
YTools: A Package of Portable Enhancements to

Common Lisp

Version 2.1.42

Drew McDermott

November 30, 2008

Copyright (C) 1976-2007
Drew McDermott and Yale University. All rights reserved.

This software is released under the terms of the Modified BSD License.
See file COPYING for details.

Contents

1 Introduction 3

2 Facilities for Iteration and Function Binding 3
2.1 let-fun: Improved version of labels . 4
2.2 repeat: A clean loop facility . 5

3 Facilities for Setting and Matching 8
3.1 The != macro . 8
3.2 Qvars and the matchq macro . 9
3.3 Applications of the matcher . 11

4 An Improved Formatted I/O Facility 12
4.1 The out Macro . 12
4.2 The in Macro . 16

5 Signaling Conditions 16

6 Classes and Structures 18

7 Miscellaneous Features 21
7.1 The BQ Backquote Facility . 21
7.2 The Mappers . 24
7.3 Data-driven Programming . 24
7.4 Keeping Track of “Extra” Multiple Values . 26
7.5 Other Functions and Macros . 28

8 Downloading the Software and Getting it Running 36

1

9 The YTools File Manager (YTFM) 38
9.1 Loading files: fload . 39
9.2 Compiling Files: fcompl . 42
9.3 File Dependencies: depends-on . 43
9.4 YTools Logical Pathnames . 45
9.5 YTools Modules . 45
9.6 File Transduction . 47
9.7 Other File-Management Facilities . 47
9.8 Is It Possible to Avoid the YTools File Manager? . 49

A Some Notational Conventions 49
A.1 Syntactic Notation Used in This Manual . 49
A.2 Upper and Lower Case . 49
A.3 Special Characters . 49
A.4 Coding style . 50

B Alternative Names for Lisp Constructs 57

2

1 Introduction

I have been using Lisp for a long time, and have built several tools for doing things that Common
Lisp doesn’t do, or, in my opinion, doesn’t do right. This manual describes them.

To summarize my overall philosophy: Macros are good. They capture patterns that would
otherwise be clumsily repeated or have to be translated into awkward functions with odd lambda-
expression arguments. I don’t hesitate to define a macro if I find myself writing a page full of rule
definitions that are all of the same form, even if the macro will never be used again. The macros
described here are, for the most part, reusable many times.

Tools that are used a lot should have short names. Names involving special characters are often
shorter and, once one gets used to them, more suggestive than alphabetic names. Lisp should be used
as a functional language to the extent possible, and if you’re going to use remove-if a lot, it’s much
easier to write (<? atom l) than (remove-if-not #’atom l), and clearer, too. It’s an unfortunate
side effect of my fondness for such constructs that the newcomer to my code is often taken aback
by the number of strange symbols. Hopefully this manual will make it relatively painless to learn
and love them. All the symbols are listed in the index, near the front. Many of the odd symbols
occur as “guide symbols” in other macros rather than stand-alone constructs such as <?, and the
documentation for that macro should be consulted in order to figure out what one of them means.
For a quick reference, tables 2– 4 in section A.3 lists all the symbols with a quick explanation of
their meaning.

The manual is organized as follows. Each tool is introduced by a line in the following form

Toolname Category Location: where-to-find-it

The Category is either Macro, Function, or Variable. The Location specifies where the tool is
to be found. This information is explained in section 9. It tells you how to tell the file manager to
load the tool. If you’re reading this manual just to get acquainted with what YTools offers, you can
ignore the location information.

One special symbol that is used in many different contexts is the underscore (“ ”). In particular,
it may be used as the name for just about any bound variable that is to be ignored. I will point out
the contexts where this convention is allowed, but basically it is used wherever it would make sense
(in the parameters of a defun, but not the bound variables of a let, for instance).

Another terminological convention is that I avoid reference to t and nil, especially nil. (See
“NIL Considered Harmful”
http://cs-www.cs.yale.edu/homes/dvm/nil.html.)
Instead I refer wherever possible to “True” for the denotation of t and “False” or “empty list” for
the denotation of nil. These conventions are backed up by the definitions of the constants true,
false, empty-list), and , which are documented in section 7.5.

The YTools package has been developed for many years at Yale, and many people have made a
contribution to it, especially Eugene Charniak, Denys Duchier, Jim Firby, Steve Hanks, Jim Meehan,
Chris Riesbeck, and Larry Wright. They are probably collectively and severally appalled at what it
has become.

2 Facilities for Iteration and Function Binding

Some people like to put subroutine definitions before the definitions of their callers, some people
after. Although Lisp allows either order at the top level, in the labels construct all the definitions
must come before the body. It can make code much more readable if we allow them to come after,
flagged by the keyword :where.

3

2.1 let-fun: Improved version of labels

let-fun Macro Location: YTools, binders

The basic idea is embodied in the let-fun macro:

(let-fun (---local-defs-1---)

---body---

[:where ---local-defs-2---])

Each local-def is in the same format as for labels, except that an optional :def is allowed before
each definition. Example:

(defun apply-to-leaves (fn tree)

(let-fun ((walk-tree (tr)

(cond ((atom tr)

(leaf-handle tr))

(t

(mapcar #’walk-tree tr)))))

(walk-tree tree)

:where

(:def leaf-handle (x) (funcall fn x))))

The :def is purely optional; its presence is mainly to help search for local functions in text editors.
The only other notational variation from labels is that “ ” may be used instead of a parameter

in any of the local function definitions. The “ ” indicates a parameter whose value is ignored. So

(let-fun ()

#’foo

:where

(:def foo (a c)

...))

is equivalent to

(let-fun ()

#’foo

:where

(:def foo (a b c)

(declare (ignore b))

...))

Actually, you can just write (ignore b) instead of (declare (ignore b)).
The existence of :where makes possible a liberalization of the usual rules for indenting Lisp code.

If the very last thing in a function definition is a :where followed by some local function definitions
and closing parentheses, then I sometimes allow myself to move those definitions to the left of the
column containing the left paren before let-fun. So I might write the definition above thus:

(defun apply-to-leaves (fn tree)

(let-fun ((:def leaf-handle (x) (funcall fn x)))

(walk-tree tree)

:where

(:def walk-tree (tr)

4

(cond ((atom tr)

(leaf-handle tr))

(t

(mapcar #’walk-tree tr))))))

Of course, this device is wasted on small examples, but for large procedures it can save one from
dividing a program into arbitrary globally defined chunks just to avoid “Vietnamization.”1

There is an analogous facility called let-var:

(let-var (---local-vars---)

---body---

[:where ---local-vars---])

Each local-var is in the standard form used in let.

2.2 repeat: A clean loop facility

The complex loop macro of Common Lisp is, in my opinion, an aberration. Its syntax is un-Lisp-like
and its semantics are obscure. However, it does supply certain facilities that are useful, especially
the ability to collect values in a list in the order they are generated.

repeat Macro Location: YTools, repeat

The YTools repeat facility duplicates the useful parts of the built-in version, adds some other
useful features, and looks more Lisp-like:

(repeat [:for (---varspecs---

[[:collectors | :collector] ---vars---])]

---repeat-clauses---

[:where ---local-fundefs---])

where

varspec ::= var | (var val)

| (var = start [:by inc] [:to thresh])

| (var = start :then subsequent)

| (var = start :then :again)

| (var :in list [:tail var] [:initbind val])

repeat-clause ::= exp +

| :when test

| [:collect | :nconc | :append] collect-spec

| :within expression

| [:while | :until] test

| :result exp

collect-spec ::= exp | (:into var exp)

The keyword :for signals that we are binding variables for the scope of the repeat. There are two
classes of variable: collector variables and all the other kinds. The collectors are declared after all
the others, preceded by the keyword :collectors (or :collector, if it looks better). Each collector
variable is initialized to an empty collector.

1The tendency of Lisp code to wander off to the right, then eventually back to the left, until it resembles the map

of Vietnam.

5

The abstract datatype Collector is a list built backwards. Instead of consing elements onto
the front, you cons them onto the back. Most of the time the operations on collectors are implicit
in various repeat constructs, but there are times when you need to manipulate collectors directly.
You create a collector by evaluating (empty-Collector). The objects the collector c contains are
obtained by evaluating (Collector-elements c). Two successive calls to Collector-elements are not
guaranteed to return eq results. A new element x is added to the end of the elements by evaluating
(one-collect c x). An entire list can be added by (list-collect c l). list-collect may or may
not copy its list argument, so that subsequent collection operations might destructively alter that
argument.2 To reset a collector c to its empty state, execute (collector-clear c). However, let
me emphasize again that normally one doesn’t manipulate collectors directly, but only implicitly
through repeat operations whose syntax is specified above and whose meaning will be described
below.

repeat provides several constructs for binding, initializing, and stepping non-collector variables
(where v means a symbol used as a variable):

• v: Bind v for the duration of the repeat.

• (v e): Bind v to e; it may be reset inside the repeat.

• (v = e ...): Binds v to e initially. What happens on subsequent iterations varies among
subcases:

– (v = e): Equivalent to (v e).

– (v = e [:by i] [:to r]): On each iteration, add i (default 1) to v. Stop when v passes
threshold r (default: don’t stop). The phrase “passes threshold” means “is greater than”
unless i is a negative constant, when it means “is less than.” The expressions i and r are
evaluated just once, before the iteration begins and any of the variables are bound.

– (v = e :then s): On each iteration after the first, v is set to the value of s, which is
reevaluated on each iteration, with all the repeat variables in scope.

– (v = e :then :again): Equivalent to (v = e :then e).

If v will not be accessed in the body of the loop, it can be . (E.g., to print foo 10 times, you
can do (repeat :for ((= 1 :to 10)) (print ’foo)).)

• (v :in l [:tail vt] [:init val]): v is bound to val , and then to successive elements of l.
Iteration stops when the elements are exhausted. If :tail vt is present, vt is a symbol that
is bound to the tail of l starting with v. It is okay to reset vt in the body of the repeat, thus
changing the rate at which the loop advances; setting it to () causes the loop to terminate
before the next iteration. If you don’t actually need the value of v (say, because all you care
about is the value of vt),you can replace v with . The purpose of :init is to provide a value
for v before the first test whether the list is empty. If the list is empty to start with, then
this is the final value of v. The default :init value is nil. Even if the list is known to be
non-empty, it may be necessary to provide an :init field if v is declared within the repeat to
have a type incompatible with a value of nil.

Here is how the repeat is executed:

1. Auxiliary values (such as the :to expression e in (v = ...:to e)) are evaluated.

2. All variables are bound simultaneously.

2It is legal for collectors to be implemented as ordinary lists that are reversed when their elements are retrieved,

or as lists with an extra pointer to the last cons cell.

6

3. All the local-fundefs are created, just as for let-fun. These functions can “see” all the bindings
of the variables.

4. Every test implied by the variable-binding constructs is performed, in the order they are
bound. That is, for every binding of the form (v :in l ...), it is checked whether l has any
(remaining) elements. For every binding of the form (v = e ...:to l), it is checked whether v

is ≤ l. Iteration stops if a test fails.

5. Repeat clauses are executed in order. An ordinary expression is evaluated. A test of the form
:while e or :until e causes e to be evaluated; iteration stops if a test fails. A test of the form
:when e causes e to be evaluated; if e is False, the rest of the repeat clauses are skipped and
control advances to the next iteration.

6. A clause of the form :collect c, :nconc c, or :append c, where c is of the form (:into v e), is
handled by evaluating e and adding to the elements of v, which must be one of the collectors
declared after :collectors. If c is just e, with no :into, the first collector is implied. The
differences between the alternative clause forms are:

• :collect causes one element to be added to the end of the collector elements.

• :nconc causes a list of elements to be added (as list-collect would, which (see above)
means that its cells may or may not be reused).

• :append is the same as :nconc except that the list is copied before being added.

7. A clause of the form :within e is equivalent to e by itself, except that anywhere within e may
appear: :continue

(:continue —repeat-clauses—)

These clauses are evaluated within the lexical context established by e, but are otherwise
interpreted as if they appeared at the top level of the repeat. (See example below.)

8. If control reaches the end of the repeat body (because a :when test came up False or the last
clause was performed), all the variables with changes indicated by the binding constructs are
changed simultaneously, like the variables in a do. Then control branches back to the implied
tests at the beginning of the clauses.

9. Whenever a test indicates that iteration ends, the first :result e following the test is found,
e is evaluated in the scope of the variables, and the result is returned. However, a :result

inside a :continue is not counted as “following” tests outside that :continue. That is, when
a test indicates that the repeat is to end, the operative :result is the one found by searching
through the current :continue, then the immediate enclosing :continue, and so on, up to the
top level of the repeat.

Important note: In a result clause, the value of a collector variable is the list of values accumu-
lated. Everywhere else, including inside local functions called by a result clause, the value is the
actual Collector.

If there are no tests in the repeat, implied or explicit, the macro expander will issue a warning
message. Sometimes not having any tests is actually correct, because the repeat is going to exit in
some nonstandard way (say, by throwing a value). (repeat establishes a block named nil, so return

can be used to exit it as well.) To make the warning go away, put in a :while or :until whose test
is a string. This will be discarded and the warning suppressed.

Any atom in the repeat body is ignored unless it is one of the keywords specified above (or one
allowed by the abbreviation conventions below). So you can write :else :result if it makes the
control flow clearer.

The syntax of repeat is often considerably simplified by the use of the following abbreviations:

7

• If no :collectors are declared, but there are :into-less clauses of the form :collect e, then a
default collector d is created, and the collect clause is interpreted as :collect (:into d e).

• If there is an (explicit or implied) termination test with no :result after it, the result of the
repeat is the contents of the first or default collector, if any; if there are no collectors, the
repeat has no predictable result, and is presumably executed just for its effects.

• If there is just one variable binding, whose second element is :in or =, then the parens around
the variable bindings can be omitted. That is, you can write (repeat :for (x :in l) ...)

instead of (repeat :for ((x :in l)) ...).

These rules have the consequence that if there is just one collector var, then you may usually omit
all its occurrences. So (repeat :for (... :collector c) :collect (:into c e) :result c) can be
written (repeat :for (...) :collect e).

As an example of repeat, a do loop

(do ((v1 e1 b1)

(v2 e2 b2))

((test v1 v2) (res v2 v1))

(format srm "~s~%" (foo v1 v2)))

can be written as

(repeat :for ((v1 = e1 :then b1)

(v2 = e2 :then b2))

:until (test v1 v2)

(format srm "~s~%" (foo v1 v2))

:result (res v2 v1))

The :within-:continue construct can be used to wrap variable binders and conditional tests
around repeat clauses. Example:

(repeat :for ((x :in l)

:collector c)

:within

(let ((y (expen x)))

(cond ((proper y)

(:continue

:collect y

:until (final x)))))

:result c)

(We could omit all explicit mentions of the collector c, but the result would probably be more
obscure.)

3 Facilities for Setting and Matching

YTools defines various facilities for setting variables and other “places.”

3.1 The != macro

!= Macro Location: YTools, setter

(!= place newval) is a generalization of setf, providing these extra features:

8

1. If place is a sequence of the form < v1 ...vn >, then (!= < v1 ...vn > newval) is equivalent
to (multiple-value-setq (v1 ...vn) newval). This is the only case where != has more than
two arguments. The spaces before and after the brackets are necessary. You can write for
any value that is not used., as in (!= < a c > (foo c d)), which uses only the first and third
values returned by foo.

2. (!= (< v1 ...vn >) newval) sets vi to the i’th element of newval , which must be a list of at
least n elements. Again, the spaces separating the brackets from the v’s are necessary; and
the notation may be used to skip elements of newval.

3. If neither of these cases applies, then newval may contain occurrences of *-*, which stands
for the contents of place before the assignment. For example, (!= (car (get foo ’tally)) (+

- 3)) augments (car (get foo ’tally)) by 3. The != macro uses setf-expanders to avoid
recomputing the left-hand side to the extent possible. The example above might expand to

(let* ((#:g11726 (get foo ’tally))

(*-* (car #:g11726))

(#:g11725 (+ *-* 3)))

(rplaca #:g11726 #:g11725)

#:g11725)

Just like setf, != always returns its second argument, the new value.

setter Macro Location: YTools, setter

(setter p), where p is a place, is the function

(lambda (new-val fcn)

(!= p (funcall fcn *-* new-val)))

If you pass (setter e) to a function as an argument (call it s), the function can alter the value of e

by calling s. For example, to subtract 1 from e, it could execute (funcall s 1 #’-). Note that setter
returns the new value of p. To simply set e to a value v, you can use the built-in global variables
<-this-val or ∧-this-val. These are both synonyms for (\\ (x) x), but they are variables, not
functions, so they don’t need #’ tacked on their noses. To retrieve the current value of e, you can
use the built-in global variable retrieve-val, which is a synonym for (\\ (x) x).

3.2 Qvars and the matchq macro

The question mark character is reserved by YTools for use in writing “match variables,” or qvaroids.
A special case of the qvaroid is the qvar, which is written (and readable) as ?sym. A qvaroid is an
abstract object consisting of four slots:

1. sym: A symbol

2. notes: A list of stuff, used for various purposes

3. atsign: A boolean

4. comma: A boolean

A qvaroid can be constructed using make-Qvaroid: (make-Qvaroid a c s l) makes a qvaroid with
atsign=a, comma=c, sym=s, and notes=l. The external representation of a qvaroid is ?[@][,](s .

l). E.g., a qvaroid with atsign=False, comma=True, sym=foo, and notes=(a b) is printed ?,(foo a

9

b). This representation is also readable. (When read, the comma and atsign may appear in either
order.) If the “notes” field is the empty list, the parens are optional.

