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Abstract

This paper introduces the Furthest Hyperplane Problem (FHP), which is an unsupervised
counterpart of Support Vector Machines. Given a set of n points in Rd, the objective is
to produce the hyperplane (passing through the origin) which maximizes the separation
margin, that is, the minimal distance between the hyperplane and any input point.

To the best of our knowledge, this is the first paper achieving provable results regarding
FHP. We provide both lower and upper bounds to this NP-hard problem. First, we give
a simple randomized algorithm whose running time is nO(1/θ2) where θ is the optimal
separation margin. We show that its exponential dependency on 1/θ2 is tight, up to sub-
polynomial factors, assuming SAT cannot be solved in sub-exponential time. Next, we
give an efficient approximation algorithm. For any α ∈ [0, 1], the algorithm produces a
hyperplane whose distance from at least 1 − 3α fraction of the points is at least α times
the optimal separation margin. Finally, we show that FHP does not admit a PTAS by
presenting a gap preserving reduction from a particular version of the PCP theorem.
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1. Introduction

One of the most well known and studied objective functions in machine learning for obtain-
ing linear classifiers is the Support Vector Machines (SVM) objective. SVM’s are extremely
well studied, both in theory and in practice. We refer the reader to Vapnik and Lerner
(1963); Mangasarian (1965) and to Burges (1998) for a thorough survey and references
therein. The simplest possible setup is the separable case. Given a set of n points {x(i)}ni=1

in Rd and labels y1, . . . yn ∈ {1,−1} find hyperplane parameters w ∈ Sd−1 (the unit sphere
in `2 in dimension d) and b ∈ R which maximize θ′ subject to (〈w, x(i)〉 + b)yi ≥ θ′. The
intuition is that different concepts will be “well separated” from each other and that the
best decision boundary is the one that maximizes the separation. This intuition is sup-
ported by extensive research which is beyond the scope of this paper. Algorithmically, the
optimal solution for this problem can be obtained using Quadratic Programing or the El-
lipsoid Method in polynomial time. In cases where the problem has no feasible solution
the constraints must be made “soft” and the optimization problem becomes significantly
harder. This discussion, however, also goes beyond the scope of this paper.

As a whole, SVM’s fall under the category of supervised learning, although semi-
supervised and unsupervised versions have also been considered (see references below).
We note that to the best of our knowledge the papers dealing with the unsupervised sce-
nario were purely experimental and did not contain any rigorous proofs. In this model, the
objective remains unchanged but some (or possibly all) of the point labels are unknown.
The maximization, thus, ranges not only over the parameters w and b but also over the
possible labels for the unlabeled points yi ∈ {1,−1}. The integer constraints on the values
of yi make this problem significantly harder than SVM’s.

The name Maximal Margin Clustering (MMC) was coined by Xu et al. (2005) for the
case where none of the labels are known. Indeed, in this setting the learning procedure
behaves very much like clustering. The objective is to assign the points to two groups
(indicated by yi) such that solving the labeled SVM problem according to this assignment
produces the maximal margin.1 Bennett and Demiriz (1998) propose to solve the resulting
mixed integer quadratic program directly using general solvers and give some encouraging
experimental results. Bie and Cristianini (2003) and Xu et al. (2005) suggest an SDP
relaxation approach and show that it works well in practice. Joachims (1999) suggests a
local search approach which iteratively improves on a current best solution. While the
above algorithms produce good results in practice, their analysis does not guaranty the
optimality of the solution. Moreover, the authors of these papers state their belief that the
non convexity of this problem makes it hard, but to the best of our knowledge no proof of
this was given. In a recent work Peng et al. (2011) suggests an efficient approach to MMC
based on gradual feature selection, but is mainly supported by numerical experiments.

FHP is very similar to unsupervised SVM or Maximum Margin Clustering. The only
difference is that the solution hyperplane is constrained to pass through the origin. Formally,

1. The assignment is required to label at least one point to each cluster to avoid a trivial unbounded margin.
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given n points {x(i)}ni=1 in a d-dimensional Euclidean space, FHP is defined as follows:

Maximize θ′

s.t ‖w‖2 = 1

∀ 1 ≤ i ≤ n |〈w · x(i)〉| ≥ θ′ (1)

The labels in this formulation are given by yi = sign(〈w · x(i)〉) which can be viewed
as the “side” of the hyperplane to which x(i) belongs. At first glance, MMC appears to be
harder than FHP since it optimizes over a larger set of possible solutions. Namely, those
for which b (the hyperplane offset) is not necessarily zero. We claim however that any
MMC problem can be solved using at most

(
n
2

)
invocations of FHP. The simple observation

is that any optimal solution for MMC must have two equally distant points in opposite
sides of the hyperplane. Therefore, there always are at least two points i and j such that
(〈w, x(i)〉+b) = −(〈w, x(j)〉+b). This means that the optimal hyperplane obtained by MMC
must pass through the point (x(i) + x(j))/2. Thus, solving FHP centered at (x(i) + x(j))/2
will yield the same hyperplane as MMC. Iterating over all pairs of points concludes the
observation. From this point on we explore FHP exclusively but the reader should keep in
mind that any algorithmic claim made for FHP holds also for MMC due to the above.

1.1. Results and techniques

In Section 2 we begin by describing three exact (yet exponential) algorithms for FHP.
These algorithms are somewhat näıve and their proofs use standard techniques. However,
we choose to present them for two reasons. First, they are the natural directions to consider
and give the reader a reacher and fuller understanding of the problem (so we hope). Second,
they turn out to be preferable to one another for different problem parameters. These
parameter are: the dimension d, the number of points n, and the optimal margin θ which
is not known apriori.

