
Assigning Semantic Meanings to XML

Peishen Qi, Drew McDermott and Dejing Dou

Yale Computer Science Department
New Haven, CT 06520, USA

{peishen.qi,drew.mcdermott,dejing.dou}@yale.edu

Abstract. The Semantic Web Project of W3C is developed at the pur-
pose of extending the current web to make the information automatically
processable by software programs. RDF/RDFS, DAML+OIL and the re-
cent OWL are several specifications proposed along this way. However,
the proliferation of XML on the current web makes it a tempting target
if we can make use of these existing resources. XML is good at marking
up the structural relationships, but it has limited capability in presenting
the semantics contained in the data.
In this paper, we describe our approach of extracting the propositional
contents from XML documents and representing them in the ontology
formalism. For any XML document, we first build up a surface ontology
directly from its DTD file and encode the data in this ontology. We
then represent the dataset in some more standard domain ontology via
ontology translation. The Meaning Definition Axioms bridging over the
surface ontology and the deep standard ontology have the function of
assigning meanings to XML tags. The reverse direction which serializes
a dataset of the standard ontology to a specific XML language works in
the similar way. Combined with our former work, the whole system is
capable of translating between the structural XML and the semantical
RDF/DAML/OWL. It also can translate between heterogeneous XML
documents about identical or similar domains of discourse.

1 Introduction

The information on the internet is growing at an exploding speed. The huge
volume of resources makes it almost impossible to process them manually. The
Semantic Web Project of the World Wide Web Consortium (W3C) aims at
supplementing existing web content with formalized data or metadata, so that
automated agents can process the data automatically [14]. In the Semantic Web
model, RDF[1]/RDFS[2] use metadata to describe Web resources, and provide a
standard for creating machine processable documents. DAML+OIL[3] and the
recent OWL[5] extend RDF/RDFS with richer modelling primitives and work
on the ontology level. However, automated agents can not step outside the RDF
world to access the information in the XML documents that do not follow the
RDF specification. These XML documents make a significant component of the
current Web. Being able to make use of these existing resources would give agents
access to a large pool of information without having to rewrite any documents.



We want to extract the propositional contents from XML documents, even
though most XML specifications were not invented with that target in mind. In
the other direction, a dataset of some ontology can also be serialized to a given
XML specification, and become usable by more real-world applications imple-
mented for that XML specification. The whole system is thus capable of trans-
lating between XML and RDF/DAML, and even among heterogeneous XML
languages about identical or similar domains of discourse.

In our approach of assigning meanings to XML, a tool helps us first build
up a surface ontology from the Document Type Definition (DTD) file associ-
ated with the XML document. A dataset using the vocabulary of the surface
ontology then can be extracted from or serialized to the XML format. However,
the surface ontology always mixes syntax with domain knowledge. In order to
get rid of the syntax stuff, we need a standard ontology which only focuses on
describing domain knowledge. Data are exchanged between the surface ontol-
ogy and the standard ontology via our approach of ontology translation in [16].
More specifically, we will do ontology translation with the help of a set of logical
formulas, which we call Meaning Definition Axioms. Fig.1 gives an overview of
the whole structure, where OntoEngine [10] is our inference engine for ontology
translation. The surface ontology is built up from the DTD file automatically.
Extracting the propositional contents from an XML document to the dataset in
the surface ontology can also be fully automated. The meaning definition axioms
assign semantic meanings to XML languages and have to be written with the
help of domain experts, thus involve human work. Once we have the MDAs,
translation between the surface ontology and the standard ontology can be done
automatically by OntoEngine.

XML Doc DTD

6

?
?

Dataset

Surface
Ontology

Meaning
Definition

Axioms

OntoEngine

¶

µ

³

´

@@
¡¡¡¡h+

HHHHY

HHHHHj

¡¡¡¡@@

Meaningful
Facts

Deep
Standard
Ontology

Extractor Encoder
DTD2Onto

Fig. 1. translating between XML and RDF

We will use Lisp-like notation for those logical formulas, here Web-PDDL [15],
a typed logic extension of PDDL [17] for web applications. It will also be our in-
ternal representation of ontologies and datasets. The formula traditionally writ-



ten as ∀x(P (x) ⊃ Q(x)) will be written as (forall (x) (if (P x) (Q x))).
If type declarations are involved, we declare the types of variables by writing
“—vars— - type,” as in

(forall (x y - @Animal:animal)
(if (and (@Animal:predator x) (bigger x y))

(@Emotion:fears y x)))

where the prefix before each term introduced by the @ sign declares the name-
space where that term comes from. Symbols without a prefix are of the local
namespace.