A qvar is a qvaroid with atsign=comma=False and notes=empty list. It is read and printed as
in ?foo. Its constructor is (make-Qvar sym notes). (Okay, so make-Qvar will make a qvaroid if its
second argument is non-empty.)

These datatypes may be used for any purpose you see fit, including especially writing unification
algorithms and the like. In writing such an algorithm, you will want to refer to the fields of a
qvar(oid), using (Qvar-atsign q), (Qvar-sym q), and so forth.

There is also a built-in list matcher:

matchq Macro Location: YTools, setter

matches Macro Location: YTools, setter

(matchq pattern datum), where the pattern and datum are list structures, tries to match the pattern
against the datum. If it succeeds, it returns True, else False. It has as side effect that the variables
in some of the qvaroids in the pattern get new values drawn from the parts of the datum that they
match. (matches datum pattern) is synonymous, but often more readable when emphasizing the
test rather than the assignment of variables.

A simple example is (matchq (P ?x ?y) d). The match succeeds if d is a list of exactly 3 elements,
of which the first is P. The variable x is set to the second element and y to the third.

It is important to realize that matchq is expanded at compile time, so that the pattern does not
need to be scanned at run time. The example above expands to something like this:

(let ((ttt d))

(and (consp ttt)

(eq (car ttt) ’P)

(let ((ttt (cdr ttt)))

(and (consp ttt)

(progn (!= x (car ttt)) true)

(let ((ttt (cdr ttt)))

(and (consp ttt)

(progn (!= y (car ttt)) true)

(null (cdr ttt))))))))

Assignments are done immediately as pieces of the datum are matched. So even if the match fails,
some of the variables in the pattern could be set. Matching is done left-to-right, so if a program can
detect which variable got set and which didn’t, it can infer where the match failed, or at least a set
of places where it might have failed.

If a qvaroid has the comma flag set, then it matches the current value of its sym. So (matchq (P

?x ?,y) d) succeeds (and sets x) if d is of the form (P anything v), where v is the value of y. And
(matchq (P ?x ?,x) d) succeeds if d is of the form (P a a), setting x to a.

If a qvaroid has the atsign flag set, then it matches a segment of a list from the datum. A
segment is a sequence of zero or more list elements. If a qvaroid matches a segment, its variable is
assigned to a list of the items in the segment. For example, (matchq (P ?@x z) d) succeeds if d is a
list beginning with P and ending with z. The variable x is bound to all the items between them; if
d = (P ying yang z), then x gets value (ying yang); if d = (P z), then x gets value (). Important
restriction: there can be at most one segment (atsigned) variable in a given list (i.e., a given sublist
of a list structure). This restriction is required to ensure that the matcher doesn’t have to backtrack.

If both the atsign and comma flags are set, then the qvaroid matches a sequence of items equal
to the current value of its sym.

If the notes field of a qvaroid is non-empty, then the qvaroid is a special match construct, one of
the following. (I use the word “datum” here to mean “the piece of the datum being matched against
this construct.”)

10

• ?(:& p1 ... pn): matches the datum if each of the pi does.

• ?(:|| p1 ... pn [:& p&]): matches the datum if one of the pi does. If the fragment “:& p&”
is present, then the datum must also match p&, which is useful for binding a variable to a
datum that matches one of several patterns. For instance, the pattern (a ?(:|| huey dewey

louie :& ?name)) matches any of the data (a huey), (a dewey), and (a louie), setting name to
the cadr of the datum. Another way of putting it is that the example pattern is equivalent to
(a ?(:& ?name ?(:|| huey dewey louie))), but more concise.

• ?(:+ p r1 ... rk) matches the datum if p matches it, and it satisfies all the predicates ri.
Each predicate is the name of a function; write fun instead of #’fun.

• ?(:~ p) matches the datum if and only if p does not.

In these qvaroids, the atsign flag may be used, but not the comma flag. When the atsign flag is
present, the piece of the datum matched is a segment of the original datum.

Examples:

(matchq (P ?(:& ?x (foo ?,y)))

d)

succeeds if d is of the form (P (foo v)), where v is the value of y. In addition, it sets x to (foo v).

(matchq (P ?@(:+ ?l (\\ (x) (is-list-of x #’is-Integer))))

d)

succeeds if d is of the form (P n1 ... nk), where each ni is an integer. In addition, it sets l to the
list of all the ni. (“\\” is an abbreviation for lambda.)

If you care about the structure of the datum, but don’t want to assign a variable, you can use
the convention. So the pattern (P ? ?@) matches any list of length at least two starting with a
P, without setting anything.

3.3 Applications of the matcher

match-cond Macro Location: YTools, setter

The matcher is used to implement the match-cond macro:

(match-cond datum

[declarations]

---clauses---)

The datum is evaluated, and then the clauses are handled the same as in cond, except for clauses
headed by :?. Any clause of the form

(:? pat

---body---)

is handled by matching the pattern pat against the datum. If the match succeeds, the body is
executed, and no further clauses are examined.

All the (comma-free) variables in the patterns of a match-cond are bound with scope equal to the
match-cond. In addition, the variable match-datum is bound to the datum being matched.

Example:

11

(match-cond (get x ’dat)

(:? (P ?u ?v)

(list ’P u v))

(:? ((lambda (?v) (Q ?,v)) ?@_)

(list ’lambda v))

(t ’nomatch))

is equivalent to

(let ((match-datum (get x ’dat)))

(let (u v)

(cond ((matchq (P ?u ?v) match-datum)

(list ’P u v))

((matchq ((lambda (?v) (Q ?,v)) ?@_)

match-datum)

(list ’lambda v))

(t ’nomatch))))

match-let Macro Location: YTools, setter

The match-let macro is used as a “destructuring binder”:

(match-let pattern datum

---body---)

The pattern must match datum; assuming it does, the body is executed. If the match fails, an error
is signaled.

4 An Improved Formatted I/O Facility

4.1 The out Macro

out Macro Location: YTools, outin

The out macro is an alternative to the awful format facility
http://www.cs.yale.edu/homes/dvm/format-stinks.html.
Unlike format, which separates a “control string” from the data to be output, the out macro inter-
leaves them. For instance, the format in the do example of the previous section

(format srm "~s~%" (foo v1 v2))

can be written

(out (:to srm) (foo v1 v2) :%)

Note that the “out directive” :% has a name similar to the corresponding format directive ˜%.
As a slightly more complex example, to output x, y, and their sum, with appropriate annotations:

one could write

(out "x = " x ", y = " y :% 3 "x+y = " (+ x y) :%)

If x is 10 and y is 13, then this would cause the following output:

x = 10, y = 13

x+y = 23

The “3” means “insert 3 spaces.”
The general form of out is

12

(out [(:to stream)] ---out-directives---)

If (:to stream) is present, output goes to the value of the expression stream, otherwise to *standard-output*.
If stream is the symbol :string, then output goes to a new string which is eventually returned as
the value of the out form. Each out-directive is one of those shown in table 1.

For example, here is how you might output a list dtl of defective objects of type Tribbly:

(out (:to *error-output*)

"The following tribblies have problems:"

:% (:e (repeat :for ((dt :in dtl)))

(:o (Tribbly-name dt) :%

"Problems:")

(repeat :for ((tt :in (Tribbly-troubles dt)))

(:o tt :%))

(:o :%)))

If we want each tribbly to be indented, and each problem to be indented under its tribbly, and
also to avoid plural nouns when grammatically inappropriate, we could get fancier:

(out (:to *error-output*)

(:q ((null dtl)

"All tribblies are okay" :%)

(t

"The following tribbl"

(:q ((> (length dtl) 1) "ies have")

(t "y has"))

" problems: "

:%

(:e (repeat :for ((dt :in dtl) num)

(setq num (length (Tribbly-troubles dt)))

(:o (Tribbly-name dt)

(:i> 3) :%

"Problem"

(:q ((not (= num 1)) "s"))

": " (:i> 3) :%

(:e (repeat :for ((tt :in (Tribbly-troubles dt)))

(:o tt :%)))

(:i< 6) :%))))))

The out macro fiddles with its output stream behind the scenes, in much the way pprint-logical-block

does. (The two manipulations are entirely orthogonal, and you can freely intermingle calls to one
with calls to the other.) Hence the result of writing to the same stream outside the out regime is
undefined. This is the reason for the :stream field in the :e out-directive. It causes the specified
variable to be bound to the modified stream object being output to. It is safe to pass this object to
calls to out from within subroutines called inside an :e directive. For example, suppose we want to
create a subroutine that behaves similarly to the ˜p directive in a format control string (except it
takes a list or a number as input):

(defun pluralize (n srm &optional (alt-endings ’("" "s")))

(cond ((not (is-Number n))

(setq n (length n))))

(out (:to srm)

(:q ((= n 1) (:a (car alt-endings)))

(t (:a (cadr alt-endings))))))

Now we can write our example as

13

An integer n If n > 0, insert this many spaces into the output. If n < 0, insert
−n newlines into the output. If n = 0, insert a newline unless
already at the beginning of a line.

:% Insert a newline.
A string princ the string.
(:a e) Evaluate the expression e and princ the result.
(:t n) Tab to column n (which is not evaluated).
(: e) Evaluate expression e, producing an integer. Treat it as though it

occurred as an out-directive (i.e., print spaces or newlines).
(:i= e) Evaluate e, getting an integer n; indent all further lines by n spaces

from the left margin. This indentation carries over to all calls of
out on the same stream until the current out form finishes.

(:i> e) Like :i=, except that new indentation is relative to the current
indentation.

(:i< e) Equivalent to (:i> (- e)).
(:q ---clauses---) Each clause is of the form (test ---out-directives---). Resume

processing out-directives with the list from the first test that eval-
uates to a non-False value.

(:e [(:stream v)]

---exps---)

Evaluate each exp and discard the results. Any subexpression of
exp of the form (:o d . . .) is, every time it is executed, treated as
though d . . . had occurred among the top-level out-directives. If
the (:stream v) part is present, then the variable v is bound to the
stream being printed to for the duration of the :e form. See text
for explanation.

(:pp-block

[(:pre p)]

d . . .

[(:suf s)])

Print a logical block, with the given optional prefix and suffix. d . . .

is a sequence of out-directives.

(:pp-ind [:block

|:current]

n)

Indent subsequent lines in the current logical block by the value of
n. Indentation is relative to the block or the current indentation
depending on whether :block or :current is the first argument.

(:pp-nl [:linear

| :fill

| :miser

| :mandatory])

Possibly insert a newline into a logical block. See the documenta-
tion for pprint-newline.

(:f c ---args---) Output the args under the control of the format control string c.
Still the best way to print floating-point numbers.

(:v e) Evaluate e and save its value(s). The value(s) of e become the
value of the out-form.

Anything else Evaluate it and print the result (just like the “˜s” format directive,
which requires no counterpart in out).

Table 1: out-directives

14

(out (:to *error-output*)

(:e (:stream errsrm)

(:o (:q ((null dtl)

"All tribblies are okay" :%)

(t

"The following tribbl"

(:e (pluralize dtl errsrm ’("y has" "ies have")))

" problems: "

:%

(:e (repeat :for ((dt :in dtl) num)

(setq num (length (Tribbly-troubles dt)))

(:o (Tribbly-name dt)

(:i> 3) :%

"Problem"

(:e (pluralize num errsrm))

": " (:i> 3) :%

(:e (repeat :for ((tt :in (Tribbly-troubles dt)))

(:o tt :%)))

(:i< 6) :%))))))))

The stream passed to pluralize is essentially the same as *error-output*, but safe to write to
using inner calls to out.

The indentation level used by out can be altered by using the macro out-indent instead of the
:i>,:i< directives.

(out-indent srm n

---body---)

binds the indentation level of the stream srm to its current value + n and executes the body.
(out-indent s n (out ...) e) is roughly equivalent to (out :to s (:i> n) ...(:v e)) but can be
less obscure and more efficient. For example,

(out-indent *error-output* 3

(recurse))

may well end up being equivalent to a straightforward call to recurse, if nothing is printed to
error-output. In the same circumstance, (out (:to *error-output*) (:i> 3) (:v (recurse)))

must make a list of the values returned by recurse and turn it back into a row of values when out

returns. Whether or not this efficiency loss is important can be debated, but, because the out-form
doesn’t actually seem to print anything, it looks puzzling.

The dbg-out macro is often handy. (dbg-out gate-var —out-directives—) is equivalent to

(cond (gate-var

(out (:to *error-output*) ---out-directives---)))

except that if the out-directives don’t end with :%, a newline is inserted into the stream after
everything is printed. dbg-out-indent is to dbg-out as out-indent is to out.

(dbg-out-indent gate-var n

---body---)

behaves like (out-indent *error-output* n —body—) if gate-var is True; otherwise like body alone.
Several other macros expand into forms that produce output using the same conventions as out.

In this manual, these forms are indicated by the subexpression —out-directives—. A case in point
is read-y-or-in, which replaces y-or-n-p, as part of our campaign to stamp out format:

15

read-y-or-n Macro Location: YTools, outin

(read-y-or-n [:yes-no] —out-directives—) follows the out-directives, which should produce a
question, and waits for the user to answer y or n, after which it returns True or False. If the flag
[:yes-no] is present, then the user must answer yes or no instead of y or n.

4.2 The in Macro

in Macro Location: YTools, outin

For input, YTools supplies a simple facility called in. The form is similar to that of out:

(in [(:from stream)] ---in-directives---)

This reads in a number of objects and returns them as multiple values. If an end of file occurs, no
error is signaled, but instead the value eof* is returned instead of the object sought. More precisely,
if the in would normally return N values, and only M < N can be read, then values 1, . . . , M are
the objects read, and values M + 1, M + 2, . . . , N are eof*.3

The repertoire of in directives is considerably smaller than the set of out directives:

• :obj — A Lisp object is read from the input stream.

• :char — A single character is read from the input stream.

• :peek — A character is peeked at and returned (but left in the input stream).

• :string — A whitespace-delimited string is read. If an end-of-file is encountered, eof* is
returned if the string is so far empty. Otherwise, the eof* behaves like a whitespace, and
simply ends the string.

• :linestring — A line is read and returned, as if by read-line.

• :linelist — A line is read and returned as a list of Lisp objects. If an object is a list, the
:linelist reader may well have to go on to other lines to read the whole thing. So a more
precise definition of linelist is: Return the shortest list of Lisp objects (b1 ... bn) such
that (a) readable representations of b1, b2, . . . , bn are the first n things in the input; and (b)
only whitespace remains on the line where the readable representation of bn ends.

• :keyword — A string is read (as :string would), and the result is interned as the name of a
symbol in the keyword package.

5 Signaling Conditions

In Common Lisp, error, cerror, signal, and other constructs take “condition designators” as argu-
ments. These can include (ugh) format arguments, so we replace all of these with macros that use
out instead. The main macro is:

signal-problem Macro Location: YTools, signal

3It is a property of the in macro that the number of objects returned can be ascertained at compile time.

16

(signal-problem [place-spec]

[condition-spec]

[proceed-spec])

place-spec ::= [:place] p | :noplace

condition-spec ::= (:condition c)

| (:class condition-class ---args---)

| ---outargs---

proceed-spec ::= :fatal | :proceed

| (:proceed ---restart-description---)

| (:prompt-for ---object-description-- default)

The main thing signal-problem does is create a condition object and signal it. There are three
ways to describe the object to be created:

1. (:condition c): c evaluates to the condition.

2. (:class c ---args---): The condition is obtained by evaluating
(make-condition ’c ---args---).

3. Anything else: is interpreted as describing a vanilla condition that prints as though the
condition-spec were arguments to out.

As with the standard Lisp condition signalers, if the condition is handled, then control transfers
to the handler. Otherwise, the debugger is entered, which is where the place-spec and proceed-spec
come in. The debugger prints a message such as

Error: p broken

where p is the object specified by the place-spec; p is usually a symbol, but can be anything; it isn’t
evaluated. The guide symbol :place can be omitted if p is a symbol. This convention can lead to
bugs; if you write (signal-problem x " < 0"), the debugger will print:

Error: x broken

< 0

which is probably not your intention. You can avoid x being taken for the place name by writing
:noplace where the place designation goes. If x has value −5, you can write (signal-problem

:noplace x " < 0") to get

Error: BREAK

-5 < 0

When the debugger is entered, the proceed-spec influences the displayed restarts. If it’s :fatal

(the default), there is no way to continue from the error. If it’s :proceed, there will be a restart with
a bland message such as ”I will try to proceed.” You can tailor the message by writing (:proceed

---out-directives---), where —out-directives— produce a string paired with the restart.4

If the proceed-spec is of the form (:prompt-for —out-directives— default), then the message
associated with the “continue” restart is

You will be prompted for: description

where description is the string produced by the out-directives . If you take that continuation, you
will be given the choice of typing :ok or of typing :return e. In the former case :signal-problem

returns the value of default ; in the latter, of e.
Some relatives of signal-problem:

4Older versions of YTools used :continue instead of :proceed, and it is still allowed, but deprecated because

using it inside a repeat–:within can cause confusion.

17

signal-condition Macro Location: YTools, signal

(signal-condition condition-spec) signals the condition described by condition-spec (see above).
If it is not handled, signal-condition returns False.

breakpoint Macro Location: YTools, signal

(breakpoint —out-directives—) is just like break, except that out is used to print its arguments
instead of format.

