursive calls. Then DLL-L-
UP(F,H, α) returns (F ′, UNSAT) in line 9. Let C1 and C2 be the clauses with
C1|α = {y} and C2|α = {¬y} that are chosen in line 4 of the algorithm. Let
N = { (v̄, y) | v ∈ C1, v 6= y } ∪ { (v̄,¬y) | v ∈ C2, v 6= ¬y } and H ′ = (V ′, E′)
whereby V ′ = V ∪ {y, ȳ, 2} and E′ = E ∪N . Since H is a UP-graph for F it
follows immediately that H ′ is a a conflict graph for F .
If N = ∅ then {y}, {¬y} ∈ F and no clause is learned, i.e., F ′ = F . In that
case the RTI T with Var(T ) = {y} that consists of the two leaves {y}, {¬y}
and the root ∅ is as wanted because y 6∈ V 0

H , ∅ ⊆ V 0
H and |T | = 3 < 4n2.

If otherwise N 6= ∅ then let C be the compatible set of subgraphs of H ′ that is
chosen in line 8. Then it follows by Lemma 3.5.6 that there is a regular RTI T ′

for CH′ = VH′d2
with CC(C) ⊆ Cl(T ′) = ICl(T ′), |T ′| ≤ 2(|V ′| − |CH′ |)2 and

Var(T ′) ⊆ Var(VH′d2
)−Var(CH′).

If yε 6∈ CH′ for ε = 0 and ε = 1 then CH′ ⊆ V 0
H and one can put T = T ′ and

C = CH′ . If otherwise yε ∈ CH′ for a ε ∈ {0, 1} then {y1−ε} ∈ F . In that case
define T to be the regular RTI that arises out of T ′ be adding the new nodes
{y1−ε} and C = CH′−{yε} together with edges from C to {y1−ε} and CH′ that
are labeled with y. Then C ⊆ V 0

H .
In both cases follows |T | ≤ 2|V |2 ≤ 2n2 and Var(T ) ∩ Var(V 0

H) = ∅. Thus,
and since F ′ ⊆ F ∪ {CK} ⊆ F ∪ ICl(T ), T is a regular WRTI as required.
Induction step: s > 0. Case 1 : There is one recursive call of DLL-L-UP in line
15. Let then D be the clause with D|α = {xε} that is chosen in line 12 of the
algorithm. Let V ′ = V ∪{xε}, E′ = E ∪{ (v̄, xε) | v ∈ C, v 6= l }, H ′ = (V ′, E′)
and α′ = αH′ . Since H is a UP-graph from F , H ′ is also a UP-graph from F .



3.5. Learning by Unit Propagation and Regular WRTI 53

Then DLL-L-UP(F,H ′, α′) is called in line 15 and performs s′ = s−1 recursive
calls after which (F ′, UNSAT) is returned. By induction there is therefore a C ⊆
V 0

H′ and a regular WRTI T for C from F with |T | ≤ 2n2(s+1), F ′ ⊆ F ∪ICl(T )
and Var(T ) ∩ Var(V 0

H′) = ∅. If D ∈ F is no unit clause then V 0
H = V 0

H′ and
thus T is already as required. If D ∈ F is the unit clause D = {xε} then
V 0

H′ = V 0
H ∪ {xε} and the tree that arises out of T by resolving C and {xε} on

x is as wanted.
Case 2 : There are two recursive calls of DLL-L-UP in the lines 17 and 20.
Let then x be the branching variable that is chosen in line 16 and let w.l.o.g.
ε = 0 (ε = 1 is analogous). For i = 0 and i = 1 let Vi = V ∪ {xi}, Hi = (Vi, E)
and αi = αHi . Since H is a UP-graph from F , H0 and H1 are UP-graphs from
F , too.
Then DLL-L-UP(F,H0, α0) is called in line 17, does s0 < s recursive calls and
returns (G, UNSAT). Thereafter DLL-L-UP(G, H1, α1) is called in line 20 and
does s1 < s− (2 + s0) recursive calls after which (F ′, UNSAT) is returned.

By induction there is a clause C0 ⊆ V 0
H0

and a regular WRTI T0 from F

with |T0| ≤ 2n2(s0 + 2), G ⊆ F ∪ ICl(T0) and Var(T0) ∩ Var(V 0
H0

) = ∅.
Furthermore it follows that there is a C1 ∈ V 0

H1
and a regular WRTI T1 from

G with |T1| ≤ 2n2(s1 + 2), F ′ ⊆ G ∪ ICl(T1) and Var(T1) ∩Var(V 0
H1

) = ∅.

C

C0

x

T0

C1

T1

Let T be the tree that arises out of T0 and T1 by adding
the the new node C = (C0 − {x}) ∪ (C1 − {¬x}) and
two edges from C to C0 and C1 that are labeled with
x such that C0 ≤T C1. Since x 6∈ Var(T0) ∪ Var(T1)
it follows by Lemma 3.5.7 that T is a regular WRTI for
C from F . It holds C ⊆ (V 0

H0
∪ V 0

H1
) − {x,¬x} = V 0

H ,
|T | = |T0|+ |T1|+1 ≤ 2n2(s+2), F ′ ⊆ G∪ ICl(T1) ⊆ F ′∪
ICl(T0)∪ ICl(T1) = F ′ ∪ ICl(T ) and Var(T )∩Var(V 0

H) =
(Var(T0)∪ {x} ∪Var(T1))∩ (Var(V 0

H0
)−{x}) = ∅ (since

Var(V 0
H0

) = Var(V 0
H1

)). Thus T is a RTI as required.
Case 3 : There is one recursive call of DLL-L-UP in line 17 and (G, UNSAT) is
returned in line 19. Let H0 and α0 be as in case 2. Then DLL-L-UP(F,H0, α0)
is called in line 17, does s0 = s− 1 recursive calls and returns (G, UNSAT) for a
G ⊇ F with G|α = 0.

By induction there is a clause C0 ⊆ V 0
H0

and a regular WRTI T0 for C0 from F

with |T0| ≤ 2n2(s0 + 2), G ⊆ F ∪ ICl(T0) and Var(T0) ∩ Var(V 0
H0

) = ∅. Since
F |α 6= 0, there is a D ∈ F ′−F with D|α = 0. If C0|α = 0 then T0 is already as
wanted.
Otherwise C0|α = {xε} and we need to resolve on x to get a tree as wanted.
Since D|α = 0, D ⊆ V0. Let D ∩ (V0 − V 0

H0
) = {v1, . . . , vt}. Analogous to

the proof of Lemma 3.5.3 we will construct a regular RTI TD for the clause
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D′ = (D ∩ V 0
H0

) ∪ V 0
H0dv1

∪ . . . ∪ V 0
H0dvt

from F such that |TD| ≤ 2n2 and

Var(TD) ∩Var(V 0
H) = ∅.

Let therefore w.l.o.g DepthH0
(vi) ≤ DepthH0

(vj) if 1 ≤ i < j ≤ k. Let T0 be
the RTI that consists of the single clause D. Let 0 < k ≤ t. Let Tk−1 be already
constructed and let Dk−1 be the root of Tk−1.

T0

TD

C

C0

x

...

D

b

b

b b

b

b

...

