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1 Introduction and Overview

OPT stands for Ontology with Polymorphic Types. It is an attempt to create a general-purpose
notation for creating ontologies, defined as formalized conceptual frameworks for domains about
which programs are to reason. Its syntax is based on PDDL [?], but it has a more elaborate type
system, which allows users to make use of higher-order constructs such as explicit λ-expressions.
OPT is intended to be (almost) upwardly compatible with PDDL 2.1, the dialect used in the 2002
International Planning Competition. Some of the prose in this document is lifted is lifted straight
from previous PDDL documentation (which in turn may have been lifted from the UNPOP language
manual). Where OPT differs from PDDL 2.1, I will point out how it differs. Opt borrows much of
its notation for processes and durative actions from [?].

It’s my hope that PDDL will in fact evolve in the direction of OPT, but even if it doesn’t, OPT
will continue to include PDDL as a subset for obvious reasons. [[One difference between lang
and PDDL is that less of an effort has been made in the design of lang to separate “advice” from
“physics.” Then again, the effort was a bit ill defined even for PDDL.]]

In OPT, as in PDDL, a formalized ontology is called a domain. Domains can be related by
inheritance relations, so very general ontologies can be used over and over. Not all domains involve
the same level of expressivity. For example, some domains may be based on the assumption that
any variable-free atomic formula not known to be true may be assumed to be false; this is called a
“closed-world assumption.” In fact, this is the default in OPT, as in many AI applications, because
closed worlds tend to be more tractable. However, there are domains where such an assumption is
inappropriate, in which case verifying that a proposition is false requires a more substantial infer-
ence than failing to prove it true. To control these differing kinds of domains, we borrow from the
UCPOP language [?] the idea of requirements flags. Any domain that departs from the simplest
subset of OPT must declare the requirements that it is based on

(define (domain astronomy)
(:requirements :open-world) ...)

In this case we say that astronomy declares the requirement :open-world.
Here is an example domain, a simple version of an ontology for an agent on the World-Wide

Web:

(define (domain www-agents)
(:extends knowing regression-planning commerce)
(:requirements :existential-preconditions :conditional-effects)
(:types Message - Obj Message-id - String •)

(:type-fun (Key t) (Feature-type (keytype t)))
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(:type-fun (Key-pair t) (Tup • (Key t) t))
(:functions (price-quote ?m - Money)

(query-in-stock ?pid - Product-id)
(reply-in-stock ?b - Boolean)
- Message)

(:predicates (web-agent ?x - Agent)
(reply-pending a - Agent id - Message-id msg - Message)
(message-exchange ?interlocutor - Agent

?sent ?received - Message
?eff - Prop)

(expected-reply a - Agent sent expect-back - Message))
(:facts

(freevars (?agt - Agent ?msg-id - Message-id
?sent ?reply - Message)

(<- (and (web-agent ?agt)
(reply-pending ?agt ?msg-id ?sent)
(expected-reply ?agt ?sent ?reply))

(normal-value (receive ?agt ?msg-id)
?reply))))

(:action (send ?agt - Agent ?sent - Message)
- (?sid - Message-id)
:precondition (web-agent ?agt)
:effect (reply-pending ?agt ?sid ?sent))

(:action (receive ?agt - Agent ?sid - Message-id)
- (?received - Message)

:vars (?sent - Message ?eff - Prop)
:precondition (and (web-agent ?agt)

(reply-pending ?agt ?sid ?sent))
:effect (when (message-exchange ?agt ?sent ?received ?eff)

?eff)))

OPT can be used purely as an ontology mechanism. We are working on using it as an internal
notation for representation systems such as RDF [?, ?] and DAML [?], for which it provides type
checking and other services. But the Lisp implementation of the OPT system, which is under con-
struction, is the basis for support of various inferential systems, including a Prolog-style theorem
prover, a planner [?], and a plan checker. The description of these systems and their APIs is beyond
the scope of this manual, but will appear in later documentation. A formal semantics of OPT is in
the works.

In OPT, all types are capitalized, a style popularized by Java, and tending to create clarity in
my opinion. In previous versions, PDDL has ignored case.1 OPT tools that offer a PDDL2.1-
compatibility mode must also ignore it.

1I think this was a bad design decision, even though I am largely responsible for it. However, in the future I would
urge that this design decision be reversed, and that symbols which differ only in the case of some of their constituent
characters be treated as different.
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2 Technicalities

Those not interested in technicalities may skip this section on first reading. As the example above
shows:

1. The syntax of OPT is like Lisp’s.

2. Where types are declared, one does it by writing “ - type-expression” after the thing being
declared.

The details are fairly intricate and even interesting, but perhaps not right now.
One other point: The enriched type system of OPT makes it possible to define many symbols

simply by giving their types and a short definition, making it unnecessary to incorporate every
symbol in a syntactic equation, as is the style in the various PDDL manuals. All symbols defined
in this way are collected in section 13.3 in alphabetical order for easy reference. Furthermore, from
this point on, every occurrence of such a symbol is flagged with a superscript •. so you won’t
be baffled about where it is defined. Remember that upper-case symbols are types, and hence are
documented in section 13.1; other symbols are documented in section 13.3. Requirements flags,
which begin with a colon (“:”), are documented in section 13.2; because they are all built-in, their
occurrences are not flagged. The only built-in constants that are not flagged are those with short,
nonalphabetic names, such as +, =, <, and such, for which the annotation would be too distracting.

2.1 Syntactic Notation

Our notation is the Extended BNF (EBNF) of [?] with the following conventions:

• Each rule is of the form <syntactic element> ::= expansion.

• Angle brackets delimit names of syntactic elements.

• Alternative expansions are written in two ways: by supplying two or more rules with the same
left-hand side:

<term> ::= (<term> <term>∗)
<term> ::= (is <type> <term>)

or, if the alternative expansions are short, by writing one rule with the alternative expansions
separated by “|”:

<term> ::= <constant> | <variable>

• Square brackets ([ and ]) surround optional material. When a square bracket has a super-
scripted requirement flag, such as:

...[:expansion <action spec>] :action−expansions
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it means that the material is includable only if the domain being defined has declared a re-
quirement for that flag.

• Similarly, the symbol ::= may be superscripted with a requirement flag, indicating that the
expansion is possible only if the domain has declared that flag.

<structure-def> ::= :action−expansions <method-def>

• An asterisk (*) means “zero or more of”; a plus (+) means “one or more of.”

• Some syntactic elements are parameterized. E.g., <list (symbol)>might denote a list of
symbols, where there is an EBNF definition for <list x> and a definition for <symbol>.
The former might look like

<list (x)> ::= (x*)

so that a list of symbols is just (<symbol>*).

• Ordinary parenthesis are an essential part of the syntax we are defining; the only place they
have a meaning in the EBNF meta language is inside angle brackets, where they wrap param-
eters as just explained.

Comments in OPT begin with a semicolon (“;”) and end with the next newline. Any such string
behaves like a single space.

Variables in OPT are always bound by explicit quantifiers or other devices. There is a tradition,
in AI applications of logic, of flagging each occurrence of a variable somehow, by a prefix character
(?x or :y, perhaps), or by a case convention (so that x is a variable and Xerxes is not, or vice
versa). The original motivation for this convention was that variables were never declared, just
implicitly universally quantified with scope equal to the largest formula they occurred in; so the
occurrences had to be flagged. I find it odd that in formalisms with explicit declarations people still
like those little reminders, which they cheerfully do without in programming languages and other
contexts. In OPT, variables may be prefixed with question marks, but the question marks are almost
always optional. The only exception is where the question mark is specifically for the purpose of
avoiding an explicit declaration, as in the case of implicit type variables, discussed in section 2.2

2.2 The Type System

The type system is ubiquitous in OPT. Intuitively, the type of an expression is a constraint on all
the values the expression may ever have. To make this definition precise, we have to distinguish
the type of an object from the type of an expression. An expression such as (+ x 3) will denote
the number thirty-six in situations x where x denotes the number thirty-three. We write the names
of the numbers out to emphasize that an object is drawn from an abstract universe of some kind,
whereas an expression is drawn from a universe of lexical entities usually defined by recursive rules.
The types of thirty-three and thirty-six are examples of object types; it happens that they are of type
integer. Expression type is a useful concept only if it is used to reason about the types of the objects
an expression will denote, i.e., its values, before it actually denotes them. In languages like Lisp
and Kif, there is minimal use of expression type. Instead, every time the value of an expression
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is available in a context where checking the appropriateness of that value is feasible, the run-time
system can and usually does do the check, raising a run-time exception if the object fails the test. A
classic example is evaluating (+ x 3) in an environment where the value of x is a string such as
"oops", and getting an error message such as “Non-numerical argument "oops" to +.”2

It is harder to come up with examples in a declarative language such as Kif, because in the
normal course of events expressions aren’t evaluated, but just used to infer further expressions. The
consequence of a type error is likely to be a silent failure to draw an appropriate inference. OPT
is also a declarative language. Long experience has taught us that detecting type errors before they
occur saves a lot of debugging, and that requires figuring out the types of expressions, not objects.

We declare the types of symbols, when they are first bound, by writing

expression - type

where the expression contains (and usually just is) the symbol. For instance, in a universally quan-
tified statement we might say

(forall (x - Vehicle) (has-gas-tank x))

to indicate that x ranges over Vehicles in this context. We follow the Java/Haskell convention
of capitalizing the names of types. We do not follow the Java convention of usingCapitalLetters
to indicateWordBoundaries; hyphens are treated as ordinary alphabetic characters, so we can write
has-gas-tank instead of hasGasTank.

The expression may be more complex. For instance, one construct for declaring a function
looks, in part, like this example:

(gcd i j - Integer•) - Integer•

This declares the type of gcd, to wit, a function that takes two Integer arguments and produces an
Integer result. Here we introduce the following terminological convention: In programming, if f is
a function whose result type is y, we say f “returns” (an object of) type y. In logic, functions don’t
get called, so they don’t actually “return” from anywhere. We will say instead that it produces type
y. (Well, the truth is that for practical purposes we depart from this purity in “evaluation contexts”;
see section 3.)

Every expression must be typeable, meaning that it is possible to infer a consistent assignment
of types to all its subexpressions, including itself. OPT does most of these inferences itself. It is
often convenient to speak of “the type” of an expression, but this phrase is technically often wrong.
An expression may have more than one type; typeability just means it is possible to find a consistent
assignment of types of expressions.

In the example, if has-gas-tank is a predicate on Physical-objects, and every Vehicle
is a Physical-object, then the type of (has-gas-tank x) is Boolean 3. As this example

2There is a philosophical problem here about the sense in which a computer can ever have access to the actual abstract
universe of integers. The answer, of course, is that it can’t. It can, however, have access to a canonical representation of an
abstract domain, including computable manipulations of that representation that provably correspond to or approximate
actual mathematical functions on the abstract domain. Evaluating an expression E means finding the expression EC in
the canonical representation that denotes the same object E does. A run-time type error corresponds to the detection of
an E whose EC is not in the right subset of the canonical representation.

3Actually, it’s not really Boolean, as we will discuss shortly.
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shows, one type can be a subtype of another, as Vehicle is a subtype of Physical-object.
Any term with type Vehicle also has type Physical-object.

Types are not exactly sets; type theory is a competitor to set theory as a way of thinking about
logic. In set theory, one starts with very general axioms about any kind of collection, and gradually
infers theorems about various sorts of collection. In type theory, all the symbols (and compound
expressions) must be labeled (or labelable) with their types. The labels must obey certain rules.
For instance, if f is labeled as a function from String•s to Integer•s, then (f x) must be
labeled Integer• and all occurrences of x must be labeled String•. A formula that cannot be
given a type is ill-formed. In a sense the type of an expression identifies a set all its values fall in,
but these sets are not first-class citizens in the logic. We can’t quantify over types; we can’t take
intersection of types; we can’t infer that a type exists without knowing which type it is (i.e., knowing
the standard name for it).

In return for these constraints, it becomes easier to avoid paradoxes. The most famous paradox
of set theory is Russell’s Paradox. Starting from the plausible idea that for any property there exists
a set containing just the objects that satisfy that property, we quickly get a contradiction. For if the
plausible idea is true, then from the property x !∈ x, we can derive the term S = {x|x !∈ x}. But
then S ∈ S ⇐⇒ S !∈ S. Much ingenuity has been used in making this paradox go away. In type
theory, it never arises, because terms x !∈ x and x ∈ x are not typeable. The type of ∈ is “predicate
with two arguments, one an Individual, the other a Set.” To oversimplify x can be of type
Individual or Set, but not both, so there is no way to infer a correct type for x ∈ x.

We use a more Lisp-like notation. x ∈ x would be written (elt x x). The type of ∈, or
elt, is (Fun Boolean <- (Individual Set)). (Fun range <- domain) is the type
of functions from the given domain to the given range. The notation (Individual Set) is ac-
tually short for (Arg• - Individual - Set), which describes an argument tuple with
two anonymous elements (as indicated by the use of the name “ ”). Argument tuples are those
evanescent entities that exist only when a function is called in Lisp. If you write (+ x y z), it
is useful to analyze this as applying the function + to the argument tuple 〈x y z〉, although this
entity never exists as an actual data object (for instance, you can’t bind a variable to it).

The basic rule for typing a function application is: If 〈a1 . . . ak〉 is an argument tuple with type
A, and f has type (Fun r <- A), then (f a1 ... ak) has type r.

Function types are complicated by two phenomena: overloading and polymorphism. Overload-
ing is the use of the same function symbol for different functions. The standard example is +, which
can operate on Integer•s or Float•s. Fortunately, overloading is rare, and doesn’t require a
general-purpose, user-level notation. In fact, the arithmetic functions are the only overloaded func-
tions in OPT.