6 Classes and Structures

One of the cool things about Common Lisp is that you can specialize a generic function on any or
all arguments, and any or all datatypes. It is just as easy to specialize on an Integer as on some
hairy CLOS class. Because this is so, the distinction between classes and structures is quite blurry.
Structures are in some sense “light-weight” classes. But the macros used to define them, defstruct
and defclass, have rather different syntax and several unnecessary differences in effect. It would be
nice to have a way of defining an abstract data type that deemphasized whether it was a class or
a struct. That way, you could flip easily between implementing it as a class or as a struct, without
having to change lots of code.

def-class Macro Location: YTools, object

The def-class macro does exactly that. In addition, it focuses attention on a subset of object-
oriented programming, which happens to be the subset I use. The result is a somewhat more concise
language for describing the usual cases. If you love really hairy OOP, then this tool is not for you.
On the other hand, if you don’t even want to know whether an abstract datatype is a structure or
a class, give it a whirl.

The full syntax is thus:

(def-class name

---slot-defns----

[(:handler

---meth-defns---)]

[(:options [(:include ---components---)]

[(:medium [:list | :vector

| :structure | :object]

[:named | :slots-only]

[:already-defined])]

[:key])])

A given call to def-class defines either a structure or a class type. For conciseness, I will use the
term classoid to refer to the datatype defined by a given call to def-class.

Each slot-defn is either a symbol naming a slot, or a list of the form

(slotname initform [:type type])

Each meth-defn in the “handler” is of the form required by defmethod, without the explicit
defmethod. (The :handler field and the :options field can be in either order, and can appear
anywhere in the body of the def-class, even in the slot list.)

The :include field specifies the components of the classoid, i.e., the superclasses or included
structures.

The :medium option gives the choice of four “media”: :list, :vector, :structure, and :object.
The first three cause def-class to expand into a defstruct, the last, into a defclass. If the :medium

18

option is omitted, then the def-class defines a class (that is, it expands into a defclass) if and only
if there is more than one component classoid, or the only component is a class. (Of course, if there
is more than one component, they must all be classes or an error will be signaled.) If the medium is
:vector or :list, the new objects defined by this def-class will be implemented as ordinary vectors
and lists. If the :named flag is present, the first slot of such a vector or list will be reserved for the
name of the class; if the :slots-only flag is present, it will just be an anonymous vector or list;
:named is the default. The :slots-only flag is illegal, and hence the :named flag redundant, for media
:structure and :object. (This nice simple rule, that :named is the default regardless of medium, is
different from that of defstruct.)

The :already-defined flag means that someone else defined the classoid, and this call to def-class

is just for the purpose of declaring it. If :already-defined is present, the classoid can have slots but
not a handler or any components.

Unlike defstruct and defclass, def-class by default creates a positional constructor, always
called make-classname. The order of the arguments is determined as follows: Find the class(oid)
precedence list for all the components and reverse it; now enumerate all the slots of each component
in that list; for each classoid, the slots are included in the order they were declared in.

Here’s an example of a couple of def-classes that expand into a couple of defstructs:

(def-class Animal

blood-temp numlegs)

(def-class Mammal

(:options (:include Animal))

(lays-eggs false :type boolean))

The constructor make-Mammal for Mammal takes three arguments, blood-temp, numlegs, and lays-eggs,
in that order.

Non-key constructors are useful for simple classoids (which most of mine are), but become un-
wieldy for classoids with many slots or components. To declare a key constructor instead, add the
:key option. If you don’t, you can still use a key-constructor, because def-class defines an extra
constructor make-classname-key that uses &key arguments.

The def-class macro will warn you if you defined a classoid with a non-key constructor that has
more than 10 slots or 2 classes. In addition, if the class being defined has a component with a key
constructor, then the macro will give this one a key constructor, too. [[There is currently no way to
override this behavior.]]

make-inst Macro Location: YTools, object

initialize Generic Function Location: YTools, object

Finally, if the classoid is a class, one can make an instance by writing (make-inst classname —

key-args—). make-inst is just like make-instance, except that the first argument is not evaluated.
It’s the name of the class, not something that evaluates to that name.

Once an object is created, by any of the methods above, the generic function initialize is
applied to it. The methods that are called as a result can perform tasks such as filling slots that
still don’t have values after using their initforms. The following are helpful for this task:

• (slot-is-filled ob slot) tests whether the given slot is bound in ob. (Both ob and slot are
evaluated.) One difference between class and structure instances is that the former can have
truly unbound slots, whereas structure slots are always filled, traditionally with nil. In YTools,
a structure slot has default value +unbound-slot-val+, a constant bound to a unique object.
So slot-is-filled tests whether a slot is truly unbound or has value +unbound-slot-val+.

19

• (slot-defaults ob s1 v1 ... sn vn) fills unfilled slots of ob. If slot s1 is unfilled, v1 is evalu-
ated and used to fill it. Then if s2 is unfilled, v2 is evaluated and use to fill s2. The slotnames
are not evaluated. The order of evaluation and slot filling is left-to-right, so later values may
use earlier ones.

The handler of a classoid defines methods in the usual way. If for some reason you want to use
the :print-function or :print-object options of a defstruct, you write a handler clause with the
corresponding keyword where the generic function name should be, as in this example:

(def-class Sec-method

public-key private-key

(:handler

(:print-function (sec-meth srm lev)

(out (:to srm) "#<Security method, public key = "

(:q ((> lev *print-level*)

(Sec-method-public-key sec-meth))

(t "####"))

">"))

(cough-it-up (sec-meth)

(Sec-method-private-key sec-meth))))

Note that the first argument of the second method definition doesn’t look right. It should be
of the form (sec-meth Sec-method). def-class will fix up such discrepancies, but only for the first
argument. The discrepancies go both ways: the :print-function option for defstruct does not
expect a specializer on its first argument, and if you include one it will be removed.

Classes and structures have another difference that def-class smooths over. Suppose in my
mammal example we have an instance of mammal stored in v1. We can refer to its numlegs slot by
writing (Mammal-numlegs v1) or (Animal-numlegs v1). But suppose we now switch to implementing
them as objects, thus:

(def-class Animal (:options (:medium :object))

blood-temp numlegs)

(def-class Mammal

(:options (:include Animal) (:medium :object))

(lays-eggs false :type boolean))

Do the calls to Mammal-numlegs still work? The answer is Yes. YTools defines all the functions
required to make defclass behave like defstruct in this regard. This spares us from having to
change all occurrences of Mammal-numlegs to Animal-numlegs, or from having to define the auxiliary
functions by hand.

[[One feature missing from def-class is conc-name. It could be included without too much effort]]

with-slots-from-class Macro Location: YTools, object

(with-slots-from-class (—slots—) x - c —body—) is like the Common Lisp macro (with-slots

(—slots—) x —body—), except that it uses the access functions from classoid c instead of slot-value
to access the slots of x. For instance, in the body of

(with-slots-from-class (nickname (fullname entire-name-incl-middle))

p - Person

---body---)

an occurrence of nickname is treated as though it were (Person-nickname p), and an occurrence of
fullname is treated as though it were (Person-entire-name-incl-middle p). In the corresponding

20

with-slots form, occurrences of nickname become (slot-value p ’nickname), and occurrences of
fullname become (slot-value p ’entire-name-incl-middle). The only problem with with-slots is
that not all Lisp implementations allow the use of with-slots with structures instead of genuine
objects.

def-op Macro Location: YTools, object

(def-op name arglist

[| (:method-combination —combo-spec—)

| (:argument-precedence-order —param-names—)]*

—body—)

This is a near-synonym for defgeneric; the only difference is that if the body is non-empty it is
used to make a default method for the newly defined generic function name , that is, a method that
qualifies all the arguments with type t. (The op in the name of this macro is short for operation,
which was the name used for generic functions in the T dialect of Scheme (?).)

7 Miscellaneous Features

7.1 The BQ Backquote Facility

Backquote is an indispensable feature of Lisp. Yet the standard spec for it leaves something to be
desired. I have two main complaints:

1. There are three things to implement when implementing a facility like backquote: a reader,
a macro-expander, and a writer. The reader converts a character sequence such as ‘(foo ,x)

into an internal form such as (backquote (foo (bq-comma x))). (This is what Allegro reads it
as.) The macro-expander then turns calls to backquote into constructor forms such as (list

’foo x). The writer prints (backquote (foo (bq-comma x))) as ‘(foo ,x).

Unfortunately, the Common Lisp spec does not specify what the macros are. They are, there-
fore, implementation-dependent. Compare the situation with ordinary “quote,” where there
is a well-defined internal form (quote x), and therefore a well-defined transformation from the
external form ’x. The problem with leaving it unspecified is that it is impossible to write
your own tools that fit together with the reader, macro-expander, or writer. For instance,
there is no way to write a portable code walker that does something special with backquoted
expressions. In fact, an implementation is not required even to have an internal representation
for backquotes. The reader and the macro-expander can be merged, so that ‘(f ,x) is read as
(list ’f x). Then the backquote writer’s behavior is not well defined, because it is impossible
to tell whether a list-constructing form came from a backquote or not.

That’s an example of interfacing with the macro-expander. You might also want to interact
with the reader. Suppose you wanted to create a generalized backquote readmacro (call it !@)
that built something other than list structures. You might write !@(make-a-foo (baz ,a) ,@l)

as short for (apply #’make-a-foo (list ’baz a) l). Many Lisp implementations will signal
an error of type “Comma not inside a backquote” when the expression !@(...) is read, and
there is no portable way to intervene in the read process to make this legal.

2. The rule for interpreting nested backquotes is that a comma is paired with the innermost
backquote surrounding it (and “raises” its argument out of that context, so that the next
comma matches up with the next backquote, and so forth).

I think this is wrong, or at least wrong in some cases. I read backquotes left-to-right, and hence
see the outermost backquote first. One would like it to be the case that from that backquote’s

21

point of view, everything inside it is “inert” (quoted), except stuff marked with a comma. This
is true for all expressions that might occur inside it, except another backquote. So if you are
editing a complex backquote expression:

‘(foo (bazaroo ’(fcn a ,x)))

the inner quote doesn’t “shield” x from evaluation. But if you convert the inner quote to a
backquote, that’s exactly what happens. You have to convert it to this:

‘(foo (bazaroo ‘(,fcn a ,’,x)))

The ,’, construct is just plain ugly. Its sole purpose is to raise its argument out of the
innermost backquote; you can’t say ,,x, because that would mean “Evaluate x when the
outer backquote is expanded, getting e, and then evaluate e when the innermost backquote is
expanded.” Notice how the order of evaluation is outside-in, while the nested-backquote rule
is inside-out. Very, very confusing.

These are not huge defects; 99.9% of all backquotes are not nested, and almost no one cares what
the internal representation of a backquote is. But if you’re interested, the file bq.lisp provides an
alternative implementation. It defines a portable macro, ytools::bq-backquote, for a backquote to
expand into.

ytools::bq-backquote Macro Location: bq

ytools::bq-comma Macro Location: bq

The revised backquote is available as “!‘”; the original backquote is not disturbed by loading
bq. You can use the new backquote just like the old: !‘(f ,x) evaluates to the same value as ‘(f

,x). The main innovation is that after the backquote and comma characters can come a single digit
(between 1 and 9) that shows directly how to match up the backquotes with the commas. Compare
the following two forms:

!‘1(foo (let ((x (k 3))) !‘2(baz ,1x ’,2y)))

!‘1(foo (let ((x (k 3))) !‘2(baz ,2x ’,1y)))

which, in an environment with x = (car y) and y = ((d e f) b c), evaluate, respectively, to

(foo (let ((x (k 3))) !‘2(baz (car y) ’,2y)))

(foo (let ((x (k 3))) !‘2(baz ,2x ’((d e f) b c))))

Actually, to improve readability, the digit after a comma may be followed by a “#” character, and
the backquote pretty-printer puts the character in when the expression following the comma-digit
is an atom. So the two examples above actually print as

(foo (let ((x (k 3))) !‘2(baz (car y) ’,2#y)))

(foo (let ((x (k 3))) !‘2(baz ,2#x ’((d e f) b c))))

The digits after comma and backquote are optional, and default to 1. Obviously, you can’t nest a
1-labeled backquote inside another 1-labeled backquote, so as soon as you nest them you must use
at least one explicit label. The digits needn’t come in any order, so the inner backquote can be
labeled 1 and the outer 2, or vice versa. In the “,@” construct, the digit comes between the comma
and the atsign.

Suppose you want to get an expression e to be evaluated when the outer backquote is expanded,
and that value to be evaluated when the inner one is expanded. You must write them in this order:

22

!‘1(... !‘2(... ,2,1e)). The “,2” is treated as constant when the outer backquote is expanded,
but its argument is evaluated and substituted, yielding (...!‘2(... ,2v)), where v is the value of
e.

A typical use for nested backquotes is where you have a macro that expands into the definitions
of one or more macros. For example, you might have a recursive data structure that is processed
in several different ways. A processor of this data structure is a data-driven function that delegates
most of the work at a node to a procedure that depends on the identifier of the node, that is, a
symbol stored in the node that says what kind of node it is. For concreteness, picture the data
structure as the parse tree of a sentence, with identifiers such as noun-phrase, word, sentence, and so
forth. One processor of the parse tree might generate voice output for a sentence. Another processor
might check the parse tree for errors. Another might verify that the tree is a legal parse of a given
sentence. For the voice-output task you create a macro

(def-voice-handler n ...)

where n is the identifier for a node. Then you use the macro as in these examples:

(def-voice-handler noun-phrase ...)

(def-voice-handler verb-phrase ...)

Within the body of each macro, the variables node and subnodes should correspond to the node
being processed and its subnodes.

For the parse-test task you create a macro

(def-parse-check-handler (n) ...)

In this macro, we can refer to node and subnodes as before, but also to frag, which is bound to the
part of the sentence we are trying to verify.

A typical macro definition would look like the one for def-voice-handler:

(defmacro def-voice-handler (name &body body)

!‘(!= (gethash ’,#name voice-handler-tab*)

(\\ (node subnodes) ,@body)))

The idea is that the voice-output processor finds the identifier for the node, looks up the handler in
the hash table, then calls it, passing it the node and subnodes.

The definition of def-parse-check-handler would look almost identical, except that we would
use parse-check-handler-tab* instead of the voice-handler-tab*, and would add the frag argument
to the lambda expression.

If there are many different processors, one might want to write a general-purpose macro to define
these macros automatically. Here is what it would look like:

(defmacro define-process-handler-macro (processor args)

(let ((macro-name (build-symbol def- (:< processor) -handler))

(handler-table-name (build-symbol (:< processor) -handler-tab*)))

!‘2(defmacro ,2#macro-name (name &body body)

!‘(!= (gethash ’,name ,2#handler-table-name)

(\\ (node subnodes ,2@args) ,body))))

Now we can just write

(define-process-handler-macro voice ())

(define-process-handler-macro parse-check (frag))

The second one expands into

(defmacro def-parse-check-handler (name &body body)

!‘(!= (gethash ’,name parse-check-handler-tab*)

(\\ (node subnodes frag) ,body)))

23

which is exactly what we would have written by hand. Note that it was nearly effortless to turn
constant parts of the original macro into evaluable expressions matching the outer backquote. (For
an explanation of the build-symbol macro, see section 7.5.)

7.2 The Mappers

<# Macro Location: YTools, mapper

<! Macro Location: YTools, mapper

<$ Macro Location: YTools, mapper

<& Macro Location: YTools, mapper

<v Macro Location: YTools, mapper

<< Macro Location: YTools, mapper

>< Macro Location: YTools, mapper

</ Macro Location: YTools, mapper

<? Macro Location: YTools, mapper

neg Location: YTools, mapper

Except for >< and neg, these are all versions of the usual mapping functions, such as mapcar and
mapcan, with a few twists thrown in. For instance, (<# f —lists—) means the same as (mapcar f

—lists—), except that f is treated as though it were in functional position. You can write (mapcar

#’foo l) as (<# foo l). The following table gives the correspondences between the YTools mappers
and the built-in facilities:

<# = mapcar

<! = mapcan

<$ = mappend (see section 7.5)
<& = every

<v = some

<< = apply

</ = mapreduce (see section 7.5)
<? = remove-if, with predicate negated

= (returns a new list consisting of all the elements of list
= that satisfy pred)

If the symbol neg appears before the function designator in one of these mapping constructs,
then it applies not to the value of the function. This is most useful in conjunction with the mappers
<&, <v, and <?, but will work with any of them. Example: (<? neg atom l) returns a list of all the
elements of l that are not atomic.

>< is tossed into this section because it seems to belong. (>< f —args—) is just a synonym for
(funcall f —args—).

7.3 Data-driven Programming

Many Lisp procedures “walk” through S-expressions recursively, performing some operation on each
subexpression and collecting the results in some way. In most of these procedures, some subexpres-
sions have to be treated in an idiosyncratic way. For instance, if a procedure is walking through
a Lisp program performing an operation that is sensitive to variable bindings, let and lambda ex-
pressions must be handled by a subprocedure that notes the new variables that are bound inside
these expressions. One way to handle these special subexpressions is by using a cond to check for
each case. This method becomes unwieldy and hard to maintain if there are many special cases. At

24

that point it’s appropriate to use the object-oriented approach, and “ask” the S-expression how it
“wants” to be handled. Less poetically, we associate a table with the tree-walking procedure, and
every time the tree walker comes to an expression E whose car is the symbol f , it looks in the table
for a handler for expressions whose car is f , and if it finds one, calls it to handle E. This is called
data-driven programming.