The first algorithm is a brute force search through all feasible labelings which runs
in time nO(d). The second looks for a solution by enumerating over an ε-net of the d-
dimensional unit sphere and requires (1/θ)O(d) operations. The last generates solutions
created by random unit vectors and can be shown to find the right solution after nO(1/θ2)

tries (w.h.p.). While algorithmically the random hyperplane algorithm is the simplest, its
analysis is the most complex. Assuming a large constant margin, which is not unrealistic
in machine learning applications, this algorithm provides the first polynomial time solution
to FHP. Unfortunately, due to the hardness result below, its exponential dependency on θ
cannot be improved.

In section 3 we show that if one is allowed to discard a small fraction of the points then
much better results can be obtained. We note that in the perspective of machine learning, a
hyperplane that separates almost all of the points still provides a meaningful result (see the
discussion at the end of section 3) . We give an efficient algorithm which finds a hyperplane
whose distance from at least 1 − 3α fraction of the points is at least αθ , where α ∈ [0, 1]
is any constant and θ is the optimal margin of the original problem. The main idea is to
first find a small set of solutions which perform well ‘on average’. These solutions are the
singular vectors of row reweighed versions of a matrix containing the input points. We then
randomly combine those to a single solution.
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In section 4 we prove that FHP is NP-hard to approximate to within a small multiplica-
tive constant factor, ruling out a PTAS. We present a two-step gap preserving reduction
from MAX-3SAT using a particular version of the PCP theorem, see Arora (1994). It shows
that the problem is hard even when the number of points is linear in the dimension and
when all the points have approximately the same norm. As a corollary of the hardness
result we get that the running time of our exact solution algorithm is, in a sense, optimal.
There cannot be an algorithm solving FHP in time nO(1/θ2−ε) for any constant ε > 0, unless
SAT admits a sub-exponential time algorithm.

1.2. Preliminaries and notations

The set {x(i)}ni=1 of input points for FHP is assumed to lie in a Euclidean space Rd, endowed
with the standard inner product denoted by 〈·, ·〉. Unless stated otherwise, we denote by ‖·‖
the `2 norm. Throughout the paper we let θ denote the solution of the optimization problem
defined in Equation (1). The parameter θ is also referred to as “the margin of {x(i)}ni=1”,
or simply “the margin” when it is obvious to which set of points it refers to. Unless stated
otherwise, we consider only hyperplanes which pass through the origin. They are defined
by their normal vector w and include all points x for which 〈w, x〉 = 0. By a slight abuse
of notation, we usually refer to a hyperplane by its defining normal vector w. Due to the
scaling invariance of this problem we assume w.l.o.g. that ‖x(i)‖ ≤ 1. One convenient
consequence of this assumption is that θ ≤ 1. We denote by N (µ, σ) the standard Gaussian
distribution with mean µ and standard deviation σ.

Definition 1 (Labeling, feasible labeling) We refer to any assignment of y1, . . . , yn ∈
{1,−1} as a labeling. We say that a labeling is feasible if there exists w ∈ Sd−1 such that ∀i :
yi
〈
w, x(i)

〉
> 0. For any hyperplane w ∈ Sd−1 we define its labeling as yi = sign(

〈
w, x(i)

〉
).

Definition 2 (Labeling margin) The margin of a feasible labeling is the margin obtained
by solving SVM on {x(i)}ni=1 using the corresponding labels but constraining the hyperplane to
pass through the origin. This problem is polynomial time solvable by Quadratic Programing
or by the Ellipsoid Method Kozlov et al. (1979). We say a feasible labeling is optimal if it
obtains the maximal margin.

2. Exact algorithms

2.1. Enumeration of feasible labelings

The most straightforward algorithm for this problem enumerates over all feasible labelings
of the points and outputs the one maximizing the margin. Note that there are at most nd+1

different feasible labelings to consider. This is due to Sauer’s Lemma Sauer (1972) and the
fact that the VC dimension of hyperplanes in Rd is d+1.2 This enumeration can be achieved
by a Breadth First Search (BFS) on the graph G(Y,E) of feasible labelings. Every node in
the graph G is a feasible labeling (|Y | ≤ nd+1) and two nodes are connected by an edge iff
their corresponding labelings differ by at most one point label. Thus, the maximal degree
in the graph is n and the number of edges in this graph is at most |E| ≤ |Y |n ≤ nd+2.

2. Sauer’s Lemma Sauer (1972) states that the number of possible feasible labelings of n data points by a
classifier with VC dimension dV C is bounded by ndV C .
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Moreover, computing for each node its neighbors list can be done efficiently since we only
need to check the feasibility (linear separability) of at most n labelings. Performing BFS thus
requires at most O(|Y |poly(n, d)+ |E| log(|E|)) = nd+O(1). The only non trivial observation
is that the graph G is connected. To see this, consider the path from a labeling y to a
labeling y′. This path exists since it is achieved by rotating a hyperplane corresponding
to y to one corresponding to y′. By an infinitesimal perturbation on the point set (which
does not effect any feasible labeling) we get that this rotation encounters only one point at
a time and constitutes a path in G. To conclude, there is a simple enumeration procedure
for all nd+1 linearly separable labelings which runs in time nd+O(1).

2.2. An ε-net algorithm

The second approach is to search through a large enough set of hyperplanes and measure
the margins produced by the labelings they induce. Note that it is enough to find one
hyperplane which obtains the same labels as the optimal margin does. This is because having
the labels suffices for solving the labeled problem and obtaining the optimal hyperplane.
We observe that the correct labeling is obtained by any hyperplane w whose distance from
the optimal one is ‖w − w∗‖ < θ. To see this, let y∗ denote the correct optimal labeling
y∗i 〈w, x(i)〉 = 〈w∗, y∗i x(i)〉 + 〈w − w∗, y∗i x

(i)〉 ≥ θ − ‖w − w∗‖ · ‖x(i)‖ > 0. Hence, it is
enough to consider hyperplane normals w which belong to an ε-net on the sphere Sd−1

with ε < θ. Deterministic constructions of such nets exist with size (1/θ)O(d) Lorentz et al.
(1996). Enumerating all the points on the net produces an algorithm which runs in time
O((1/θ)O(d)poly(n, d)).3