D
′

CG⌈vt

vt

Tvt

Dt−1

D1

CG⌈v1

v1

Tv1

D

By Lemma 3.5.3 there is a a regu-
lar input resolution tree Tvk

for the
induced clause CvkdH0

= V 0
H0dvk

∪
{vk} from F with Var(Tvk

) ⊆
Var(VH0dvk

) − Var(CH0dvk
). Let Tk

be the tree that arises out of Tk−1

and Tvk
by adding the new root

Dk = (Dk−1−{v̄k})∪(CGdvk
−{vk})

and edges labeled with vk from Dk

to Dk−1 and CGdvk
.

Analogous to the proof of Lemma
3.5.3 it follows that TD = Tt is a regular RTI as stated above.
Let now T be the tree that arises out of T0 and TD by adding a new root
C = (C0 − {xε}) ∪ D′ as well as edges from C to C0 and D′ that are labeled
with x. Since x 6∈ Var(T0) and x 6∈ Var(TD), T is a regular WRTI for C from
F with C ⊆ V 0

H .
Because also |T | ≤ 2n2(s + 2), F ′ ⊆ F ∪ ICl(T ) and Var(T )∩Var(V 0

H) = ∅, T
is a RTI as wanted. �

Theorem 3.5.9 Let F be an unsatisfiable CNF formula, s ≥ 0 and n =
min{|Var(F )|, s + 1}. If there exists an execution of DLL-L-UP(F, (∅, ∅)∅)
which performs s recursive calls then there is a regular weak resolution tree
with input lemmas for 2 from F of size at most 2n2(s + 2).

Proof By Lemma 3.5.8 there is clause C with C|∅ = 0 that has a regular
WRTI of size 2n2(s + 2). But C = 2. �

Now the proof of Lemma 2.2.5 on page 23 in Section 2.2 follows directly from
Lemma 3.5.8.

Proof of Lemma 2.2.5 Let F be a CNF formula, H a UP-graph for F and
α an assignment. Let DLL-L-UP(F,H, α) return (F ′, UNSAT).
By Lemma 3.5.8 there is WRTL T for a C with C|α = 0 from F . Thus it follows
from Lemma 3.3.8 F ≡ F ∪ {C}.
Suppose for the purpose of contradiction that β is a satisfying assignment for
F |α. Then one can assume w.l.o.g. that α ⊆ β. But then β � F (by Lemma
1.2.7 (a)) and β 6� F ∪ {C} and this is a contradiction to F ≡ F ∪ {C}. �
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As mentioned above Theorem 3.5.9 can be used to proof the fact that DLL-
Learn can simulate DLL-L-UP.

Theorem 3.5.10 Let F be an unsatisfiable CNF formula, s ≥ 0 and n =
min{|Var(F )|, s + 1}. If there exists an execution of DLL-L-UP(F, (∅, ∅), ∅)
which performs s recursive calls then there is an execution of DLL-Learn(F, ∅)
that performs at most 2n2(s + 2) recursive calls.

Proof If DLL-L-UP(F, (∅, ∅), ∅) returns (F ′, UNSAT) then it follows from
Theorem 3.5.9 that there is a regular weak resolution tree with input lemmas
for 2 from F of size at most 2n2(s + 2). But then holds by Theorem 3.4.4 (a)
that is an execution of DLL-Learn(F, α) that performs 2n2(s+2)−1 recursive
calls.
If otherwise DLL-L-UP(F, (∅, ∅), ∅) returns (F ′, α′) for an assignment α′ then
DLL-Learn can simulate DLL-L-UP by selecting all variables x ∈ dom(α′)
together with the values εx = α′(x) as branching variables in an arbitrary order.
DLL-Learn(F, ∅) performs then |dom(α′)| ≤ |Var(F )| recursive calls. �

Another way to simulate DLL-L-UP with DLL-Learn if DLL-L-
UP(F, (∅, ∅), ∅) returns (F ′, α′) for an assignment α′ would be to select vari-
ables as branching variables in the same order as the variables are selected in
the execution of DLL-L-UP (for unit propagation or as branching variables)
and to keep every learned clause. A proof can be given with the help of Lemma
3.5.8 and Lemma 3.4.2.
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Chapter 4

Dag-Like Resolution

4.1 Resolution Dags, RTL and Regularity

In Chapter 3 resolution proofs have been defined to be trees. A different view on
a resolution proof is to define it as a dag and, as mentioned earlier in Chapter
3, this does not differ from the notion of a resolution tree with lemmas in
terms of proof complexity. Particularly it is shown in this section that every
resolution dag can be transformed into a RTI with linear blow-up of size and
that every RTL can be transformed into a resolution dag of the same or smaller
size. Moreover, every resolution dag that uses the weak resolution rule can be
transformed into a resolution dag that uses the ordinary resolution rule only.
This means that the proof systems RD and RTL are equivalent.
On the other side, the concept of regularity seems to differ in the proof sys-
tems resolution dags, RTL, WRTL, RTI and WRTI and many of the questions
concerning simulations and separations between these systems are open.
To begin with, the definition of a resolution dag is given. The soundness as well
as the completeness of the corresponding proof system follow from Corollary
4.1.6.

Definition ((Weak) Resolution Dag) A (weak) resolution dag ((W)RD)
for a clause C from a CNF formula F is a dag G = (V,E) such that the
vertices are labeled with clauses and the edges are labeled with variables, C is
the label of a vertex v0 ∈ V and for every v ∈ V exactly one of the following
statements holds.

• v has in-degree 0 and v is labeled with a clause D ∈ F .

• v has in-degree 2 and the edges between v and its predecessors u0 and
u1 are labeled with a variable x and D0, D1 `x D (D0, D1 `w

x D) for the
labels D of v, D0 of u0 and D1 of u1.
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The vertices and their labels are often identified.
Let x be a variable. G is x-regular iff every path in G contains at most one
edge that is labeled with x. G is regular iff G is x-regular for every variable
x ∈ V.
The size |G| of G is defined to be the number of vertices |V | in G.
Cl(G) is the set of clauses in G, i.e., Cl(G) = {C | there is a v ∈ V that is
labeled with C}.

Definition Let F be a formula. The proof system RD(regRD) is defined
through: RD(F,G) (regRD(F,G)) if and only if G is a (regular) resolution dag
for 2 from CNF (¬F ).
The proof systems WRD and regWRD are defined analogously.

The next lemma shows how to transform a resolution dag G into a RTI of size
O(|G|2). If G is regular then the constructed RTI is also regular. Recall the
definition of the depth of a vertex on page 19.

Lemma 4.1.1 Let F be a CNF formula, C a clause and G a resolution dag
of size s for C from F . Then there is a RTI T of size 2s · d + 1 for C from F
where d < s is the maximal depth of a vertex in G. If G is regular then T is
also regular.