The datafun facility is a simple set of tools for implementing this technique. Obviously, there are
three things you have to do to apply data-driven programming to a particular task:

1. Decide where the handler for f will be stored. The obvious choices are in an association list,
in a hash table, or on the property list of f .

2. Write a snippet of code to store a handler.

3. Write handlers for all the fs of interest.

The last bit is handled by the datafun macro.

datafun Macro Location: YTFM

(datafun taskid f

(defun :^ (---args---)

...))

defines a function named f-taskid. The taskid is an arbitrary symbol you choose to represent the
task. For instance, if your S-expression walker is counting free variables, you might give it the taskid
freevar-count. Then

(datafun freevar-count let

(defun :^ (e env)

...))

This defines a function let-freevar-count which is to be called (with two arguments e and env) by
the freevar counter.

Let’s suppose you decide to store in a hash table freevar-count-handlers*. You retrieve the
handler for an S-expression beginning (f . . .) by doing (gethash f freevar-count-handlers*).

The only remaining bit is to tell the datafun macro where to store the handlers. In general the
way to do this is by using the same design idea at a “meta-level,” supplying a “datafun attacher”
handler:

(datafun attach-datafun freevar-count

(defun :^ (id sym fname)

Code to attach function named fname to symbol sym

under taskid id))

So we could write

(datafun attach-datafun freevar-count

(defun :^ (_ sym fname)

(!= (href freevar-count-handlers* sym) (symbol-function fname))))

Hash tables and association lists are used so often for data-driven programming that these two cases
can be abbreviated. Just write (datafun-table table-var taskid &key (size 100)) to allocate a hash
table for the given taskid with the given size. That is, we could just write

(datafun-table freevar-count-handlers* freevar-count 10).

25

Similarly, (datafun-alist alist-var taskid) can be used to declare a global alist. In the previ-
ous example, if we had written (datafun-alist freevar-count-handlers* freevar-count), then the
global variable freevar-count-handlers* would be allocated (with initial value ()), and declaring a
new handler for symbol sym will change the entry for sym in freevar-count-handlers* to be that
handler; of course, if there is no entry, one will be added to the front of the alist.

There are two shorter forms of datafun:

• (datafun taskid sym sym′) makes the handler for sym be the same as the handler for sym′.

• (datafun taskid sym #’fcn) makes function fcn the handler for sym.

7.4 Keeping Track of “Extra” Multiple Values

track-extra-vals Macro Location: Yools, multilet

Isn’t it annoying when you change a function from returning a single value to returning more
than one, and suddenly you have to rewrite the entire control structure around the function call,
introducing multiple-value-bind or whatever? This macro is supposed to ameliorate the pain a bit,
by allowing you to treat the newly introduced (“extra”) values as afterthoughts. Inside the body of

(track-extra-vals :extra-vars bdgs

[:principal-values vars

| :num-principal-values n]

[:values exps

| :extra-values exps]

—body—)

an occurrence of extra-vals allows you to separate the processing of the “extra” values from the
“main” flow.

The general form of extra-vals is discussed below, but the idea is that

(extra-vals e :+ —updates—)

behaves just like e, but also does bookkeeping (the updates) on extra variables declared in bdgs . In
the simplest case, the updates are just variable names, one per “extra” value returned by e beyond
its primary value. These names are drawn from bdgs , each a pair of the form (var init). Each var
is initialized as prescribed by bdgs , then set on each execution of extra-vals to its corresponding
returned value. (The keyword arguments of track-extra-vals may come in any order, and may be
interspersed among the elements of body.)

An example may clarify. Suppose you want to bind a sequence of variables using let*:

(let* ((x (fb false))

(y (fb x))

(z (fb y)))

...)

Then you realize that fb needs a state variable to keep track of what it is looking for. It now takes
two arguments, the symbol and the state, and returns two values, a boolean and a new state. Here
is how we rewrite the code:

(track-extra-vals :extra-vars ((state (init-state)))

(let* ((x (extra-vals

(fb false state)

:+ state)

26

(y (extra-vals

(fb x state)

:+ state))

(z (fb y state))))

...)

:extra-values ())

Compare this with

(multiple-value-let (x state)

(fb false (init-state))

(multiple-value-let (y state)

(fb x state)

(multiple-value-let (z _)

(fb y state)

...)))

in which the original structure of the code has been completely buried.
The optional keyword arguments to track-extra-vals are there to handle every possible special

case. The :extra-values field specifies what is to be returned beyond the values returned by body.
The field :num-principal-values is necessary because there is no way for the macro to figure out
how many values are normally returned. An alternative mechanism is to use the :principal-values

argument to provide names for those arguments. If you don’t like either of those ideas, wait! there’s
more! An alternative to the use of :extra-values, and one of the “principal values” arguments is to
use the :values argument to specify all the values to be returned. If none of the above are specified,
the macro assumes the number of “principal” values produced by body is 1, and it returns this
value plus the final values of the extra variables. (If this assumption is wrong, the values produced
beyond that primary value are, ironically enough, lost.) If the empty list is supplied as the argument
:extra-values, then the macro doesn’t need the principal-values arguments; it just returns whatever
body would normally return.

The :values and :extra-values arguments cannot refer to any variables except those in bdgs

and those bound at the point where they are declared. The only exception is that they may refer
to the elements of the :principal-values argument, if it is supplied.

The general form of extra-vals is

(extra-vals [(---vars---)]

—body—

[:after n]

:+ —updates—)

The :after argument says how many values the extra-vals expression is expected to return; it
defaults to 1. Those values are returned as the value of the extra-vals expression; the values of
body beyond that number become the values of the bound variables vars . Each update is either
a variable or a pair (var newval). When the newval is omitted, it defaults to the corresponding
var . When all the updates are of this form, the vars may be omitted entirely. Without these
conventions, the first extra-vals expression in our let* example would have been written

(extra-vals (next)

(fb false state)

:after 1

:+ (state next))

27

7.5 Other Functions and Macros

In this section I summarize various “small” functions and macros, in mostly alphabetical order.

Constant Location: YTFM

In addition to its use as the “name” of an ignored variable, is a constant bound to nil. It is
intended to be used in contexts where a value is not going to be looked at by anyone. The standard
example is a program that attempts to retrieve or compute a piece of data, and returns two values:
the first says whether a useful value could be found, and the second is that value, but (obviously)
only in the case where the first value is True.

(defun retrieve-it (...)

(let ((v (some-intermediate-value ...)))

(cond ((crucial-test v)

(values true (useful value we hope)))

(t

(values false _)))))

A caller of retrieve would use a calling sequence such as

(multi-let (((found val)

(retrieve-it ...)))

(cond (found

(do-something-with val))

(t

(do-something-not-involving-val ...))))

(multi-let is described below.)

\\ Macro Location: YTFM

(\\ (...) ...) is an abbreviation for (function (lambda (...) ...)).

alref Macro Location: YTFM

alref. Macro Location: YTFM

(alref a x [d [:test e]]) is like (cadr (assq x a)), but if there is no entry for x in the alist
a, d (or if d is missing, False) is returned. The equality test defaults to eq (not eql). Note that the
order of arguments to alref is like that of aref — table first, then key. (Cf. href, below.) alref.

is like alref except that cdr of the pair is returned instead of the cadr. Both of these macros are
setf-able.

bind Macro Location: YTFM

bind is synonymous with let, except that it declares all the variables that it binds special.

assq Function Location: YTFM

assq is a synonym for assoc with test eq.

build-symbol Macro Location: YTFM

28

(build-symbol [(:package p)] —pieces—) creates a symbol. The package argument p is evalu-
ated to yield the package where the symbol will reside. If the package argument is missing, the
symbol will be in the package that is the value of *package*. If p evaluates to False, the symbol will
be uninterned.

The “pieces” of the build-symbol form specify pieces of the name of the symbol. Each “piece”
specification x yields a string according to the type of x:

Symbol The name of the symbol

String x; but if x contains alphabetic characters you will get a warning (see below)

any other atom The string obtained by princ-ing x

a list (:< e) The string obtained by princ-ing the value of e

a list (:++ v) The string obtained by princ-ing the value of (incf v)

The warning for strings containing alphabetic characters is generated because the characters will
be used to produce the name of a symbol, and it is hard to do this in a portable way. In ANSI CL,
the string should be uppercase, but in Allegro’s Modern CL, it should be lowercase. Using symbols
solves the problem.

Example of build-symbol:

(build-symbol :foo ":" (:++ foonum*))

=> |FOO:7| in ANSI CL

|foo:7| Modern CL

assuming foonum* is 6 before the call to build-symbol; foonum* has value 7 afterward.

car-eq Function Location: YTFM

(car-eq x y) is true if x is a pair whose car is eq y.

classify Function Location: YTFM

(classify l p), where l is a list and p is a predicate, returns two values: a list of all elements of
l that satisfy p, and a list of all the elements that don’t.

control-nest Macro Location: YTools, multilet

(control-nest

[tag1]

exp1(tag2)
tag2

exp2(tag3)
. . .

expn−1(tagn)
tagn

expn)

is meaningful if and only if every expi contains exactly one occurrence of tagi+1. Using expi(e) to
mean expi with the occurrence of tagi+1 replaced by e, the control-nest expression is equivalent
to exp1(exp2(. . . (expn−1(expn)))). The only purpose of this construct is to avoid “Vietnamization”
(see section 2.1). For instance, there is no analogue of let* for multiple-value-let, but we can use
control-nest to get the same effect:

29

(multiple-value-let (x y z)

(foo ...)

(multiple-value-let (p q)

(baz x y)

(multiple-value-let (r s)

(zap x p)

...)))

can be written

(control-nest

(multiple-value-let (x y z)

(foo ...)

:bind-p-q)

:bind-p-q

(multiple-value-let (p q)

(baz x y)

:bind-r-s)

:bind-r-s

(multiple-value-let (r s)

(zap x p)

...)))

(This is an alternative to using track-extra-vals to generalize let* as suggested by the example in
section 7.4.) Note that the tags are usually from the keyword package, but don’t have to be; and
that tag1 is optional, and ignored, but it is occasionally useful in calling attention to a symmetry.
For instance:

(control-nest

:test-mother

(let ((m (mother x)))

(cond ((ruled-out m)

:test-father)

(t

(succeed m))))

:test-father

(let ((f (father x)))

(cond ((within-bounds f)

(succeed f))

(t

:test-daughter)))

:test-daughter

(let ((d (daughter x)))

(cond ((has-prop d)

(succeed d))

(t (fail m f d)))))

Exactly where to break the expressions depends on the structure one is trying to call attention to.
Warning: There is a chance, if a fairly remote one, that by using control-nest within another

macro call you can confuse it. Be sure that whatever syntax the outer macro is expecting to find is
not fatally rearranged by control-nest. It’s actually hard to find a convincing example, but here’s
one:

30

(repeat ...

:within

(control-nest

(repeat

...

dumb-continue

...)

dumb-continue

(:continue

:until test

...)))

When the outer repeat is expanded it may not realize that when the control-nest is expanded the
:continue clause is going to wind up inside, and hence belong to, the inner repeat. So it may expand
it as though it the test should be evaluated inside its environment and the outer loop should stop if
it comes out true. However, exactly what happens depends on the implementation of repeat; smart
alecks should not use the above construct as a way of sneaking an outer-repeat :continue into an
inner repeat.

debuggable Macro Location: YTFM

(debuggable K), where K is either -1, 0, or 1, expands into a declaration of compiler-optimization
quantities such as speed and debug. (The exact settings depend on implementation.) The expansion
also sets the variable debuggability* to K, thus allowing your own macros to expand differently
depending on the declared debuggability level. (None of this would be necessary if there were a
portable way to find out the current settings of speed, debug, and company.)

drop Function Location: YTFM

(drop n l), where n is an integer and l is a list, returns a new list consisting of all but the first
n elements of l, or the last −n elements if n < 0. If n > 0, (drop n l) is equivalent to (take n′ l),
where n′ = n− length(l). If n < 0, (drop n l) is equivalent to (take n′ l), where n′ = n + length(l).

empty-list Macro Location: YTFM

The expression () evaluates to an empty list. (empty-list) evaluates to (), the empty list. It also
prints (when *print-pretty* is true) as !(), and !() will be read as (empty-list). In either case,
you can put any well-formed Lisp expression between the parens as a comment. This is typically
used to show the type of elements of the list, as in !(Symbol).

endtail Function Location: YTFM

(endtail n l) is synonymous with (last l n).

eof* Constant Location: YTools, outin

The in macro (section 4) returns this constant if it encounters the end of the stream being read
from.

exists Macro Location: YTools, repeat

31

(exists [(v i :in l i)]+ —body—) is short for (some (lambda (—vi—) —body—) —li—). (some
is a built-in Lisp function.) Here l 1, l 2, . . . , l n are lists (n ≥ 1) and v 1, v 2, . . . , v n are variables.
(lambda (v 1 v 2 ...v n) —body—) is a “semipredicate”; that is, it returns False for some argu-
ments, and some non-False value for others, but not necessarily True. The v i are bound to succes-
sive elements of the l i. Each such assignment, of each v i to the j’th element l ij of l i, is called a
cross section of the l i. The lists don’t have to be the same length, so the number of cross sections
is the length of the shortest l i. If all cross sections are examined, and body evaluates to False on
each of them, then exists returns False. But if the jth cross section makes body have a non-False
value, that value is returned. This explanation is a bit wordy; 99% of the time there is only one
list, and we care only whether the value of exists is False or True, so we can summarize by saying:
exists tests whether the list contains an element satisfying —body—.

false Constant Location: YTFM

false denotes False, i.e., nil.

forall Macro Location: YTools, repeat

(forall [(vi :in li)]+ —body—) is short for (every (lambda (—vi—) —body—) —li—). (every
is a built-in Lisp function.) forall is dual to exists. It returns True if —body— is not False on
every cross section of the lists li. In the usual case where there is just one list, it returns True if and
only if every element of that list satisfies —body—. (Note that forall differs from exists in that
the only thing that matters about the value of the body is whether it is False or not.)

funktion Macro Location: YTFM

(funktion s), which may be written !’s is equivalent to (function s) if s is a lambda-expression
or debuggability* is ≤ 0. If s is a symbol and debuggability* is > 0, it’s equivalent to (quote s).
The latter is logically less clean, but allows you to redefine s without finding and fixing every place
containing a pointer to its old definition. (See debuggable, above.)

gen-var Function Location: YTools, multilet

(gen-var v), where v is a symbol, creates a new, uninterned symbol whose name is v-k, where
k is an integer (similar to gensym).

href Macro Location: YTFM

(href h k [d]) is like (gethash k h), except for the argument-order change (see alref, above),
and the fact that if there is no entry for k in h, d (default False) is returned. href returns exactly
one value in either case. href is setf-able.

ignore Declaration Location: YTFM

(ignore ...) may be used in almost all contexts where (declare (ignore ...)) is legal, including
defun, defmacro, defmethod, def-op, def-meth, \\, multiple-value-let, and let-fun.

include-if Macro Location: YTFM

In a backquote ,@(include-if s [e]) expands to the value of e if s evaluates to True, otherwise
to nothing. E.g., ‘(foo ,y ,@(include-if (p x) x)) expands like ‘(foo ,y ,x) if (p x) evaluates to
True, and to ‘(foo ,y) otherwise. If e is missing, it defaults to s.

32

intercept Macro Location: YTools, binders

(intercept g —body—) is equivalent to (catch ’g —body–); that is, the catch tag must be a
constant symbol, not a form to be evaluated.

is-list-of Function Location: YTFM

(is-list-of x p), returns True if x is a list of objects that all satisfy predicate p.

is-whitespace Function Location: YTFM

(is-whitespace c) is True if and only if character c is whitespace.

lastelt Function Location: YTFM

(lastelt l) is equivalent to (car (last l)).

len Function Location: YTFM

len is equivalent to length, except that it works only on lists, not arbitrary sequences. (Its
argument is declared to be a list.)

make-Printable Function Location: YTFM

(make-Printable f) creates an object whose printed representation on stream s is (f s). Such
an object may sound useless, but it is convenient for defining special “marker” objects that indicate
that some condition is true. This function is used by printable-as-string, described below, which
is almost always adequate. The constant eof* is a Printable.

mappend Function Location: YTools, mapper

(mappend f —lists—) is like mapcan, except that the values of f applied to successive cross sections
of the lists are appended together nondestructively rather than being nconc’ed.

mapreduce Macro Location: YTools, mapper

(mapreduce f i l) is equivalent to (reduce f l :initial-value i), except that any number of list
arguments is allowed. If there are more than one, then f is applied to their cross sections just as
other mapping functions are.

memoize-val Macro Location: YTools, misc

(memoize-val e :store-as p [:missing-if m]) returns the value of e. The first time it is called
for a particular e it evaluates it and stores the result in the place p. On subsequent occasions it just
returns the contents of p. It decides whether p contains the value of e by evaluating p and comparing
it to the value of m (default: False). Example:

(let ((fibtab (make-array 100 :element-type ’integer

:adjustable true

:initial-element -1)))

(defun fibonacci (n)

(cond ((< n 2) 1)

(t

(cond ((>= n (array-dimension fibtab 0))

(adjust-array fibtab (* 2 (array-dimension fibtab 0))

:initial-element -1)))

(memoize-val (+ (fibonacci (- n 1))

(fibonacci (- n 2)))

:store-as (aref fibtab n)

:missing-if -1)))))

33

memq Function Location: YTFM

memq is a synonym for member with test eq.

multi-let Macro Location: YTools, multilet

(multi-let clauses —body—) is a cross between multiple-value-bind and let. Each clause is of
the form

(varspec exp)

but each varspec is either a single variable name, as in let, or a list of variables as in multiple-value-bind.
Example:

(multi-let ((x (foo))

((y z)

(baz u v 3)))

(* (+ x y) z))

x is bound to the single value of (foo), and y and z are bound to the two values of (baz u v 3).
There is a crucial difference between multi-let and multiple-value-bind. The latter doesn’t

care whether the number of variables being bound is the same as the number of values returned; it
discards values or introduces nil values to make everything match. Many hard-to-track-down bugs
are produced by this behavior. If debuggability* (see below) is ≥ 0, multi-let will signal an error
if the two don’t match up. If debuggability* < 0, multi-let will expand into more efficient code
that doesn’t check for alignment of the variables and values.