2.3. Random Hyperplane Algorithm

Both algorithms above are exponential in the dimension, even when the margin θ is large.
A first attempt at taking advantage of the large margin uses dimension reduction. An easy
corollary of the well known Johnson-Lindenstrauss lemma yields that randomly projecting
the data points into dimension O(log(n)/θ2) preserves the margin up to a constant. Then,
applying the ε-net algorithm on the reduced space requires only nO(log(1/θ)/θ2) operations.
Similar ideas were introduced in Arriaga and Vempala (1999) and subsequently used by
Klivans and Servedio (2004); Har-peled et al. (2006) and florina Balcan et al. (2004). How-
ever, a simpler approach improves on this: pick nO(1/θ2) unit vectors w uniformly at random
from the unit sphere. Output the labeling induced by one of those vectors which maximizes
the margin. To establish the correctness of this algorithm it suffices to show that a random
hyperplane induces the optimal labeling with a large enough probability.

Lemma 3 Let w∗ and y∗ denote the optimal solution of margin of θ and the labeling it
induces. Let y be the labeling induced by a random hyperplane w. The probability that
y = y∗ is at least n−O(1/θ2).

The proof of the lemma is somewhat technical and is deferred to Appendix A. The assertion
of the lemma may seem surprising at first. The measure of the spherical cap of vectors w
whose distance from w∗ is at most θ is only ≈ θd. Thus, the probability that a random w

3. This procedure assumes the margin θ is known. This assumption can be removed by a standard doubling
argument.
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falls in this spherical cap is very small. However, we show that it suffices for w to merely
have a weak correlation with w∗ in order to guarantee that (with large enough probability)
it induces the optimal labeling.

Given Lemma 3, the Random Hyperplane Algorithm is straightforward: randomly sam-
ple nO(1/θ2) hyperplanes, compute their induced labelings, and output the labeling (or hy-
perplane) which admits the largest margin. If the margin θ is not known, we use a standard
doubling argument to enumerate it. The algorithm solves FHP w.h.p. in time nO(1/θ2).

Tightness of Our Result A corollary of our hardness result (Theorem 12) is that,
unless SAT has sub-exponential time algorithms, there exists no algorithm for FHP whose
running time is nO(θ1/(2−ζ)) for any ζ > 0. Thus, the exponential dependency of the Random
Hyperplane Algorithm on θ is optimal. This is since the hard FHP instance produced by the
reduction in Theorem 12 from SAT has n points in Rd with d = O(n) where the optimal
margin is θ = Ω(1/

√
d). Thus, if there exists an algorithm which solves FHP in time

nO(θ1/(2−ζ)), it can be used to solve SAT in time 2O(n1−ζ/2 log(n)) = 2o(n).

3. Approximation algorithm

In this section we present a simple and efficient algorithm which approximates the optimal
margin if one is allowed to discard a small fraction of the points. For any α > 0 it finds
a hyperplane whose distance from (1− O(α))-fraction of the points is at least α times the
optimal margin θ of the original problem.

Consider first the easier problem of finding the hyperplane whose average margin is
larger than θ. The optimal hyperplane w is simply the top right singular vector of a matrix
A whose i’th row contains x(i). To see this, assume the problem has a separating hyperplane
w∗ with margin θ and let Ei denote the expectation over choosing i uniformly at random

from [n]. Then, Ei
〈
w, x(i)

〉2
= 1/n

∑
i

〈
w, x(i)

〉2 ≥ 1/n
∑

i

〈
w∗, x(i)

〉2
= Ei

〈
w∗, x(i)

〉2 ≥ θ2.

This is simply because w maximizes the expresion
∑

i

〈
w, x(i)

〉2
. However, there is no

guarantee that this singular vector obtains a high margin value |
〈
w, x(i)

〉
| for all the points

x(i). It is possible, for example, that |
〈
w, x(i)

〉
| = 1 for θ2n points and 0 for all the rest.

Our first goal is to produce a set of weak solution hyperplanes w(1), . . . , w(t) which are good

on average for every point. Namely, ∀ i : Ej
〈
w(j), x(i)

〉2
= Ω(θ2). To achieve this, we

adaptively re-weight points according to their distance to previous weak solutions. Points
which exhibit a large margin to current weak solutions, are weighted down so their influence
is reduced. We then combine the weak solutions using random Gaussian weights to obtain
a single random hyperplane which is good for any individual point w.p.

We note that our technique resembles the regret minimization framework. However, due
to the different nature of our objective, a straight forward implementation of this approach
does not work.4 Additionally, note that the last step of combining the solution does not
use averaging, as in the regret minimization framework, but rather a random Gaussian
combination, as the former fails. The constant c will be determined later.

4. A more involved, and somewhat less intuitive, use of the regret minimization framework can be applied.
We defer the details to a full version of this paper, and include for completeness a full proof using
continuous weights.
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Algorithm 1: Approximate FHP Algorithm

Input: Set of points
{
x(i)
}n
i=1
∈ Rd

Output: w ∈ Sd−1

τ1(i)← 1 for all i ∈ [n]
j ← 1
while

∑n
i=1 τj(i) ≥ 1/n do

Aj ← n× d matrix whose i’th row is
√
τj(i) · x(i)

w(j) ← top right singular vector of Aj
σj(i)←

∣∣〈x(i), w(j)
〉∣∣

τj+1(i)← τj(i) · c−σ
2
j (i)

j ← j + 1
end while
w′ ←

∑t
j=1 gj · w(j) for gj ∼ N (0, 1)

return: w ← w′/‖w′‖

Claim 4 Algorithm 1 terminates after at most t ≤ 2 ln(n)/
(
θ2(1− 1/c)

)
iterations.