Proof The construction of T is performed in two steps. At first G is unfolded
to a possibly exponentially big resolution tree T ′ in which every node has the
same derivation as in G. In the second step T ′ is reduced to a RTI T so that
every vertex v of G occurs at most DepthG(v) times as an inner node of T .
Let G = (V,E).
Step 1 : Let v ∈ V be a vertex with label D. The resolution tree Tv for D from
F is defined recursively on DepthG(v). Every path from a leaf to the root of Tv

corresponds to a path in G that ends in v and since one needs to keep track of
the vertices of G, every node in Tv is labeled with a clause and a vertex u ∈ V .
If DepthG(v) = 0 then Tv is the tree that consists of the single node (D, v).
If DepthG(v) = d > 0 then v has two predecessors u0 and u1 with labels Di

and DepthG(ui) < d for i = 0 and i = 1. Let x be the label of the edges (u0, v)
and (u1, v). Tv is then the tree that arises out of Tu0 and Tu1 by adding the
new root (D, v) and edges labeled with x from (D0, u0) and (D1, u1) to (D, v).
Since every path in G that ends in u0 or in u1 can be extended to a path that
ends in v, every path from a leaf to (D, v) in Tv corresponds to a path in G.
Finally one gets a resolution tree T ′ = Tv0 for C from F . Since every path in
T ′ corresponds to a path in G, T ′ is regular if G is regular.
Step 2 : By deleting redundant subtrees, T ′ is now iteratively transformed into
a RTI T . Therefore, subtrees T1, . . . , Ts of T ′ are constructed such that Ti is a
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RTI for C from F that has the following property: If v ∈ V , i > DepthG(v) and
a is an inner node of Ti that is labeled with v then |{b <Ti a | b is labeled with
v}| < DepthG(v),i.e., at most the first DepthG(v) nodes of Ti that are labeled
with v are inner nodes.
Note that every inner node of T ′ that is labeled with a vertex v ∈ V has always
two predecessors that are labeled with fixed u0 ∈ V and u1 ∈ V .
To begin with put T1 = T ′. From the construction of T ′ it follows that every
v ∈ V with DepthG(v) = 0 occurs only as a label of the leaves in T ′. Thus T1

is as required.
Let now 1 ≤ i < s and let Ti be already constructed. Define Ti+1 to be the RTI
that arises out of Ti by deleting the subtree above every node a labeled with
(D, v) if there is an input node b <Ti a in Ti that is labeled with the clause D.
To show the induction statement for Ti+1 let v ∈ V be a vertex and let u0 and
u1 be the predecessors of v in G. If DepthG(v) < i then by induction at most
the first (with respect to <Ti) DepthG(v) nodes that are labeled with v are
inner nodes in Ti and, since there are only nodes deleted in the construction of
Ti+1, the same applies to Ti+1. If DepthG(v) = i then every inner node of Ti

that is labeled with v has always predecessors that are labeled with u0 and u1.
Because DepthG(u0) < i and DepthG(u1) < i it follows for k = 0 and k = 1
that at most the first i − 1 nodes that are labeled with uk are inner nodes of
Ti. Therefore at last the ith node in Ti that is labeled with v is the predecessor
of two leaves and hence an input node. Thus it follows from the construction
of Ti+1 that at most the first i nodes of Ti+1 that are labeled with v are inner
nodes.
Finally put T = Ts. Since DepthG(v) ≤ s for each v ∈ V it follows |Ts| ≤
2 · (

∑
v∈V DepthG(v)) + 1 ≤ s · d + 1 with d = max{ DepthG(v) | v ∈ V } and

thus T is a RTI as wanted.
Because T is a subtree of T ′, T is regular if G is regular. �

Note that it is impossible to construct a regular RTI (or a regular RTL) for C
from a non-regular resolution dag G for C with the same type of construction
as in the above proof. If G contains a clause D that is obtained by resolving on
x and x is for example used to resolve the final clause C then D can not occur
as lemma in a construction that is similar to the above.
It is easy to transform a WRTL into a weak resolution dag. Just replace every
lemma in the WRTL by an edge from the corresponding inner node that is
labeled with the lemma to the successor of the lemma. The regularity of a
WRTL (or a RTL) is not preserved by that construction.

Lemma 4.1.2 Let F be a formula and let C be a clause. If C has a WRTL T
of size s from F then C has a weak resolution dag G of size at most s from F .
If T is a RTL then G is a resolution dag.
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Proof To obtain the weak resolution dag G from the WRTL T , all leaves D
of T with D 6∈ F are deleted in the following way (see Figure 4.1).
Let D0 be a leaf of T with D0 6∈ F . Let D be the successor of D0, let D1 be
the sibling of D0 and let x be the label of the edges between Di and D, i.e.,
D0, D1 `w

x D. Then T contains a node v <T D0 with v = D0. Delete D0 and
add an edge from v to D.
After all the leaves D0 6∈ F are deleted, one has transformed T into a weak
resolution dag for C from F .
If T is a RTL then only the resolution rule is used in G and thus G is a resolution
dag in that case. �

C6

C5

C3

C1 C2

C4

D1 D2

C3

C6

C5

C3

C1 C2

C4

D1 D2

Figure 4.1: A RTL for C6 with a lemma C3 and the corresponding
resolution dag for C6.

The regularity of a RTL T is not preserved by the construction in the prior
proof. The reason is that every variable can be used on a path from a leaf to
the root in T . Thus one can create a non-regular path by adding new edges as
above.
At next it is proved that the weak resolution rule is not needed in a resolution
dag: every weak resolution dag for a clause C can be transformed into a res-
olution dag of the same or smaller size for a clause C ′ ⊆ C. The regularity of
the dag is preserved by the construction.

Lemma 4.1.3 Let F be a CNF formula and let C be a clause. If C has a weak
resolution dag G of size s from F then there is a clause C ′ ⊆ C that has a a
resolution dag G′ of size at most s from F .
If G is regular then G′ is regular.

Proof By induction on s = |G|. Let G = (V,E).
Induction basis: s = 1. Then G consists of one single vertex and is therefore
already a regular weak resolution dag.
Induction step: s > 1. If G is already a resolution dag then there is nothing to
show. Otherwise there are vertices D0, D1 and D in V with edges (D0, D) ∈ E
and (D1, D) ∈ E that are labeled with x such that D0, D1 `w

x D but D0, D1 6`x

D. Then a resolution dag G̃ for C from F is constructed from G as follows.
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Let w.l.o.g. D = D0 ∪ (D1−{x̄}), i.e., x 6∈ D0. Then remove D1 and replace D
by D0. Furthermore replace successively every successor B of D with (B0, B) ∈
E, (B1, B) ∈ E and B = (B0 − {y}) ∪ (B1 − {¬y}) with B′ = (B′

0 − {y}) ∪
(B1−{¬y}), B′ = (B0−{y})∪ (B′

1−{¬y}) or B′ = (B′
0−{y})∪ (B′

1−{¬y}),
respectively, depending on whether B0, B1 or B0 and B1 are successors of D0

(or D0 itself).
G̃ is then a weak resolution dag for a clause C̃ ⊆ C and G̃ is regular if G is
regular. Because |G̃| < |G|, G̃ can be transformed by induction into a resolution
dag G′ for a clause C ′ ⊆ C̃ ⊆ C with |G′| < |G|. G′ is regular if G̃ is regular
and the latter follows if G is regular. �

The following two theorems summarize Lemma 4.1.1, Lemma 4.1.2 and Lemma
4.1.3.