The error message generated by multi-let in case of parameter-argument mismatch might look
like this in the case of the (y z)/(baz u v 3) example above:

Wrong number of arguments. Wanted (y z)

got ((oops tilt))

as value of (baz u v 3)

In this instance baz has returned a single value, (oops tilt), when two were expected.

nodup Function Location: YTFM

(nodup l [:test p]) returns a copy of list l with duplicates removed. The equality test is p,
default eql.

occurs-in Function Location: YTFM

(occurs-in x r) is true if x occurs as a subtree or leaf (eql-tested) of S-expression r.

pass Macro Location: YTools, binders

(pass g e) is equivalent to (throw ’g e); that is, the catch tag g must be a constant symbol, not
a form to be evaluated.

->pathname Function Location: YTFM

(->pathname x) converts x to a pathname, if necessary and possible. It converts strings in the
usual way, and converts symbols by converting their names, with case suitably adjusted. Once it
has a string, it expands YTools logical pathnames, so that the result is a regular Common Lisp
pathname.

34

pathname-get Function Location: YTFM

(pathname-get p s) is the value of property s of pathname p. It can be changed using setf.

printable-as-string Function Location: YTFM

(printable-as-string s) creates an object that prints as the string s (in princ mode). Equivalent
to (make-Printable (\\(srm) (out (:to srm) (:a s)))). For example, a language interpreter might
return an error flag defined as

(defconstant +err-flag+ (printable-as-string "#<Error during evaluation>"))

series Function Location: YTFM

(series [l] h [i]) is the list of numbers (l, l + i, l + 2i, ..., l + ⌊ (h−l)
i

⌋i). If i is absent, it
defaults to 1. If in addition l is absent, it defaults to 1. Examples:

(series 10 20 3) ⇒ (10 13 16 19)

(series 10 22 3) ⇒ (10 13 16 19 22)

(series 10 20) ⇒ (10 11 12 13 14 15 16 17 18 19 20)

(series 10) ⇒ (1 2 3 4 5 6 7 8 9 10)

shorter Function Location: YTools, misc

(shorter l n), where l is a list and n is an integer, returns the length of l if that length is < n,
and False if it isn’t.

string-concat Function Location: YTFM

(string-concat —strings—) is equivalent to (concatenate ’string —strings—) + declarations
that all the arguments are strings.

string-length Function Location: YTFM

(string-length s)

symno* Variable Location: YTFM

A global variable useful as a counter in constructions such as (build-symbol foo- (:++ symno*)).
Of course, you can use your own counters if it yields more intelligible symbols.

take Function Location: YTFM

(take n l), where n is an integer and l is a list, returns a new list consisting of the first n elements
of l, or the last −n elements if n < 0.

true Constant Location: YTFM

true is a constant denoting True, i.e., t.

val-or-initialize Macro Location: YTools, misc

35

(val-or-initialize place :init v [:missing-if m]) returns the contents of place. However, if
the contents currently equal m (default False), then v is evaluated and its value used to initialize
place. Example: Suppose we maintain two representations of a data structure (type Formula). The
normal one is “internal form,” but for human consumption we also have an “external form.” We
compute the latter only when we need it:

(defun get-external-form (fmla)

(val-or-initialize (Formula-external-form fmla)

:init (compute-external-form fmla)))

Amusingly, memoize-val and val-or-initialize are the same function, with its required arguments
swapped:

(memoize-val e :store-as p :missing-if m)

= (val-or-initialize p :init e :missing-if m)

But each is appropriate in completely different circumstances. The difference is that the place (p)
specified in a call to val-or-initialize is expected to be altered in the future, so that the value
e stored there initially will probably be overwritten later. Whereas the e specified in a call to
memoize-val is computed once and stored for future reference; altering it later would make no sense.
One consequence of this asymmetry is that a compiler should treat the memoize-val expression as
being of the same type as e, and the val-or-initialize expression as being of the same type as p.

with-gen-vars Macro Location: YTools, multilet

In a macro, a common idiom is calling gensym or gen-var (qv.) repeatedly to create a set
of new, uninterned variables that can be used to bind values without fear of capturing existing
variables. (with-gen-vars (—vars—) —body—) takes a list of symbols (the vars) and creates a
set of uninterned symbols using gen-var, then binds local variables to them for use inside —body—.
If v occurs in the list vars , then the generated variable has the name v-k for some integer k, and
the variable bound to it for use in body has the name v$. For example:

(defmacro set-to-quo-sum-dif (x y)

(with-gen-vars (x y)

‘(let ((,x$,x) (,y$ y))

(!= ,x

(/ (+ ,x$,y$)

(- ,x$,y$))))))

The expression (set-to-quo-sum-dif (cadr z) (!= u (+ u 1))) expands to

(let ((#:x-23 (cadr z)) (#:y-24 (!= u (+ u 1))))

(!= (cadr z)

(/ (+ #:x-23 #:y-24)

(- #:x-23 #:y-24))))

8 Downloading the Software and Getting it Running

The YTools package is available at my website
http://www.cs.yale.edu/homes/dvm.
and at CLOCC, the Common Lisp Open Code Collection
http://sourceforge.net/projects/clocc.
You download a tar file that creates two subdirectories. Let’s suppose you expand it in a directory
˜/prog/; you’ll get ˜/prog/clocc/src/ytools/ and ˜/prog/clocc/src/ytools/ytload/. The latter
directory contains basic code for loading YTtools. Then put the following in your Lisp initialization
file (e.g., .clinit.cl in Allegro Common Lisp):

36

(setq ytload-directory* "~/prog/clocc/src/ytools/ytload/")

(load (concatenate ’string ytload-directory* "ytload.lisp"))

(setq yt::ytload-directory* ytload-directory*)

(setq yt::config-directory* "~/ytconfig/")

(setq yt::config-file* "dialect .lisp")

The ytload-directory* is where the “bootstrap loader” for YTools is located; this is the ytload

subdirectory of ytools (unless you move it). The slightly clumsy sequence above involves defining
this variable both in the :cl-user package and (after it is created by ytload.lisp) the :ytools

package, whose nickname is yt. I’m assuming that you’re installing YTools for your private use,
and that “~” can be used to refer to your home directory. Many Lisps or OSes don’t recognize this
idiom, in which case replace it with your actual home directory. (In some Windows implementations,
this whole issue has been resolved in a way to cause maximum pain, so that you have to use
"c:\\Docume~1\\"yourname\\" instead of "~/".) If you’re installing YTools for use by a bigger
group, then use "/homes/classes/ai-class/" or even "/usr/sbin/" instead of the home directory in
what follows.

Anyway, the other two variables, config-directory* and config-file*, tell YTools where con-
figuration information is kept. Every Lisp dialect should have its own configuration file, but they
can all be in the same directory. If you are running just one dialect, you can let config-file*

keep its default value of "ytconfig.lisp", but you must specify a value for config-directory*. I
recommend setting config-directory* to "~/ytconfig/" and config-file* to "dialect .lisp", as in
"clisp.lisp".

yt-install Function Location: YTFM

yt-load Function Location: YTFM

Once these lines have been executed, you can install a system by executing (yt-install :sysname);
the YTools package itself is loaded by executing (yt-install :ytools). You can also load subsets
and supersets of the package, as described in section 9.8. The only two systems discussed here are
:ytools and :ytfm, but others can be downloaded from my website.

All the installation process does is prompt you for the values of various global variables, which
are then stored in a file named ytconfig.lisp in the configuration directory. You can edit the values
in the file whenever and however you want. You cannot, however, easily introduce new variables
into the file, so get all the way through the installation interview before making any changes. If
you don’t feel comfortable guessing what the variables mean, you can make all changes through
the interview process by executing (yt-install :ytools :start-over True), which will ask all the
questions again. Another keyword argument to yt-install is :if-installed; it has four possible
values that determine what to do if the system is already installed: False means do nothing; :warn
(the default) causes the system to stop and ask if you want to reinstall; :reinstall causes it to
reinstall without asking; :start-over is equivalent to the argument :start-over True . Note that
without specifying :start-over, the system will ask only questions that have not already been asked;
typically, it will just recompile and reload the system without asking anything.

After a system is installed, you load it on all subsequent occasions by typing (yt-load :sysname).
Actually, it is unnecessary to call yt-install explicitly; if you try to load an uninstalled system,
yt-load will install it first, after asking if that’s what you want to do. yt-install and yt-load are
defined in the :cl-user package, and exported from the :ytools package.

The :ytools package is analogous to the :cl-user package. You can do all your work there, but
for serious projects you will define one or more packages that “use” the :ytools package, and you
will encounter the following issue: The basic macros defun, defmethod, defmacro, and eval-when are
shadowed in :ytools (so that the ignorable variable can be handled properly, and so that eval-when
understands the :slurp-toplevel symbol; see section 9.2). So, if your package uses both :ytools

and :common-lisp, as it certainly will, there will be a conflict between the two versions of each of

37

these symbols. You may resolve it either way you like, but if you take the standard versions (from
:cl-user), you will not be able to use “ ”; why would you want to do that? Instead, write

(defpackage :mypkg

(:use :common-lisp :ytools)

(:shadowing-import-from :ytools

ytools::defun ytools::defmacro ytools::defmethod

ytools::eval-when)

. . .)

Of course, if you want the standard versions of these facilities, import them from :cl-user instead.
YTools defines three macro characters

, ? !

described in detail in section A.3. To take advantage of them, you should set *readtable* to the
value of ytools-readtable*. If you have your own macro characters, you may want to build your
readtable by copying ytools-readtable*. Unfortunately, the readtable system is not as flexible or
well designed as the package system, so you may have to be more imaginative about copying YTools’s
macro characters. (For further discussion about declaring readtables in files, see section 9.1.)

The current version number for YTools is the value of the constant +ytools-version+. It can also
be found in the file CHANGELOG; look for the first expression of the form

[- Version major.minor.patch... -]

9 The YTools File Manager (YTFM)

YTools provides utilities, collectively called the “YTools File Manager,” or YTFM, for loading and
compiling files. In particular, it keeps track of whether a file needs to be recompiled before it is
loaded, and what files depend on what other files. Most CL implementations provide extensions
to the built-in load function, plus some variant of defsystem (?), to accomplish these tasks (?).
defsystem, like make in Unix, puts all the information about a group of related files in one place.

YTFM takes a somewhat different approach, in which each file starts with a record of what other
files it depends on. Files are organized into systems, collections of files that have a specified effect
on compiling and running the files that depend on them. Systems and their associated modules,
packages, and whatnot are defined in files with names of the form mod.lsy .5

If this sounds too bizarre to be worth exploring, you may want to skip to section 9.8.
However, one thing to be aware of is the meaning of the “Location” information in the presen-

tation of YTools features. If you want just a few pieces of the YTools system, you can load just the
YTFM, plus the files declared as the locations of the pieces of YTools you want. If the “Location”
specified for a YTools tool is “YTFM”, then the macro is loaded as soon as you do (yt-load :ytfm).
Most tools have “YTools” in their “Location” information, which means the tool is loaded when
you execute (yt-load :ytools). If the location includes a file name F (in typewriter font), then
the function or macro is to be found in the file F.lisp. You can load just the one file to get that
function or macro, although you may have to include other files to get macros or subroutines it uses.
Of course, if you use YTFM all the files F.lisp needs will be loaded automatically, but you decided
not to

If the location is of the form “YTools + F”, that means that, in addition to loading :ytools,
you have to fload the file F.lisp. Evaluate (yt-load :ytools) (once), then (fload %ytools/ F),
for each such F . At present (version 1.9.55 of this manual), although there some extra utilities to

5At the top of the hierarchy are load modules, which are defined by files with names of the form lm.lmd. These

are the items dealt with by yt-load and yt-install. Load modules are different from YTools modules, which are

discussed in section 9.5.

38

be found in the YTools directory that are not loaded as part of YTools, they are not documented
here. The only documentation is whatever comments there are in the code. It might be worth your
while to take a look anyway.

9.1 Loading files: fload

fload Macro Location: YTFM

To make the YTFM work, one must use the fload/fcompl facility instead of the usual load,
compile-file, and such. The format of fload is:

(fload —fload-flags— —filespecs— [:readtable R])

where filespecs is a list of directories and files. Example:

(fload "/home/smith/prog/" macros support

%utils/ mailhack)

loads files

/home/smith/prog/macros.fasl

/home/smith/prog/support.fasl

%utils/mailhack.fasl

assuming that all three files have been compiled since they were changed, but not yet loaded.6

Unlike /home/smith, %utils/ is not really the name of a directory. The % in front of it indicates
that it is a YTools logical pathname, which normally expands into a directory, as specified by
def-ytools-logical-pathname, described in section section 9.4.

If fload is called with no arguments, or its only arguments are flags, then it works with the same
files that were specified the last time it had filespec arguments. If it has any flag arguments, then
they replace the previous flag arguments. If it has no arguments at all, then both the flags and the
filespecs are the same as they were the last time fload was called.

The :readtable argument is occasionally useful in addressing the awkward lack of symmetry
between packages and readtables. Most files use in-package to declare which package should be
used to read them, but, oddly, there is no analogue for readtables, which are just as important.
YTools adopts the following strategy in figuring out the readtable to be used for a file, based on
Allegro Common Lisp’s named readtables. In non-Allegro implementations, a rudimentary named-
readtable facility is defined in the file ytools.lsy. (named-readtable symbol) returns the readtable
named symbol or False if there isn’t one. To associated a name with a readtable, evaluate (setf

(named-readtable symbol) readtable). The readtable is actually associated with the keyword symbol
of the same name as the symbol . The only built-in readtable is named :ytools, which is the value
of the global variable ytools-readtable*. To make this the readtable to be used when processing a
file, make sure the mode line at the front of the file has a Readtable field, as in this example:

;-*- Mode: Common-lisp; Package: ydecl; Readtable: ytools; -*-

YTFM looks for this declaration as its main source of information about a file’s read syntax.
In addition, there is a special operator (in-readtable name) to be used in a file to declare which
readtable is to be used in reading it (at least until the next occurrence of in-readtable). There
is also a convenience operator (in-regime pname [rtname]), which is equivalent to (in-package

pname) and (in-readtable rtname). If rtname is omitted, it defaults to pname.
If neither of these options is used, but the file has already been loaded or compiled, then YTFM

has probably recorded the appropriate readtable, and will use it again. If that recourse proves

6And, of course, assuming that fasl is the appropriate extension for an object file in the host Lisp system;

see section 8.

39

futile, it just uses the global value of *readtable*, unless this behavior is overridden by providing a
:readtable argument to fload (or fcompl; see section 9.2).7

A key feature of fload is that it does not simply load a file; it also records that an up-to-
date version of the file be kept in memory from now on (or until the request is canceled (using
the -x flag, described below). It uses the YTools chunk system (?) for this job. The idea is
that whenever an edit occurs that might change the contents or meaning of the floaded file, the
file should be reloaded (perhaps after being recompiled). Using chunk terminology, we say that
the chunk (:loaded pathname) is managed. The exact meaning of a chunk depends on how it is
connected to other chunks and what the procedure responsible for keeping it up to date does. (This
procedure is called its deriver.) Hopefully when I introduce a chunk and informally describe what
it means, its name will be vivid enough to remind you of that meaning. When a chunk manages
a chunk with a propositional name, that means it undertakes to keep the proposition true. When
it manages a chunk whose name sounds like a dataset, that means it undertakes to recompute the
data when the data they depend on change.

Because of the chunk system, floading a file that has already been floaded usually has no effect;
if the file needs to be reloaded, chances are the chunk system has already done so. However, this
behavior can be changed using flag arguments to the fload macro. The possible flag arguments are:

• -f: Force the file to be loaded even if has been loaded already and not changed since.

• -c: Force the file to be recompiled and loaded even if fload normally would not do one or both
of these operations.

• -s: Indicates that the source version of the file should henceforth be preferred to the object
version, even if it is older. Also forces the source to be reloaded, unless the -x flag is present.

• -o: Indicates that the object version of the file should henceforth be preferred to the source
version, even if it is older. Also forces the object to be reloaded, unless the -x flag is present.

• -a: If the user has previously been asked whether to load the source or object version of the
file, and in that dialogue said to do the same thing from now on without asking, then discard
that information and ask again when necessary.

• -x: Declare that the chunk (:loaded file) is not to be managed any longer. One can reverse
this decision later simply by calling fload again. If the request to cancel cannot be undone
without undoing other requests, the user will be asked whether they really mean it. E.g., if file
F1 depends on F2, and the user has floaded F1, a request to cancel management of (:loaded

F2) will not be honored until the user has confirmed that (:loaded F1) is no longer to be
managed either.