Proof Fix some j. Define τj
∆
=
∑n

i=1 τj(i). We know that for some unit vector w∗

(the optimal solution to the FHP) it holds that |
〈
x(i), w∗

〉
| ≥ θ for all i. Also since w(j)

maximizes the expression ‖Ajw‖2 we have:

n∑
i=1

σ2
j (i)τj(i) = ‖Ajw(j)‖2 ≥ ‖Ajw∗‖2 =

n∑
i=1

τj(i) ·
〈
x(i), w∗

〉2
≥ τj · θ2.

It follows that (and by using the fact that c−x ≤ 1− (1− 1/c)x whenever 0 ≤ x ≤ 1):

τj+1 =
n∑
i=1

τj(i) · c−σ
2
j (i) ≤

n∑
i=1

τj(i) ·
(

1−
(

1− 1

c

)
σ2
j (i)

)
≤ τj ·

(
1− θ2

(
1− 1

c

))
,

and the claim follows since τ1 = n and ln
(

1
1−x

)
≥ x whenever 0 ≤ x < 1.

Claim 5 Let σi
∆
=
√∑t

j=1 σ
2
j (i). When Algorithm 1 terminates, for each i it holds

σ2
i ≥ ln(n)/ ln(c).

Proof Fix i ∈ [n]. When the process ends, τt(i) ≤ τt < 1/n. As τ1(i) = 1 we get that:

1/n ≥ τt(i) = τ1(i) ·
t∏

j=1

c−σ
2
2(i) = c−

∑t
j=1 σ

2
j (i).

By taking logarithms from both sides, we get that
∑t

j=1 σ
2
j (i) ≥ log(n)/ ln(c) as claimed.

The following lemma states the approximation guarantee of Algorithm 1.5

5. We note that we did not try to optimize the constants since the application at hand might provide
different restrictions on the several parameters of the algorithm, such as its success probability, its

running time or the fraction of “bad” points in its output, i.e., points x(i) such that
∣∣∣〈x(i), w〉∣∣∣ ≤ αθ.
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Lemma 6 Let 0 < α < 1. Algorithm 1 outputs a random w ∈ Sd−1 such that with proba-
bility at least 1/147 at most a 3α fraction of the points are such that

∣∣〈x(i), w
〉∣∣ ≤ αθ.

Proof First, by Markov’s inequality and the fact that E[‖w′‖2] = t we have that ‖w′‖ ≤
7/4 ·

√
t w.p. at least 33/49. We assume this to be the case from this point on. Note that

we do not condition on this event happening. Rather, we accept a 16/49 failure probability
which we include in a union bound later in the proof. Now we bound the probability that
the algorithm ‘fails’ for point i.

Pr
[∣∣∣〈w, x(i)

〉∣∣∣ ≤ αθ] ≤ Pr

[∣∣∣〈w′, x(i)
〉∣∣∣ ≤ 7

4

√
tαθ

]
≤ Pr

Z∼N (0,
√

ln(n)/ ln(c))

[
|Z| ≤ 7

4

√
tαθ

]

= Pr
Z∼N (0,1)

[
|Z| ≤ 7

4

√
ln(c)

√
tαθ√

ln(n)

]

≤ 7

2
√

2π

√
ln(c)

√
tαθ√

ln(n)
≤

7
√

ln(c)α√
4π
(
1− 1

c

)
The second inequality is derived by using Lemma 5 and the last inequality is derived by using

Lemma 4. Since the expected fraction of failed points is less than 7
√

ln(c)α/
√

4π
(
1− 1

c

)
we have, using Markov’s inequality again, that the probability that the number of failed

points is more than 3/2 · 7
√

ln(c)α/
√

4π
(
1− 1

c

)
·n is at most 2/3. We also might fail with

probability at most 16/49 in the case that ‖w′‖ > 7/4 ·
√
t. Using the union bound on the

two failure probabilities and choosing c = 1.02 completes the proof.

Discussion We note that the problem of finding a hyperplane that separates all but a
small fraction of the points is the non-supervised analog of the well studied soft margin SVM
problem. The motivation behind the problem, from the perspective of machine learning,
is that a hyperplane that separates most of the data points is still likely to correctly label
future points. Hence, if a hyperplane that separates all of the points cannot be obtained, it
suffices to find one that separates most (e.g. 1 − α fraction) of the data points. The more
common setting in which this problem is presented is when a separating hyperplane does
not necessarily exist. In our case, although a separating hyperplane is guaranteed to exist,
it is (provably) computationally hard to obtain it, as we show in the next section.

4. Hardness of approximation

The main result of this section is that FHP does not admit a PTAS unless P=NP. That is,
obtaining a (1− ε)-approximation for FHP is NP-hard for some universal constant ε. The
main idea is straightforward: Reduce from MAX-3SAT for which such a guarantee is well
known, mapping each clause to a vector. We show that producing a “far” hyperplane from
this set of vectors encodes a good solution for the satisfiability problem. However, FHP
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is inherently a symmetric problem (negating a solution does not change its quality) while
MAX-3SAT does not share this property. Thus, we carry out our reduction in two steps:
in the first step we reduce MAX-3SAT to a symmetric satisfaction problem. In the second
step we reduce this symmetric satisfaction problem to FHP. It turns out that in order to
show that such a symmetric problem can be geometrically embedded as a FHP instance,
we need the extra condition that each variable appears in at most a constant number of
clauses, and that the number of variables and clauses is comparable to each other. The
reduction process is slightly more involved in order to guarantee this. In the rest of this
section we consider the following satisfaction problem.

Definition 7 (SYM formulas) A SYM formula is a CNF formula where each clause has
either 2 or 4 literals. Moreover, clauses appear in pairs, where the two clauses in each pair
have negated literals. For example, a pair with 4 literals has the form

(x1 ∨ x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4).

We denote by SYM(t) the class of SYM formulas in which each variable occurs in at most
t clauses.

We note that SYM formulas are invariant to negations: if an assignment x satisfies m
clauses in a SYM formula than its negation ¬x will satisfy the same number of clauses.