Theorem 4.1.4 RD ≡ WRD ≡ RTI ≡ WRTI ≡ RTL ≡ WRTL

Proof WRD ≤ RD follows from Lemma 4.1.3, RD ≤ RTI is shown by Lemma
4.1.1, RTI ≤ WRTI and WRTI ≤ WRTL follow by definition and WRTL ≤ WRD from
Lemma 4.1.2.
Finally RTL ≤ RD is proved by Lemma 4.1.2 and RD ≤ RTL follows from Lemma
4.1.1 since RTI ≤ RTL. �

Theorem 4.1.5 regRD ≡ regWRD ≤ regRTI ≤ regRTL ≤ regWRTL ≤ RD and
regRTI ≤ regWRTI ≤ regWRTL.

Proof regRD ≤ regWRD follows from the definition and regWRD ≤ regRD from
Lemma 4.1.3.
regRD ≤ regRTI is proved by Lemma 4.1.1. regRTI ≤ regRTL ≤ regWRTL as
well as regRTI ≤ regWRTI ≤ regWRTL follow directly from the definitions and
regWRTL ≤ RD from Lemma 4.1.2 and Lemma 4.1.3. �

In Section 4.3 a proof for regRD < regWRTI is given and this is the only sep-
aration in the hierarchy that is known, i.e., the questions whether regWRD <
regRTI, regRTI < regRTL, regRTL < regWRTL, regWRTL < RD and regWRTI <
regWRTL are open.
However, it is proved in Section 4.3 that the proof system regWRTI′ which is
based on regular WRTI and variable extensions is equivalent to RD.
It is also unknown if regWRTI and regRTL are comparable or not.
Theorem 4.1.4 also proves Theorem 3.3.6 on page 40 and with Corollary 3.3.7
the next corollary follows.

Corollary 4.1.6 The proof systems RD and WRD are sound and complete.
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4.2 Known Separations and a Lower Bound for Res-
olution

In this short section an exponential lower bound for resolution as well as sepa-
rations between RD, regRD and RT are presented without proofs. Proofs for the
results can be found for example in [30].
The first exponential lower bound for resolution was proved by Armin Haken
1985 in [22]. It is based on the pigeonhole principle that formalizes the fact
that there is no total one-to-one mapping from the set {1, . . . ,m} into the
set {1, . . . , n} if m > n > 1. The pigeonhole principle can be formalized in
propositional logic as follows.

Definition (Pigeonhole Principle) Let m > n > 1. The CNF formula
PHPm

n uses the variables pi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n with the in-
tended meaning of putting the pigeon i into the hole j (i.e., mapping i to j) iff
α(pi,j) = 1 for an assignment α. PHPm

n consists of the following clauses:

Pi =
∨

1≤j≤n

pi,j for every i ∈ {1, . . . m}

Hi,j,k = p̄i,k ∨ p̄j,k for every 1 ≤ i < j ≤ m and k ∈ {1, . . . n}

The pigeon clauses Pi state that every pigeon is put into a hole (totality) and
the hole clauses Hi,j,k state that not more then one pigeon is put into a hole k
(one-to-one).

Lemma 4.2.1 states that PHPn+1
n has resolution refutations that are exponential

in n. A proof is given in [11].

Lemma 4.2.1 (Buss-Pitassi [11]) There exists a resolution dag Gn for 2

from PHPn+1
n of size |Gn| = O(n32n).

Corollary 4.2.2 The CNF formula PHPn+1
n is unsatisfiable for every n > 0.

The proof of Theorem 4.2.3 is based on a technique that is called bottleneck
counting.

Theorem 4.2.3 (Haken [22], Beame-Pitassi [3]) If G is a resolution dag
for 2 from PHPn

n−1 then |G| ≥ 2n/20.

The next theorem follows from Theorem 4.2.3, Theorem 4.1.5, Theorem 3.2.5,
Theorem 3.4.4 and Theorem 3.5.9.

Theorem 4.2.4 Every execution of DLL(PHPn
n−1, ∅), DLL-

Learn(PHPn
n−1, ∅) and DLL-L-UP(PHPn

n−1, (∅, ∅)∅) performs at least
2n/20 recursive calls.
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There are different formulas that show RT < regRD. Here the ordering principle
OPn that has been defined as an example on page 6 in Section 1.2 is used.
Lemma 4.2.5 states that OPn has regular resolution dags of polynomial size.

Lemma 4.2.5 (Bonet-Galesi [10]) There exists a regular resolution dag Gn

for 2 from OPn of size O(n3).

On the other hand every resolution tree for OPn has an exponential size in n.
The following theorem is proved in [30].

Theorem 4.2.6 There is an integer N such that for every n ≥ N a resolution
tree |Tn| for 2 from OPn has size |Tn| ≥ 2

n
2
−1.

From Lemma 4.2.5 and Theorem 4.2.6 one derives the separation.

Corollary 4.2.7 RT < regRD

The results above together with Theorem 3.2.5 and Theorem 3.4.4 imply The-
orem 4.2.8.

Theorem 4.2.8 There is an execution of DLL-Learn(OPn, ∅) that performs
O(n3) recursive calls but every execution of DLL(OPn, ∅) performs Ω(2

n
2
−1)

recursive calls.

regRD < RD has been shown first in [21]. Here, an exponential separation that
has been given by of Alekhnovich et al. in [1] is presented. It is based on a
modified ordering principle OP′

n,ρ.

Definition (Modified Ordering Priciple) Let n be an integer. Define S to
be the set S := {(i, j, k) | i, j, k ∈ {1, . . . n}, i 6= j 6= k} and let ρ be a function
ρ : S → Var(OPn) = { xij | i, j ∈ {1, . . . , n}, i 6= j }. Then the modified
ordering principle OP′

n,ρ for n and ρ consists of the following clauses.

(xij ∨ xji), (x̄ij ∨ x̄ji) 1 ≤ i < j ≤ n

x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 ∨ ρ(i1, i2, i3) for x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 ∈ OPn

x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 ∨ ¬ρ(i1, i2, i3) for x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 ∈ OPn∨
1≤k≤n,k 6=j

xkj j ∈ {1, . . . , n}

Each transitivity axiom in OPn has been replaced by two axioms in OP′
n,ρ, one

with the additional literal ρ(i1, i2, i3), the other with ¬ρ(i1, i2, i3).
As proved in [30], there are polynomial size resolution dags for OP′

n,ρ.
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Lemma 4.2.9 Let n ∈ N and let ρn : {(i, j, k) | i, j, k ∈ {1, . . . n}, i 6= j 6=
k} → { xij | i, j ∈ {1, . . . , n}, i 6= j }. Then OP′

n,ρn has a resolution dag for 2

of size O(n3).

On the other side the following lower bound holds.

Theorem 4.2.10 (Alekhnovich et al, [1]) There is a N ∈ N such that for
each n ≥ N there is a ρn such that every regular resolution dag for 2 from
OP′

n,ρn has a size greater than 2n/200.

Together with Lemma 4.2.9 the next corollary follows from Theorem 4.2.10.