Polymorphism is the use of a function symbol to denote a family of functions parameterized by
one or more type variables. A standard example is the reverse function. If l is a list of objects,
then (reverse l) is a list of the same elements, in the opposite order. It doesn’t matter what the
types of the elements are, and they don’t all have to be the same type. One way to proceed is to
declare reverse to be of type (Fun• (Lst• Obj•) <- (Lst• Obj•)), where Obj• is a
general type that includes all objects, and (Lst• y) is the type of lists of objects of type y. (We
use the term type function for an entity such as Lst• that resembles a function syntactically, but
produces a complex type from other types.) The problem is that if x is known to be of type (Lst•
Integer•), we should be able to infer that (reverse x) is of the same type; but all we can
infer is that (reverse x) is a list of Obj•.
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What we want to do is introduce a type variable u and give reverse the type (Fun• (Lst•

u) <- (Lst• u)). To avoid ambiguity about the scoping of u, we will actually declare reverse
thus:

reverse - (Fun• 1 (Fun• (Lst• u) <- (Lst• u))
<- (u - (T•)))

In other words, reverse is a function that takes u as an argument and produces a function
type (Fun (Lst• u) <- (Lst• u)). The type of u is (T), meaning type. For example,
(reverse Integer•) is a function of type (Fun (Lst• Integer•) <- (Lst• Integer•)).
So one might expect to write ((reverse Integer•) x).

We can’t actually do things quite that way, for a variety of reasons, including the fact that the first
function application is obviously operating with “type-level” entities, while the second is operating
with “domain-level” entities. The “1” in the first Fun signals this. Domain-level entities are at level
0, whereas type-level entities are at level 1. (The only level-2 entity in sight is the type (T), which
is what type theorists call a kind, meaning that it is the type of a (level-1) type.) We indicate level-1
application with the symbol !&, so the proper way to write the example above is

((!& reverse Integer•) x)

But this is too clumsy for the average case. We normally want to write simply

(reverse x)

We arrange for that with the following convention: If a level-1 function f is used where a level-
0 function is expected, say in the term (f a1 ...ak), the type system will try to infer level-1
entities y1 . . . yn such that ((!& f y1 ...yn) a1 ...ak) is typeable. If x is of type (Lst•
Integer•), then the type system infers that (reverse x)means ((!& reverse Integer•)
x), and is of type (Lst• Integer•).

In addition, it is distracting to have to mention function levels in the usual case. Hence OPT
allows some abbreviations. We can mush the two levels together

reverse - (Fun (Lst• u) <- ((Lst• u) !& u - (T)))

The label !& is used here to separate 0-level variables from 1-level variables.
An alternative notation is to flag level-1 variables with question marks, as in

reverse - (Fun (Lst• ?u) <- (Lst• ?u))

which is exactly equivalent to the original type declaration. This notation has the advantage of
conciseness. It has the disadvantage that the scope of the variable ?u is not always clear. The rule is
that the scope of a question-marked type variable is the outermost Fun such that the variable occurs
in the type of one of its parameters.

Using these notational devices, we can redo the Russell’s Paradox example in a more elegant
way. Declare elt as follows:

elt - (Fun Boolean <- (e - ?u s - (Set ?u)))
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Here ?u is a level-1 variable, which can be any type. For any type t, there is a type of sets of t’s,
which we denote by (Set t). Now (elt x x) is not typeable because there is no type u such
that u = (Set u).

Polymorphism has not been necessary for traditional planning applications, because the focus
has been on manipulating simple objects. But for planning interactions with agents on the world-
wide web, most actions include creating, and extracting data from, data structures. Here polymor-
phism will be essential. However, it is hard to get interesting polymorphism without data structures
such as (Lst• Integer•), and simple PDDL-style applications will not be able to handle them.
Hence there is a requirement flag :data-structures that must be declared by any domain that
uses them.

In addition to Lst•, we have one other built-in complex type constructor: (Tup• –piece-
declarations–) is a tuple with the given elements. Example: (Tup• i j - Integer• s -
String•) is a tuple with three components, i, j, and s, of types Integer•, Integer•, and
String•.

Given a Tup• x, you can refer to the field named s by writing (! s x). If the fields are
anonymous (named , in other words), you can refer to them positionally. The second element of u,
where u - (Tup• - Integer•) can be accessed by writing (! <2> u).

New type functions may be defined in terms of existing ones. See section 4.
To refer to the object of a given type with given arguments, write (make type –arguments–

). For example, (make (Tup• i j - Integer•) 5 6) denotes a two-integer tuple x such
that (! i x) is 5 and (! j x) is 6. This notation is not very useful without the ability to define
named types, like this:

In domain definition:
(:type Int2 (Tup• i j - Integer•))

In some domain axiom:
(list (make Int2 5 6) (make Int2 50 60))

The functions (list• a1 ...an) and (tuple• a1 ...an) are a simpler way to make
lists and tuples. The OPT system will try to infer the most useful type it can (either a Lst• or Tup•

type) for an occurrence of one of these expressions.
If y1, . . . yl are types, then (Alt• y1 ...yl) is the “union” of those types. An object is of

this type if and only if it is of type yi for some i. For an expression to be of this type is for each of
its possible values to be of type yi for some i. (A synonymous expression is (Either• y1 ...
yl).)

We now describe the type-declaration notation using EBNF:

<typed list (x)> ::= (<typed row (x)>)
<typed row (x)> ::= <x>∗

<typed row (x)> ::= <x>+- <type> <typed row (x)>
<type> ::= <variable>

::= (<type function> <type>+)
::= (Fun• [<level>]

<val spec> <- <arg spec>)
<type> ::= (<struct builder> <type row>)
<type> ::= (<struct builder> <param row>)
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<type function> ::= <name>
<level> ::= 0 | 1
<struct builder> ::= Tup•

<arg spec> ::= <name arg spec> | <type arg spec>
<name arg spec> ::= <name> | ([Arg] <named params spec>)
<type arg spec> ::= <type> | ([Arg] <anon params spec>)
<named params spec> ::= <param row> [!& <typed row (name)>]
<param row> ::= <typed row (name)>

[&optional <typed row (param)>]
[<rest-or-key param row>]

<anon params spec> ::= <type row> [!& <typed row (name)>]
<type row> ::= <type>∗ [&optional <type>+]

[<rest type row>]

<rest-or-key param row> ::= <rest param row> | <key param row>
<rest param row> ::= &rest <variable> [- <type>]
<rest param row> ::= &rest <variable> :- <type>
<rest param row> ::= &rest (<variable>+) <variable> - <type>
<key param row> ::= &key <typed row (keyparam)>
<keyparam> ::= <dflt-param>

| ((<keyword> <variable>) <term>)

<rest type row> ::= &rest <type>
<rest type row> ::= &rest (= <type>)
<rest type row> ::= &key (keytype)+

<keytype> ::= <keyword> <type>

<dflt-param> ::= <variable> | (<variable> <term>)
<val type spec> ::= <type>

([Val] <type>∗)
([Val] <typed list(name)>)

<keyword> ::= :<name>
<variable> ::= [?]<name>
<name> ::= <basicname>

An EBNF definition of <basicname>would be a bit clumsy; it’s easier just to say that a name is
a sequence of one or more alphanumeric characters starting with an alphabetic. We count characters
-, , +, -, *, /, <, and > as letters. (Note that colon is not allowed in a basic name. We will find a
use for it in section 11.)

A typed list is used to declare the types of a list of entities; the types are preceded by a hyphen
(“-”), and every other element of the list is declared to be of the first type that follows it; if there are
no types that follow it, OPT is to infer the type. An example of a <typed var list> is

x y - Integer• ?l - (Lst• Integer•)
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As explained above, the question marks in front of variables are optional.
Fun• and Tup• are not quite type functions, because of their idiosyncratic syntax. The argu-

ment position of a Fun• may be written (Arg• ...), or the Arg• may be implicit. Similarly, the
value position of a Fun• may be written with or without the explicit Val•. The syntax of Arg• and
Tup• are identical; Val is somewhat simpler. They are all based on the syntax of Common Lisp [?],
which exploits fully parenthesized syntax to allow for very flexible argument-passing conventions.

The easiest way to understand the Arg• syntax is to focus on the syntactic element <named
params spec>; <anon params spec> is essentially the named version with the names re-
moved. A <named params spec> specifies required arguments and optional arguments (if
any), followed by either a &rest argument or a list of &key arguments. Every required argument
is specified by a single named parameter. Optional arguments may have default values if omitted,
in which case the parameter is written (<name> <default value>). (The syntactic element
<term> will be explained in section 2.3.) If the default is not specified, it is the standard “zero”
value for the parameter’s type (e.g., 0 for Integer•, "" for String•, and so forth).

The &rest parameter row consists of a name followed by an optional type declaration. &rest
m - Integer• indicates that the presence of zero or more Integer•s. In a Tup•, this notation
means that the m slot (accessed by ! m) is of type (Lst• Integer•). A double hyphen is a
variant in which we give the type of the slot rather than the type of each element of the slot. So we
could write &rest m -- (Lst• Integer•) with the same meaning.

Instead of a &rest parameter, one can write &key followed by a keyword parameters. In the
simplest case parameters are declared as in this example:

ff - (Fun• String• <- (&key x y - Integer•))

after which we can use ff by writing, e.g., (ff :x 3 :y 4), or (ff :y 40 :x 30), or
even (ff :y 50). Keyword arguments may occur in any order, and some may be omitted. One
can add a default value by writing a <dflt-param> instead of a <variable>. One can make
the keyword differ from the slot name by writing ((<keyword> <variable>) <term>). If
we use these conventions to define ff, we might end up with:

ff - (Fun• String• <- (&key (x -3) ((:y-arg y) 0) - Integer •))

So that (ff :y-arg 4)means the same as (ff :y 4 :x -3) in the previous version. If we
declare a tuple thus:

t1 - (Tup• &key (x -3) ((:y-arg y) 0) - Integer •)

then if t1 is bound to the value of (tuple :y-arg 10), it will have two slots (! x t1), with
value −3, and (! y t1), with value 10.

There is one semantic difference between Tup• on the one hand, and Arg• and Val on the
other. The latter are “row types,” meaning that an Arg• or a Val with one element is indistinguish-
able from that element, whereas a tuple or record with one element is not the same as that element
alone. A function whose range type is (Val n - Integer•) is the same as one with range type
Integer•, except that the former allows us to use the name n to stand for the value in appropriate
contexts.

Type rows are essentially the same as parameter rows, but with all the names taken out. How-
ever, we have to have conventions for handling nameless &rest and &key arguments. We interpret

11



&rest t as &rest - t; to say &rest -- t in parameterless style, write &rest (= t).
For &key parameters, you simply write the keywords and their types. So the type of the second
version of our function ff might be written

(Fun• String• <- (&key (:x Integer•) (:y-arg Integer•)))

For a table of all the built-in types of OPT, see section 13.1.

2.3 The Logical Language

The basic syntax of the language is very simple. The primary syntactic element we define in this
section is <term>. Most terms are simple applications, of the form (f —args—). The term gram-
mar is very general, and can generate lots of bogus terms, such as (+ (\\ (x) (1 x))). These
terms are weeded out by the typeability requirement of section 2.2. As new syntactic constructs are
presented, I will sketch the typeability rules associated with them.

Let me emphasize again that the language I am describing is a logical language, not a program-
ming language. To avoid misleading distractions I will eschew phrases like “the value of this term
is . . . ,” and instead say things like “the denotation of this term is . . . .” To repeat what I said above,
nothing is “called,” and nothing “returns a value” in a logical language.

<term> ::= <literal> | <name> | <variable>
<term> ::= (<term> <term>+)
<term> ::= (!& <term> <term>+)
<term> ::= (make <type> <term>+)
<term> ::= (! <name> <term>)
<term> ::= (let-var <typed list (let-binding)>

<term>
[ :where <typed row (let-binding)>)]

<term> ::= (\\ <function-def-innards>)
<term> ::= (is <type> <term>)
<term> ::= (be <type> <term>)
<term> ::= (if <term> <term> <term>)
<term> ::= (-> <term> <term>)
<term> ::= (<- <term> <term>)
<term> ::= (when <term> <term>)
<term> ::= (and <term>∗

<term> ::= (or <term>∗)
<term> ::= (declare <typed list (variable)>

<term>)
<term> ::= (<quantifier> (<typed row (variable)>

[<rest param row>])
<term>)

<let-binding> ::= (<name> <term>)
<function-def-innards>::= [- <val type spec>] <name arg spec>

<term>
<literal> ::= <boolean> | <number> | <string> | ’<name>
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<boolean> ::= true | false
<quantifier> ::= forall | exists | exists! | freevars

Let’s explain each line in turn. The first line is self-explanatory. Literals in OPT include the
usual Boolean•s, numbers (Integer• and Float•) and String•s, plus Symbol•s, which are
just quoted names. (That is, there is a literal format for every primitive type in the hierarchy of
section 3.)

The second line,

<term> ::= (<term> <term>+)

is for function applications. A function application (f –arg tuple–) has type R if f has type
(Fun• R <- A) and the arg tuple has type A. Note that the object in function position can be
any term, not just a name, so long as it obeys this type rule. For instance, if m is of type

(Lst• (Fun• String• <- Integer•))

then ((car m) 3) has type Integer•.

<term> ::= (!& <term> <term>+)

refers to level-1 function application. The first term must denote a level-1 function. The arguments
(if any) usually denote types, but other sorts of argument are allowed, provided they are all de-
fined when the type of the term is determined. The typing rule for level-1 function application is
essentially the same as the rule for level-0 application.

<term> ::= (! <name> <term>)

is for “slot access.” For this to be typeable, <term> must be of a structured type (a Tup•) with
a field named <name>. The term (! <name> <term>) then refers to the contents of field
<name>. The type of the term is then the type of that field. If the structured type has anonymous
fields, they can be referred to as if they were named <1>, <2>, etc.