2 Meanings Conveyed by XML Documents

XML can be seen as a data-centric language. The following XML document
describes a job position seeker [13], whose name is “Jeff Seeker”.

<JobPositionSeeker status="active">
<PersonalData>

<PersonName>
<FormattedName>Jeff Seeker</FormattedName>

</PersonName>
<PostalAddress>

<PostalCode>06511</PostalCode>
</PostalAddress>

</PersonalData>
<Resume>...</Resume>

</JobPositionSeeker>

We focus on three kinds of meanings [12] conveyed by XML documents:

1. Objects in classes, such as a job position seeker, or a Resume. They corre-
spond to instances of DAML+OIL Classes;

2. Attributes of the objects, such as the name of the job position seeker. The
similar concept in DAML+OIL is the DataTypeProperty;

3. Associations between objects, for example, a Resume gives more detailed
information (education, work experience, etc.) of a job position seeker. In
DAML+OIL, it is the ObjectProperty that captures these relationships.

These kinds of information can be modelled more explicitly in RDF/RDFS,
DAML+OIL or OWL using RDF triples. Fig. 2 shows the arc diagram for an
RDF triple <subject predicate object>, which means subject HAS predicate ob-
ject. The following set of RDF triples denotes the meanings contained in the
above XML document.

<JobPositionSeeker 111 status active>
<JobPositionSeeker 111 name “JEFF SEEKER”>



<JobPositionSeeker 111 address PostalAddress 200>
<PostalAddress 200 zipcode 06511>
<Resume 1 describe JobPositionSeeker 111>

subject object

¶

µ

³

´
-predicate

Fig. 2. The arc diagram for an RDF triple < subject, predicate, object >

In the subsequent sections, we will describe our method of extracting the
propositional contents from XML documents and representing them in the on-
tology formalism. The opposite direction of translation is also interesting and
needed since embedding datasets in XML format can make them usable in much
wider real-world applications.

3 Build up the Surface Ontology from a DTD File

We assume that there exists a Document Type Definition (DTD) file for each
XML document. When the DTD file is absent, automatical tools can help con-
struct it from the XML document. Our idea should also work for XML Schema.
The following is a simplified version of the DTD file for the above JobPosition-
Seeker [13] XML document. Its full version can be accessed at [6].

JobPositionSeeker.dtd
<!ELEMENT JobPositionSeeker (PersonalData, Resume)>
<!ATTLIST JobPositionSeeker status (active | inactive) #IMPLIED>

<!ELEMENT PersonalData (PersonName, PostalAddress)>
<!ELEMENT PersonName (FormattedName, GivenName, FamilyName, ...)>
<!ELEMENT FormattedName (#PCDATA)>
<!ELEMENT PostalAddress (PostalCode, ...)>
<!ELEMENT PostalCode (#PCDATA)>

<!ELEMENT Resume ...>

An XML DTD file defines the legal syntactic building blocks of an XML
document. It can give the human readers clues about the default semantics of
the XML language through the document structure and the text of tags. The
first step in our approach is to build up a surface ontology from the DTD file.
The surface ontology captures the default semantics and acts as one end in the
following ontology translation process.

Building up the surface ontology is quite straightforward and can be fully
automated. Currently we only focus on the Element and Attrlist keywords



in a DTD file. Each Element entry defines a class. We create a Web-PDDL type
for its name parameter, which is the first parameter after the keyword. Further-
more, a predicate is created to link this type to each of those types corresponding
to the remaining parameters, respectively. The above DTD file has seven El-
ement entries, so we would create seven types for them. The first entry says
that the JobPositionSeeker element must contain the PersonalData, followed by
a Resume. Thus we need to introduce three predicates which link JobPosition-
Seeker with the other three. The Attrlist entries define attributes of classes.
They are also represented as Web-PDDL’s binary predicates, but with the second
arguments being built-in types (such as String), or those domain specific types
composed of enumerated instances. The “status” attribute of JobPositionSeeker
is an example of the latter.