Corollary 4.2.11 regRD < RD

4.3 Variable Expansions

In this section the notion of a variable expansion of a CNF formula is introduced.
On the one hand it is used to show that regRD < regWRTI. The proof is inspired
by a construction of Beame et al. that has been used in [2] to separate regular
resolution dags from the proof system that is defined by DLL with learning by
unit propagation.
On the other hand, variable expansions are used to define a variant of the proof
system regWRTI that simulates dag-like resolution. As an application it is shown
that the algorithm schema DLL-Learn can simulate general resolution.
First it is shown that every restriction F |α of an unsatisfiable CNF formula F
has regular resolution dags for 2 whose size is as most as big as the shortest
regular resolution dag for 2 from F . A proof system with this property is called
natural.
For the proof of Lemma 4.3.1 the following definition is helpful. Recall that a
clause C is called tautological iff there is a variable x with {x,¬x} ⊆ C.

Definition Let G = (V,E) and H be resolution dags. A path in G is a sequence
(v1, u1), (v2, u2), . . . (vn, un) of edges (vi, ui) ∈ E such that ui = vi+1 for 1 ≤
i < n.
Let π = f1, . . . , fk be a path in G and let π′ = e1, . . . en be a path in H. π′ is a
subpath of π iff there is a one-to-one function F : {e1, . . . , en} → {f1, . . . , fk}
such that F (ei) and ei are labeled with the same variable for all i ∈ {1, . . . n}.

Lemma 4.3.1 Let F be a CNF formula, C a clause and α an assignment. If
F has a resolution dag G for C of size s then there is a a clause C ′ ⊆ C|α and
a resolution dag G′ for C ′ from F |α of size at most s.
If C is non-tautological then G′ does not contain any tautological clauses. If G
is regular then G′ is regular.
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Proof Let G = (V,E). To proof the lemma, graphs G0, . . . Gd are inductively
constructed such that Gi = (Vi, Ei) has the following properties

(1) Gi is a resolution dag from F |α

(2) |Gi| ≤ di = |{ v ∈ V | DepthG(v) ≤ i }|

(3) If a v ∈ V with DepthG(v) ≤ i is labeled with a D such that D|α 6= 1
then there is a v′ ∈ Vi that is labeled with a D′ ⊆ D|α.

(4) Every path π′ in Gi that ends in v′ is a subpath of a path π in G that
ends in v.

(5) If (v1, v2) ∈ Ei, D1 is the label of v1 and D2 is the label of v2 then
D1 6⊆ D2.

To begin with, define G0 to be the resolution dag that contains a leaf v′ labeled
with D|α for every leaf v of G that is labeled with D such that D|α 6= 1. Then
(1)-(5) apply trivially to G0.
Let now Gi be already constructed. Then Gi can be extended to Gi+1 in the
following way. Choose one after another every v ∈ V with DepthG(v) = i + 1
that is labeled with a D such that D|α 6= 1. v has two predecessors u0 and u1 in
G that are labeled with D0 and D1, respectively. By definition DepthG(ui) ≤ i
and D0, D1 `x D for the variable x that is the label of the edges (u0, v) and
(u1, v). Thus, and because D|α 6= 1, it follows D0|α 6= 1 or D1|α 6= 1. Let
w.l.o.g D = (D0 − {x}) ∪ (D1 − {¬x}). There are 2 different cases.
Case 1 : x ∈ dom(α). Let w.l.o.g. α(x) = 0. Then D0|α 6= 1 since otherwise
D|α = 1. By induction there is a vertex u′0 ∈ Vi that is labeled with a clause
D′

0 ⊆ D0|α ⊆ D|α. Hence one can put v′ = u′0 and so (3) and (4) apply trivially
to v and v′.
Case 2 : x 6∈ dom(α). By induction there is a vertex u′0 ∈ Vi that is labeled
with a clause D′

0 ⊆ D0|α and a a vertex u′1 ∈ Vi that is labeled with a clause
D′

1 ⊆ D1|α. If D′
0 ⊆ D or D′

1 ⊆ D then put v′ = u′0 or v′ = u′1, respectively.
Otherwise x ∈ D′

0 and ¬x ∈ D′
1. Then add a new vertex v′ labeled with

D′ = (D′
0 − {x}) ∪ (D′

1 − {¬x}) ⊆ D|α and edges (u′0, v) and (u′1, v) labeled
with x. It follows immediately that (5) holds for the new edges and since (4)
holds for u0,u′0 and u1,u′1, it also holds for v and v′.
After this construction it is clear that (1), (3), (4) and (5) apply to Gi+1.
Furthermore there has been at most one vertex added to Gi for every v ∈ V
with DepthG(v) = i + 1. Thus |Gi+1| ≤ di + |{ v ∈ V | DepthG(v) = i + 1
}| = di+1 and (2) holds also for Gi+1.
Finally Gd is a resolution dag for a clause C ′ ⊆ C|α from F |α. By (4) it follows
that Gd is regular if G is regular. Fix a vertex v0 ∈ Vd that is labeled with C ′
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and define G′ to by the subgraph of Gd that arises out of Gd by deleting every
vertex v from which v0 is not reachable in Gd. G′ is then a resolution dag for
C ′ from F |α that is regular if G is regular.
Let C be a non-tautological clause. Then C ′ is also non-tautological. Suppose,
for the purpose of a contradiction that G′ contains a tautological clause C0.
By construction of G′ there is a path π from C0 to C. There must be an edge
e = (D0, D) in π such that D0 is tautological and D is non-tautological. Let
x be the label of e and D1 the other predecessor of D, i.e., D0, D1 `x D. But
then {x,¬x} ⊆ D0 and thus D1 ⊆ D which is a contradiction to (5).
Thus G′ has no tautological clauses if C is non-tautological and is therefore as
wanted. �

From Lemma 4.3.1 with C = 2, Corollary 4.3.2 follows and with C = 2 and
α = ∅ follows Corollary 4.3.3.

Corollary 4.3.2 Let F be a CNF formula and α an assignment. If F has
(regular) resolution dag for 2 of size s then F |α has a (regular) resolution dag
for 2 of size at most s.

Corollary 4.3.3 Let F be a CNF formula. If F has a resolution dag for 2 of
size s then F has also a resolution dag for 2 of size at most s that contains no
tautological clauses.

The next goal of the section is to modify the CNF formulas OP′
n,ρ such that

every regular resolution dag for 2 has still at least 2n/200 vertices and that there
is a polynomial size regular WRTI for the modified formulas.
Therefore variable extensions of CNF formulas are introduced. They are a
simplification of the proof trace extension that has been defined in [2].
The idea is to use a resolution dag G for 2 from a formula F to add new
clauses to F that allow to transfer G into a regular WRTI for 2 from the new
formula F ′ such that the size of the RTI is polynomial in |G|. Since every added
clause in F ′ contains a new variable positively there is an assignment α of the
new variables such that F ′|α = F . That is why it follows from Corollary 4.3.2
that F ′ has no smaller regular resolution dags than F . On the other side F ′

has small regular RTI if F has small resolution dags and therefore the proof
trace extension of the modified ordering principle will lead to the separation
regRD < regWRTI.

Definition (Variable Extension) Let F be a CNF formula and |Var(F )| =
n.
The set of extension variables of F is EVar(F ) = {q, p1, . . . , pn}. Let w.l.o.g
Var(F ) ∩ EVar(F ) = ∅.
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The variable extension of F is the CNF formula VEx (F ) = F ∪ { {q, l̄} |
l ∈ C and C ∈ F } ∪ {p1, . . . , pn}.
The extension assignment according to G is the assignment αVEx(G) = { (x, 1)
| x ∈ EVar(F ) }.