The following definition will play a central role in the reduction we next describe.

Definition 8 (Expander Graphs) An undirected graph G = (V,E) is called an (n, d, τ)-
expander if |V | = n, the degree of each node is d, and its edge expansion h(G) =
min|S|<n/2(|E(S, Sc)|)/|S| is at least τ . By Cheeger’s inequality Alon and Milman (1985),
h(G) ≥ (d−λ)/2, where λ is the second largest eigenvalue, in absolute value, of the adjacency
matrix of G. For every d = p+ 1 ≥ 14, where p is a prime congruent to 1 modulo 4, there
are explicit constructions of (n, d, τ)-expanders with τ > d/5 for infinitely many n. This
is due to the fact that these graphs exhibit λ ≤ 2

√
d− 1 (see Lubotzky et al. (1988)), and

hence by the above h(G) ≥ (d − 2
√
d− 1)/2 > d/5 (say) for d ≥ 14. Expander graphs will

play a central role in the construction of our hardness result in section 4.

The first step is to reduce MAX-3SAT to SYM with the additional property that each
variable appears in a constant number of clauses. We denote by MAX-3SAT(t) the class of
MAX-3SAT formulas where each variable appears in at most t clauses. Theorem 9 is the
starting point of our reduction. It asserts that MAX-3SAT(13) is hard to approximate.

Theorem 9 (Arora (1994), Hardness of approximating MAX-3SAT(13)) Let ϕ be a
3-CNF boolean formula on n variables and m clauses, where no variable appears in more
than 13 clauses. Then there exists a constant γ > 0 such that it is NP- hard to distinguish
between the following cases:

1. ϕ is satisfiable.

2. No assignment satisfies more than a (1− γ)-fraction of the clauses of ϕ.
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4.1. Reduction from MAX-3SAT(13) to SYM(30)

The main idea behind the reduction is to add a new global variable to each MAX-3SAT(13)
clause which will determine whether the assignment should be negated or not, and then
to add all negations of clauses. The resulting formula is clearly a SYM formula. However,
such a global variable will appear in too many clauses. We thus “break” it into many
local variables (one per clause), and impose equality constraints between them. To achieve
that the number of clauses remains linear in the number of variables, we only impose
equality constraints based on the edges of a constant degree expander graph. The strong
connectivity property of expanders ensures that a maximally satisfying assignment to such
a formula would assign the same value to all these local variables, achieving the same effect
of one global variable.

We now show how to reduce MAX-3SAT to SYM, while maintaining the property that
each variable occurs in at most a constant number of clauses.

Theorem 10 It is NP-hard to distinguish whether a SYM(30) formula can be satisfied, or
whether all assignments satisfy at most 1− δ fraction of the clauses, where δ = γ/16 and γ
is the constant in Theorem 9.

Remark 11 We note that Theorem 10 is qualitatively implied by a more general result by
Jonsson et al. (2009), who use expanders together with more powerful algebraic techniques
to show that for any natural 6 constraint satisfaction problem, it is NP hard to distinguish
between the case that all constraints are satisfiable, or only 1−ε′ fraction of them are satisfi-
able, even when any variable appears only in constantly many constraints (See Theorem 3.6
in Jonsson et al. (2009)). Here we provide an elementary proof of this result for the special
case of symmetric CNF formulas, which is shorter, uses only combinatorial arguments (and
not algebraic) and produces a better gap.

Proof (of Theorem 10) We describe a gap-preserving reduction from MAX-3SAT(13) to
SYM(30). Given an instance of MAX-3SAT(13) ϕ with n variables y1, . . . , yn and m clauses,
construct a SYM formula ψ as follows: each clause Ci ∈ ϕ is mapped to a pair of clauses
Ai = (Ci ∨ ¬zi) and A′i = (C ′i ∨ zi) where C ′i is the same as Ci with all literals negated and
zi is a new variable associated only with the i-th clause. For example:

(y1 ∨ ¬y2 ∨ y3) −→ (y1 ∨ ¬y2 ∨ y3 ∨ ¬zi) ∧ (¬y1 ∨ y2 ∨ ¬y3 ∨ zi).

We denote the resulting set of clauses by A. We also add a set of “equality constraints”,
denoted B, between the variables zi and zj as follows. Let G be an (m, d, τ) explicit expander
with d = 14 and τ ≥ d/5 (the existence of such constructions is established in definition 8).
For each edge (i, j) of the expander B includes two clauses: (zi ∨ ¬zj) and (¬zi ∨ zj). Let
ψ denote the conjunction of the clauses in A and B.

We first note that the above reduction is polynomial time computable; that ψ contains
M = (d + 2)m = 16m clauses; and that every variable of ψ appears in at most t :=
max{26, 2d + 2} = 30 clauses. Therefore, ψ is indeed an instance of SYM(30). To prove
the theorem we must show:

6. Any CSP which is NP-hard under the Algebraic Dichotomy Conjecture, see Jonsson et al. (2009) for
details.
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• Completeness: If ϕ is satisfiable then so is ψ.

• Soundness: If an assignment satisfies 1 − δ fraction of ψ’s clauses then there is an
assignment that satisfies 1− γ of ϕ’s clauses.

The completeness is straight-forward: given an assignment y1, . . . , yn that satisfies ϕ, we
can simply set z1, . . . , zm to true to satisfy ψ. For the soundness, suppose that there exists
an assignment which satisfies 1− δ fraction of ψ’s clauses, and let v = y1, . . . , yn, z1, . . . , zm
be a maximally satisfying assignment.7 Clearly, v satisfies at least 1 − δ fraction of ψ’s
clauses. We can assume that at least half of z1, . . . , zm are set to true since otherwise we
can negate the solution while maintaining the number of satisfied clauses.