• -z: Normally bringing a chunk up to date causes all the chunks that depend on it to be brought
up to date, or rederived (?). In the case of fload, if a file is reloaded, then any file that depends
on it (see section 9.3) is also reloaded — and often recompiled. Sometimes, if a file is being
repeatedly revised and reloaded, one would like to postpone rederivation of the files (and other
chunks) that depend on it. The -z flag causes this to happen.

• -: Clears all flags. This operation makes sense because the flags are “sticky,” and are remem-
bered as long as you keep evaluating fload calls with no explicit file arguments. So, after,
e.g., (fload -c), which causes the most recently floaded files to be recompiled and reloaded,
(fload) will do the same thing. Writing (fload -) causes the file to be reloaded without
mandatory recompilation.

7One consequence of these rules is that the previously recorded value of the readtable for a file overrides the explicit

:readtable argument to fload. This is probably wrong, but since an explicit annotation in the file itself overrides

both, it hasn’t seemed worth fixing.

40

(Flags are not case-sensitive; -X is eqivalent to -x.) The operations postponed by the -z can be exe-
cuted, thus bringing the Lisp session up to date, by executing (postponed-files-update). As long as
there are postponed file operations, fload and fcompl (sect. section 9.2) will remind you of their exis-
tence every time they are called. You can turn off the warnings by setting warn-about-postponed-file-chunks*

to False.
When the -c flag is not given, fload decides what to do based on a global switch, fload-compile*.

This is not a variable, but a symbol macro (so that YTFM can detect when it is set). The switch
takes on one of these values:

• :source — Never compile. Load a source file if it has been changed since the last time it was
loaded.

• :object — Never compile. Load the object file if it has been changed since the last time it
was loaded. The age of the source file, if there is one, is irrelevant.

• :compile — If the object file is older than the source file, compile the source and load the
resulting object file.

• :ask-once — Ask the user whether the object or source version of the file should be loaded.
The user has four possible responses (some of which can be given in a short or long version,
indicated as “c[cccc]”):

1. o[bject]: Use object; further questions will be asked about whether the file should be
freshly compiled.

2. s[ource]: Use source.

3. +: Yes, and set fload-compile* to :compile from now on.

4. -: No, and set fload-compile* to :object from now on.

5. \!: Cease managing the chunk corresponding to the loaded file; as if the -x flag had been
given to fload.

In addition, one can respond \\ to any query from . YTFM in order to cancel the entire
current call to fload or fcompl

• :ask-every — Like :ask-once, except that the answers are not recorded. This gets to be very
tedious very quickly.

• :ask-ask — Like :ask-every, except that the user is asked whether the asking should stop (for
the particular file being inquired about).

• :fresh-object (the default) — If an up-to-date version of the object file exists, it is loaded. If
it does not, then we switch to :ask-ask.

For large systems, the seemingly reasonable value :fresh-object can result in questions about
dozens of files. Most probably don’t need to be recompiled, but it takes longer to figure that out than
to recompile them. So set fload-compile* to :compile, or just type + when YTFM asks you what
to do. Remember to set it back to :ask when the recompilations are done, if that’s the long-term
behavior you want.

Because fload-compile* is not a variable, you can’t bind it with let or bind. The macro
(bind-fload-compile* v —body—) changes its value within the body (dynamically scoped).

When loading and compiling files, you will see messages announcing when each file is processed.
You will also see messages announcing when they are being body-slurped (section 9.3). All the
messages can be suppressed by setting fload-verbose* to False.

41

9.2 Compiling Files: fcompl

fcompl Macro Location: YTFM

A file is compiled when fload sees that its object version is out of date (see section 9.1), or when
the following macro is invoked and the object code is out of date:

(fcompl —fcompl-flags— —filespecs— [:readtable R])

The arguments have meanings analogous to those for fload, with similar defaulting behavior: If
no arguments are supplied, then all default; if only flags are specified, then the other two default; if
the readtable is unspecified, it defaults. Here filespecs have the same format as for fload.

The flags for fcompl are:

• -f: Force the file to be compiled even if its source has not been changed since the last time it
was compiled.

• -l: If the file is successfuly compiled, force the file to be loaded even if fcompl-load* (see
below) is False. (The chunk (:loaded file) is managed from now on.)

• -x: Declare that the file’s “compiled” chunk is not to be managed any longer. One can reverse
this decision later simply by calling fcompl again.

• -z: As for the -z flag for fload (section 9.1), postpones updating all chunks that depend
on the filespecs’ being compiled. The chunks can be brought up to date later by executing
(postponed-files-update).

Note that if a file has been floaded, calling fcompl to compile it will normally cause it to be
reloaded, because “f is loaded” depends on “f ’s object file is up to date.” The -z flag will
postpone the load, which can be useful if one wants to put off loading until the compilation
seems to occur without any errors.

• -: As for the same flag in conjunction with fload, this causes fcompl to “erase” the -f and -z

flags.

(The flags are not case-sensitive; -X is equivalent to -x.)
After a successful compilation, fcompl will normally try to load the new object file. Exactly what

it does depends on the value of the global variable fcompl-load*:

• If it’s any value other than False or :ask, the new object file is always loaded.

• If it’s False, the new object file is never loaded (although the -l flag will override this decision).

• If it’s :ask (the default), it will ask if you whether to load the object file. If you respond y

or yes, it will be loaded; if you respond + or -, fcompl-load* will be set to True or False,
respectively.

However, as noted above in the paragraph describing the -z flag, if the file has been previously
floaded, then the value of fcompl-load* is irrelevant; the call to fload is sufficient reason to load
the file, unless the -z or -x flag is used to postpone or cancel the load request.

42

9.3 File Dependencies: depends-on

The process of compiling a file, whether by fload or fcompl, differs from the standard Lisp model
in that the file and the files it depends on are examined in a preprocessing pass before the regular
Lisp compiler looks at them. This preprocessing is called slurping.8 There is more than one kind
of slurping, but we will distinguish between two basic sorts: header and body slurping. The latter
examines the entire file, while the former examines just its header, to extract information about the
resources it requires in order to be loaded or compiled. It is normally unnecessary to distinguish the
header explicitly, because its principal components are calls to the macro depends-on, whose natural
location is the front of the file, along with calls to in-package and the like.

Suppose file foo.lisp starts with a mode line, perhaps an in-package form, and then

(depends-on (:at :run-time) baz)

When foo.lisp is compiled (say, by writing (fcompl foo)), the first thing that happens is that
YTools header-slurps foo.lisp to see that baz.lisp (or its compiled version) must be loaded in
order for the functions in foo.lisp to work properly. Once the file baz.lisp has been noted, the
system also commits to slurping it. The word “commits” indicates that the YTFM will re-examine
the header of a file whenever it changes.9 In chunk terminology (?), the YTFM manages the chunks
(:file-header-scanned "foo.lisp") and (:file-header-scanned "baz.lisp"). It will stop managing
such chunks only when it stops managing the corresponding (:loaded filename) chunks.

The general form of depends-on is

(depends-on [---filespecs---] ---timed-groups---)

where each timed-group is of the form
(:at [time-spec]+) ---filespecs---

and where a time-spec is one of
:run-time :compile-time :read-time

and filespecs are as described for fload, above. depends-on declares that the given filespecs are
needed when the file containing the depends-on is processed. The time-specs state exactly when they
are needed. The time-specs default to :run-time and :compile-time for the filespecs , if any, that
come first in the macro expression, before any explicit time-specs.

Suppose the form

(depends-on ...

(:at t1 . . . tn) G1 ...Gk)

occurs in file F . If one of the ti= :compile-time, then whenever F is compiled, all the Gj should
be loaded. If one of the ti= :run-time, then whenever F is loaded all the Gj should be loaded. A
:run-time dependency also has an impact at compile time. If F depends on Gj :at :run-time, it is
assumed that any macro defined in Gj may be used in F . To find the macro definitions, Gj must
be examined. The entire file must be scanned, so this is a form of body slurping.

There is one remaining time-spec, that indicates files Gj that must be loaded before F can be
read, meaning, before F can be compiled, loaded (as source), or body-slurped. Such a dependency
must be noted as soon as possible when F is being read, so that the relevant G’s can be loaded
before the processing of F can continue. Not surprisingly, this is the :read-time time-spec (synonym:
:slurp-time).

In case you need some more detail on how headers work, here goes: The header is the few lines
at the top of the file that identify its package, what symbols it exports, what files it depends on,

8It’s reminiscent of what the Java compiler does, except the the Java compiler examines class files, not source files.
9It tests for whether it has changed only when an explicit fload or fcompl is issued for a file connected to it by

dependencies.

43

and so forth. Expressions that play these roles are called headerish forms. A form is headerish if
its function or special-operator is one of depends-on, in-package, defpackage, or self-compile-dep

(explained below). Function and datatype definitions are obviously not headerish, but neither are
declarations. Like the Lisp compiler, the slurp mechanism expands any macro form it encounters
and examines the result as if it occurred in the file. The header can come to an end in the middle
of (progn e1 . . . en if some ei is not headerish.

In almost all cases, the separation between the header and the body of the file occurs naturally.
If it seems that YTFM is putting it in the wrong place, set the global variable end-header-dbg* to
True. This causes messages to be printed about YTFM’s decision processes in classifying header
forms, so you can see where it goes off the rails. If you want to change the status of a form, use one
of the following facilities.

end-header Macro Location: YTFM

in-header Macro Location: YTFM

The macro end-header can be used to declare the end of the header of a file. The format is

(end-header [:no-compile])

It usually takes no arguments, but if the flag :no-compile is present, it tells YTFM that the file
should never be compiled.

To force a set of forms to be “headerish,” use (in-header e1 . . . en). It’s equivalent to (progn

e1 . . . en), when executed or compiled, but when slurped it will not end the header, no matter what
form each ei takes.

In YTools, eval-when has been augmented with a new “situation,” :slurp-toplevel. That is,

(eval-when (... :slurp-toplevel)

---forms---)

causes the forms to be evaluated when the eval-when is encountered during the slurping of a file.
An eval-when form is “headerish” if and only if it includes :slurp-toplevel among its situations.

The form

(needed-by-macros ...)

needed-by-macros is equivalent to

(eval-when (:compile-toplevel :load-toplevel :execute :slurp-toplevel)

...)

That is, the forms nested within needed-by-macros are evaluated whenever the needed-by-macros is
encountered, even during slurping. The reason for the name is that a typical use for this construct
is in a file that contains a macro definition, plus some subroutines used by the macro. Slurping the
file normally causes the macro definition to be taken but other function definitions to be ignored.
Wrapping the subroutine definitions with (needed-by-macros ...) fixes the problem.

The operator (self-compile-dep [:load-source | —sub-file-types—]), when used in the header
of a file, indicates how the file depends on itself when it is compiled. The flag :load-source indicates
that before the file is compiled it should be loaded in source form. It’s possible to narrow the scope
of what is looked for and avoid loading the entire file. For instance, if you write (self-compile-dep

:macros), that indicates that the macro definitions are to be found and evaluated before the file is
compiled. This is useful only if you want to put macro definitions after a point where they are used,
or if you want forms wrapped with needed-by-macros to be evaluated before the file is compiled. In
the basic YTools release :macros is the only sub-file type, but systems built on top of YTools can
define others.

44

9.4 YTools Logical Pathnames

As mentioned, the character “%” has a special meaning in a filespec. It signals the beginning of
a YTools logical pathname. These have nothing to do with Common Lisp logical names, although
they play a similar (and complementary) role, allowing the physical location of a file to vary from
implementation to implementation without changing references to it. A YTools logical name is
defined by executing

(def-ytools-logical-pathname name pathname [object-code-loc])

After this, any reference to %name is interpreted as pathname. For instance, after

(def-ytools-logical-pathname ded "~/prog/deduction/")

executing (fload %ded/ unify) will try to load ˜/prog/deduction/unify.lisp or its object file. The
optional object-code-loc argument specifies where to put object files compiled from source files in
this directory. A relative pathname such as "../bin/" is interpreted as follows: Suppose we are in
a directory ending .../c/d/. We ascend one level, remembering d, then descend one level (through
bin). Having reached the end, we tack on the remembered sequence, d, yielding .../c/bin/d/. With
more than one level to ascend through, the remembered sequence gets one directory per level. The
whole sequence is recorded and included in the final result, unless directory layers with the name “--”
are encountered. Each such occurrence means that the layer that would otherwise have been included
should be skipped. The default relative location for the binary files for YTools itself is ../../bin/--/.
If YTools is in ˜/prog/src/ytools/, then binary files will be placed in ˜/prog/bin/ytools/. The first
“..” moves us to ˜/prog/src/, remembering ytools/; the second moves us to ˜/prog/ remembering
src/ytools/. The bin moves us to ˜/prog/bin/, and the -- discards src, so that the final result is
˜/prog/bin/ytools/.

Note that the slashes at the end of pathname definitions are meaningful and required. A form
such as (def-ytools-logical-pathname foo "x.lisp") is okay, but simply defines foo as a synonym
for x.lisp. If you want foo to stand for a directory (the usual case), you have to put the slash in.

If the optional object-code-loc argument is omitted, the existing association between source direc-
tory and object directory, if any, is not changed. The default object directory is the source directory
itself. An explicit False as the value of the object-code-loc argument restores this default.

The function filespecs->pathnames converts a filespecs list to a list of ordinary Lisp pathnames.
E.g., (filespecs->pathnames ’(%ytools/ hunoes fileutils)) might return

(#P"/usr/local/ytools/hunoes" #P"/usr/local/ytools/fileutils")

The pathnames have no defaults filled in, and may or may not point to files that already exist.
Note on directory delimiters: Different OS’s have different directory delimiters. In my experience,

most Lisps allow a forward slash even if the underlying OS uses some other character. Thank God.
One of the first queries in the installation process for YTools is for the value of the “directory
delimiter” on your computer. Try typing ‘/’ and switch to the actual delimiter for your filesystem
only if ‘/’ doesn’t work out.

9.5 YTools Modules

The logical pathname %module has a special meaning. It expects to be followed by the names of
entire modules rather than file names. For example:

(fload %module/ utilities graphplan)

loads in the module utilities followed by the module graphplan.
A YTools module M has three components, distinguished by how they behave when (depends-on

%module/ M) is found in file F :

45

1. Its run support for F : What should be evaluated when F is being loaded (in either source or
object form).

2. Its compile support for F : What should be evaluated when F is being compiled.

3. Its expansion: a set of forms that are treated as if they had occurred in F at the point where
the depends-on form was found.

A module is defined by def-ytools-module:

(def-ytools-module name

((---context-specs---) ---forms---)+)

where each context-spec is either :run-support, :compile-support, or :expansion. The forms are
arbitrary forms to be evaluated, but there is a special operator you should use to indicate that files
should be loaded: module-elements has the same syntax as fload, and behaves the same, but signals
to the module system that loading these files is not a random act, but is constitutive of the module.
This makes a difference when using fcompl to compile a module.

Here is a sample module definition, for the Nisp system, which adds strong typing to Lisp (?):

(def-ytools-module nisp

(:run-support

(module-elements %ydecl/ runnisp))

(:compile-support

(module-elements %ydecl/ compnisp))

(:expansion

(depends-on-file-type-decls)

(self-compile-dep :nisp-types :macros)))

If the form (depends-on %module/ nisp) occurs in F.lisp, then three things are supposed to happen:

1. When F ’s object file is loaded, so is runnisp.lisp in directory %ydecl. (It will in turn load
several other files.)

2. When F is compiled, compnisp.lisp is to be loaded. (It also loads other files, which happen
to be a superset of the ones loaded by runnisp.)

3. The forms (depends-on-file-type-decls) and (self-compile-dep :nisp-types :macros) are to
be inserted at the top level of F . The first causes files F depends on at run time to be slurped
looking for the types they define. The second causes F itself to be slurped, both for type
definitions and for macro definitions.

The only built-in module is named ytools. Any file that wants to use all the YTools should have

(depends-on %module/ ytools)

in its header. The YTools module does not include every file in the ytools directory. If a file requires
one of them, you indicate an extra dependence on it by expanding thus:

(depends-on %module/ ytools %ytools/ file)

You can use fcompl to compile a module. Just write (fcompl flags %module/ name) and the effect
will be the same as if each file declared using module-elements were fcompl’ed separately. There is
a subtlety here to be aware of. Suppose a module titanic contains 5 files, but one of them (call
it main.lisp) depends on the other 4. Then for loading purposes one may define the module using
something like

46

(def-ytools-module titanic

((:compile-support)

(module-elements %mydir/ main))

...)

Loading the (compile-time piece of) the titanic module will result (in effect) in issuing the call
(fload %mydir main), which will load all 5 files in. But (fcompl -f %module/ titanic) is equivalent
to (fcompl -f %mydir/ main), and so is sure to compile main, but unlikely to compile the 4 supporting
files unless there is some independent reason to compile them. This is seldom an important issue,
unless you find yourself wanting to compile a module without loading it.

9.6 File Transduction

One well known problem with load is that loading a file cannot change the current package, even
if the only thing in the file is (!= *package* ...). The reason is that *package* is always “bound”
with file scope during load.

after-file-transduction Macro Location: YTFM

fload and fcompl have their own scoping mechanisms, which allow you to control what gets eval-
uated outside of their scopes after a file is loaded or compiled. The form (after-file-transduction

—forms—) causes the forms to be evaluated when the current call to fload or fcompl is done. The
forms are evaluated in reverse chronological order of posting, and left-to-right within each form list.
That is, if you execute

(after-file-transduction e1 e2)

then
(after-file-transduction e3 e4)

then when the file is finished the forms will be evaluated in order e3, e4, e1, e2. Of course,
unwind-protect is used to ensure that the forms are evaluated even if the transduction terminates
abnormally.