Note that VEx (F )|αVEx(G)
= F and |VEx (F )| ≤ |F |+ 2|Var(F )|+ 1 = O(|F |).

The next two lemmas show that a resolution dag G for a clause C from a CNF
F can be transformed into a regular WRTI for C from VEx (F ) with polynomial
blow-up.

Lemma 4.3.4 Let F be CNF formula and let G be a resolution dag that
contains no tautological clauses. Let C ∈ Cl(G) − F , C 6= 2 and let C0 and
C1 be the predecessors of C in G. Then there exists a regular input resolution
tree TC for q from VEx (F )∪{C0, C1} with C ∈ ICl(TC), |TC | = 2(|C|+1) and
Var(TC) ⊆ Var(F ).

Proof Let C = {x1, . . . , xk} and let x be the label on the edges (C0, C) and
(C1, C). Then C0, C1 `x C. Since C0 and C1 are not tautological, x 6∈ Var(C).
Therefore the tree TC with Var(TC) = {x1, . . . , xk, x} as given in Figure 4.2 is
regular and hence as wanted. �

{q}

{xk, q}

xk

{x2, . . . , xk, q}

{x1, . . . , xk}

x1

C0

x

C1

{¬x1, q}

{¬xk, q}

Figure 4.2: The regular input resolution tree TC for {q} that con-
tains the clause C = {x1, . . . , xx} from Lemma 4.3.4.

For the proof of Lemma 4.3.5 the notion of the level of a node in a tree is
helpful. The proof is illustrated in Figure 4.3 on page 69.

Definition Let T be a binary tree and let v be a node of T .
The level of v is

Lev(v) =
{

0 if v is the root of T
n + 1 if v is the child of the node u with Lev(u) = n

The height of T is max{ Lev(v) | v is a node of T }.
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Note that the minimal height of a binary tree with n leaves is dlog2(n)e.

Lemma 4.3.5 Let F be a CNF formula, n = |Var(F )| and let C be a non-
tautological clause. If F has a resolution dag G for C of size s then VEx (F )
has a regular WRTI T of size at most 4(d + 1)s + 2 for C where d = max{ |D|
| D ∈ Cl(G) } ≤ n.

Proof Let G = (V,E). Since C is not tautological it can be assumed w.l.o.g
by Corollary 4.3.3 that G contains no tautological clauses. Furthermore it can
be assumed that for every clause D there is a most one v ∈ V that is labeled
with D. It follows from Corollary 3.2.6 and Theorem 4.1.5 that one can also
assume that s ≤ 2n. Identify the vertices V with their labels.
Let {C1, C2, . . . Ct} = Cl(G) − F be an ordering of Cl(G) such that
DepthG(Ci) ≤ DepthG(Cj) if i < j. One can assume w.l.o.g that Ct = C
and Ci 6= 2 for 1 ≤ i < t. Let EVar(G) = {q, p1, . . . , pn}.
Let T0 be a binary tree of height h = dlog2(t)e ≤ n with t leaves and 2t − 1
nodes. Label every vertex in T0 with the clause {q} and label every edge that
joins a node at level i and a node level i + 1 with pi+1. T0 is then a regular
WRTI for {q} from VEx (F ) ∪ {q} such that Var(T0) ⊆ EVar(F ).
Let v1 <T0 . . . <T0 vt be the order of the leaves vj of T0 and let 1 ≤ i ≤ t. By
Lemma 4.3.4 there exists integers 1 ≤ j, k < i and a regular input resolution
tree TCi for q from VEx (F ) ∪ {Cj , Ck} with C ∈ ICl(TCi), |TCi | = 2(|Ci| + 1)
and Var(TCi) ⊆ Var(F ).
Let T ′ be the regular WRTI for {q} from VEx (F ) that arises out of T0 by
replacing the leaf vj with the tree TCj for every 1 ≤ j ≤ t. It follows that
|T ′| ≤ 2t + t · 2(d + 1) ≤ 4s(d + 1).
Define T to be the regular WRTI for C from VEx (F ) that arises out of T ′ by
adding the new root C, a new leaf C and edges labeled with q from the root
{q} of T ′ and the leaf C to the new root C. See also Figure 4.3 on the facing
page.
Since C = Ct ∈ ICl(T ′) and q 6∈ Var(T ′), T is a regular RTI of size at most
4(d + 1)s + 2 as required. �

Lemma 4.3.5 is now applied to F = OP′
n,ρ to separate regular resolution dags

from regWRTI. It can be used analogous to separate every natural refutation of
dag-like resolution from regWRTI if the natural refutation is separated from RD.
Therefore one can separate negative, semantic, tree-like and ordered resolution
from regWRTI in the same way. A proof of Lemma 4.3.1 for these refinements
as well as a proof of the separations from dag-like resolution can be found in
[30].

Theorem 4.3.6 regRD < regWRTI



4.3. Variable Expansions 69

C

{q}

q

{q}

p1

{q}

{q}

ph−1

{q}

ph

TC1

{q}

TC2

{q}

{q}

ph

TC3

{q}

TC4

{q}

{q}

. . .

ph−1

{q}

{q}

ph

TCt−1

{q}

TCt

C

Figure 4.3: The regular RTI T for C = Ct that is is constructed in
Lemma 4.3.5 from a resolution dag G for C from F with Cl(G)−
F = {C1, . . . , Ct} and h = dlog2(t)e. T contains the regular input
trees TCk

that are defined in Lemma 4.3.4.

Proof Theorem 4.2.10 states that there is a N ∈ N such that for each n ≥ N
there is a ρn such that every regular resolution dag for 2 from OP′

n,ρn has a
size greater than 2n/200. Let Gn be a regular resolution dag for 2 from OP′

n,ρn .
Let n ≥ N . Suppose for the purpose of a contradiction that there is a resolution
dag Hn for 2 from VEx (OP′

n,ρn) with |Hn| = s < 2n/200. Then it would follow
from Corollary 4.3.2 that OP′

n,ρn has a regular resolution dag for 2 of size s,
too. But this contradicts Theorem 4.2.10. Thus every regular resolution dag
for 2 from VEx (OP′

n,ρn) has a size greater than 2n/200 if n ≥ N .
On the other side it follows from Lemma 4.2.9 that OP′

n,ρn has a resolution
dag Gn for 2 of size O(n3). Therefore Lemma 4.3.5 states that VEx (OP′

n,ρn)
has regular WRTI for 2 of size O(n3 · |Var(OP′

n,ρn)|) = O(n5).
Since |VEx (OP′

n,ρn)| = O(|OP′
n,ρn |) this proofs regRD < regWRTI. �

Note that a similar proof of this separation also works to show that DLL-L-
UP(VEx (OP′

n,ρn), (∅, ∅), ∅) can run in polynomial time while the length of
the smallest regular resolution dag for 2 from VEx (OP′

n,ρn) is exponential in
n. For details see [2].
The second application of Lemma 4.3.5 is Theorem 4.3.7 which shows that the
algorithm schema DLL-Learn can simulate dag-like resolution.