<term> ::= (let-var (<typed list (let-binding)>)
<term>
[ :where (<typed list (let-binding)>]

<let-binding>::= (<name> <term>)

The denotation of (let-var (–var-bindings–) e) is the denotation of e in an environment
where each <name> is bound to the denotation of its corresponding <term>. If it’s clearer to
put bindings at the end of the expression, you may do so, if they’re prefixed by keyword :where;
the bindings at the front still have to be there, but can be (). Example:

(let-var ((s (set-of-all (\\ (x - Planet) (inhabited x)))))
(and (elt earth s) (elt mars s)))

The type rule for (let-var ((v1 a1) ... (vk ak)) e) is that, if e has type t in an envi-
ronment where each vi has type ti, where ti is the type of ai, then the entire let-expression has
type t.
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<term> ::= (\\ <function-def-innards>)
<function-def-innards>

::= [- <val type spec>] <typed list(name)> <term>

The \\ is our substitute for λ, which is not available on most keyboards.

(\\ [- <type spec>] <name arg spec> e)

denotes an anonymous function whose arguments are given by the <name arg spec>, and
whose value, e, is of type <type spec>. The value type is optional because OPT can usually
figure it out.

The typing rule for (\\ a e) is that if e has type t in an environment where all the variables
of a have their declared types, then the \\ expression has type (Fun• t <- a).

<term> ::= (is <type> <term>)

(is t e) is true if and only if e is of the given type. This expression itself is of type Boolean.

<term> ::= (be <type> <term>)

is a declaration that the given <term> is of the given type. You can abbreviate (! s (be t e))
as (! (t s) e). Note that be is merely a hint to the reader or the type checker that <term> has
the given type; it doesn’t override anything, or give rise to a “run-time check,” which is meaningless
in a language with no run time.

<term> ::= (if <term> <term> <term>)

has the usual meaning: (if v a b) has the same denotation as a if the denotation of v is true,
and the same denotation as b if the denotation of v is false•. (if v a b) has type u if both a
and b have type u. (if v a true) may be abbreviated (if v a). The variants (-> v a)
and (<- a v) are explained in section 8. The variant (when v e) is explained in section 5.2.

Some terms used in the antecedent (v-part) of an if have type implications. For instance, if we
write

(if (null l) 0 (- (car l)))

in a context where l is declared to be of type (Lst• Number•), the fact that l is not empty, as
it is known to be in the false branch of the if, implies that l is of type (Tup• Number• &rest
Number•), and hence that (car l) is of type Number•. Similarly, in the true branch, l is
known to be of type (Tup•), the empty tuple. In general, we say that a term has type implications
if knowing its type tells us something about the types of the variables that occur in it. (if w Bt

Bf) then really means

(if w
(declare I t B t)
(declare I f B − f))
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where It are the type implications of knowing that w is of type (Con true•) and If are the
type implications of knowing that w is of type (Con false•). (See below for the explanation of
declare.) Our example then translates to

(if (null l)
(declare (l - (Tup•))

0)
(declare (l - (Tup• Number• &rest Number•))

(- (car l))))

The connectives and and or are defined in terms of if in the usual way: (and)means true;
(and c1 ...ck) means (if c1 (and ...ck) false•). (or) means false•; (or c1

...ck) means (if c1 true (or ...ck)). Because of these equivalences, and and or are
not commutative, due to the possible type implications of ci on later cj . For example,

(or (and (is Camel x) (two-hump x))
(and (is Rhino x) (one-horn x)))

where two-hump and one-horn apply only to Camels and Rhinos, respectively, would not be
typeable if the orders of the arguments to the ands were switched. The construct (is y x) has
the obvious type implication, namely, that x is of type y.

<term> ::= (declare <typed list (variable)>
<term>)

means the same thing as <term>, except that hints are provided to the type checker that the vari-
ables in <typed list (variable)> should be treated as though they were of the declared
types. Important: These hints cannot be used to change the types of the variables arbitrarily. If
the type checker cannot prove that the variables have the indicated type, it should signal an error.
[[Actually, it’s a bit more complicated than that. The type checker is allowed to constrain type
variables in the course of the “proof,” so it’s more a license to discard some of the polymorphism.
Example: if l is known to be of type “list of something,” (declare (l - (Lst• Eland))
...) restricts it to be a list of Elands. ]]

<term> ::= (<quantifier> (<typed row (variable)>
[<rest param row>])

<term>)

There are four quantifiers, forall, exists, exists!, and freevars. (forall v P [v])
is true iff P [a] is true for all properly typed values of the variables in v. (exists v P [v]) is
true iff P [a] is true for some value of the variables v. exists! is similar, but is true iff there is
exactly one assignment to the variables v that makes P true. (freevars v P [v]) is a quantifier
only “syntactically.” It just means, Let variables v be free in P [v], but it provides a way of declaring
them. In most cases, freevars is synonymous with forall, as in Prolog.

Quantified expressions are of type Prop, for “proposition.” The difference between a Prop
and a Boolean is that the former can change value from situation to situation. For instance,
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(location Titanic Southampton) is true in some situations, false, alas, in others. A
Situation• is a state of affairs, a specification of the truth values of all ground atomic formulas.
A Fluent• is a function from Situation•s to values; more precisely:

Fluent• = (Fun• u <- (Situation• !& u))

We can then define a Prop as a (Fluent• Boolean).
In most contexts, an object of type y is acceptable whenever an object of type (Fluent• y)

is required, and vice versa. Appropriate coercion rules are applied, as described in section 3.
For future reference in this manual, we introduce various subcategories of term, usually based

on their types, but occasionally requiring other constraints. Here are some of those subcategories:

• An <action term> is a term with type Action

• A <proposition> is a term with type Prop

• A <goal proposition> is a <proposition> used to specify preconditions of ac-
tions, and other goals. See section 5.

• An <effect proposition> is a <proposition> used to specify effects of actions.
See section 5.2.

Let us close this section with a further exhortation not to assume that the logic subset of OPT is
a programming language. When we write (if (> m n) m n), we do not mean, “Test whether
m is greater than n, and if so. . . .” There may not be any method for testing the inequality, and if
there is the agent may not always know it. When we write

(exists (p - Planet)
(and (orbits p sun) (not (= p earth)) (inhabited p)))

we do not mean “Loop through the planets that orbit the sun.” Instead, the formula simply denotes
true in universes where there is an inhabited planet in the solar system besides earth, and false•
in all other universes. There may no easy way to tell which category our universe falls in.

OPT does include an imperative sublanguage, which will be described in section 5. However, its
semantics are completely compatible with the semantics of the rest of the language. That is, a term
in the imperative sublanguage denotes something for an agent to do, sometimes a complex structure
of actions. Considered as a term, that’s all it does. Of course, somewhere there has to be a plan
executor that can take that term and perform the actions it describes.

3 Built-in Types: Primitives, Fluents, Expressions

The primitive types, with subtype relationships shown, are as follows

Obj
Number

Integer
Float

Char
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String
Symbol

(These are all built in, and all described in section 13.3.)
Arithmetic and comparison functions are defined on type Number•. However, the type-inference

system treats these functions as overloaded, so that, for instance, if x is of type Float•, the ex-
pression (+ x 1) is treated as meaning (+ x 1.0), and as being of type Float•. That is, an
arithmetic expression is of type Integer• only if all its arguments are; if it has any argument of
type Float•, it is of type Float•; otherwise, it is of type Number•.

To make this work, OPT is provided with a modest coercion system that fixes type errors silently
when it can using various ad-hoc rules. One of them is that if an Integer• is found where a
Float• is wanted, the Integer• is treated as the Float• with the “same” value (in an inevitably
implementation-defined sense).

In addition, in domains declaring the :data-structures requirement, we have the type
Sexp•, or “S-expression,” defined as

(Alt• Symbol• String• Char• Number• (Lst• Sexp•)))

The type constructor (Fluent• y) is built in to OPT, and defined as (Fun• y <- Situation•),
that is, a quantity of type y whose value changes from situation to situation. The type Prop•, for
“proposition,” is the type produced by all predicates, and is defined as (Fluent• Boolean•).

If a domain declares requirements :fluents, then there are many more possible things one
can do with fluents, which will be described in the appropriate sections below.

Arithmetic and comparison functions may, through the magic of coercion, be applied to fluents.
Actually, the rule is more general. In any context where an expression of type y is wanted, if an
expression e of type (Fluent• y) is found, it is treated as (fl-v• e), which means “the value
of e in the current situation.” Similarly, if e is of type y, and (Fluent• y), is required, e is treated
as (fl-∧• e), which means “the fluent that has value e in all situations.”

If a domain declares requirement :expression-evaluation, then it supports computa-
tional equality substitution, in which an expression such as (+ ?x 5) is replaced by 12 when ?x
has value 7. The built-in predicate eval• provides the canonical context for this kind of substitu-
tion: (eval• E V ) is true if the computational value of expression E is V . E is an expression
using the functions +, -, *, /, min•, max•, and fl-v•. The first argument to e•val is said to be
an evaluation context. If E contains any unbound variables, then it has no computational value, and
no conclusion can be drawn regarding the truth or falsity of (eval• E V ).

There are several other evaluation contexts in OPT, including both argument positions to the
inequalities >, =<, etc. The proposition (bounded-int• I L H) is true if I is an integer in
the interval [L,H]. L and H are evaluation contexts, as is I if it has no variables.

Note that eval• is a special case of equality, with a nudge to the deductive system that its first
argument should be evaluated. Another version of equality is (equation• L R), for which
the “nudge” is as follows: If there is a single unbound deductive variable ?v with one or more
occurrences in L and R, then for every value of x of that variable that makes the values of L and
R the same, the conclude (= {v = x}(L) {v = x}(R)), where {v = x}(e) means e with all
occurrences of ?v replaced with x. E.g., if ?y has been bound to 6, and ?x is unbound, then
(equation (+ ?x 2) (- ?y 3)) is true, provided ?x = 1. Exactly what equations are
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solvable is implementation-dependent, but every implementation should at least handle the case
where there is a single occurrence of an unbound variable, buried at most inside an expression of
the form (+/- ...).

If the OPT syntax checker (which is beyond the scope of this manual) cannot figure out a valid
type for an expression, it will issue an error message. Its complaints are usually correct, but some-
times it has overlooked something. If you need to give it a hint about the type of an expression e,
the usual way is to declare some of the variables occurring in e; an alternative is to replace e with
(be y e) to declare that e should have type y. Then instead of trying to infer a type for e, it can
work on the easier task of verifying the declared type.

4 Domains

AnOpt file consists of a series of domain definitions, addendum definitions, and problem definitions,
defined here, in section 9, and section 10.

The EBNF for defining a domain structure is:

<domain-def> ::= (define (domain <name>)
[<extension-def>]
[<export-def>]
[<require-def>]
[<types-def>]
<complex-type-def>∗

<type-function-def>∗

[<objects-def>]
[<parameters-def>]
[<predicates-def>]
[<functions-def>]
[<facts-def>]
<structure-def>∗)

<extension-def> ::= (:extends <parent>+)
<parent> ::= <name>
<parent> ::= See section 11.
<export-def> ::= See Section 11.
<require-def> ::= (:requirements <requirement> +)
<requirement> ::= See Section 13.2
<types-def> ::= (:types <typed list(name)>)
<complex-type-def>

::== (:type <name> <type-defn>)
<type-function-def>

::== (:type-fun <name> <typed list(name)>
<type-defn>)

<objects-def> ::= (:objects <object declarations>)
<parameters-def>::= (:parameters

<typed list(parameter-declaration)>)
<predicates-def>::= (:predicates <atomic formula skeleton> +)
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<functions-def> ::= (:functions
<typed list (function skeleton)>)

<atomic formula skeleton>
::= (<name> <named params spec>)

<function skeleton>
::= (<name> [- <type>] <named params spec>)

<facts-def> ::= (:facts <proposition>+)
<facts-def> ::= (:axioms <proposition>+)
<structure-def> ::= <action-def>
<structure-def> ::= :domain−axioms <axiom-def>
<structure-def> ::= :action−expansions <method-def>
<structure-def> ::= :processes <process-def>
<structure-def> ::= :durative−actions <durative-def>

Although we have indicated the arguments in a particular order, they may come in any order,
except for the (domain ...) itself.

If the :extends argument is present, then this domain inherits requirements, types, objects,
facts, axioms, and actions from the named domains, which are called the ancestors of this domain.
Inheritance is transitive.

The :requirementsfield is intended to formalize the fact that not all systems can handle all
domains statable in the OPT notation. The listed requirements indicate the range of constructs that
will be used in the domain being described. If a construct is used that requires a feature that the
domain didn’t declare, an OPT processor should complain. In general, a domain is taken to declare
every requirement that any ancestor declares. A description of all built-in requirements is found in
Section 13.2.

The <types-def> defines simple named types. It uses a <typed list (name)>, but
with a different interpretation than normal.

(:types Elephant Ant - Animal Positive-integer - Integer •)

declares three new types, Elephant, Ant, and Positive-integer, and declares them to be
subtypes of Animal, Animal, and Integer•, respectively. (It does not declare any object to be
any of those types.)

A :type clause allows us to name an arbitrary type. Example:

(:type Message (Lst• (Tup• String• String•)))

This definition declares Message to be synonymous with (Lst• (Tup• String• String•)).
By contrast, a :types clause declares a type to be an anonymous subtype of a given type.

A :type-fun clause defines a type function. Example:

(:type-fun (Mess a)
(Lst• (Tup• a a)))

The :parameters declaration is described in Section 3.
The :objects field has the same syntax as the :types field, but the semantics is different.

Now the names are taken as new constants in this domain, whose types are given as described above.
E.g., the declaration
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(:objects sahara - Theater
division1 division2 - Division)

indicates that in this domain there are three distinguished constants, sahara denoting a Theater
and two symbols denoting Divisions.

The :parameters field defines parameters that vary from domain to domain. [[These were
originally called :domain-variables, but I believe “parameter” is a better term.]] The syntax
is

<parameters-def> ::= (:parameters
<typed list(parameter-declaration)>)

<parameter-declaration>
::= <name> | (<name> <constant>)

Each such parameter is treated as its value in evaluation contexts.
E.g.:

(define (domain cat-in-the-hat)
(:types Thing - Integer)
(:parameters (numthings 2) - Integer •)
...
(:axiom

:vars (?i - Integer•)
:context (bounded-int• ?i 1 numthings)
:implies (is Thing ?i)))

The axiom (see section 8) states that “a Thing is an Integer between 1 and the value of numthings
(in this domain, 2).”