The surface ontology in Web-PDDL for the above JobPositionSeeker DTD
looks like:

(define (domain jobpositionseeker-ont)
(:types

JobPositionSeeker - Object
PersonalData Resume - Object
PersonName PostalAddress - Object
FormattedName GivenName FamilyName -String
PostalCode - String
JobPositionSeeker_status - Object

)
(:constants

active - JobPositionSeeker_status
inactive - JobPositionSeeker_status

)
(:predicates

(hasPersonalData jo1 - JobPositionSeeker pe2 - PersonalData)
(hasResume jo1 - JobPositionSeeker re2 - Resume)
(status jo1 - JobPositionSeeker st2 - JobPositionSeeker_status)
(hasPersonName pe1 - PersonalData pn2 - PersonName)
(hasPostalAddress pe1 - PersonalData po2 - PostalAddress)
(hasFormattedName pn1 - PersonName fn2 - FormattedName)
(hasGivenName pn1 - PersonName gn2 - GivenName)
(hasFamilyName pn1 - PersonName fn2 - FamilyName)
(hasPostalCode pa1 - PostalAddress pc2 - PostalCode)

)
)

With the surface ontology at hand, information in the XML document can
be automatically extracted out and represented as a set of logical facts using the
vocabulary of the surface ontology. The dataset for the JobPositionSeeker XML
document is given here:



(define (dataset jobpositionseeker-data)
(:domain

(uri "http://www.xml.org/xml/schema/7083341b/
JobPositionSeeker-1_1.dtd" :prefix JobPos))

(:objects
JobPositionSeeker1 - @JobPos:JobPositionSeeker
PersonalData3 - @JobPos:PersonalData
PersonName4 - @JobPos:PersonName
PostalAddress5 - @JobPos:PostalAddress
Resume6 - @JobPos:Resume

)
(:facts

(@JobPos:status JobPositionSeeker1 @JobPos:active)
(@JobPos:hasPersonalData JobPositionSeeker1 PersonalData3)
(@JobPos:hasPersonName PersonalData3 PersonaName4)
(@JobPos:hasFormattedName PersonaName4 "Jeff Seeker")
(@JobPos:hasPostalAddress PersonalData3 PostalAddress5)
(@JobPos:hasPostalCode PostalAddress5 "06511")
(@JobPos:hasResume JobPositionSeeker1 Resume6)

)
)

One advantage of introducing the surface ontology is that itself and the
dataset written in it both can be drawn from the DTD file and the XML doc-
ument automatically. The surface ontology still maintains the tree structure of
the original XML specification, thus datasets in it can be written back to the
serialized XML format without much difficulty. Furthermore, as we will see, the
surface ontology shares its first order logic syntax with the standard ontology.
This makes it easier to build and understand the translation rules, both of whose
sides now can have the same syntax.

Besides these, such kind of preprocessing can also alleviate future work in
ontology translation. For example, in some XML documents using the JobPosi-
tionSeeker specification, address information could also appear somewhere for an
institution or a company. The string “CT” might show up more than once and
all denote the same meaning as the state of Connecticut. Our meaning extractor
could detect that the different occurrences of “CT” were all tagged by Region
and should correspond to objects of type Region in the surface ontology. Since
these objects all have the same value, only one is actually created. This kind of
identification in advance can save later work concerning equality judgement.

4 Translation between Surface and Standard Ontologies:
the Meaning Definition Axioms

The transform described in Section 3 does not by itself yield a satisfactory trans-
lation of an XML document. The surface ontology can be built from the DTD



file automatically. But in the formal sense, it is actually not an ontology. The
surface ontology usually mixes up semantic and syntactic stuff, so the whole
structure looks somewhat odd from the view of a domain expert. For example,
in the domain describing personal information, many ontologies break a person’s
full name down into useful components such as family name and given name.
So why do we need an extra FormattedName if we already have the GivenName
and FamilyName? The above JobPostionSeeker surface ontology also uses a Per-
sonalName type, which is meaningless and solely introduced because that’s the
way the XML tree was organized.