Theorem 4.3.7 Let F be a CNF formula and let G be a resolution dag of size
s for 2 from F . Then there exists an execution of DLL-Learn(VEx (F ), ∅)
that performs less then 4s2 + 1 recursive calls.
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Proof It follows from Lemma 4.3.5 that VEx (F ) has a regular WRTI T of
size at most 4(d + 1)s + 2 for C where d = max{ |C| | C ∈ Cl(G) } ≤ n.
Since T is a WRTI for 2, d ≤ s and thus |T | ≤ 4s2 + 2. But then it follows
from Theorem 3.4.4 that there is an execution of DLL-Learn(VEx (F ), ∅) that
performs 4s2 + 1 recursive calls. �

It is also possible to define a proof system based on regular WRTI that is
equivalent to dag-like resolution.

Definition (regWRTI′) Let F be a formula. The proof system regWRTI′ is
defined through: regWRTI′(F, T ) if and only if T is a regular WRTI for 2 from
VEx (CNF (¬F )).

Since VEx (F ) can be computed in polynomial time for a CNF formula F ,
regWRTI′ is decidable in polynomial time. The soundness and the correctness
follow from Theorem 4.3.8 and Corollary 4.1.6.

Theorem 4.3.8 regWRTI′ ≡ RD

Proof Let F be a CNF formula.
To show regWRTI′ ≤ RD let T be a regular WRTI of size s for 2 from VEx (F ).
Then it follows from Corollary 4.3.2 that F = F |αVEx(F )

has a resolution dag
for 2 of size at most s.
To prove RD ≤ regWRTI′ let G be a resolution dag of size s for 2 from F . Then
there exists a regular RTI of size 4s2 +2 for 2 from VEx (F ) by Lemma 4.3.5.�

Another result that follows from Lemma 4.3.5 is that regWRTI (regWRTL) sim-
ulates RD iff regular WRTI (regular WRTL) are natural.

Definition Regular WRTI (regular WRTL) are natural if there is a polynomial
p such that there exists a regular WRTI of size at most p(|T |) for 2 from F |α
for every assignment α and for every CNF formula F that has a regular WRTI
(regular WRTL) T for 2.

Theorem 4.3.9 (a) regWRTI ≡ RD if and only if regular WRTI are natural.

(b) regWRTL ≡ RD if and only if regular WRTL are natural.

Proof (a): If regWRTI ≡ RD then it follows from Corollary 4.3.2 that regular
WRTI are natural.
Let regular WRTI be natural. Let F be a CNF formula and let G be a resolution
dag of size s for 2 from F . Then it follows from Lemma 4.3.5 that VEx (F )
has a regular RTI T of size O(s2) for 2 (note that max{ |C| | C ∈ Cl(G)
} ≤ s because T is a RTI for 2). But since regular WRTI are natural and
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VEx (F )|αVEx(G)
= F , F has a regular RTI for 2 of size p(s2) for a polynomial

p. Thus RD ≤ regWRTI.
regWRTI ≤ RD follows from Theorem 4.1.5.
(b): Since every regular RTI is also a regular RTL the proof is analogous to
(a). �
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Chapter 5

On the Representation of
Resolution Proofs

5.1 Sequence-Like Resolution Proofs

In Chapter 3 resolution proofs are represented by binary trees and in Chapter
4 they are represented by dags. In this section resolution sequences, a third
common representation of resolution proofs, are analyzed.

Definition (Resolution Sequence) Let F be a CNF formula and let C be
a clause. A resolution sequence for C from F is a sequence S = C1, . . . Cs such
that for every 1 ≤ k ≤ s Ck ∈ F or there are i and j with 1 ≤ i, j < k such
that Ci, Cj ` Ck.
The size of S is |S| = s.

It is easy to prove that resolution sequences are equivalent to resolution dags
in terms of proof complexity.

Proposition 5.1.1 Let F be a formula and let C be a clause. F has a reso-
lution sequence for C of size at most s if and only if F has a resolution dag of
size at most s.

Proof For the if part let G = (V,E) be a resolution dag for C from F with
|V | ≤ s. Fix a vertex v ∈ V that is labeled with C and let G′ = (V ′, E′) be
the dag that arises out of G by deleting every vertex u ∈ V with DepthG(u) >
DepthG(v). G′ is still a resolution dag for C from F . Let {v1, . . . , vt} = V be
an ordering of V such that vt = v and i < j if DepthG(vi) < DepthG(vj). Let
Ci be the label of vi for 1 ≤ i ≤ t. Then C1, . . . , Ct is a resolution sequence for
C of size t ≤ s.
Let for the only-if part S = C1, . . . , Ct be a resolution sequence for C = Ct of
size t ≤ s. Let V = {v1, . . . , vt} be a set of vertices and label vi with Ci for
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every i ∈ {1, . . . , t}. Let i ∈ {1, . . . , t} with Ci 6∈ F . Define 1 ≤ i0 < i and
1 ≤ i1 < i to be two numbers with Ci0 , Ci1 ` Ci and let E = {(vi0 , vi), (vi1 , vi) |
vi ∈ V and Ci 6∈ F} be a set of edges. Then G = (V,E) is a resolution dag for
C from F . �

Note that both constructions in the proof of Proposition 5.1.1 are non-
deterministic. For a given resolution dag G one can receive multiple resolution
sequences. On the other side, there are in general many resolution dags that
can be constructed from a given resolution sequence. The reason is that there
are in general different choices for the numbers i0 and i1 for a given i in the
proof above. That is why it is not easy to define proof systems in terms of
Section 1.3 by using resolution sequences. The author has been made aware of
this problem by Nicolas Rachinsky.

5.2 Regular Resolution Sequences

Maybe there are other possible ways to define regularity for resolution sequences
S = C1, . . . , Cs, but the probably most natural way to do it, is to call S regular
if there is a regular resolution dag that arises out of S by taking the clauses Ci

in S as vertices and letting there be directed edges from any non-initial clause
to a pair of clauses from which it is inferred. It is shown in this section that it
is NP-complete to decide whether a given resolution proof is regular in terms
of this definition. This result is due to Sam Buss.

Definition Let F be a CNF formula and let S = C1, . . . , Cs be a resolution
sequence for Cs = C from F . G is an S-compatible dag if G = (V,E) is a
resolution dag for C from F with Cl(G) = {C1, . . . , Cs} such that i < j for
every edge (Ci, Cj) ∈ E.
S is regular if there exists an S-compatible dag that is regular.

Definition (regRS) Let F be a formula. The proof system regRS is defined
through: regRS(F, S) if and only if S is a regular resolution sequence for 2

from CNF (¬F ).

From Section 4.1 it follows that regRS is sound and complete. But it is shown
below that it is NP-complete to decide regRS. Thus regRS is a proof system
according to the definition in Section 1.3 if and only if P=NP.

Proposition 5.2.1 regRS is decidable in non-deterministic polynomial time.