The :predicates field consists of a list of declarations of predicates, once again using the
typed-list syntax to declare the arguments of each one. Example:

(:predicates (loves ?x ?y - Person)
(gender-of x - Person g - Gender))

The question marks before variables are optional in this context.
The :functions field is a list of declarations of functions. A function f is a constructor

of terms, (f --args--). It is not a function in the sense used in functional programming. To
describe a function, we have to describe the types of its arguments, but also the type it produces.
There are two places to put the type. One is after the function symbol, as in:

(:functions (list-sum - Integer • (l - (Lst• Integer•)))
(main-element - ?u (l - (Lst• ?u))))

indicating that list-sum produces type Integer•, and that main-element produces type
?u when given a list of objects of type ?u. The last question mark is significant; as explained in
section 2.2, its presence declares main-element to be a level-1 function whose argument is a
type u, and that produces a level-0 function that produces type u. Normally you may forget the
details, unless your ontology fails to type-check.

If several of the functions in the list produce the same type, we can move the type up a layer of
parens:

20



(:functions (plus &rest l - Number •)
(times &rest l - Number•)
- Number•

(book-title b - Book)
(book-author b - Book)
- String•)

indicating that plus and times produce Number•, and book-title and book-author pro-
duce String•.4

A predicate is just the special case of a function that produces type Prop. There is no difference
between the :predicates declaration above and

(:functions (loves ?x ?y - Person)
(gender-of x - Person g - Gender)
- Prop)

The :facts field consists of a list of propositions that are taken to be true in this domain.
(:axioms is treated as a synonym for :facts.) It goes without saying that the symbols used
in the facts must be declared either here or in an ancestor domain. (Built-in predicates such as
“=” behave as if they were inherited from an ancestor domain, although whether they actually are
implemented this way depends on the implementation.) See section 8.

A variable like this is scoped over the entire domain, and is inherited by domains that extend
this one. If the variable is redeclared in an extending theory, it shadows the original binding.

The remaining fields define actions and rules in the domain, and will be described in their own
sections.

5 Actions

5.1 Syntax of Actions

The EBNF for an action definition is:

<action-def> ::= (:action (<name> <name arg spec>)
[ - <val type spec>]

<action-def body>)
<action-def body>

::= [<vars-spec>]
:existential-preconditions
:conditional-effects

[:precondition <goal proposition>]
[:effect <effect proposition>]
[:expansion <action spec>] :action−expansions

[:only-in-expansions <boolean>] :action−expansions

<vars-spec> ::= :vars <typed list (variable)>
<expansion spec> ::= :expansion <action spec>

4In PDDL2.1, functions all produce the type (Fluent Number). This design decision will surely be overturned
as PDDL evolves, but implementations with a “PDDL2.1 compatibility mode” should provide (Fluent Number) as
a default return type.
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<expansion spec> ::= :methods

The preferred form for declaring the arguments and values of actions in OPT is to use parenthe-
ses and hyphens in the same way that other functions are declared. However, it is also permissible
to use the old-fashioned PDDL-style notation:

<action-def> ::= (:action <action function>
:parameters <name arg spec>
[:value <action value spec>]
<action-def body>)

The :vars list are locally bound variables whose semantics are explained below.
The :precondition is an optional goal proposition that must be satisfied for the action to be

feasible. If no preconditions are specified, then the action is always feasible. The :effect field
lists the changes which the action imposes on the current state of the world.

A <goal proposition> is a <proposition> in which certain constructs are prohibited
unless the domain declares certain requirements:

Construct Requirement
or, not, imply :disjunctive-preconditions
exists* :existential-preconditions
forall* :universal-preconditions

The asterisks next to exists and forall are to remind us that an exists in a negative
context should be treated as a forall, and vice versa. The polarity, positive or negative, of an
occurrence of a subexpression is defined thus: Moving from the subexpression occurrence out-
ward, count the number of nots encountered, plus the number of ifs that the occurrence oc-
curs in the antecedent of. If the number is even, the subexpression is in a positive context; if
odd, it’s in a negative context. So, if a domain declares :disjunctive-preconditions but
not :universal-preconditions, then (not (exists (u v) ...)) is forbidden as a
goal.

If the domain declares requirement :action-expansions, then it is legitimate to include
an :expansion field for an action, which specifies all the ways the action may be carried out in
terms of (presumably simpler) actions. See Section 7.

Free variables are not allowed. All variables in an action definition (i.e.,, in its precondition, ex-
pansion, or effects) must be included in the :parameters, :vars, or :value list, or explicitly
introduced with a quantifier.

Variables appearing in the :vars field behave as if bound existentially in preconditions and
universally in effects, except that it is an error if more than one instance satisfies the existential
precondition. So, for example, in the following definition

(:action spray-paint
:parameters (?c - color)
:vars (?x - location)
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:precondition (at robot ?x)
:effect (forall (?y - physob)

(when (at ?y ?x)
(color ?y ?c))))

the robot must be in at most one place to avoid an error.
The optional argument :only-in-expansions is described in Section 7.

5.2 Effects and Values of Actions

The effect of an action is the way the world changes as a result of executing the action. An <effect
proposition> has the syntax of a <proposition>, but describes how the world is to change,
not how it is, which is the usual meaning of a proposition. Hence we do not talk about the “truth
value” of an effect proposition; it does not “become true,” but is imposed. There are certain pseudo-
connectives allowed in this context that may not occur elsewhere, especially (when• p e), which
means “If p was true just before the action was executed, then e (another effect proposition) is
imposed as a result of its being executed.” In section 13.3, these pseudo-connectives, called effect
predicates, are specially flagged. For the exact semantics of when• and its relatives, see section 6.

Another pseudo-connective is not; (not p) is imposed by deleting p.5
In addition to an effect, the action may have a value, which reflects information acquired or

created as a result of carrying out the action. For example, turning on a light in a dark room changes
the average illumination level; it also tells you if there’s a hippopotamus in the room, which we can
model by supposing the action returns an Integer• value:

(:action (turn-on-light rm - Room)
- (h - Integer•)
:effect (and (bright rm)

(not (dark rm))
(know-val-is (number-of-hippos rm)

h)))

The effect of (turn-on-light r) is that (bright r) becomes true and (dark r) becomes
false. These effects then persist until the next action. The predicate (know-val-is t c), is
supposed to be true if the agent knows that the value of term t is c, where c is a “computational”
object (in this case, an Integer•).

The :value field of an action specifies the type of the value returned when the action is per-
formed. The value can be used as an input to a subsequent action by using a link, described in
section 7. Even if it is not transmitted to another step, it can be referred to in the :effect field by
declaring its fields and using them as if they were variables. In the example, hmeans “the ! h field
of the value of this execution of (turn-on-light r).”

Here’s another example (using the PDDL syntax):
5It is surprisingly tricky to say what “deletion” is, but for domains not declaring the :open-world requirement, the

idea is that every situation has a finite description as a list of atomic formulas; cf. section 10. The situation is obtained by
assigning value true to formulas on the list, value false to all other atomic formulas, and then taking the deductive closure
under all the axioms of the domain. Adding and deleting atomic formulas should be considered an operation on the finite
description of the current situation; the resulting situation is then obtained by repeating the deductive-closure operation
on the new finite description. For domains that do declare the :open-world requirement, the semantics of effects are
murky and implementation-dependent.
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(:action take-lunar-measurement
:parameters ()
:precondition (...)
:value (?az ?elv - Float•)
:effect (and (know-val (azimuth moon) ?az)

(know-val (elevation moon) ?elv)))

As usual, the question marks are optional.
An action definition defines a function; it takes arguments as specified in the <val type

spec>, and produces an Action•. Actually, we can be more specific than that. If an action def-
inition specifies no :expansion, then the action defined has type (Fun (Skip• r) <- a),
where a and r are the argument type and result type specified in the definition. An object of type
(Skip• r) is an action that takes one “instant” of time (in a sense explained in section 6) and re-
turns a value of type r. I will call these skips. If an action definition does specify an :expansion,
then its name is declared to be of type (Fun (Hop• r) <- a), as explained in more detail in
sections 6.2 and 7. The type Skip-action• is defined to be (Skip• (Val• &rest Obj•)),
that is, a skip that returns zero or more values.

5.3 Effects Involving Fluents

If a domain declares requirement :fluents, then it supports some special predicates, particularly
some new effect predicates.

The effect predicate (assign F E) indicates that the value of fluent F changes to E. E
is an evaluation context, and its value is computed with respect to the situation obtaining before
the action (cf. when). The effect predicates (increase F E) and (decrease F E) are
synonymous with (assign F (+ F E)) and (assign F (- F E)), respectively. Here
is an example of how they are used:

(:action (pour ?source ?dest - container)
:vars (?sfl ?dfl - (fluent number) ?dcap - number)
:precondition (and (contents ?source ?sfl)

(contents ?dest ?dfl)
(capacity ?dest ?dcap)
(fluent-test (=< (+ ?sfl ?dfl) ?dcap)))

:effect (and (assign ?sfl 0)
(increase ?dfl ?sfl)))

6 Time and Processes

6.1 Process Syntax and Semantics

If a domain declares requirement :processes, then it can have process definitions:

<process-def> ::= (:process(<name> <name arg spec>)
[- <val type spec>]
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<process-def body>)
<process-def body>

::= [<vars-spec>]
:existential-preconditions
:conditional-effects

[:condition <goal proposition>]
[:start-effect <effect proposition>]
[:effect <effect proposition>]
[:stop-effect <effect proposition>]

A process is like an action, except that it becomes active whenever its :condition is true, and
remains active only for the time intervals over which the condition is true. The process is denoted by
a constant term (name —args—), as described in its definition. The term names a unique process;
there cannot be two distinct processes active at the same time named by the same term.

Processes have three effects. To explain them, I have to explain, informally, a bit of the formal
semantics of OPT.

A situation is a snapshot of the state of the universe, i.e., a complete specification of the truth
values of all logical formulas (which I will call “propositions” for brevity). The logical language of
OPT is tenseless, so there are no formulas referring to the future or the past — and none referring
to what time it is, although by using processes one can create clocks and hence get a time reading if
you want.6

This semantic notion is distinct from the syntactic construct of section 10, although obviously
the latter is meant to describe one of the former.7

In classical planning, situations occur in discrete chains, with instantaneous changes of the truth
values of some propositions from one to the next. What happens in between is undefined, because
there is no “in between.” Processes, however, can describe continuous changes. For instance, we
might describe the process of water leaking from a can thus:

(:process (leaking c - Can h - Hole)
(:vars r - Float•)
(:condition (and (hole-in h c)

(>= (level c) (height h))
(= (rate-constant c) r)))

(:effect (deriv-comp• (level c)
(* r (- (level c) (height h))))))

In English: “If there is a hole h in can c, then so long as the water level stays above the height
of h, the derivative of the level will have as one component an amount proportional to the difference
between the water level and h’s height.” We use deriv-comp• here instead of derivative•
because there may be other holes, plus other flows into the can, and it’s the job of the inference
system, using a closed-world assumption, to infer what the net derivative is.

6Although my semantic ideas borrow heavily from [?], this concept of situation is different from Reiter’s. He defines
a situation in terms of the actions required to reach it. This is natural in some contexts, but in cases where a situation is
not reachable by an agent’s action, or where we don’t care, and may not know, how a situation might have been reached,
the analysis gets a bit strained.

7And, as a previous footnote discusses, the semantics of not in action effects depends on the idea that every situation
that occurs as the result of a chain of actions have a finite description using this syntax.
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Obviously, the semantics of the leaking process can’t be described using discrete strings of
situations. Instead we introduce the notion of a continuum of situations, in which an infinite number
of situations can occur over a finite time period, during which quantities of type Float• can change
continuously.

Continuous and discrete changes have to be able to coexist. For instance, if there is an action
puncture that makes holes in cans, a planner may introduce occurrences of it in order to speed
up the emptying of a can. The most natural approach is to make puncture be a garden-variety,
instantaneous, classical action. To allow for this, we use an idea from nonstandard analysis [?], per-
mitting there to be an indefinite number of successors to a situation within an “infinitesimal” period
of time. Formally, we model a situation continuum as a mapping from [0,∞) × N to situations.
The domain of this mapping is the set of ordered pairs 〈r, i〉, where r is a real number ≥ 0 and i is
an integer in the range [0, nr]. The idea is that r is the date of the situation (measured in seconds
from the initial situation), and i is the number of instantaneous planner actions that have occurred
since r. The number nr is a function of the continuum, and is the number of instantaneous actions
that actually occur at r in this continuum. If the planning agent does nothing, then nr = 0 for all r.
At the points where it takes action, nr is the number of actions it takes (in sequence) at r.

Following [?], we adopt the following constraint on action effects: In a given situation contin-
uum, if an effect is imposed at point 〈r, nr〉, then its changes must remain in place over an open
interval in the continuum starting at r, that is, over an interval (r, r′), where r < r′.

We can then use the following semantic idea for when• and related constructs: (when• p e)
is triggered at 〈r, i〉 if i = 0 and p is true over some open interval ending at r, or i > 0 and p is
true at 〈r, i − 1〉. If the when• is triggered, and i = nr then e is imposed over some open interval
(closed on the left) starting at r; if i < nr, then e is imposed at 〈r, i + 1〉.

Real-world implementations of OPT can’t calculate the exact times when processes become
active or inactive. They must find some close approximation instead. The domain parameter
temporal-grain-size• provides a hint as to what “close” means. The value of this parameter,
G, is a number representing a time interval such that any change in continuous quantities over an
interval shorter than G is to be treated as negligible. Time is represented in seconds, so the de-
fault value, 0.01, of temporal-grain-size•means that changes over an interval less than 1

100
second are negligible.

The parameter temporal-scope• is a time interval such that any event that far in the future
is irrelevant. The default value is 1010 seconds, or about 3171 years.