We need an ontology which concerns itself entirely with domain types and se-
mantic relationships. We will call it a standard ontology. The standard ontology
focuses on domain knowledge and is thus independent of the original XML spec-
ifications. Because its role in our ontology translation is contrary to the surface
ontology, we also call it a deep ontology. A deep ontology for a domain might
already exist, for example among the DAML ontology library [7]. Otherwise, a
new one has to be built with the help from domain experts.

Once a standard ontology is selected, the remaining and more important step
is to bridge the gap between the surface ontology and the deep standard ontol-
ogy. We take this as an ontology translation problem. In [16], we have stated that
ontology translation might be best thought of in terms of ontology merging. The
merge of two related ontologies is obtained by taking the union of the terms, the
axioms defining them, and new axioms bridging across the two ontologies. In this
paper, the bridging axioms have the function of assigning meanings to XML doc-
uments. We give them a more specific name, Meaning Definition Axioms. Since
only human can understand some complicated semantic relationships, building
up these meaning definition axioms can not be fully automated. It must involve
human’s, especially domain experts’ participation.

OntoEngine accepts a merged ontology, plus a dataset in one of its compo-
nents (the source ontology), then outputs the dataset in another component (the
target ontology). This pattern holds whether the source is the surface ontology
and the target is the deep ontology, or vice versa. The same set of axioms can
drive the translation in either direction. The inference pattern looks like: source
⇒ target. All the axioms should have the format of P1∧· · ·∧Pn ⇒ Q1∧· · ·∧Qm,
where Pi’s are predicates from either source or target ontology and Qi’s are
predicates that only appear in target ontology. These inference rules can draw
conclusions out of existing facts from both source and target vocabularies, and
project onto target vocabulary only. If an axiom can work in both directions, we
will use a ⇔ (iff) to denote it.

We will give some examples of the meaning definition axioms below and ex-
plain how they work. On the XML side, we still stick to the JobPositionSeeker
specification. We want to extract the meanings concerning Resume information
from it and have found a DAML ontology about Resume on the web [9], which
will act as the deep standard ontology. Our translator PDDAML [11] can auto-
matically translate a DAML ontology to its Web-PDDL version. The following is



an abridged version of the deep ontology focusing on the contact and education
contents.

(define (domain ResumeOnt)
(:types

MyResume - Object
ContactInfo Education - MyResume)

(:predicates
(contactName c - ContactInfo s - String)
(contactAddress c - ContactInfo s - String)
(contactTel c - ContactInfo s - String)
(schoolName e - Education s - String)
(schoolCity e - Education s - String)
(schoolState e - Education s - String)))

In the JobPositionSeeker DTD, all the data are structured around the job
position seeker. A job position seeker has his/her personal data, which include
the information about name, postal address and telephone number, etc. The job
position seeker also has a Resume for job application. In the Resume domain,
the central information should be the Resume. The axioms below extract the
personal data of a job position seeker and map them to the contact information of
Resume in the deep ontology. The prefix @JobPos: denotes the surface ontology
and @Resume: the deep ontology. Using prefixes, we can avoid name conflicts
when handling terms from different namespaces.

(T-> @JobPos:PersonalData @Resume:ContactInfo)

(forall (pd - @JobPos:PersonalData
fn - @JobPos:FormattedName)

(iff (@Resume:contactName pd fn)
(exists (pn - @JobPos:PersonName)

(and (@JobPos:hasPersonName pd pn)
(@JobPos:hasFormattedName pn fn)))))

(forall (pd - @JobPos:PersonalData
tn - @JobPos:TelNumber)

(iff (@Resume:contactTel pd tn)
(exists (vn - @JobPos:VoiceNumber)

(and (@JobPos:hasVoiceNumber pd vn)
(@JobPos:hasTelNumber vn tn)))))