In addition, the form (setf-during-file-transduction form value) causes form’s current value
to be saved, then for it to be given the value value until the current file transduction is over. At
that point the saved value is restored. Because the value is restored using after-file-transduction,
the saved value is restored even if the transduction terminates abnormally.

If you want to implement your own file transducer, you can use this macro:

with-post-file-transduction-hooks Location:

Macro Location: YTFM

(with-post-file-transduction-hooks —body—) causes the body to be evaluated with the regime
described above in place. fload and fcompl use this macro to make after-file-transduction work.

To test whether a file transduction is in progress, use the function (during-file-transduction),
which returns True if and only if it is evaluated inside the body of with-post-file-transduction-hooks.

9.7 Other File-Management Facilities

fload-versions Macro Location: YTFM

47

It is often the case during system debugging that you want to use an experimental version of a
file. One way to do that is to use a version-control system such as CVS (?) to create a separate
“development branch,” which can be merged back into the main branch if the experiment works out.
This sometimes seems like an overly heavy-handed approach, especially given how clumsy systems
like CVS can be. An alternative is to tell YTFM to intercept all references to the file and pretend
that another file had been referred to instead. You do this by writing (fload-versions —filespecs—),
where the filespecs are as for fload and fcompl, except that instead of filenames one writes pairs of
filenames, the second being the temporary version of the first.

(fload-versions %directory/ (gps gps-experimental))

then wherever %directory/gps would normally be loaded (or slurped, or compiled), %directory/gps--
experimental will be used in its place.

The format of a file-version pair allows for several other possibilities. The first element of the
list is always the name of a file. The second element (if present) determines the new version of that
file. The possibilities for the second element are:

• A symbol (other than a keyword or “-”): The symbol’s name, with case suitably modified, is
the new version.

• A string or a keyword: The new filename is the old with the string (or keyword symbol’s name)
appended.

• Absent : Treated as if the value of the global variable fload-version-suffix* occurred instead.
This value is initially :-new. It should always be a string or keyword.

• -: All versioning information for the file is discarded. It reverts to its original self.

def-file-segment Macro Location: YTools, fileseg

def-file-segment is a device for defining an interdependent network of chunks, each consisting
of a piece of a file. As alluded to in secrefytfmthe section on YTFM, a chunk manages a dataset or
invariant, using a piece of code called its deriver. The deriver is run to bring the chunk up to date
(recomputing the dataset or restoring the invariant) whenever it appears to be necessary.

(def-file-segment chunk-name (—base-chunk-names—) —deriver—) defines chunk-name as de-
river . This form should occur only inside a loaded file, hence the name. The base chunk names are
names of previously defined file segments. The chunk is assumed to require updating whenever the
file it was defined in is reloaded or one of its base chunks is updated.

The standard use for this device is in the maintenance of tables. Suppose a table is initialized in
file A.lisp, then added to in files B.lisp and C.lisp. We put the following in A.lisp:

(def-file-segment init-table ()

(defvar magic-table*)

(!= magic-table* (make-hash-table)))

and the following in files B.lisp

(def-file-segment B-table-aug (init-table)

(!= (href magic-table ’foo) 13))

. . . and C.lisp:

(def-file-segment C-table-aug (init-table)

(!= (href magic-table ’oof) 14))

If file A is reloaded, then both the chunks will be rederived, thus ensuring that the table stays up to
date, even if files B and C are not reloaded.

48

9.8 Is It Possible to Avoid the YTools File Manager?

To switch from your current system-definition facility to YTools, all you need to do is put one line
at the beginning of each file saying what files it depends on. Does this make it impossible to switch
back to a traditional facility? Can you use YTools without giving up defsystem or asdf?

Relax. All of the little extras in YTools files, such as end-header, depends-on, and such, are
defined as harmless macros. If you load a file instead of floading it, they will do nothing, except
possibly generating a warning message or two. If you want the whole system to just go away,
including the warning messages, set the global variable depends-on-enabled* to False.

A Some Notational Conventions

A.1 Syntactic Notation Used in This Manual

To illlustrate the syntax of YTools constructs, I use an informal BNF-style notation, in which
nonterminals appear in an italic font . The notation —xs— means “zero or more occurrences of
an x,” with the definition of an x given shortly thereafter. As a particular case, —body— means
an “implicit progn,” that is, a sequence of expressions to be evaluated, with the value(s) of the last
returned as the value of the sequence. I use the notation [x]+ to indicate one or more xs. An
optional syntactic constituent is written [x]. A choice of constituents is written [x | y | ...| z

]. If one of the choices is to omit the constituent entirely, I write [| x | ...].

A.2 Upper and Lower Case

I like running my code in Allegro’s “modern” mode, in which the case of symbols is preserved when
they are read and printed. All my code is written in such a way that it ports without change to an
ANSI CL in which symbols are converted to upper case when read.

Most of my code is lower case. I use upper case only as the first letter of a datatype name (and
sometimes subsequent letters if the datatype name is an acronym), and only in functions defined as
part of the datatype definition. That is, I might write

(defstruct Foo a b c)

to define a datatype Foo. As a consequence, the constructor for this type is named make-Foo, the
predicate is Foo-p, the slot reader for slot a is Foo-a, and so forth. But if I have a function that
transmogrifies objects of this type, it’s called foo-transmogrify. That is, the only functions that
have the upper-case “F” are the ones automatically defined by defstruct. Exception: If I need an
alternative constructor for Foos, I might name it new-Foo or create-Foo.

These conventions are close to those used by Java and Haskell. However, I do not use the “case
foothills” style such as fooCacheIfMarked, partly because Emacs can’t see the word boundaries,
and partly because in ANSI CL it is unreadable. Instead I use hyphens as exemplified above:
foo-cache-if-marked.

A.3 Special Characters

YTools has its own readtable (ytools-readtable*), in which three macro characters are reserved:
exclamation point, comma, and question mark. Exclamation point is used for several purposes
(discussed as they come up below). Comma is redefined so it works inside !‘; outside that context
it behaves as it normally does.

Question mark is used only as the printed representation of qvars, which are used in applications
of pattern matching. The object ?x is of type Qvar. You test whether an object obj is of this type

49

by evaluating (is-Qvar ob); you extract the symbol (i.e., x by evaluating (Qvar-sym ob). To make
one, evaluate (make-Qvar ’x ’()). All the details are given in section 3.

Exclamation point is reserved for use in packages built on top of YTools. YTools itself uses it
for these purposes:

1. !(): This expression is read as (empty-list), a macro that expands to ’(). The pretty-printer
prints (empty-list) as !(), thus hoping to reduce somewhat the number of occurrences of the
ambiguous nil

http://www.cs.yale.edu/homes/dvm/nil.html

in the universe. See empty-list in section 7.5.

2. !"...": This is an ordinary string, except that any substring of the form “˜whitespace” is
deleted. (Something like the “˜newline” format directive, but more robust with respect to
the vagaries of newline representation in different operating systems.) The substring “˜%”
becomes a newline; and “˜˜” becomes a “˜”. Helpful for long string constants that start at a
column awkwardly far to the right.

3. !’s: An abbreviation for (funktion s), section 7.5

4. !‘(...): The improved backquote (section 7.1).

Unless stated otherwise, "!" behaves like an ordinary symbol constituent. In particular, != is an
ordinary symbol with name "!="; see section 3.

In addition, there are a couple of other usages that may look like the invocation of macro
characters, but aren’t:

• (\\ ...) is an abbreviation for #’(lambda ...). \\ is an ordinary macro.

• “ ” may be used in most contexts where a bound variable is expected; it denotes a variable
whose value is ignored. In evaluation contexts, evaluates to nil. See section 7.5

• :|| is used in match patterns (section 3.2) to indicate a disjunctive pattern. The reader reads
it as the symbol in the keyword package whose name is the empty string.

• % as a marker for logical pathnames in fload et al. Nothing funny happens at read time;
macros that expect filespecs just look for symbols whose names begin with “%.”

Tables 2–4 list all of the nonalphabetic symbols used as or in YTools macros. Each entry gives
the symbol, the context it occurs in, a one-phrase summary of its meaning, and a mnemonic that
explains why the symbol should be easy to remember. If you have forgotten it anyway, a fuller
explanation of its meaning is found somewhere in this manual; consult the index.

You may have noticed that the names of my global variables have an asterisk at the end, but
not at the beginning. I developed this habit before the convention existed of putting an asterisk at
both the bow and the stern of a global-variable name, and I never bothered to change. I do write
constants as +name+, because an isolated plus would look like it had something to do with addition.
By the way, a constant is just as likely to be defined with defvar and defparameter as defconstant.
In many implementations, defconstant is so cantankerous as to be almost useless: compilers often
refuse to generate code to load any constant besides a number or a boolean, and some systems make
it almost impossible to redeclare a constant without killing Lisp and starting over. Having a naming
convention such as +...+ provides a more reliable way of telling the reader what the constants are;
it’s a pity it’s so difficult to tell the compiler.

A.4 Coding style

Here are a few of my hard-won prejudices on the subject of how to write good, intelligible code.

50

Symbol Context Meaning Mnemonic

(underscore)

Various (See
subsequent
entries)

Ignorable, unimportant,
place-holding, . . .

Looks blank, contentless,
unbindable, unassignable,

. . .

:?

(match-cond e

(:? p ...)

...)

p is to be matched against e Anticipating match variables

? ?var Match variable Asking for a value

@ ?@var Segment match variable ‘@’ means segment in ‘,@’

, ?,v or ?,@v Matches current value of v
‘,v ’ means current value of

v in backquote

:|| or :\| ?(:|| p1 ... pk)
Matches exp if one of p1 to
pk matches

‘|’ means “or” in C

:& ?(:& p1 ... pk)
Matches exp if p1 to pk

match
‘&’ means “and” in C

:& ?(:|| ... :& q)

In addition to one of the
disjuncts matching, q must
match as well

Ditto

:~ ?(:~ p)
Matches exp if and only if p

does not
‘˜’ often means “not”

? Ignored match variable Looks unassignable

:% (out ... :% ...) Print newline Looks like ~%

% %directory/
directory is YTools logical
pathname

‘%’ looks like ‘/’

:+ ?(:+ p r1 ... rk)

Matches exp if p matches
and all predicates ri are true
of exp

‘+’ connotes “in addition”

:+
(extra-vals e

:+ —vars—)

Update vars from extra
values returned by e

‘+’ connotes “and also”

:++
(build-symbol

(:++ k) ...)

k is incremented and its
characters are included in
symbol

++ — just like in C!

Table 2: YTools symbols, installment 1

51

Symbol Context Meaning Mnemonic

! !char . . .
Meaning depends on
character char .

was taken.

!’ !’fcn
Like #’ if safety/speed
optimization is tilted toward
speed; else like ’

Looks like #’

!‘ !‘n(... ,n ...)

Super-duper backquote; n is
a digit that allows us to
match up backquotes with
commas

It’s excl-backquote

!" and ~
!"long ~

string "

String that’s allowed to
stretch over multiple lines

Super-duper string

!(), !(t) Expression
Empty list (of objects of
type t)

Looks like an empty list (if t

isn’t too big)

Expression Unimportant (“don’t care”)
value

Looks contentless

: (out ... (: n) ...) Insert n spaces Looks like a space

=

(loop for ((v = i

...))

...)

Initialize v to i in loop Pretty obvious

:i= (out ... (:i= n) ...) Indent by n spaces “i[ndentation] =”

!= (!= e ...) ≈setf Become equal!

- (!= l (... *-* ...))
Value of left-hand side of
assignment (l)

- looks like a blank spot
into which l should be

copied.

Table 3: YTools symbols, installment 2

52

Symbol Context Meaning Mnemonic

< > (!= <...> e)
Equivalent to (setf (values

...) e)
<...> looks like a tuple.

< > (!=(<...>) e)
Sets variables to elements of
list e.

Added parens connote list.

(!= < > e) Value is not stored Looks unassignable

:i> / i< (out ... (:i> n) ...)
Add (:i>) or subtract (:i<)
n from indentation

> and < point right and left

:∧
(datafun task flag

(defun :∧ ...))

Placeholder for absent
function name

∧ points up to actual name,
flag -task

:<
(build-symbol

(:< s) ...)

Characters of s are included
in symbol

< connotes expansion

<c (<c f ...)
Calls function f in some way
that depends on character c.

Left angle-bracket is a
warped left paren

<# (<# f ...) = mapcar Same number (#) of
elements out as in

<! (<! f ...) = mapcan Destructive!

<$ (<$ f ...)
= mappend (like mapcan, but
appends instead of nconcking)

Constructive, like capitalism

<v (<v p l) = some (p l1) v (p l2) v ...

<& (<& p l) = every (p l1) & (p l2) & ...

<? (<? p l)
Returns elements of l that
satisfy p

Querying p

<< (<< f l) = apply
Extra bracket for extra

paren layer

>< (>< f ...) = (funcall f ...) It’s almost apply

</ (</ f l) Reduction operator APL used “/” for reduce
Remember? APL?

\\ Query response Abort Close to backspace key

\\ (\\ . . .) (lambda ...) Looks like λ

Parameter list Ignored parameter Looks nameless

Table 4: YTools symbols, installment 3

53

Function Names: Many functions can be considered to take an object of type Y , perform op-
eration P on it, and return an object of type Z. I tend to name such a function Y -P-Z. I prefer
list-copy to copy-list. Functions that “coerce” an object to a different type have the operation ->

in their names, as in list->vector or ->pathname. Note that in the last case the operation is not
preceded by any type; that indicates that it should work on more than one type of object.

My predicates tend to be distinguished by the occurrence of auxiliary verbs such as “is” and “has,”
as in foo-is-empty or bar-has-no-children; or by the use of an adjective instead of an operation,
as in foo-empty or bar-greater-than. I never end a predicate name with the letter p or a question
mark.

A “category tester” is a predicate that takes any object at all and returns True if it belongs in
the category. For instance, the function that tests whether an object is of type Bar is called is-Bar.
Sometimes what you require instead is a function that tests whether an object in one category
belongs to a subcategory as well. The name of such a function might start with the wide category
and end with the narrow one, as in foo-is-bar. The clue is whether the is has anything in front of
it.

Dynamically bound (special) variables: Avoid them wherever possible. They make it hard
to track down all the influences on a buggy program. Here are a few unavoidable uses:

• As repositories of pervasive debugging flags, printer settings, or the like.

• As variables that must be visible through a function you didn’t write. For example, if you want
to communicate with a macro during file compilation, you have to bind some special variables
for the macro to read, because there is no other way to communicate through compile-file.

• As places to hold global tables. However, you should think hard about what exactly needs to
be global.

Let me amplify on that last point. Suppose you are writing a program to process natural
language. It’s natural to define a global variable grammar*, another one called lexical-rules*, and
so forth. The problem with this approach is that switching between grammars and such requires
resetting all those variables. A better approach is to have a single table nl-regimes* that contains
definitions of different languages. A language definition consists of a grammar, some lexical rules,
etc. Procedures to parse a sentence or produce an answer to a question can be passed as arguments
the entire language definition or just the parts each procedure needs. The one remaining special
variable is now less central to the operation and less likely to be the place where something goes
haywire.

The idea of passing a few extra arguments sounds like it could get out of hand. One way to
avoid an explosion in the number of arguments is to package a few of them together using a new
datatype and pass objects of that type. Of course, this strategy makes sense only if the arguments
belong together.

Use cond I don’t know why people like if, when, and unless. I revise my code starting thirty
seconds after I first start writing it, and I find the revisions required to be particularly annoying for
all conditionals except cond. By supplying one extra level of parens, it allows you to change your
mind about which tests go first or what happens when a test is true without a huge fuss.

John Foderaro, in his coding-style recommendation
http://www.franz.com/∼jkf/coding standards.html

states:

I’ve found that the key to readability in Lisp functions is an obvious structure or frame-
work to the code. With a glance you should be able to see where objects are bound,

54

iteration is done and most importantly where conditional branching is done. The con-
ditionals are the most important since this is where the program is deciding what to do
next. Bugs often occur when the conditional can’t handle all possible cases. If you’re
planning on extending the function you need a clear idea of the possible inputs it’s willing
to accept and what you can assert to be true for each branch of the conditional.

I agree entirely.
He then goes on to recommend using his own if* macro.

The if* macro along with proper indenting support in the editor makes glaringly ap-
parent the structure of conditionals. They stand out like a sore thumb. Furthermore
one can easily extend an if* conditional adding expressions to the then or else clauses
or adding more predicates with elseif. Thus once you’ve laid out the conditional you
can easily extend it without changing the expression itself (contrast that to having to
go from when to if to cond as you grow the conditional using the built-in Common Lisp
conditional forms).

To each his own. It seems to me that cond has all the virtues of if*, but far be it from me to criticize
a fellow macro-hacker! However, read on.

A Couple of Observations about Macros: Many macros have auxiliary symbols that play a
crucial role in “parsing” calls to the macro. To see examples, look at let-fun (section 2.1). It has
two such symbols: :where and :def.

A key question in designing a macro is how many of these symbols, which I call guide symbols, to
use. At one extreme we find a construct like do, which has no guide symbols at all, and distinguishes
all its subparts using parentheses. Many people (including me) find its syntax confusing at first, then
merely ugly. At the other extreme we find the “complex” form of loop, which has dozens of guide
symbols, enough to form a little subgrammar. This subgrammar has few parentheses, which raises
issues about the precedence of the guide symbols, the order in which subexpressions are executed,
and ultimately of how the different features combine semantically. In fact, I never use the complex
version of loop; repeat does everything I want and its semantics are quite clear.