Proof Let F be a CNF formula and let S be a string. To decide regRS(F, S)
proceed as follows. If S is not a sequence of clauses then return False. Oth-
erwise let S = C1, . . . , Cs. Let furthermore V = {v1, . . . , vs}, label vi with Ci

and let E = ∅.
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If there is a Ck 6∈ F for which there are no i, j < k with Ci, Cj ` Ck then S is
not a regular resolution sequence.
Otherwise choose non-deterministically for every vk with Ck 6∈ F two vertices
vi and vj with i, j < k such that Ci, Cj `x Ck and add two edges (vi, vk),(vj , vk)
labeled with x to E. S is a regular resolution sequence if and only if G = (V,E)
is a regular resolution dag. �

To show that it is NP-hard to decide regRS, we use a reduction from the well
known NP-complete problem vertex cover.

Definition (Vertex Cover) Let G = (V,E) be an undirected graph. A vertex
cover for G of size k is a set U ⊆ V with |U | = k such that e∩U 6= ∅ for every
e ∈ E.
The algorithmic problem vertex cover is to decide for a given undirected graph
G and an integer k whether G has a vertex cover of size at most k.

Theorem 5.2.2 It is NP-hard to decide for a given resolution sequence
whether it is regular.

Proof Given G = (V,E), we will construct a sequence-like refutation R. R will
be regular if and only if G has a vertex cover of size ≤ k. The refutation will
have two stages: One stage makes sure that at most k vertices are pebbled, and
the other makes sure that each edge is covered by at least one vertex. There
will be propositional variables vi that correspond to vertices vi ∈ V . For each
vertex vi, R will have a derivation of the singleton clause {vi}: this will be
derived by a resolution either with a variable pj (indicating that the i-th vertex
is covered by the j-th pebble) or with a variable qi (indicating that the i-th
vertex is uncovered). In the second stage, R will use variables ei that ensure
that the i-th edge has at least one vertex pebbled.
The first part of R consists of the following clauses. As initial clauses, the first
clauses in R are the singleton clauses {pj} and {qi}, for i = 1, . . . , |V | and j =
1, . . . k. There is also an initial clause {v0}: here v0 does not correspond to any
vertex of V , but rather helps with the base case. Then, for each i = 1, 2, . . . , |V |,
R contains the k+1 initial clauses {vi−1, vi, p1} . . . {vi−1, vi, pk} and {vi−1, vi, qi}
followed the k + 2 non-initial clauses {vi, p1} . . . {vi, pk}, {vi, qi} and {vi}. The
clause {vi} can be derived by an inference of the form

{vi−1} {vi−1, vi, x}
{vi, x} {x}

{vi}

where x is one of p1 . . . pk or qi. There are k +1 possible ways of deriving {vi},
but the intent is that {vi} is derived with the aid of resolving on the variable pj
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as x if the j-th pebble is placed on the i-th vertex. If, however, resolution with
qi is used to derive {vi}, then the i-th vertex is unpebbled. Since the clauses
{vi} are derived sequentially, any dag-like regular resolution can use resolution
with each fixed pj only once: this corresponds to the fact that the j-th pebble
can be placed on at most one vertex.
The second stage of R is designed so that it can be regular only if all edges
have a pebbled vertex. Let the s-th edge in E join the i-th and i′-th vertices.
Then, R includes two initial clauses {es, vi, qi} and {es, vi′ , qi′}, and the three
non-initial clauses {es, qi}, {es, qi′}, and {es}. The intent is that, if the i-th
vertex is pebbled, then the inference structure for these five clauses is as follows
(using the the clauses {vi} and {vi′} derived in the first stage of R):

{es, vi, qi} {vi}
{es, qi} {qi}

{es}

{es, vi′ , qi′} {vi′}
{es, qi′}

Note that this inference structure leaves the clause {es, qi′} unused in R. If the
i-th vertex was pebbled then the resolution on qi that is used to derive {es} is
a regular inference, but otherwise it is not. If the i′-th vertex was pebbled then
the intent is the inference structure in R should be as above but with the roles
of i and i′ interchanged.
The refutation R ends with one further initial clause {e1, e2, . . . , e|E|, } and then
concludes with resolution inferences using the clauses {ei}, i = 1, . . . , |E|, to
obtain the empty clause.
It is not hard to verify that R can be be given a dag-structure that makes
it regular if and only if the the graph G has a vertex cover of size k. First,
because the clauses {vi} are derived sequentially from each other, there can be
only one use of the resolution rule on a given variable {pj} in a regular proof.
This corresponds to the fact that each of the k pebbles can be used only once.
Second, each edge clause {es} cannot be derived if both of the its endpoint
clauses {vi} and {vi′} were derived using resolution on the clauses {qi} and
{qi′} that indicate they are not pebbled. Thus, the refutation can be made
regular if and only if the graph has a vertex cover of size k. �

From Theorem 5.2.2 and Proposition 5.2.1 the corollaries below follow imme-
diately.

Corollary 5.2.3 It is NP-complete to decide regRS.

Corollary 5.2.4 regRS is a proof system if and only if P=NP.



Open Questions

There are several question left open for further research by this paper.
It has been shown in Chapter 3 that the algorithm schema DLL-Learn can
simulate DLL-L-UP, which is the basis of most of the fastest deterministic
SAT-solvers. On the other hand it is not clear if it is possible to develop fast
real-world SAT-solver that are based on the algorithm schema DLL-Learn.
A related problem is the question whether there is a separation between the
proof systems regWRTL and regWRTI which would show that there are CNF
formulas that can be decided by DLL-Learn in polynomial time while DLL-
L-UP needs super-polynomial time. Furthermore it is open whether regWRD <
regRTI, regRTI < regRTL, regRTL < regWRTL, regWRTL < RD and regWRTI <
regWRTL.
Finally, it is unclear whether the algorithm schema DLL-L-UP can simulate
regular weak RTI or regular weak RTL. It seems to be necessary to include
some new features in DLL-L-UP to get such a simulation and there is work in
progress that will properly appear in a separate paper.
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Gödel Society, 2004.

[6] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution
made simple. J. ACM, 48(2):149–169, 2001.

[7] Daniel Le Berre and Laurent Simon. The essentials of the sat 2003 com-
petition. In SAT, pages 452–467, 2003.

[8] Daniel Le Berre and Laurent Simon. Fifty-five solvers in vancouver: The
sat 2004 competition. In SAT (Selected Papers), pages 321–344, 2004.

[9] Daniel Le Berre and Laurent Simon. Preface to the special volume on the
sat 2005 competitions and evaluations. Journal on Satisfiability, Boolean
Modeling and Computation, 2, 2005.

[10] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs
for resolution. Computational Complexity, 10(4):261–276, 2001.



80 Bibliography

[11] Samuel R. Buss and Toniann Pitassi. Resolution and the weak pigeonhole
principle. In CSL, pages 149–156, 1997.

[12] C. L. Chang. The unit proof and the input proof in theorem proving. J.
ACM, 17(4):698–707, 1970.

[13] Stephen A. Cook. The complexity of theorem-proving procedures. In
STOC, pages 151–158. ACM, 1971.

[14] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propo-
sitional proof systems. J. Symb. Log., 44(1):36–50, 1979.

[15] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[16] Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. J. ACM, 7(3):201–215, 1960.

[17] Niklas Eén and Armin Biere. Effective preprocessing in sat through vari-
able and clause elimination. In SAT, pages 61–75, 2005.
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