(forall (pd - @JobPos:PersonalData
pa - @JobPos:PostalAddress
cc - @JobPos:CountryCode
pc - @JobPos:PostalCode



r - @JobPos:Region
m - @JobPos:Municipality
d - @JobPos:DeliveryAddress
al - @JobPos:AddressLine
s - String)

(if (and (@JobPos:hasPostalAddress pd pa)
(@JobPos:hasCountryCode pa cc)
(@JobPos:hasPostalCode pa pc)
(@JobPos:hasRegion pa r)
(@JobPos:hasMunicipality pa m)
(@JobPos:hasDeliveryAddress pa d)
(@JobPos:hasAddressLine d al)
(eval (@built-in:concatenate al "\n"

m ", " r " " pc "\n" cc) s))
(@Resume:contactAddress pd s)))

The first axiom is an abbreviation saying that we give a one-to-one map
between the two types: @JobPos:PersonalData and @Resume:ContactInfo. The
other three axioms handle the name, address and phone number information,
respectively. The @built-in:concatenate in the fourth axiom is a built-in data pro-
cessing function in our OntoEngine, which concatenate its arguments (strings)
into one whole string. Some other such functions include @built-in:stringnumber
which converts between the string format and digit format of numbers.

Using these axioms, the meanings embedded in the following XML document

<JobPositionSeeker>
<JobPositionSeekerId>foo-Y-CS-2000</JobPositionSeekerId>
<PersonalData>
<PersonName>

<FormattedName>Jeff Q. Seeker</FormattedName>
</PersonName>
<PostalAddress>

<CountryCode>US</CountryCode>
<PostalCode>06511</PostalCode>
<Region>CT</Region>
<Municipality>New Haven</Municipality>
<DeliveryAddress>

<AddressLine>1701 Whitney, Apt.3</AddressLine>
</DeliveryAddress>

</PostalAddress>
<VoiceNumber>

<TelNumber>(203) 400-8000</TelNumber>
</VoiceNumber>

</PersonalData>

can be stated as a set of logical facts:



(:objects
PersonalData3 - @Resume:ContactInfo)

(:translated-facts
(@Resume:contactName PersonalData3 "Jeff Q. Seeker")
(@Resume:contactAddress PersonalData3

"1701 Whitney, Apt.3
New Haven, CT 06511
US")

(@Resume:contactTel PersonalData3 "(203) 400-8000"))

which can further be written out in DAML using PDDAML, and become usable
by Semantic Web agents.

<rdf:RDF
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml = "http://www.daml.org/2001/03/daml+oil#"
xmlns:Resume= "http://orl01.drc.com/daml/Ontology/Resume/3.1/

Resume-ont.daml#">
<rdf:Description rdf:about="">
<daml:imports rdf:resource="http://orl01.drc.com/daml/Ontology/

Resume/3.1/Resume-ont.daml#"/>
</rdf:Description>
<Resume:ContactInfo rdf:ID="PersonalData3">
<Resume:contactName>Jeff Q. Seeker</Resume:contactName>
<Resume:contactAddress>
1701 Whitney, Apt.3
New Haven, CT 06511
US
</Resume:contactAddress>
<Resume:contactTel>(203) 400-8000</Resume:contactTel>

</Resume:ContactInfo>
</rdf:RDF>

Note that only those XML tags which are assigned meanings through the
meaning definition axioms can induce useful information in the output dataset.
Other stuff in the original XML document is ignored (e.g. the JobPositionSeekerId
tag). As the understanding grows, we can improve the axioms and extract as
much information as possible.

Up to now, we have been mainly dealing with the direction from the surface
ontology to the deep ontology. Our meaning definition axioms should also help
the translation in the other direction, which is needed when we want to serialize
a set of XML-independent logical facts to some specific XML language. Several
new problems will pop up. In the above axioms, the first three use “iff” and
can work fine in both directions. The fourth axiom concatenate the different
parts of a postal address together. More axioms are needed to translating postal
address information back to XML, that is splitting an entire address string into



separate parts. Due to the space limit, here we just give one which extracts
out the post code part. With the help of some data sources such as the DAML
Country Codes [8], the fetchPostalCode function first tests whether the country
code is absent or present and thus determines the line (the last or the second to
last one) on which the postal code should appear. Then it fetches out the string
which matches the pattern “[0 ∼ 9]+(−[0 ∼ 9]+)?” from that line.