We first claim that, in fact, all the zi’s must be set to true in v. Indeed, let S = {i :
zi = false} and denote k := |S| (recall that k ≤ m/2). Suppose k > 0 and let G be the
expander graph used in the reduction. If we change the assignment of all the variables in
S to true, we violate at most k clauses from A (as each variable zi appears in exactly 2
clauses, but one of them is always satisfied). On the other hand, by definition of G, the
edge boundary of the set S in G is at least τk = kd/5, and every such edge corresponds to a
previously violated clause from B. Therefore, flipping the assignment of the variables in S
contributes at least kd/5−k = 14

5 k−k > k to the number of satisfied clauses, contradicting
the maximality of v. Now, since all the z′is are set to true, a clause Ci ∈ ϕ is satisfied iff
the clause Ai ∈ ψ is satisfied. As the number of unsatisfied clauses among A1, . . . , Am is
at most δM = δ(d + 2)m we get that the number of unsatisfied clauses in ϕ is at most
δ(d+ 2)m = γ

16 · 16m = γm, as required.

4.2. Reduction from SYM to FHP

We proceed by describing a gap preserving reduction from SYM(t) to FHP.

Theorem 12 Given {x(i)}ni=1 ∈ Rd, it is NP-hard to distinguish whether the furthest hy-
perplane has margin 1√

d
from all points or at most a margin of (1 − ε) 1√

d
for ε = Ω(δ),

where δ is the constant in Theorem 10.

Remark 13 For convenience and ease of notation we use vectors whose norm is more
than 1 but at most

√
12. The reader should keep in mind that the entire construction should

be shrunk by this factor to facilitate ‖x(i)‖2 ≤ 1. Note that the construction constitutes
hardness even for the special case where n = O(d) and for all points 1/

√
12 ≤ ‖x(i)‖2 ≤ 1.

Proof Let ψ be a SYM(t) formula with d variables y1, ..., yd and m clauses C1, . . . , Cm.
We map each clause Ci to a point x(i) in Rd. Consider first clauses with two variables of
the form (yj1 ∨ yj2) with j1 < j2. Let sj1 , sj2 ∈ {−1, 1} denote whether the variables are
negated in the clause, where 1 means not negated and −1 means negated. Then define the

point x(i) as follows: x
(i)
j1

= sj1 ; x
(i)
j2

= −sj2 ; and x
(i)
j = 0 for j /∈ {j1, j2}. For example:

(y2 ∨ y3) −→ (0, 1,−1, 0, . . . , 0).

7. An assignment which satisfies the maximum possible number of clauses from ψ.

11
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For clauses with four variables yj1 , . . . , yj4 with j1 < . . . < j4 let sj1 , . . . , sj4 ∈ {−1, 1} denote

whether each variable is negated. Define the point x(i) as follows: x
(i)
j1

= 3sj1 ; x
(i)
jr

= −sjr
for r = 2, 3, 4; and x

(i)
j = 0 for j /∈ {j1, . . . , j4}. For example:

(¬y1 ∨ y3 ∨ y4 ∨ ¬y6) −→ (−3, 0,−1,−1, 0, 1, 0, . . . , 0).

Finally, we also add the d unit vectors e1, . . . , ed to the set of points (the importance of
these “artificially” added points will become clear later). We thus have a set of n = m+ d
points. To constitute the correctness of the reduction we must argue the following:

• Completeness: If ψ is satisfiable there exists a unit vector w whose margin is at least
1/
√
d.

• Soundness: If there exists a unit vector w whose margin is at least (1 − ε)/
√
d then

there exists an assignment to variables which satisfies 1− δ fraction of ψ’s clauses.

We first show completeness. let y1, . . . , yd be an assignment that satisfies ψ. Define
wi = 1/

√
d if yi is set to true, and wi = −1/

√
d if yi is set to false. This satisfies ‖w‖2 = 1.

Since the coordinates of all points x(1), . . . , x(n) are integers, to show that the margin of w
is at least 1/

√
d it suffices to show that

〈
w, x(i)

〉
6= 0 for all points. This is definitely true

for the unit vectors e1, . . . , ed. Consider now a point x(i) which corresponds to a clause Ci.
We claim that if

〈
w, x(i)

〉
= 0 then y cannot satisfy both Ci and its negation C ′i, which also

appears in ψ since it is a symmetric formula. If Ci has two variables, say Ci = (y1∨y2), then
x(i) = (1,−1, 0, . . . , 0), and so if

〈
w, x(i)

〉
= 0 we must have w1 = w2 and hence y1 = y2.

This does not satisfy either Ci = y1 ∨ y2 or C ′i = ¬y1 ∨ ¬y2. If Ci has four variables, say
Ci = y1∨y2∨y3∨y4, then x(i) = (3,−1,−1,−1, 0, . . . , 0), and so if

〈
w, x(i)

〉
= 0 then either

w = (1/
√
d)(1, 1, 1, 1, . . .) or w = (1/

√
d)(−1,−1,−1,−1, . . .). That is, y1 = y2 = y3 = y4,

which does not satisfy either Ci or C ′i. The same applies if some variables are negated.
We now turn to prove soundness. Assume there exists a unit vector w ∈ Rd such that

|
〈
w, x(i)

〉
| ≥ (1− ε) 1√

d
. Define an assignment y1, . . . , yd as follows: if wi ≥ 0 set yi = true,

otherwise set yi = false. If we had that all |wi| ≈ 1/
√
d then this assignment would have

satisfied all clauses of ψ. This does not have to be the case, but we will show that it is so
for most wi. Call wi whose absolute value is close to 1/

√
d “good”, and ones which deviate

from 1/
√
d “bad”. We will show that each clause which contains only good variables must

be satisfied. Since each bad variable appears only in a constant number of clauses, showing
that there are not many bad variables would imply that most clauses of ψ are satisfied.

Claim 14 Let B = {i : |wi − 1/
√
d| ≥ 0.1/

√
d} be the set of “bad” variables. Then

|B| ≤ 10εd.