For every process P , there is a fluent (elapsed• P) that is the time (in seconds) that P has
been active. In situations where P is not active, (fl-v• (elapsed• P))= −1. These fluents
are updated automatically, and should not be altered by a user’s process or action definitions.

Just as a skip-action name is of type (Fun (Skip• r) <- a) for some a and r, a process
name is of type (Fun (Slide• r) <- a). The type Process• is defined to be (Slide•
(Val• &rest Obj•)).

It may seem odd to have processes “return” values, but there are cases, such as the autonomous
action of an agent seeking information, where a return value makes sense. Such a value may be
referred to in the :stop-effect field of a process definition just as an ordinary action’s value
may be referred to in its :effect field. In addition, there is an action (wait-while• p) that
waits for process p to end, then returns the same value p does.
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6.2 Durative Actions

Using the process formalism, it is possible to create models described by complex differential equa-
tions, which are beyond the powers of almost all existing planning algorithms. In setting up the
AIPS 2002 Planning Competition, it was desirable to find ways to constrain the formalism to make
for solvable problems. A good way might have been to require all derivatives to be piecewise con-
stant. Unfortunately, the way that was chosen was the somewhat odd notion of a “durative action,”
an action that takes a certain amount of time. This idea may seem straightforward, when one thinks
of examples like taking a plane from New York to Chicago, but even the straightforward examples
start to break down if there is the slightest possibility that something might interfere with the ac-
tion. In fact, in the cases where durative actions work, simple process models also work, so the
advantages are not obvious.

Nonetheless, as a public service, OPT includes durative actions. Here is the grammar:

<durative-def> ::= (:durative-action
(<name> <name arg spec>)
[ - <val type spec>]

<durative-def body>)
<durative-def body>::= :duration <duration constraint>

:condition <durative goal>
:effect <durative effect>

<duration constraint>
::=:duration−inequalities

(and <simple duration constraint>+)
<duration constraint>

::= <simple duration constraint>
<simple duration constraint>

::= (<d-op> ?duration <numerical expression>)
<simple duration constraint>

::= (at <time-specifier>
<simple duration constraint>)

<d-op> ::= =
<d-op> ::=:duration−inequalities =< | >=
<time specifier> ::= at start | at end | over all

The syntactic categories <durative goal> and <durative effect> are the same as
<goal proposition> and <effect proposition>, except that the following special con-
struct may occur within them:

(<time specifier> p),
where p itself contains no time specifiers.

The intended meaning is that p be true either at the beginning or end of the durative action, or that
it be true throughout its execution.8

8The symbols at and over are not exactly reserved words of OPT. Users may use them as predicates if they wish,
provided there is no possibility of taking an occurrence of one of them as the beginning of a time specifier.

27



In addition, in the :effect field of a durative action, the symbol #t means “elapsed time
so far.” So an effect like (decrease (fuel-level ?p) (* #t (consumption-rate
?p)))means that the fuel level of ?p decreases continuously as a linear function of time (assuming
that (consumption-rate ?p) is not itself changing).

We can explain how durative actions work by viewing them as “macros” that expand into an
underlying process-based representation. (Cf. [?].) Suppose we have a durative definition

(:durative-action a - v
:duration d
:condition c
:effect e)

First, introduce some new functions:

• (dur-happening• a): The process corresponding to durative action a.

• (dur-start• a): The action of starting the durative process.

• (dur-stop• a): The action of stopping the durative process.

• (dur-in-progress• p d= d≥ d≤): True if

1. durative process p has started and not yet stopped;
2. its duration is constrained to be = to d=;
3. its duration is constrained to be ≥ d≥;
4. and its duration is constrained to be ≤ d≤.

• (dur-trace• [initial|throughout] p q): True if q was true when p started,
and, in the throughout case, has been true ever since.

Second, classify the pieces of d, c, and e thus:

• leqs(d): The formula (eval• (min• l1 . . . lk) ?Dle) constructed by extracting li from
each expression (=< ?duration li) in d. (?Dle is a special logical variable that is as-
sumed not to occur anywhere else.)

• geqs(d): The formula (eval• (max• g1 . . . gk) ?Dge) constructed by extracting gi

from each expression (=< ?duration gi) in d. (?Dge is a special logical variable that
is assumed not to occur anywhere else.)

• eqs(d): The conjunction of (eval• e ?Deq) for each expression (= ?duration e)
in d; if there are no such expressions, then eqs(d) is (= ?Deq ?Dle). (?Deq is a special
logical variable that is assumed not to occur anywhere else.)

• stc(c): The conjunction of all primitive subformulas p of c (see below) that either occur with
an explicit (at start p), or do not occur inside an at or over.

• enc(c): The conjunction of all primitive subformulas p of c that occur inside an explicit (at
end p).
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• oac(c): The conjunction of all primitive subformulas p of c that occur inside an explicit
(over all p).

• ste(e): The conjunction of all primitive subformulas p of e that occur inside an explicit (at
start p).

• dte(e): The conjunction of primitive formulas p′ obtained from all primitive subformula p of e
of the form ([increase | decrease] f (* #t d)), by replacing the (increase
...) or (decrease ...) with (derivative f d) or (derivative f (- d))
respectively.

• ene(e): The conjunction of all primitive subformulas p of e that contain no occurrence of #t,
and either occur with an explicit (at end p), or do not occur inside an at or over.

The phrase “primitive subformula” used repeatedly in these definitions is defined as follows:
Quantifiers and whens may occur in conditions and effects, in various combinations. A primitive
subformula is an atomic formula or its negation, with the quantifiers and whens above it intact
(after nots have been moved in as far as possible). For example, suppose the following occurs in
an effect E:

(forall (u)
(and (when (at start (P x y u))

(at start (F x u)))
(when (over all (Q y u))

(not (G x u)))))

Here x and y are action parameters, while u is a locally quantified variable. Then ste(E) will
include this conjunct:

(forall (u)
(when (at start (P x y u))

(F x u)))

and ene(E) will include this one:

(forall (u)
(when (over all (Q y u))

(not (G x u))))

We require one further transformation on these subformulas, which is to eliminate all occur-
rences of “at start” and “over all” from the whens. We do this with the dur-trace•
predicate introduced above. All occurrences of (at start q) are replaced by (dur-trace•
initial p q), and all occurrences of (over all q) are replaced by (dur-trace• throughout
p q), yielding the following as the final versions of the fragment of E we started with:

ase(E):
(forall (u)

(when (dur-trace• initial (dur-happening• D) (P x y u))
(F x u)))
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ene(E):
(forall (u)

(when (dur-trace• throughout (dur-happening • D) (Q y u))
(not (G x u))))

where D is the term denoting the durative action.
Finally, we have to set up new effects to maintain the dur-trace•s. Define +asene(e)

as a conjunction containing, for each (at start q) found, a conjunct of the form (when
q (dur-trace• initial (dur-happening• D) q)). Define +oaene(e) in an analo-
gous way for all the (over all q)’s, substituting throughout for initial. Finally, define
-oaene(e) as a conjunction containing, for each (over all q) found, a conjunct of the form
(when (not q) (not (dur-trace • throughout (dur-happening • D) q))).

In our example, +asene(E) would contain

(when (P x y u) (dur-trace• (dur-happening• D) initial (P x y u)))

+oaene(E) would contain

(when (Q y u) (dur-trace • (dur-happening• D) initial (Q y u)))

and -oaene(E) would contain

(when (not (Q y u))
(not (dur-trace• (dur-happening• D) throughout (Q y u))))

Now we can expand the given durative definition into two or three definitions, depending on
whether eqs(d) is empty or not. If it’s empty, then there is no set duration for the action, and
the action ends only when explicitly stopped. The planner can decide to stop the action after any
time interval that satisfies the given inequalities geqs(d) and leqs(d). But if eqs(d) is nonempty,
then the duration is completely constrained by those equalities. Stopping would be redundant or
contradictory, and so we do not define dur-stop at all.

Fortunately, the process of starting a durative action is the same in either case:

(:action (dur-start• a)
:vars (Deq Dle Dge - Float•)
:precondition (and stc(c) oac(c) eqs(d) leqs(d) geqs(d)

(=< Dge Dle) (=< Deq Dle))
:effect (and (dur-in-progress • a Deq Dge Dle)

ste(e) +asene(e) +oaene(e)))

If eqs(d) is nonempty, then there is no definition for dur-stop, and the definition of dur-happening
is as follows:
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(:process (dur-happening• a)
:vars (Deq Dle Dge - Float•)
:condition (and (dur-in-progress • a Deq Dge Dle)

(< (elapsed• (dur-happening a))•

D=))
:effect (and dte(d) -oaene(d))
:stop-effect (and (when enc(c)

ene(e))
(not (dur-in-progress• a Deq Dge Dle))))

If eqs(d) is empty, then the process definition is as follows:

(:process (dur-happening• a)
:vars (Deq Dle Dge - Float•)
:condition (and (dur-in-progress • a Deq Dge Dle)

(< (elapsed• (dur-happening• a))
D<))

:effect (and dte(d) -oaene(d))
:stop-effect (and (when (and enc(c)

(dur-in-progress a Deq Dge Dle)))
ene(e))

(not (dur-in-progress a Deq Dge Dle))))

and dur-stop• is defined thus:

(:action (dur-stop• a) - v
:vars (Deq Dle Dge - Float•)
:precondition (and (dur-in-progress • a Deq Dge Dle)

(>= (elapsed• (dur-happening• a))
Dge)

(=< (elapsed• (dur-happening• a))
Dle))

:effect (and ene(e)
(not (dur-in-progress• a Deq Dge Dle))))

Note that when eqs(d) is empty, there are two ways for the durative action to end. Either the
time limit D< can be reached, or the planner can execute the action (dur-stop• a). The first
case is handled by the dur-happening• definition, the second by the dur-stop• definition.
Both definitions must be ready to impose the effect ene(e), but at most one will be applicable for
any given process instance.

Although this translation process sounds complex, most of its subtleties are never exercised, so
its outputs are straightforward. For instance, here is a durative-action definition from the 2002 AIPS
competition:

(:durative-action fly
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:parameters (?a - Aircraft ?c1 ?c2 - City)
:duration (= ?duration (/ (distance ?c1 ?c2) (slow-speed ?a)))
:condition (and (at start (at ?a ?c1))

(at start (>= (fuel ?a)
(* (distance ?c1 ?c2) (slow-burn ?a)))))

:effect (and (at start (not (at ?a ?c1)))
(at end (at ?a ?c2))
(at end (increase total-fuel-used

(* (distance ?c1 ?c2) (slow-burn ?a))))
(at end (decrease (fuel ?a)

(* (distance ?c1 ?c2) (slow-burn ?a))))))

Here is the translation:

(:process (dur-happening• (fly ?a - Aircraft ?c1 ?c2 - City))
:vars (Deq Dle Dge - Float•)
:condition (and (dur-in-progress • (fly ?a ?c1 ?c2) Deq Dge Dle)

(< (elapsed• (dur-happening• (fly ?a ?c1 ?c2)))
Deq))

:stop-effect (and (at ?a ?c2)
(increase• total-fuel-used

(* (distance ?c1 ?c2) (slow-burn ?a)))
(decrease• (fuel ?a)

(* (distance ?c1 ?c2) (slow-burn ?a)))
(not (dur-in-progress• (fly ?a ?c1 ?c2) Deq Dge Dle))))

(:action (dur-start• (fly ?a - Aircraft ?c1 ?c2 - City))
:vars (Deq - Float•)
:precondition (and (at ?a ?c1)

(>= (fuel ?a)
(* (distance ?c1 ?c2) (slow-burn ?a)))

(eval (/ (distance ?c1 ?c2) (slow-speed ?a))
Deq))

:effect (and (dur-in-progress (fly ?a ?c1 ?c2) Deq −∞ ∞)
(not (at ?a ?c1))))

I should point out that these “virtual” process and action definitions are not syntactically valid
OPT, because of the presence of the non-variable term a (e.g., (fly ?a ?c1 ?c2) ) as an argu-
ment. You could make them legal by introducing functions such as dur-start-fly,dur-happening-fly,
and so forth, and discarding the “extra level of parentheses.”

The type of a symbol defined using :durative-action with value r and arguments a is
(Fun (Hop r) <- a), the same as an action with expansions; see next section.
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7 Action Expansions

An expansion of an action A is a structure of actions E such that successfully executing E is a
way of executing A. For instance, to get a Windows machine to become healthy when it is sick, it
suffices to reboot. To reboot, you must click the “Shut down” entry on the Start menu, then select
“Restart,” then wait until the computer is back to its normal operating state. These three actions are
an expansion of the action “Reboot.”

It is sometimes possible to avoid the use of expansions by introducing artificial propositions.
For instance, one could say:

• To make a Windows machinem healthy, do the primitive action9, “Wait until normal desktop
appears,” with precondition (P2 m).

• To achieve condition (P2 m), select “Restart” from the active menu, with precondition (P1
m).

• To achieve condition (P1 m), click the “Shut down” entry on the Start menu.

Here (P1 m)means, in essence, “Shut down has been clicked and Restart has not been selected”;
and (P2 m) means, “Restart has been selected, but the normal dektop has not appeared yet.”
Putting things this way doesn’t seem to provide much enlightenment. There are really only one or
two ways to reboot a Windows machine, and concealing them beneath a pile of artificial precon-
ditions seems pointless (except, of course, that many planners think only in terms of causes and
effects, not expansions, so for them this tactic is a necessity). Furthermore, the causal explanation
the P1-P2 story provides for why clicking Shutdown and selecting Restart actually do what they’re
supposed to is obviously bogus. There is a correct causal story, but most of us don’t know much
about it. About all we know is: Click Shutdown, select Restart, wait.

The Windows-reboot expansion can be formalized thus:

(seq• (click shut-down) (select restart) (wait desktop-normal))

where (seq• a1 ...an) means, intuitively, “Do a1, then a2,. . . ” and so forth.
If we augment seq• with parallel•, we can build large structures of actions. But the actions

will have no relations with each other besides the basic sequencing mechanism. To go further, we
need another building block, the action link, a sort of communication channel between steps.10 A
link gets a value when one action in an expansion sets it. The value is read by later actions.