(forall (pd - @JobPos:PersonalData
s pc - String)

(if (and (@Resume:contactAddress pd s)
(eval (fetchPostalCode s) pc))

(exists (pa - @JobPos:PostalAddress)
(and (@JobPos:hasPostalAddress pd pa)

(@JobPos:hasPostalCode pa pc)))))

Another problem is that the dataset in the deep standard ontology only con-
tains meaningful information. The above Resume dataset says nothing about
the job position seeker. But in the surface ontology, an object of type JobPosi-
tionSeeker must exist so that we can have the root node for the tree structure
of the XML document. Since we know that one XML document can have only
one root element, we can add a constant @JobPos:JobPositionSeeker1 into the
merged ontology. The following axiom links the root to one of its sub-elements:
PersonalData.

(forall (c - @Resume:ContactInfo)
(@JobPos:hasPersonalData @JobPos:JobPositionSeeker1 c)))

With this new constant added, the reverse translation results in almost the
same input XML document. The only thing missed is the JobPositionSeeker-
ID element because there is no its correspondence in the DAML dataset.

One more problem that we need to take care of when writing the mean-
ing definition axioms can be illustrated more clearly by the following example
concerning the education information in the JobPositionSeeker document.

(T-> @JobPos:SchoolOrInstitution @Resume:Education)

(forall (si - @JobPos:SchoolOrInstitution
re - @JobPos:Region)

(iff (exists (ls - @JobPos:LocationSummary)
(and (@JobPos:hasLocationSummary si ls)

(@JobPos:hasRegion ls re))))
(@Resume:schoolState si re))

(forall (si - @JobPos:SchoolOrInstitution
m - @JobPos:Municipality)

(iff (exists (ls - @JobPos:LocationSummary)
(and (@JobPos:hasLocationSummary si ls)



(@JobPos:hasMunicipality ls m))))
(@Resume:schoolCity si m))

The last two axioms both have an existential quantifier in them. During the
translation, we will remove the existential quantifiers by skolemization [19]. More
specifically, if we know that (@Resume:schoolState Institution 1 "CT") holds,
a skolem constant (e.g. LocationSummary 2) of type @JobPos:LocationSummary
will be created and two new facts concerning it will be added to the target
dataset. However, if we also have the fact (@Resume:schoolCity Institution 1
"New Haven") in the source dataset, another skolem constant of @JobPos:Location-
Summary can and will be created for the same Institution 1, because the two
axioms have different universal quantifiers. This would finally result in an XML
document with the state and city information of the same institution tagged in
different LocationSummary tags. The problem might be bypassed by combining
the two axioms into a single one. But it would introduce the other flaw – in-
formation loss. No new target facts could be generated if only one of the two
predicates appears in the source dataset, because there was no matching axiom
then could be applied to. One meaning definition axiom is still required for each
predicate in the deep ontology.

We can solve the problem by rewriting the axioms with explicit term-generating
functions instead of the existential quantifiers. Using the explicit functions can
give us finer control over term generation than skolemization would. The fol-
lowing two axioms are for the translation from the deep ontology to the surface
ontology. The axioms in the other direction can be got by just replacing the “iff”
with “if” in the original ones.

(forall (si - @JobPos:SchoolOrInstitution
re - @JobPos:Region)

(if (@Resume:schoolState si re)
(and (@JobPos:hasLocationSummary si (@control:aLocSummary si))

(@JobPos:hasRegion (@control:aLocSummary si) re)))))

(forall (si - @JobPos:SchoolOrInstitution
m - @JobPos:Municipality)

(if (@Resume:schoolCity si m)
(and (@JobPos:hasLocationSummary si (@control:aLocSummary si))

(@JobPos:hasMunicipality (@control:aLocSummary si) m))))

where @control:aLocSummary1 is defined by

(:functions (@control:aLocSummary @JobPos:SchoolOrInstitution)
- @JobPos:LocationSummary)

With these new axioms, only one (aLocSummary SomeInstitution) is cre-
ated for the same SomeInstitution. And finally, just one instance of @Job-
Pos:LocSummary will take the place in the target dataset.
1 We use the prefix @control as a convention our inference engine requires for the

term-generating functions.