The design of a good macro is determined in the end by aesthetic decisions, but I would propose
a few principles:

1. Keywords are used for two purposes in the built-in constructs of Lisp: as keyword arguments,
and as “clause markers.” It’s a good idea to limit guide symbols to these two purposes. That
is, a guide symbol :gizmo may either come before its argument(s), as in

(fcn ... :gizmo arg ...)

or as the first element of a macro subclause:

(big-construct con-th

(:ying ...)

(:gizmo

...

(arg ...)

...lots of other stuff ...)

...)

I violate my own rule in a couple of places, notably in the variable declarations of the repeat

(section 2.2), exists, and forall (section 7.5), where the guide symbols = and :in function as

55

markers for subclauses, but are not the first elements of those clauses. I also violate it for the
- symbol for with-slots-from-class(section 6). Type declarations are a special case; the use
of - for them emphasizes that they are being overlaid on normal Lisp at compile time, and
that they will fade away at run time. The same syntax is used for Nisp (?) and PDDL (?).

There is one rule I perhaps should follow, but don’t: Make sure guide-symbol arguments fit
the pattern required by &key, i.e., one argument per guide symbol, in a sequence of even length
coming at the end of the macro call or one of its sublists. In particular, it seems okay to allow 0
or more than 1 argument to follow a guide symbol, even though it may make life more difficult
for pretty printers.

2. Guide symbols should be located in the keyword package. One reason is that they stand out
visually; someone reading an occurrence of the macro can instantly see that :this is a guide
symbol, and that is a variable. Another is that putting them in the keyword package means
one less package headache for the macro user. If a guide symbol is not a keyword, and if the
macro implementer used eq to test for equality with a guide symbol being looked for, then the
macro user will have to import the guide symbol into the package at the point of use of the
macro (or write impl-pkg:gizmo, which is unbearable). The macro implementors may want
to advertise (as the creators of the complex loop did) that their guide symbols are compared
by testing for string equality of the symbols’ names, and hope that all users are aware of the
advertisement.

A partial exception to this rule is to allow guide symbols to come from the common-lisp pack-
age, so that they will be virtually certain to be visible in users’ code without any explicit
importing. Examples are the = guide symbol for repeat (section 2.2) and the - symbol for
with-slots-from-class (section 6). The exception applies only when the symbols can’t possi-
bly be confused with variables or functions. It’s not a coincidence that both = and - are used
as “infix” operators, in contexts where they can’t be read as an equality test or a subtraction.
A case could be made that they should have been put in the keyword package anyway, but :=

connotes the wrong thing, and :- just looks “too big.”

I violate the rule completely for the flags used by fload and fcompl (section 9). These rules
seem like Unix-style command-line arguments to me, and they are treated that way: In -f or
-x, it’s the character after the hyphen (’f’ or ’c’) that matters. The package -f was placed
in before being that character was extracted is irrelevant (although the possibility of it having
been upcased when read makes case insensitivity unavoidable for YTFM flags).

I can’t resist pointing out that the documentation for Foderaro’s if* macro
http://www.franz.com/support/documentation/6.0/doc/pages/operators/excl/if s.htm

describes four guide symbols (then, elseif, else and thenret), and fails to mention the equality test
used to test for occurrences of them. In fact, if you look at the code, the test is for string equality
of their names, so you don’t have to import them into your package.

Of course, many people dislike cond precisely because it uses no guide symbols and sticks in an
extra layer of parens to compensate. If you are one of them, go ahead and use if* (if you’re not an
Allegro user, I believe you can just grab the implementation
http://www.franz.com/~jkf/ifstar.txt).
Then use keyword versions of the guide symbols. That is, write :then instead of then, and so forth.
The name of :then is the same as that of then (a fact that is easy to forget), so the equality tests
will succeed when they’re supposed to, and your code will be more readable.

Another principle of macro design is:

3. Don’t duplicate lisp control structures inside a macro. Instead weave the macro into the
structures.

56

Let me give an example. In the development of the repeat macro, I noticed that I was often
having to use assignment when I’d rather use let. Here’s what I was forced to write

(repeat :for (... x ...)

(!= x ...)

:until (member ’foo x)

:result (remove ’foo x))

when I really wanted something like this:

(repeat :for (...)

(let ((x ...))

???)

???)

The problem is that the body of the let is invisible to the repeat macro. My first reaction was to
think of adding a new guide symbol, :let, which would allow the user to bind a variable over the
remainder of this iteration of repeat:

(repeat :for (...)

:let ((x ...))

:until (member ’foo x)

:result (remove ’foo x))

This would not be hard to implement, but there are so many other patterns, such as

(repeat :for (... (x ...) ...)

(cond ((member ’foo x)

. . . Some longish amount of code

(cond ((foo y)

??? the equivalent of :return y))

...)

(t

??? More shenanigans))

)

One could add more guide symbols, but the net return would be a largish implementation of a
substantial subset of Lisp (with clumsy syntax). This is what the designers of loop did, as well as
the designers of format, if you think about it.

A better idea is to introduce two new guide symbols, one (the diver) that says “We’re going to
dive into some Lisp code now,” and another (the snorkeler) that says, “We’ve encountered a place
in that Lisp code where we should resume processing as if we’re in the body of the macro.” In the
case of repeat, the diver is :within and the snorkeler is :continue.

The same pattern occurs inside out. Here :e is the diver and :o is the snorkeler.

B Alternative Names for Lisp Constructs

There are certain built-in functions whose names are less than felicitous. Who can remember whether
multiple-value-list returns as multiple values the elements of a list, or whether that job is performed
by values-list? (I can’t.) I cringe every time I have to tack a “p” on the end of a predicate name.

There are certain functions that, while great from a nostalgia point of view, often conceal the
programmer’s intent, and, I’m sad to say, the chief culprits are cons, car, and cdr and functions built
on them, such as nthcdr and caddadr. The problem with them is that list structures can be used to
implement different data structures, including tuples, lists, and tree structures. A tuple is built out
of cons cells, but is of fixed length, with each position occupied by a separate type. A list proper

57

often starts off small and grows using cons. All its elements are usually thought of as being the same
type (even if that type is some general category). Example: (!= x (list ’a 3)) initializes x to a list
of two S-expressions. If the programmer wants to signal to the reader of his code that x will remain
a list of two objects, he or she should write (!= x (tuple ’a 3)) instead; this also suggests that the
first element is going to be a symbol and the second a number. The use of list can then be used
to signal that the list might grow or shrink, and that its elements are some type that includes both
symbols and numbers. A list built by tuple should be decomposed using first, second, . . . rather
than car, cadr, A real list should be decomposed using head and tail. Similarly, pair should
be used to build binary trees, to be decomposed using left and right.

What role does that leave for car and cdr? I use them for decomposing S-expressions. S-
expressions are usually built using backquote.

All these synonyms and several others are listed below in alphabetical order. The synonymy is
accomplished in the interpreter by setting symbol-function of the synonym to symbol-function of
the original name; and in the compiler by making the synonym be a compiler macro that expands
into a call to the original. So there should be no performance hit at all from using the synonyms.

In some cases the synonym is the same as the original name except for the case of some of the
letters in it. In ANSI CL, because it is case-insensitive, the synonym is already available, and trying
to define it (as itself!) would cause infinite loops. YTools is careful to check for this situation and
avoid actually defining anything.

Anyway, here are the synonyms, in alphabetical order:

=< Function Location: YTFM

=< is a synonym for <=, which looks like an arrow to me, not an inequality.

Array-dimension Function Location: YTFM

Array-dimensions Function Location: YTFM

Array-dimension and Array-dimensions are synonyms for the functions with the same names
downcased.

head Function Location: YTFM

head is a synonym for car, to be used when its argument is to be considered a list rather than a
tuple or S-expression. (See tail.)

is-Type Function Location: YTFM

To maintain the convention that types are capitalized, YTools supplies alternative names for
symbolp, numberp, . . . , namely is-Symbol, is-Number, Another reason for this choice of names is
to help eliminate the “trailing p” convention for predicates in favor of simple declarative constructs
such as is-... or ...-has-.... One nonobvious decision is to provide a substitute for consp named
is-Pair. There is, however, no is-Atom, because Atom is not a Common Lisp type. You can use atom

or (not (is-Pair ...)).
Here is a complete list of all the type-testing synonyms defined by YTools: is-Array, is-Char,

is-Float, is-Integer, is-Keyword, is-list, is-Number, is-Pair, is-Pathname, is-Ratio, is-Stream,
is-String, and is-Symbol.

left Function Location: YTFM

left is a synonym for car, to be used when its argument is to be considered a list rather than a
tuple or S-expression. (See right.)

58

list-copy Function Location: YTFM

list-copy is a synonym for copy-list.

list->values Function Location: YTFM

list->values is a synonym for values-list.

make-Pathname Function Location: YTFM

make-Pathname is a synonym for make-pathname.

make-Symbol Function Location: YTFM

make-Symbol is a synonym for make-symbol.

multiple-value-let Macro Location: YTFM

multiple-value-let is a synonym for multiple-value-bind. It exists because (a) there is no reason
to use “let” for one and “bind” for the other, since they bind in exactly the same way; (b) bind is
used in YTools to bind special variables.

off-list Macro Location: YTFM

on-list Macro Location: YTFM

on-list-if-new Macro Location: YTFM

These are synonyms for pop, push, and pushnew, respectively, which look to me like operations on
a stack. They’re rarely used for that purpose, because most uses of stacks in Lisp are handled by
recursion, but I’d still prefer different names for them.

nthrest Function Location: YTFM

nthtail Function Location: YTFM

(nthrest n l) and (nthtail n l) are both synonyms for (nthcdr n l), but nthrest should be
used when l is a tuple, nthtail when l is a list. (Remark: nthrest returns a shorter tuple when
n is greater than 0. This is something most other programming languages don’t allow you to do,
probably for good reasons. However, if a tuple was built using tuple., then nthrest can be used to
retrieve a legitimate field.)

pair Function Location: YTFM

pair is a synonym for cons, to be used when its value is to be considered a tree rather than a
tuple, list, or S-expression. (See left and right.)

pathname-equal Function Location: YTFM

pathname-equal is a synonym for equal.

Pathname-host Function Location: YTFM

Pathname-device Function Location: YTFM

Pathname-directory Function Location: YTFM

Pathname-name Function Location: YTFM

Pathname-type Function Location: YTFM

Pathname-version Function Location: YTFM

These are all synonyms for the corresponding functions with lowercase names.

59

pathname->string Function Location: YTFM

pathname->string is a synonym for namestring.

right Function Location: YTFM

right is a synonym for car, to be used when its argument is to be considered a list rather than
a tuple or S-expression. (See left.)

Symbol-name Function Location: YTFM

Symbol-plist Function Location: YTFM

Symbol-function Function Location: YTFM

Symbol-value Function Location: YTFM

Synonyms for the corresponding functions with lowercase names.

tail Function Location: YTFM

tail is a synonym for cdr, to be used when its argument is to be considered a list rather than a
tuple or S-expression. (See head.)

tuple Function Location: YTFM

tuple. Function Location: YTFM

tuple is a synonym for list, intended for contexts where the list being built is thought of as
having a fixed length, like a record, as explained at the beginning of this section. A list built by
tuple should be decomposed using first, second, . . . rather than car, cadr,

tuple. is a synonym for list*; it’s used in contexts where some tail of the entity being built is
being used as the last field. For such tuples, rest or nthrest should be used to access the last field.10

values->list Function Location: YTFM

values->list is a synonym for multiple-value-list.

10One might suppose there should be a record-oriented synonym for cons, in terms of which list* is defined; but

for records, unlike lists, the case of two arguments is not fundamental in any sense.

60

Index

!, 50
!’s, 32
!’, 50
!(), 31, 50
!=, 8, 9
:&, 11
-, 9
readtable, 38, 40
+ytools-version+, 38
->pathname, 34
.lsy, 38
:+, 11
:-new, 48
:∼, 11
<, 9
<!, 24
<#, 24
<$, 24
<&, 24
<-this-val, 9
</, 24
<<, 24
<?, 24
<v, 24
= (:repeat guide symbol), 6
=<, 58
>, 9
><, 24
, 3, 4, 6, 9, 11, 28, 37, 50
\\, 28
∧-this-val, 9

after-file-transduction, 47
:again, 6
:already-defined, 19
alref, 28
alref., 28
:append, 7
Array-dimension, 58
Array-dimensions, 58
assq, 28
attach-datafun, 25

Backquote(‘), 21–24
bind, 28
bind-fload-compile*, 41
breakpoint, 18
build-symbol, 24, 29, 35

:by, 6

Canceling YTFM operations, 41
car-eq, 29
:char, 16
Chunk management, 40
Chunks, 48
classify, 29
Classoids, 18
:collect, 7
Collector, 6
:collector(s), 5
collector-clear, 6
Collector-elements, 6
:compile-support, 46
:continue, 7, 8
control-nest, 29

Data-driven programming, 25
datafun, 24–26
datafun-alist, 26
datafun-table, 25
dbg-out, 15
dbg-out-indent, 15
debuggability*, 31, 34
debuggable, 31
:def, 4
def-class, 18–20
def-file-segment, 48
def-op, 21
def-ytools-logical-pathname, 45
def-ytools-module, 46
defclass, 18–20
defmacro, 37
defmethod, 18, 37
defstruct, 18–20
defsystem, 38
defun, 37
depends-on, 42–44, 49
depends-on-enabled*, 49
drop, 31
during-file-transduction, 47

empty-Collector, 6
empty-list, 31
end-header, 44, 49
end-header-dbg*, 44
endtail, 31
eof*, 16, 31

61

eval-when, 37, 44
Exclamation point, 50
exists, 32
:expansion, 46
extra-vals, 26, 27

false, 32
fcompl, 41, 42, 46, 47
fcompl-load*, 42
File header, 43–44
filespecs->pathnames, 45
fload, 39–41, 46, 47
fload-compile*, 41
fload-verbose*, 41
fload-version-suffix*, 48
fload-versions, 48
:for, 5
forall, 32
funktion, 32

gen-var, 32, 36

head, 58
Headerish forms, 44
href, 25, 32

ignore, 4, 32
:in, 6
in, 16
in-header, 44
in-readtable, 39
in-regime, 39
include-if, 32
:init, 6
initialize, 19
intercept, 33
:into, 7
is-Array, 58
is-Char, 58
is-Float, 58
is-Integer, 58
is-Keyword, 58
is-list, 58
is-list-of, 33
is-Number, 58
is-Pair, 58
is-Pathname, 58
is-Ratio, 58
is-Stream, 58
is-String, 58
is-Symbol, 58
is-whitespace, 33

:key, 19
:keyword, 16

Lambda(\\), 50
lastelt, 33
left, 58
len, 33
let-fun, 4
let-var, 5
:linelist, 16
:linestring, 16
:list, 18
list, 58
list->values, 59
list-collect, 6
list-copy, 59
:load-source, 44
Location, 38
Locations, 3
Logical pathnames, 45

Macro characters, 38, 49
:macros, 44
make-inst, 19
make-instance, 19
make-Pathname, 59
make-Printable, 33
make-Qvar, 10
make-Qvaroid, 9
make-Symbol, 59
mappend, 33
mapreduce, 33
match-cond, 11
match-datum, 11
match-let, 12
matches, 10
matchq, 9–11
:medium, 18
memoize-val, 33, 36
memq, 34
module-elements, 46
Modules, 47
multi-let, 34
multiple-value-let, 59

:named, 19
Named readtables, 39
named-readtable, 39
:nconc, 7
needed-by-macros, 44
neg, 24
nodup, 34

62

nthcdr, 59
nthrest, 59, 60
nthtail, 59

:obj, 16
:object, 18
occurs-in, 34
off-list, 59
on-list, 59
on-list-if-new, 59
one-collect, 6
out, 12–17
Out-directives, 13, 15, 17, 18
out-indent, 15

pair, 59
pass, 34
pathname->string, 60
pathname-equal, 59
pathname-get, 35
Pathname-slot, 59
:peek, 16
pop, 59
postponed-files-update, 41, 42
:print-function, 20
:print-object, 20
printable-as-string, 35
:proceed, 17
:prompt-for, 17
push, 59

Qvaroids, 9, 10
Qvars, 10, 50

read-y-or-n, 16
Readtables, 39
repeat, 5–8
rest, 60
retrieve-val, 9
right, 60
:run-support, 46

Segment matching, 10
self-compile-dep, 44
series, 35
setf, 8
setf-during-file-transduction, 47
setter, 9
shorter, 35
signal-condition, 18
signal-problem, 16–17
slot-defaults, 20

slot-is-filled, 19
:slots-only, 19
:slurp-toplevel, 44
Slurping files, 43
:string, 16
string-concat, 35
string-length, 35
:structure, 18
Systems, 38

tail, 60
take, 35
:then, 6
:to, 6
track-extra-vals, 26–27, 30
true, 35
tuple, 58, 60
tuple., 59, 60

+unbound-slot-val+, 20
:until, 7

val-or-initialize, 36
values->list, 60
:vector, 18
Version, 38

warn-about-postponed-file-chunks*, 41
:where, 3–5
:while, 7
with-post-file-transduction-hooks, 47
with-slots-from-class, 20
:within, 7, 8

yt-install, 37
yt-load, 37
ytconfig, 37
YTFM (location), 38
ytools, 46
:ytools package, 37
ytools-readtable*, 38, 39, 49

63