For example, a plan to ask someone for a credit-card number and then send it to an authorization
center might be written

(with-links (cclnk - (ccnum - String •))
(seq• (link (ask-credit-card cust101) :output cclnk)

(link (send (! ccnum cclnk) auth-center)
:input cclnk)))

9Waiting is not really a plausible primitive; it should really be modeled using autonomous processes; see section 6.
10This idea is the joint work of Mark Burstein and me. In some ways it is very similar to the idea of a rendezvous in

the the Ada programming language [?], but not quite identical.

33



where (ask-credit-card) is defined as

(:action (ask-credit-card x - Customer)
:value (Val• cc - String•)
:effect (know-val-is (ccnum x) cc))

(although of course the real version of this action would have its own expansion)

The link specs explain how the values are transmitted: :output means that the link gets set,
:inputmeans that it gets read, by this action.

In other cases, links are used to express step-ordering relationships that go beyond what seq•
and parallel• can express. See below.

OPT allows plans like these in the :expansion fields of action definitions, provided the do-
main declares requirement :action-expansions. Actions defined using :expansion fields
are said to be hops; the others are skips. A skip occurs “instantaneously” (in that no other events
occur between when it begins and when it ends). A hop is defined by an expansion, and occurs
whenever a complex of subactions described by the expansion occurs. Two such actions A1 and
A2 may well occur over overlapping subintervals, so that primitive actions that are part of A2 occur
during the interval spanned by the execution of A1.

The presence or absence of the :expansion field in an action definition is an unambiguous
indicator of whether it is primitive or composite. As we will discuss in section 9, an action may
have extra expansions, called methods, defined after the action is. If all the expansions of the action
are defined this way, then the :expansion field must still be present, but with the placeholder
:methods instead of an action spec. (Even though the description of methods is postponed to
section 9, a method may be defined in the same domain definition in which its action is defined.)

The :expansion field in an action definition has the syntax described below.

<action spec> ::= <action-term>
<action spec> ::= (with-links (<typed row (name)>)

<action spec>
<action constraint>∗)

<action spec> ::= (link <link rel> ∗

<action term>
<link rel>∗)

<action spec> ::= (forsome <typed list(variable)>
[<goal proposition>]
<action spec>)

<action spec> ::= :foreach−expansions

(foreach <typed list(variable)>
<goal proposition>
<action spec>)

<link rel> ::== <link mode> <name>
<link mode> ::== :output | :then | :begin-then

| :input | :wait | :wait-end | :span
<action constraint>

::= (:postcondition <link name> <proposition>)
<action constraint>
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::= (:maintain <link name> <proposition>)

If there is a choice of expansions, it is indicated using choice•. (choice• A1 . . . Ak) is
executed whenever any of the Ai is executed. (forsome v P [v] A[v]) is executed by executing
any instance of A[v] such that v satisfies P [v] when execution begins. (foreach v P [v] A[v])
is executed by executing all instances of A[v] such that v satisfies P [v] when execution begins. (The
domain must declare requirement :foreach-expansions for a :foreach to be legal.)

A link declared as in this example

(with-links (ll - (u v - Integer •))
...body ...)

is treated, in body, as an object of type (Lnk• u v - Integer•) that is, a Lnk• that is to
contain a value of type (Val• u v - Integer•). A link is either set or unset. It can be set
at most once. A link L is set when an action of the form (link A :output L) is finished
executing, in which case L is set to the value of A (as defined in A’s definition) when A is finished.
The two keywords :then and :begin-then are similar to :output, except that they set L to
(values), i.e., to an empty row of values (of type (Val•)). :begin-then differs from the
other two in that it sets L when A begins; if A is composite, then its beginning and its end can be
different.

Once it is set, the link L has a value accessible as (lv L). However, this value is a “row,”
not an object, so the only way to use it is to access one of its fields. In the example above, the
Integer• u stored in link ll can be obtained as (! u (lv ll)).

If a link action specifies an :input L or :wait L field, then the action must not begin
execution until the link L is set. When the action begins execution, L is said to be read.11 The
difference between :wait and :input is that in (order A :input L), all references to L
in A are automatically coerced to (lv L). Extending the previous example,

(with-links (ll - (u v - Integer •)
mm - ())

(parallel
...
(link (proceed 3)

:wait ll)
(link (transmit (! u ll) (! v ll))

:input ll)
:wait mm)

(link (deltrans (! w nn) (! v (lv ll))
ll rr)

:wait ll
:input nn
:output rr)))

The proceed step just uses the link as a synchronization device; it does not execute until some
previous step sets ll. The transmit step also waits, for mm and ll to be set, then uses the ! u

11More than one step may access a link; it is read on the first access.
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and ! v slots of (lv ll). Note that mm has no useful value, so its only purpose is to coordinate
plan steps.

The deltrans step shows how these devices can be mixed and matched. It refers to three
different links, ll, nn, and rr; the bindings of the last two are not shown. It waits for ll and nn
to be set, then takes four values as arguments. The first two are the ! w slot of (lv nn) and the
! v slot of (lv ll); the next two are the links ll and rr themselves. Presumably deltrans
is defined by an expansion that uses the value of ll and sets the value of rr. The definition of
deltransmight start like this:

(:action deltrans
:parameters (z - Float• i - Integer•

in - (Lnk• u v - Integer•)
out - (Lnk• x - Float•))

...)

A link may also be used to define contextual conditions on plans, by using action constraints in
a with-link action spec. The constraint (:postcondition L P) means that the first time
L is read, P must be true. (:maintain L P) means that from the time L is set to the time it
is first read, P must be true. If the link is set but never read, then P must be true until the entire
with-link action is finished. The time from when a link is set to the time it is read or its defining
with-links finishes is called its wait interval.

OPT also supplies (link A :wait-end L), which reads L when A finishes. If L has not
been set at that point, then the link action suspends until it is set, then reads it and finishes. As we
will see below, it is often useful to have a link be set when an action begins, and read when it ends:

(link A :begin-then L :wait-end L)

This pattern can be abbreviated (link A :span L).
One can abbreviate the common pattern

(seq•...
(link a1 ...:output L ...)
(link a2 ...:input L ...)
...)

as

(seq•...
a1

:link L

a2

...)

The “extra” conditions declared using :postcondition and :maintainmust not be con-
ditions on the feasibility of the actions reading the links in question, unless the actions are defined
using the flag :only-in-expansions. An action defined this way has no independent life, but
serves as a convenient organizational linchpin for hierarchical plans. In this case every expansion
containing an instance of the action must specify its preconditions as :postconditions on links
it reads.
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An ordinary action appearing in an expansion may also have a postcondition declared on a link
it reads, but in this case it must be for a secondary precondition, i.e., a condition that is not required
for the action to be feasible, but may be required for it to have one effect rather than another.

We illustrate :wait-end and :maintainwith the definition of a plan to remove all children
and pets from a lawn, then put pesticide on it:

(with-links (protec19) ;; the default type of a link is (Lnk •)
(seq (link (foreach (x - Animal)

(and (in x ?area) (or (human-child x) (pet x)))
(remove x ?area))

:then protec19)
(link (apply-pesticide ?area)

:wait-end protec19))
(:maintain protec19

(not (exists (x - Animal)
(and (in x ?area)

(or (human-child x) (pet x)))))))

The parallel construct imposes no constraints on the execution order of its constituents. It
begins when the first of them begins, and ends when the last of them ends. So, to indicate that a
condition be true from the end of act1 until a set of actions performed in parallel with act1 are
finished, write

(with-links (protec39)
(link (parallel (link act1 :then protec39)

(act2)
...
(actN))

:span protec39)
(:maintain protec39

(condition)))

If an action with expansions is declared to return a value of type R, then there must be a mech-
anism that allows the expansion to construct and return such a value. One part of the mecha-
nism is a built-in link result• defined implicitly in every expansion, such that :outputting
V to result• causes the expanded action to return value V . The other is a built-in action
(collect-value• —args—) that does nothing but return a row of the —args— (which may
be arbitrary expressions).

Here is an example of how these devices might work:

(:action (signal-attack-route enemy)
- (i - Integer•)

:expansion
(seq• (climb-tower)

(test• (see-direction enemy land-route)
(link (collect-value• 1)
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:output result•)
(link (collect-value• 2)

:output result•))))

This action returns 1 if the enemy is coming by land, 2 if by sea, as is traditional.
If a has expansions, then (seq• a b)means to do all of the actions of a before doing b. If you

want finer control, so that after all the “substantive” steps of a bmay proceed while some “cleanup”
steps of a are done, write

(with-links (control)
(parallel• (fa ...control)

(link :input control
b)))

where a = (fa ...). That is, add an argument to fa for the control link, so that some step of
a can set control and allow b to proceed.

An action name defined with :expansions is of type (Fun• (Hop• r) <- a), where r
is the result type and a is the argument type. The name “hop” seems to imply that hops always take
longer than skips, but that’s not quite right. A skip always takes exactly one infinitesimal time unit.
In the notation of section 6.1, it lasts from 〈r, i〉 to 〈r, i + 1〉. A hop can take place over any interval
at all, from one with zero duration, to one that takes several infinitesimal steps, to one that lasts over
a measurable time period.

An Action• is either a Skip-action• or a Hop-action•. The type (Step• r) is
(Alt• (Skip• r) (Hop• r)).

Processes can be part of action expansions just by including actions to start and, if neces-
sary, stop them. We must also provide actions to wait for them to complete. The hop action
(wait-while• p) waits for p to complete. If p is of type (Slide r), and returns value v
(of type r), then (wait-while• p) returns v as well. If p is not active, but has already fin-
ished, then (wait-while• p) takes zero time and returns p’s value. If p has never been active,
(wait-while• p) waits for it to become active, then finish.

See Section 9 for a notation that allows cumbersome action expansions to be broken into more
manageable pieces.

8 Facts and Axioms

The :facts field of a domain contains a list of propositions. These propositions are true in all
situations in the domain, without exception.12 We refer to these as domain facts. In section 10, we
will allow propositions to be associated with defined situations, in the :init field. These we will
call situation facts.

There are two variants of if that play a crucial role in facts:

(-> a c)
(<- c a)

12They may be overridden in subdomains; see section 10.
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Each of these means the same as (if a c), but the former is used for forward chaining, the latter
for backward chaining. Forward chaining operates as follows: the first time a and (-> a c) are
simultaneusly asserted, c will be concluded and asserted as well. The statement that p is asserted
means that p is “explicitly present,” i.e., stated as a domain fact or situation fact, introduced as the
effect of an action, or deduced by forward chaining.13 Of course, it is not really necessary that a = b
for a and (-> b c) to interact via forward chaining, only that a and b have a unifying substitution
θ, in which case θ(c) will be asserted.

Backward chaining through (<- c a) should occur when some program engages in proving
g, and g that unifies with c yielding substitution θ. In that case the fact licenses the attempt to prove
θ(a); for every successful instance φ(θ(a)), the program may conclude φ(θ(g)).

In addition to these applications, some planners may use (if p q) or its variants to reduce
goals. That is, if a planner is trying to make q true, it may try to accomplish that by making p true.
There are many other complex issues surrounding the interaction of facts and action definitions, but
OPT is based on the assumption that all effects of an action are explicitly stated in its definition. For
example, if a domain contains the facts

(forall (x - Physob r1 r2 - Room)
(if (and (in x r1) (in x r2)) (not (= r1 r2))))

(forall (x - Physob p - Person r - Room)
(if (and (holding p x) (in p r))

(in x r)))

then if person Fred is holding object ob23, and is in living-room52, and the action (goto-room
Fred kitchen102) occurs, the facts can remain true only if either (holding Fred ob23)
or (in ob23 living-room52) becomes false. The definition of goto-room must state
which it is. (It might say, “Forall objects the person is holding, if they are portable then they
change room, otherwise they cease to be held.”)

For historical reasons, and for compatibility with PDDL, OPT allows a domain to declare axioms
using:

<axiom-def> ::= (:axiom
:vars (<typed list (variable)>)
:context <goal proposition>
:implies <literal(term)>)

The domain declaration

(:axiom
:vars v
:context a
:implies c)

is exactly synonymous with putting (forall v (<- c a)) in the :facts field of the domain
definition.

For example, we might define the classical blocks-world predicates above and clear as fol-
lows:

13Hopefully the sly mutual recursion in these two definitions will go unnoticed.
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(:axiom
:vars (?x ?y - physob)
:context (on ?x ?y)
:implies (above ?x ?y))

(:axiom
:vars (?x ?y - physob)
:context (exists (?z - physob)

(and (on ?x ?z) (above ?z ?y)))
:implies (above ?x ?y))

(:axiom
:vars (?x - physob)
:context (or (= ?x Table)

(not (exists (?b - block)
(on ?b ?x))))

:implies (clear ?x))

Unless a domain declares requirement :true-negation,not is treated using the technique
of “negation as failure” [?]. That means it makes no sense to conclude a negated formula; they
should occur only as deductive goals, when (not g) succeeds if and only if g fails. (If g con-
tains variables, the results are undefined.) Hence axioms are treated directionally, always used to
conclude the :implies field, and never to conclude a formula from the :context field.

9 Adding Facts and Action Expansions Modularly

Although OPT allows a domain to be defined as one gigantic define, it is often more convenient to
break the definition into pieces. The following notation allows adding axioms and action expansions
to an existing domain:

<addendum-def> ::= (define (addendum <name>)
(:domain <name>)
<extra-def>∗)

<extra-def> ::= <facts-def>
<extra-def> ::= :domain−axioms <axiom-def>
<extra-def> ::= :action−expansions <method-def>
<extra-def> ::= :safety−constraints <safety-def>
<method-def> ::= (:method <action function>

[:name <name> ]
<action-def body>)

Inside a (define (addendum ...) ...) expression, :actions and :axioms be-
have as though they had been included in the original (define (domain ...) ...) ex-
pression for the domain. :method declarations specify further choice points for the expansion of
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an already-declared action, almost as though the given <action-def body> included inside a
choice• in the original expansion of the action. (It doesn’t work quite that neatly because the
parameters may have new names, and because an <action-def body> is not exactly what’s
expected in a choice•.)