Proof For all i we have |wi| ≥ (1− ε)/
√
d since the unit vectors e1, . . . , ed are included in

the point set. Thus if i ∈ B then |wi| ≥ 1.1/
√
d. Since w is a unit vector we have

1 =
∑

w2
i =

∑
i∈B

w2
i +

∑
i/∈B

w2
i ≥ |B|

1.12

d
+ (d− |B|)(1− ε)2

d
,

which after rearranging gives |B| ≤ d 1−(1−ε)2
1.12−(1−ε)2 ≤ 10εd.
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Claim 15 Let Ci be a clause which does not contain any variable from B. Then the as-
signment y1, . . . , yd satisfies C.

Proof Assume by contradiction that Ci is not satisfied. Let x(i) be the point corresponding
to Ci. We show that

〈
w, x(i)

〉
< (1− ε)/

√
d, contradicting our assumption on w.

Consider first the case that Ci contains two variables, say Ci = (y1 ∨ y2), which gives
x(i) = (1,−1, 0, . . . , 0). Since Ci is not satisfied we have y1 = y2 = false, hence w1, w2 ∈
(−1/

√
d ± η) where η < 0.1/

√
d which implies that |

〈
w, x(i)

〉
| ≤ 0.2/

√
d < (1 − ε)/

√
d.

Similarly, suppose Ci contains four variables, say Ci = (y1 ∨ y2 ∨ y3 ∨ y4), which gives
x(i) = (3,−1,−1,−1, 0, . . . , 0). Since Ci is not satisfied we have y1 = y2 = y3 = y4 = false,
hence w1, w2, w3, w4 ∈ (−1/

√
d ± η) where η < 0.1/

√
d which implies that |

〈
w, x(i)

〉
| ≤

0.6/
√
d < (1− ε)/

√
d. The other cases where some variables are negated are proved in the

same manner.

We now conclude the proof of Theorem 12. We have |B| ≤ 10εd. Since any variable oc-
curs in at most t clauses, there are at most 10εdt clauses containing a “bad” variable. As all
other clauses are satisfied, the fraction of clauses that the assignment to y1, . . . , yd does not
satisfy is at most 10εdt/m ≤ 10εt < δ for ε = 0.1(δ/t) = Ω(δ) since t = 30 in Theorem 10.

5. Discussion

A question which is not resolved in this paper is whether there exists an efficient constant
factor approximation algorithm for the margin of FHP but for all points in the input. The
authors have considered several techniques to try to rule out an O(1) approximation for
the problem. For example, trying to amplify the gap of the reduction in section 4. This,
however, did not succeed. Even so, the resemblance of FHP to some hard algebraic problems
admitting no constant factor approximation leads the authors to believe that the problem
is indeed inapproximable to within a constant factor.
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Appendix A. Proof of Lemma 3

Lemma* 1 Let w∗ and y∗ denote the optimal solution of margin of θ and the labeling it
induces. Let y be the labeling induced by a random hyperplane w. The probability that
y = y∗ is at least n−O(θ−2).

Proof Let c1, c2 be some sufficiently large constants whose exact values will be determined
later. For technical reasons, assume w.l.o.g. that8 d > c1 log(n)θ−2. Denote by E the event
that

〈w∗, w〉 >
√
c2 log(n)θ−1 ·

√
1

d
.

The following lemma gives an estimate for the probability of E. Although its proof is quite
standard, we give it for completeness.

Lemma 16 Let w be a uniformly random unit vector in Rd. There exists some universal
constant c3 such that for any 1 ≤ h ≤ c3

√
d and any fixed unit vector w∗ it holds that

Pr[〈w,w∗〉 > h/
√
d] = 2−Θ(h2).

As an immediate corollary we get that by setting appropriate values for c1, c2, c3 we guarantee
that Pr[E] ≥ n−O(θ−2).

Proof Notice that Pr[〈w,w∗〉 > h/
√
d] is exactly the ratio between the surface area of a

spherical cap defined by the direction w∗ and height (i.e., distance from the origin) h/
√
d

and the surface area of the entire spherical cap. To estimate the probability we give a lower
bound for the mentioned ratio.

Define Sd, Cd,h as the surface areas of the d dimensional unit sphere and d dimensional
spherical cap of hight h/

√
d correspondingly. Denote by Sd−1,r be the surface area of a d−1

dimensional sphere with radius r. Then,

Cd,h/Sd =

∫ 1

H=h/
√
d

Sd−1,
√

1−H2

Sd
dH

We compute the ratio
S
d−1,
√

1−H2

Sd
with the well know formula for the surface area of a sphere

of radius r and dimension d of 2πd/2rd−1/Γ(d/2) where Γ is the Gamma function, for which

Γ(d/2) = (d−2
2 )! when d is even and Γ(d/2) = (d−2)(d−4)···1

2(d−1)/2 when d is odd. We get that for
any H < 1/2,

Sd−1,
√

1−H2

Sd
= Ω(

√
d · (1−H2)(d−2)/2) = Ω(

√
d · e−dH2/2)

and that for any H < 1,
Sd−1,

√
1−H2

Sd
= O(

√
d · (1−H2)(d−2)/2) = O(

√
d · e−dH2/2).

The lower bound is given in the following equation.

Pr
[
〈w,w∗〉 > h/

√
d
]

= Cd,h/Sd =

∫ 1

H=h/
√
d

Sd−1,
√

1−H2

Sd
dH ≥

∫ 2h/
√
d

H=h/
√
d

Sd−1,
√

1−H2

Sd
dH

(∗)
=

8. If that is not the case to begin with, we can simply embed the vectors in a space of higher dimension.
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Ω

(∫ 2h/
√
d

H=h/
√
d

√
d · e−dH2/2dH

)
= Ω

(∫ 2h

h′=h
e−h

′2/2dh′
)

= Ω
(
h · e−2h2

)
= e−O(h2)

Equation (∗) holds since 2h/
√
d < 1/2. The upper bound is due to the following.