Domain 1 Domain 2

XML Doc1 DTD1
XML Doc2 DTD2

6

?
?

6

?
?

Dataset1

Surface
Ontology1 Dataset2

Surface
Ontology2

Meaning
Definition
Axioms1

Meaning
Definition
Axioms2

Bridging
Axioms

6

?

6

?

¾ -Meaningful
Facts1

Standard
Ontology1

Meaningful
Facts2

Standard
Ontology2

Extractor Encoder Extractor Encoder
DTD2Onto DTD2Onto

Fig. 3. translating across domains

Besides translating between XML and RDF (DAML+OIL, OWL), our ap-
proach also makes it possible to translate between heterogeneous XML speci-
fications. If two XML specifications are describing the same domain, only one
deep standard ontology of this domain is needed. We can use one set of meaning
definition axioms to represent the information contained in one XML specifica-
tion in a dataset of the deep ontology, and then use a different set of meaning
definition axioms to translate that dataset back to the other XML specification.
If the two specifications are about two different but overlapping domains, two
deep ontologies are needed. We just carry out one more ontology translation
between the two deep ones. The latter case is shown in Fig. 3.

5 Related Work and Discussion

The Semantic Web Project has recently proposed the Web Ontology Language,
OWL. Derived from RDF and DAML+OIL, OWL provides a rich set of con-
structs for publishing and sharing ontologies on the World Wide Web. How-
ever, users of RDF, DAML+OIL or OWL have to build up their ontologies and
datasets based on the RDF specification. XML documents that do not follow the
RDF specification are beyond the capability of Semantic Web agents. Our work
can serve as a bridge between the semantical RDF and the structural XML.
Through the meaning definition axioms, information in XML documents can be
accessed by these automated agents, making them more powerful.

As we have pointed out in section 2, XML documents can present meanings of
three kinds: objects, their attributes and associations. Past XML transformation
tools based on XSLT [4] can capture the meanings of the first two, but most of



them neglect the meanings of associations between objects, which should be the
more important component in constructing the whole structure of an ontology.

Worden’s Meaning Definition Language (MDL) [12] is designed to enable
tools to access XML at the level of meaning rather than its structure. An MDL
file defines what an XML document means in terms of a UML class model or
RDF Schema, and defines how it expresses the meaning by using XPath. MDL
gives the mappings between XML vocabularies and the underlying conceptual
model, and is able to capture the three kinds of meanings. Generally, objects of
classes correspond to XML elements. Attributes of objects are represented by
attributes of XML elements. Associations between objects can be represented
in various ways within XML vocabularies, and each is handled specifically. In
our approach, the meaning definition axioms also capture the three kinds of
meanings in XML documents. Unlike an MDL file, our axioms are represented
as logic formulas. In our view, meanings of associations between objects can be
stated more explicitly using first order logic than using XPath. It is also much
easier to build and understand an axiom both of whose sides are in the same
logical syntax.

Researchers at the National Taiwan University [18] proposed their logic-based
framework of a reasoning system for unifying heterogenous XML documents. The
Path Inference Language (PIL) they developed is specially designed for the tree-
structure of XML. Logical facts are drawn from XML documents by the semantic
extractor which contains a set of extraction rules. An extraction rule is written in
PIL and is composed of a matching part and a transformation part. The match-
ing part is used to locate nodes in the XML documents and the transformation
part is used to transform the located nodes into logical facts. Further reasoning
can be done based on the rules in the common domain ontology, which is also
in PIL syntax. Our approach first extracts a set of logical facts automatically to
the surface ontology, then rewrites it with the deep standard ontology to make
the semantic meanings more explicit. The meaning definition axioms differ from
PIL extraction rules in that they can be used in both translation directions.
Automated inference can translate data forward and backward between XML
languages and the Semantic Web ontologies.