In a method definition, the <action-def body> may not have an :effect field or an
:only-in-expansions field.

Method names are an aid in describing problem solutions as structures of instantiated action
schemas. Each action has its own space of method names; there is no need to make them unique
over a domain. If an action has a method supplied in its original definition, the name of that method
is the same as the name of the action itself.

Example (from an old version of the UM-Translog domain):

(define (addendum carry-methods)
:domain translog
...
(:method carry-via-hub

:name usual
:parameters (?p - package ?tc1 ?tc2 - tcenter)
:expansion (forsome (?hub - hub)

(exists (?city1 ?city2 - city
?reg1 ?reg2 - region)

(and (in-city ?tc1 ?city1)
(in-city ?tc2 ?city2)
(in-region ?city1 ?reg1)
(in-region ?city2 ?reg2)
(serves ?hub ?reg1)
(serves ?hub ?reg2)
(available ?hub)))

(seq (carry-direct ?p ?tc1 ?hub)
(carry-direct ?p ?hub ?tc2)))

:precondition (not (hazardous ?p)))
...)

The reason to give addenda names is so the system will know when an addendum is being
redefined instead of being added for the first time. When a (define (addendum N) ...)
expression is evaluated, all the material previously associated withN is erased before the definitions
are added. The name of an addendum is local to its domain, so different domains can have addenda
with the same name.

10 Situations and Problems

As discussed in section 1, a situation is a particular set of propositions that may all hold at some
time (or many times) in a particular domain. For instance, in a domain with just one predicate,
(light-on), and just one action, (toggle-light), there are two situations, {(light-on)}
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and {(not (light-on))}.14 The time of a situation is not part of its description, so that liter-
ally the same situation can recur more than once.

A planner may produce descriptions of several different situations in the course of its search for
a plan. What OPT supplies is a way of declaring initial situations, which provide the starting points
for stating plan problems:

<situation-def> ::= (define (situation <initsit name>)
(:domain <name>)
[<objects def>]
[<facts def>]
[<init spec>]
[(:init <proposition>+)])

<init spec>

The :objects and :facts fields are just like the corresponding fields of a domain definition.
The facts newly declared must be true in every situation reachable from this one. A proposition in
the :init field of a situation is true in this situation, and persists until some action or event makes
it false.

A problem is what a planner tries to solve. It is defined with respect to a domain. A problem
specifies two things: an initial situation, and a goal to be achieved. Because many problems may
share an initial situation, there is a facility for defining named initial situations.

<problem-def> ::= (define (problem <name>)
(:domain <name>)
[<require-def>]
[<situation>]
[<objects def>]
[<facts def>]
[<init spec>]
<goal>+

[<metric spec>]
[<length-spec> ])

<situation> ::= (:situation <name>)
<goal> ::= (:goal <goal proposition>)
<goal> ::=:action−expansions

(:expansion <action spec(action-term)>)
<metric spec> ::= (:metric <min-or-max> <metric term>)
<min-or-max> ::= minimize | maximize

A problem definition must specify some combination of an initial situation (by name), a list of
facts, or a list of initial true literals. The situation <name>must be a name defined by either a prior

14Technicality: When I describe a situation by giving a finite list of propositions, I mean the deductive closure of that
list.
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situation definition or a prior problem definition. If a <problem def> specifies an initial
situation, then the facts and inits are treated as effects (adds and deletes) to the named situation. The
:objects field, if present, describes objects that exist in this problem or initial situation but are
not declared in the :constants field of its domain or any superdomain. Objects do not need to
be declared if they occur in the :init list in a way that makes their type unambiguous.

All atomic formulas which are not explicitly said to be true in the initial conditions are assumed
by OPT to be false, unless the domain declares requirement :open-world.

The <metric term> appearing in a :metric field is a term of type Number• that may
(but need not) contain subterms (total-time•) and (total-steps•). The values of these
terms are the total time (in seconds) elapsed from the initial situation to the goal situation, and the
total number of steps taken, respectively. [[Why they are parenthesized is not clear to me; I’m just
following PDDL2.1 here.]]

For example,

(define (situation briefcase-init)
(:domain briefcase-world)
(:objects P D)
(:init (place home) (place office)))

(define (problem get-paid)
(:domain briefcase-world)
(:situation briefcase-init)
(:init (at B home) (at P home) (at D home) (in P))
(:goal (and (at B office) (at D office) (at P home)))
(:metric minimize (+ (* 3 (total-time)) total-steps)))

The :goal of a problem definition may include a goal description or (if the domain has declared
the requirement :action-expansions) an expansion, or both. A solution to a problem is
a series of actions such that (a) the action sequence is feasible starting in the given inital situation
situation; (b) the :goal, if any, is true in the situation resulting from executing the action sequence;
(c) the :expansion, if any, is satisfied by the series of actions ([[in a sense that I haven’t made
clear yet]]).

For instance, in the transportation domain, one might have the problem

(define (problem transport-beans)
(:domain transport)
(:situation standard-network)
(:objects beans27 - Beans)
(:init (at beans27 chicago))
(:expansion (with-links (got-to-end)

(link (carry-in-train beans27 chicago newyork)
:span got-to-end)

(:postcondition got-to-end
(not (spoiled beans27))))))

The :requirements field of a problem definition is for the rare case in which the goal or
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initial conditions specified in a problem require some kind of expressiveness that is not found in the
problem’s domain.

Unlike addendum names (see Section 9), problem names are global. Exactly how they are
passed to a planner is implementation-dependent.

11 Web Mode and Namespaces

One important application of Opt is to planning and reasoning on the “Semantic Web,” the envi-
sioned future world-wide network of agents and information sources that have more explicit propo-
sitional content than WWW pages have today [?]. Opt fits into this vision by being a representation
for ontologies and datasets. But there are a couple of other dimensions to address. A key design
decision for RDF, the standard representation system for the Semantic Web[?], is that all names
are URIs, Uniform Resource Identifiers. The rationale is that URIs are a familiar notation for web
denizens, with enough degrees of freedom to ensure that the same name is unlikely to be used by
two different people for different purposes.

There are several drawbacks. URIs are long and complicated, and don’t look like names, espe-
cially for things like predicates. The standard notation for RDF is based on XML, and you can’t
put a URI just anywhere in XML. The measures taken to get around XML’s limitations lead to a
notation whose conventions are awkward, inconsistent, and hard to remember.

When Opt is used in “web mode,” it adopts the same requirement that all names are URIs, but fits
it into the notational base in a cleaner way. First, domains fetched from the web have URIs as names,
instead of symbols. If a document has URL15 http://hostname.com/p, and that document con-
sists of a definition of domain d, then the URI http://hostname.com/p?notation=opt&ontol=d

is the “web name” of that domain. If the last component of p is d.e, then the query ontol=d can
be dropped; if the extension e is opt, then the query notation=opt can be dropped. These con-
ventions allow a document to contain more than one domain definition, while giving the principal
domain a concise URL. I write “http://,” but the same idea works for other schemes, such as
“ftp://.” However, for scheme “file://,” that is, for a local ontology, the name is assumed to
be unambiguous.

Second, every domain implicitly defines a namespace, so that identifiers from different domains
don’t get confused. This namespace can be used in the traditional XML way. Here’s an example of
XML markup

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
<!ENTITY zoo "http://cadmium.yale.edu/ontology/zoology.opt">

]>
<rdf:RDF xmlns:zoo="&zoo;#">

<rdf:description rdf:ID="Katie">
<zoo:location rdf:resource="&zoo;#kangaroo-pen"/>

</rdf:description>
</rdf:RDF>

15A URL is a URI from which an actual document can be retrieved.
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However, the XML namespace mechanism, whatever its virtues in general, has shortcomings as
a device for name management among different ontologies. It allows at most one ontology to be the
default namespace, so that if ontology A extends ontology B, and if the default namespace inside
A is A itself, then every reference to a name from B must be preceded by a prefix. What we’d like
to be able to do is import all the names from B, and, as long as there is no possibility of ambiguity,
pretend that they live in A’s namespace.

If there is such a possibility, we can introduce a prefix for the B symbols, as in this example:

(define (domain automobiles)
(:extends (:domain

"http://cadmium.yale.edu/ontology/zoology.opt"
:prefix "zoo"))

...)

where, for concreteness, we’ve let

A = http://host-A/automobiles.opt

and B = http://cadmium.yale.edu/ontology/zoology.opt".

Now the symbol kangaroo in B can be referred to as @zoo:kangaroo.16
It looks like we’ve essentially duplicated the XML namespace machinery, but the details work

out to be quite different. Suppose that jaguar is the only symbol declared in A that clashes with a
symbol in B. Then we can write

(define (domain automobiles)
(:extends (:domain

"http://cadmium.yale.edu/ontology/zoology.opt"
:prefix ("zoo" jaguar) :prefix ("" :remainder)))

...)

Now an occurrence of @zoo:jaguar in Ameans the B symbol jaguar, and an unprefixed jaguar
means the A version. All other B symbols can be referred to with no prefix.

This is as good a place as any to put the definition of the syntactic extensions promised in
section 4:

<parent> ::= (:domain <domain-ref>
[:prefix <prefspec>]∗)

<domain-ref> ::= <name> | <url>
<url> ::= String conforming to RFC [<>])
<prefspec> ::= <string> | (<string> <import syms>)
<import syms> ::= <name>∗| :all | :all-but <name>∗| :remainder
<export-def> ::= (:exports <export syms>)
<export syms> ::= <name>+| :all | :all-but <name>∗

<name> ::= @<basicname><more prefix>+:<basicname>
<more prefix> ::= :<basicname>

16The atsign is required because Opt is Lisp-based, and the colon character has a built-in significance to the Lisp reader,
so that letting zoo:kangaroo be our notation without some major headaches is impossible. Using “@” in this way
would be equivalent to the notation “!space:sym” of [?]; the use of atsign follows [?].
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A <name> is prefixed if it contains one or more prefixes. In that case, its root name is the name
given by the characters after the last colon; if it has no prefixes, the root name is the name itself.

If a domain has no :exports declaration, then all of its symbols are (potentially) imported
into any domain that :extends it. I say “potentially” because, as suggested above, the :prefix
clauses of an :extends clause can be used to block some of the importations that would otherwise
occur.

In a :prefix clause, an empty <import syms> is synonymous with :remainder, which
means “all symbols not mentioned to the left.” The flags :all and :all-but refer to all symbols,
or all but a finite list. A string s by itself is synoymous with s :remainder. So the :extends
spec above could have been written

(define (domain automobiles)
(:extends (:domain

"http://cadmium.yale.edu/ontology/zoology.opt"
:prefix ("" :all-but jaguar)
:prefix ("zoo" jaguar)))

...)

or as

(define (domain automobiles)
(:extends (:domain "http://cadmium.yale.edu/ontology/zoology.opt"

:prefix ("zoo" jaguar) :prefix ""))
...)

If it’s necessary to restrict the symbols exported from a domain, an explicit :exports clause
can be used, in the obvious way. (:exports :all) is equivalent to no :exports declaration.
(:exports syms) gives an explicit list of symbols to be exported. (:exports :all-but syms)
causes all but the given symbols to be exported from the domain’s namespace.

A key feature of this mechanism17 is that once a prefix has guided Opt to a domain, the rest of
the symbol designator can be any legal symbol specification, including one with colons in it. So if it
happens that B imported the symbol foo from another ontology C with prefix "wow", one can refer
to it in A as @wow:foo. If we had linked A and B by writing

(define (domain automobiles)
(:extends (:domain "http://cadmium.yale.edu/ontology/zoology.opt"

:prefix "zoo"))
...)

then this symbol would be referred to as @zoo:wow:foo. Of course, it is usually a better idea for
A to inherit the domain where foo is declared directly. The point is that A has access to all the
symbols exported by B, no matter where they originated. Such symbols, even if not referred to in
the definition of A, may still pop up during runs of applications involving A. If so, the iterated-colon
notation provides a way to refer to them.

The basic idea behind all this machinery is that it is possible, and desirable, to hide the URI
machinery backing symbols. A <name> in Opt refers to the URI you get by following its prefixes

17Which owes more to programming-language technology [?] than to Web tradition.
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back to a domain, which I’ll call its root namespace, then pairing the domain’s namespace with the
root name as a fragment.18 That is, if the prefixes take you back to root namespace http://h/p,
and the root name is s, then the URI it designates is http://h/p#s.

There is no requirement flag for web mode, because the distinction between “local mode” and
web mode is too fundamental. Explaining this point requires talking about implementation details
that are beyond the scope of this manual; the bottom line is that “local Opt” and “web Opt” can be
considered to be different systems. The former is suitable for applications in which a small number
of domains are loaded in, a computation is performed, and the program quits. The paradigmatic
example is using Opt as the basis for a planning system competing in a competition: you load a
domain (which might extend one or two others), load a problem definition, run the planner, type
out performance statistics, and quit. “Web Opt” is for applications in which domains are found in-
crementally by various web-oriented agents. Name clashes are entirely possible, and are controlled
using namespaces. The emphasis is less on raw performance than on the ability to find and exploit
resources dynamically.19

12 Scope of Names

Here is a table showing the different kinds of names and over what scope they are bound

Name type Scope
Reserved word OPT language
Domain name Global
Type Domain, inherited
Type-function Domain, inherited
Type constructors Domain, inherited
Constant Domain, inherited
Parameter Domain, inherited
Function Domain, inherited
Predicate Domain, inherited
Action function Domain, inherited
Process function Domain, inherited
Addendum Domain, local
Situation name Domain, inherited
Problem name Global
Method Per action function
18The algorithm to find the root namespace is nonobvious, because any colon in a prefixed name can stand for zero or

more empty prefixes. The namespace system guarantees that if a path gets to two namespaces, each with a declaration of
the same root name, an error will be signaled when the second path is created.