Pr
[
〈w,w∗〉 > h/

√
d
]

=

∫ 1

H=h/
√
d

Sd−1,
√

1−H2

Sd
dH = O

(∫ 1

H=h/
√
d

√
d · e−dH2/2dH

)
=

O

(∫ ∞
h′=h

e−h
′2/2dh′

)
(∗∗)
= O

(∫ ∞
h′=h

e−h
2/2−hh′dh′

)
= e−Ω(h2)

In equation (∗∗) we used the fact that h2/2 + hh′ ≤ h′2/2 for all h′ ≥ h. The last equation
holds since h ≥ 1.

We continue with the proof of Lemma 3. We now analyze the success probability
given the event E has occurred. For the analysis, we rotate the vector space so that
w∗ = (1, 0, 0, . . . , 0). A vector x can now be viewed as x = (x1, x̃) where x1 = 〈w∗, x〉 and
x̃ is the d− 1 dimensional vector corresponding to the projection of x onto the hyperplane
orthogonal to w∗. Since w is chosen as a random unit vector, we know that given the
mentioned event E, it can be viewed as w = (w1, w̃) where w̃ is a uniformly chosen vector

from the d− 1 dimensional sphere of radius
√

1− w2
1 and w1 ≥

√
c log(n)θ−1 ·

√
1
d .

Consider a vector x ∈ Rd where ‖x‖ ≤ 1 such that 〈w∗, x〉 ≥ θ. As before we write
x = (x1, x̃) where ‖x̃‖ ≤

√
1− x2

1. Then

〈x,w〉 = x1w1 + 〈x̃, w̃〉 ≥
√
c log n

d
+ 〈x̃, w̃〉

Notice that both x̃, w̃ are vectors whose norms are at most 1 and the direction of w̃ is chosen
uniformly at random, and is independent of E. Hence, according to Lemma 16,

Pr
w

[
|〈x̃, w̃〉| ≥

√
c log n/

√
d
]
≤ n−Ω(c).

It follows that the sign of 〈w, x〉 is positive with probability 1 − n−Ω(c). By symmetry
we get an analogous result for a vector x s.t. 〈w∗, x〉 ≤ −θ. By union bound we get that
for sufficiently large c, with probability 1/2 we get that for all i ∈ [n], sign

〈
w, x(i)

〉
=

sign
〈
w∗, x(i)

〉
(given the event E has occurred) as required. To conclude

Pr
w∈Sd−1

[y = y∗] ≥ Pr
w∈Sd−1

[E] · Pr
w∈Sd−1

[y = y∗|E] ≥ n−O(θ−2).

Appendix B. A note on average case complexity of FHP

Given the hardness results above, a natural question is whether random instances of FHP
are easier to solve. As our algorithmic results suggest, the answer to this question highly
depends on the maximal separation margin of such instances. We consider a natural model
in which the points {x(i)}ni=1 are drawn isotropically and independently at random close to
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the unit sphere Sd−1. More formally, each coordinate of each point is drawn independently

at random from a Normal distribution with standard deviation 1/
√
d: x

(i)
j ∼ N (0, 1/

√
d).

Let us denote by θrand the maximal separation margin of the set of points {x(i)}ni=1. While
computing the exact value of θrand is beyond the reach of this paper 9 , we prove the
following simple bounds on it:

Theorem 17 With probability at least 2/3

Ω
( 1

n
√
d

)
= θrand = O

( 1√
d

)
.

Proof For the upper bound, let w be the normal vector of the furthest hyperplane achieving
margin θrand, and let yi ∈ {±1} be the sides of the hyperplane to which the points x(i)

belong, i.e, for all 1 ≤ i ≤ n we have yi
〈
w, x(i)

〉
≥ θrand. Summing both sides over all i and

using linearity of inner products we get〈
w,

n∑
i=1

yi · x(i)

〉
≥ θrand · n (2)

By Cauchy-Schwartz and the fact that ‖w‖ = 1 we have that the LHS of (2) is at most
‖
∑n

i=1 yi · x(i)‖ = ‖Xy‖. Here X denotes the d × n matrix whose i’th column is x(i), and
by y the {±1}n vector whose i’th entry is yi.

θrand · n ≤ ‖Xy‖ ≤ ‖y‖ · ‖X‖ ≤
√
n ·O

(√n+
√
d√

d

)
= O

( n√
d

)
(3)

where the second inequality follows again from Cauchy-Schwartz, and the third inequality
follows from the facts that the spectral norm of a d×n matrix whose entries are N (0, 1) dis-
tributed is O(

√
n+
√
d) w.h.p. (see Latala (2005)) and the fact that ‖y‖ =

√
n. Rearranging

(3) yields the desired upper bound.
For the lower bound, consider a random hyperplane defined by the normal vector

w′/||w′|| where the entries of w′ distribute i.i.d. 1√
d
N (0, 1). From the rotational invari-

ance of the Gaussian distribution we have that
〈
w′, x(i)

〉
also distributes 1√

d
N (0, 1). Using

the fact that w.h.p ||w′|| ≤ 2 we have for any c > 1:

Pr
[
|
〈
w, x(i)

〉
| ≤ 1

c · n
√
d

]
≤ Pr

[
|
〈
w′, x(i)

〉
| ≤ 2

c · n
√
d

]
= Pr

Z∼N (0,1)

[
|Z| ≤ 2

c · n

]
= O

( 1

c · n

)
. (4)

For a sufficiently large constant c, a simple union bound implies that the probability that
there exists a point x(i) which is closer than 1/(c · n

√
d) to the hyperplane defined by w

is at most 1/3. Note that the analysis of the lower bound does not change even if the
points are arbitrarily spread on the unit sphere (since the normal distribution is spherically
symmetric). Therefore, choosing a random hyperplane also provides a trivial O(n

√
d) worst

case approximation for FHP.

9. The underlying probabilistic question to be answered is: what is the probability that n random points
on Sd−1 all fall into a cone of measure θ ?
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