6 Conclusion

In this paper, we extended our ontology translation service, OntoMerge, beyond
our initial focus on translating ontologies and datasets written in DAML+OIL.
The huge web resources available in XML are a tempting target. Since the release
of XML in 1998, thousands of XML specifications have been developed by various
communities. Massive data are presented in XML format. This huge resource can
provide us with plenty of test cases.

In an XML document, the meanings hide in the specific structure of the
document or even in the text of those tags. This makes it hard for automated
agents to understand XML documents without the intervention of human be-
ings. In this paper, we presented our approach of assigning meanings to XML



documents through the Meaning Definition Axioms. We first build up the surface
ontology from the DTD file automatically, which captures the default semantics
of the XML specification. The default semantics might be plausible, but in most
cases it would mix semantic knowledge with syntactic stuff. The deep standard
ontology is used to separate these two because it has the advantage of concern-
ing itself entirely with the domain knowledge. The meaning definition axioms
are written by domain experts to bridge between the surface and the deep on-
tologies. They also provide the flexibility for either side to evolve independently.
With these axioms, automated reasoning can lift XML data up to the ontology
level and serialize ontology datasets to XML format.

We have tested our translation system with two XML specifications in the
domain of Resume. It works well so far. Constructing the meaning definition
axioms needs the help from domain experts, and it usually takes days to develop
them depending on the size of the XML specification and how the semantic
relationships will be. We will try more domains to justify the practicality of our
approach.

References

1. Ora Lassila and Ralph R. Swick. Resource Description Framework(RDF) Model
and Syntax Specification. W3C Recommendation, 22 February 1999. Available at
http://www.w3.org/TR/REC-rdf-syntax

2. Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema, W3C Working Draft, 23 January 2003. Available at
http://www.w3.org/TR/rdf-schema/

3. Frank van Harmelen, Peter F. Patel-Schneider and Ian Horrocks. Reference descrip-
tion of the DAML+OIL (March 2001) ontology markup language, 2001. Available
at http://www.daml.org/2001/03/reference.html

4. James Clark. XSL Transformations (XSLT) Version 1.0, W3C Recommendation,
16 November 1999. Available at http://www.w3.org/TR/xslt

5. Web-Ontology (WebOnt) Working Group. http://www.w3.org/2001/sw/WebOnt/
6. http://www.hr-xml.org/schemas/dtd/recruiting/jobpositionseeker-v1.0.dtd
7. DAML Ontology Library. http://www.daml.org/ontologies/
8. Mike Dean. DAML Country Codes. http://www.daml.org/2001/09/countries/
9. http://orl01.drc.com/daml/Ontology/Resume/3.1/Resume-ont.daml

10. OntoMerge, Ontology Translation by Merging Ontologies.
http://www.cs.yale.edu/homes/dvm/daml/ontology-translation.html

11. PDDAML, An Automatic Translator Between PDDL and DAML
http://www.cs.yale.edu/homes/dvm/daml/pddl daml translator.html

12. Robert Worden. Meaning Definition Language, Version 2.06 Available at
http://www.charteris.com/XMLToolkit/Downloads/MDL206.pdf

13. Kim Bartkus. Staff Exchange Protocol(TM) 1.1. Recommendation, HR-XML Con-
sortium.

14. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, pages 34–43, May 2001.

15. Drew McDermott and Dejing Dou. Reprsenting Disjunction and Quantifiers in
RDF. In Proceedings of International semantic Web Conference 2002, pages 250–
263, 2002



16. Dejing Dou, Drew McDermott, and Peishen Qi. Ontology Translation
by Ontology Merging and Automated Reasoning. In Proc. EKAW02
Workshop on Ontologies for Multi-Agent Systems, 2002. Available at
http://www.cs.yale.edu/homes/dvm/papers/DouMcDermottQi02.ps

17. Drew McDermott. The Planning Domain Definition Language Manual. Technical
Report 1165, Yale Computer Science, 1998. (CVC Report 98-003).

18. Yuh-Pyng Shieh, Chung-Chen Chen, and Jieh Hsiang. A Reasoning Framework
for Heterogeneous XML. International Conference on Information Technology:
Research and Education (ITRE2003), Newark, New Jersey, August 10-13, 2003.

19. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
Inc, 1995.