19Some implementation details for hackers: Opt is implemented in Lisp. In local mode, everything that looks like a Lisp
symbol is implemented as a Lisp symbol, a standard tactic that is one of the reasons Lisp is such a terrific programming
language. In web mode, we introduce a data type canonized symbol, to which most user-defined names resolve. (Built-in
symbols continue to resolve to Lisp symbols.) Dealing with such symbols complicates the programmer’s life, because the
smooth interface between code and data structure that the Lisp quote mechanism provides is gone. One is reduced to
transforming quoted structures into internal data structures in the awkward and painful way that Java and C programmers
must live with. This distinction is so fundamental that one has to recompile the entire Opt system in namespace mode; it
can’t be switched at run time.
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Global names (for domains and problems) are accessible “everywhere.” For domain names,
“everywhere” might be the entire World-Wide Web (or Semantic Web); see section 11. It is less
obvious what it means for problem names to be global, because they can’t be referred to from within
Opt. In practice, referring to problems by their names lies outside Opt entirely, and is managed by
the planning system that is given a problem to solve.

Names with scope “domain, inherited” are visible in a domain and all its descendants. Names
with scope “domain, local” are visible within a domain but are not visible in descendant domains.
Method names are a documentation convenience, and need have no scope except that of the function
of which they are methods.

There is limited possibility of overloading names in OPT. The same name may be used for a
global-scope entity (e.g., a problem) and a domain-scope entity (e.g., a predicate). But the same
domain-scoped name cannot be used for two different kinds of entity. For instance, the same name
cannot be used for a type and an action.

The rules for method names are looser, because they are not true names. The only restriction is
that two distinct methods for the same action may not have the same name.

13 Built-in Symbols

13.1 Types

Table 1 gives the built-in types of OPT. If the middle column is not blank, it specifies a requirement
that must be declared for the type to be available.

13.2 Requirement Flags

Table 2 is a table of all requirements in OPT. Some requirements imply others; some are abbrevia-
tions for common sets of requirements.

13.3 Built-in Constants

This section contains an alphabetical list of built-in constants of OPT. For each we give the type,
plus the context in which the symbol may be used. This is usually a requirement flag, but may
include other notes. The annotation Effects means that the symbol may be used only in an effect
(section 5.2). If the context is “—,” then the symbol may be used anywhere the type rules allow. If
an argument position is an evaluation context (see section 3), it is flagged with a $.

Type: Context:
= (Fun Boolean

<- (x y - u
!& u - (T)))

:equality

(= x y) if and only if x and y are the same object; the expression is well formed only if x and y
are of the same type. Note that if f1 and f2 are fluents, (= f1 f2) tests whether they are the same
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Type Requires Meaning
Action — A Skip-action or a Hop-action
(Alt y1 ...yk) — The type of an object that has

type y1, type y2, . . . , or type yk.
(Alt) is a synonym for Void.

(Arg ...) — An “argument tuple,” often im-
plicit in the argument position of
Fun types.

Boolean — true or false
(Con c1 ...ck) — The type consisting of just the

constants (literals) c1 to ck.
The symbolic constants must
be quoted, except for false
and true. So (Con true
’false) is the (somewhat con-
trived) type that consists of true
and the symbol false and no
other objects.

(Either y1 ...yk) — Synonymous with (Alt y1 ...yk).
Float — Floating-point number
(Fluent y) — (Fun y <- Situation)
(Fun r <- a) — Function from type a to type r
(Hop r) :action-expansions The type of an action that might

take anywhere from zero time to
a long time interval, producing a
value of type r.

Hop-action :action-expansions An action of type (Hop r) for some r.
Integer — Integer (any number of digits)
(Lnk ...) :action-expansions See section 7
(Lst y) :data-structures A list of elements of type y.
Number :numbers A Float or Rational
Obj — The universal type; every object

is of this type.
Process :processes An entity of type (Slide r) for some r.
Prop — (Fluent Boolean)
(Skip r) — The type of an action that takes

exactly one infinitesimally long
time interval and returns a value
of type r.

Skip-action — An action of type (Skip r) for some r.
Situation — A world state
(Slide r) :processes The type of a process that returns

a value of type r.
(Step r) — An action with value of type r
String — String of characters
Symbol — A Lisp-style symbol
(T) — A type
(Tup ...) :data-structures See section 2.2
(Val ...) — A “value tuple;” see section 2.2;

these usually occur implicitly in
Fun types.

Void — The empty type

Table 1: Built-in types
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Requirement Description
:strips Basic STRIPS-style adds and deletes
:disjunctive-preconditions Allow or in goal descriptions
:equality Support = as built-in predicate
:existential-preconditions Allow exists in goal descriptions
:expression-evaluation Allow predicates some of whose arguments are evaluation contexts
:numbers Allow numerical predicates and functions

(Implies :expression-evaluation)
:universal-preconditions Allow forall in goal descriptions
:quantified-preconditions = :existential-preconditions

+ :universal-preconditions
:conditional-effects Allow when in action effects
:action-expansions Allow actions to have :expansions
:foreach-expansions Allow actions expansions to use foreach

(implies :action-expansions)
:domain-axioms Allow domains to have :axioms
:safety-constraints Allow :safety conditions for a domain
:fluents Support type (fluent t). Implies :numbers
:open-world Don’t make the “closed-world assumption” for all

predicates — i.e., if an atomic formula is not
known to be true, it is not necessarily assumed false

:true-negation Don’t handle not using negation as failure,
but treat it as in first-order logic
(implies :open-world)

:adl = :strips + :typing
+ :disjunctive-preconditions
+ :equality
+ :quantified-preconditions
+ :conditional-effects

:ucpop = :adl + :domain-axioms
+ :safety-constraints

:data-structures Expect lists, tuples, etc.
:processes Allow process definitions. Implies :fluents
:durative-actions Allow durative-action definitions

Table 2: Requirement flags
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fluent, not whether they have the same value. To test for that, write either (= (fl-v f1) (fl-v
f2)) or, for Floats, (=∼ f1 f2), which OPT coerces to (=∼ (fl-v f1) (fl-v f2))

Type: Context:
<, >, =<, <=, >= (Fun Boolean

<- (x! y! - Number))
:numbers

The usual inequalities. Although (=< x y) is the preferred way to express x ≤ y, you can also
use <=, in spite of the fact that it looks more like a left-pointing arrow than an inequality.

Type: Context:
=∼, /=∼ (Fun Boolean

<- (x! y! - Float))
:numbers

(=∼ x y) is true if x and y are approximately equal. The definition of “approximately equal”
is implementation-dependent, but at least must satisfy the following: if a situation is arrived just
after (wait-for (=∼ q1 q2) p), then in that situation q1 and q2 must be approximately equal.
(/=∼ x y) is an abbreviation of (not (=∼ x y)).

Type: Context:
+, -, *, min, max (Fun Number

<- (&rest l - Number))
:numbers

Arithmetic functions that take an indefinite number of arguments. Each of these functions is over-
loaded, so it produces type Number only if at least one argument is of type Number; otherwise, it
produces Float if at least one argument is of type Float; otherwise, it produces type Integer.

Type: Context:
/ (Fun Number

<- (x y - Number))
:numbers

(/ x y) is x
y .

Type: Context:
assign (Fun Prop

<- ((Fluent Number) Number))
:fluents, Effects
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(assign q v) is the effect imposed by setting fluent q to value v.

Type: Context:
bounded-int (Fun Prop

<- (i! j! k! - Integer))
:numbers

(bounded-int i j k) is true if i lies in the interval [j, k]. In addition, if (bounded-int ?v
j k) occurs as a deductive goal, it succeeds in k − j + 1 ways, in the mth of which ?v is bound
j + m − 1.

Type: Context:
choice (Fun (Step Void)

<- (&rest (Step Void)))
:action-expansions

(choice a1 ...ak) is the action executed by executing one of the the ai.

Type: Context:
collect-value (Fun (Step a1 ...an)

<- (Arg a1 ...an))
:action-expansions

(collect-value —args—) is the action executed by constructing and returning a row of the
given arguments.

Type: Context:
current-value (Fun Prop

<- (f - (Fluent ?u) v - ?u))
:fluents

(current-value f v) is true in a situation if the value of f in that situation is v.

Type: Context:
decrease (Fun Prop

<- ((Fluent Number)
Number!))

:fluents, Effects

(decrease v q) is the effect imposed by decreasing fluent v by amount q.
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Type: Context:
derivative (Fun Prop

<- (f df - (Fluent Float)))
:processes, Effects

(derivative f df), allowed only in the :effect fields of process definitions, is imposed by
causing fluent f to vary at the rate df .

Type: Context:
deriv-comp (Fun Prop

<- (f df
- (Fluent Float)))

:processes, Effects

deriv-comp differs from derivative in that it specifies a component of the derivative; the
actual derivative is the sum of all known components.

Type: Context:
dur-happening (Fun Process

<- (Hop ?r))
:durative-actions

(dur-happening a) is the process that exists when durative action a is being executed

Type: Context:
dur-in-progress (Fun Prop

<- (Step ?r))
:durative-actions

(dur-in-progress a) is true when durative action a has begun and not yet ended.

Type: Context:
dur-start (Fun (Step Void)

<- (Step ?r))
:durative-actions

(dur-start a) is the skip action that consists of starting the durative action a.

Type: Context:

dur-stop (Fun (Step Void)
<- (Step ?r))

:durative-actions,
when ?duration is not
constrained by equalities.

(dur-stop a) is the skip action that consists of stopping the durative action a, when the ability
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to stop is under the planner’s control.

Type: Context:
elapsed (Fun (Fluent Float)

<- (Fun Process
<- Situation))

:processes

(elapsed p) is the time that the current instance process p has been active; if there is no current
active instance of p, then (elapsed p) is undefined.

Type: Context:
equation (Fun Boolean

<- (x y - Number))
:numbers

(equation x y) is true if x = y, but it has the further pragmatic meaning that if there is a single
unbound logic variable in a goal of this form, a planner should try to find a value for that variable
that makes the equality true.

Type: Context:
eval (Fun Boolean

<- (x! y - Obj))
:expression-evaluation

(eval e v) is true if e evaluates to v, using fl-v and standard arithmetic functions (e.g., +).

Type: Context:
eval-test (Fun Boolean

<- (x!))
:expression-evaluation

(eval-test e) is true if e evaluates to “ to v, using fl-v and standard arithmetic functions
(e.g., +).

Type: Context:
false Boolean —

A constant with value false.
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Type: Context:
fl+, fl-, fl*, fl/ (Fun (Fluent Number)

<- (x y - (Fluent Number)))
:fluents

Each of these functions produces a fluent whose value in any situation is the sum, difference, prod-
uct, or quotient of the values of the two argument fluents.

Type: Context:
fl-∧

(Fun (Fluent ?u)
<- ?u)

:fluents

(fl-∧ x) is the fluent that has value x in every situation. In practice, the∧ symbol is the carat
character, typed “shift-6” on most American keyboards.

Type: Context:
fl-v (Fun ?u

<- (Fluent ?u))
:fluents

(fl-v f) is the value of fluent f in the current situation.

Type: Context:
increase (Fun Prop

<- ((Fluent Number)
Number!))

:fluents, Effects

(increase v q) is the effect imposed by increasing fluent v by amount q.

Type: Context:
list (Fun (Lst ?u)

<- (&rest l - ?u))
:data-structures

(list x1 ...xn) is the list consisting of x1 to xn in that order. If each xi has type y, then the
list expression has type (Lst y)

.
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Type: Context:
parallel (Fun (Step Void)

<- (&rest (Step Void)))
:action-expansions

(parallel a1 a2 ...ak) is the action executed by executing all of a1, . . . , ak, in no particular
order. It starts when the first of the ai starts, and finishes when the last of the ai finishes.

Type: Context:
result Context-dependent :action-expansions

In an action expansion, a link of type r, where r is the type returned by the action being expanded.
Setting this link to value V causes the expanded action to return V .

Type: Context:
seq (Fun (Step Void)

<- (&rest (Step Void)))
:action-expansions

(seq a1 a2 ...ak) is the action executed by executing a1, a2, . . . , ak in that order.

Type: Context:
temporal-grain-size Number :processes

A time interval small enough that nothing important happens over any stretch of time shorter than
this. This is a domain parameter, whose default value is 0.01, which may be overridden in subdo-
mains.

Type: Context:
temporal-scope Number :processes

A time interval large enough that nothing relevant happens further in the future than this. This is a
domain parameter, whose default value is 10.0e10, which may be overridden in subdomains.

Type: Context:
test (Fun (Hop Void)

<- (s - Boolean
iftrue iffalse - Action))

:action-expansions

(test s at af) is equivalent to at if the value of expression s is true•, and to af if its value
is false•.
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Type: Context:

total-steps (Fun Integer <- ())
The :metric field of a
problem definition

The number of steps (skips and hops) in the action sequence from the initial situation to a candidate
goal situation.

Type: Context:

total-time (Fun Float <- ())
The :metric field of a
problem definition

The total time elapsed from the initial situation to a candidate goal situation.

Type: Context:
true Boolean —

A constant with value true.

Type: Context:
tuple (Fun (Tup ?u1 ...?un)

<- (?u1 ...?un))
:data-structures

(tuple x1 ...xn) is a tuple of type (Tup y1 ...yn), where yi is the type of xi. If you think
this type specification is illegal, you’re right; it takes us beyond the type language we described in
this paper.

Type: Context:
wait-for (Fun Hop-action

<- (Prop Process))
:processes

(wait-for q p), where q is an inequality involving a quantity affected by process p, is the
action of waiting until q becomes true.

Type: Context:
wait-while (Fun (Hop ?r)

<- (Slide ?r))
:processes

(wait-while p) is the action of waiting for process p to finish. If p finishes, returning a value
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of type r, then (wait-while p) finishes and returns the same value.
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