
Theorem (informal statement): There are no “extendible
methods” in David Chalmers’s sense unless P = NP .

Explication: In his paper, “The Singularity: A philosophical analysis,”
David Chalmers defines an “extendible method” as a method of improving
intelligent programs that can “easily be improved, yielding more intelligent
systems.” I will try to make this notion more precise, at the cost of draining
some of the excitement out of it. However, if the more precise definitions
make the the theorem true then the excitement will be viewed as a mirage,
I believe.

So let’s take the classic joke that “AI is the search for polynomial-time
solutions to NP -complete problems” as a way of thinking about what it
means to be an intelligent program. AI programs tend to take polynomial
time on some fraction of “interesting” problems that are all in a problem
class C that is NP -complete; such that it is unlikely that a more useful
characterization of that fraction of C can be found.1 C might be the SAT
problems that result when classical-planning problems are encoded using
the “planning as satisfiability” paradigm (Kautz and Selman 1992).

Let’s idealize a successful program as one that solves every solvable prob-
lem of some size (or smaller) in a fixed amount of time. A “solvable” problem
is one with a Yes answer. (We’re working with decision problems here.) That
is, there is a time T and space S such that for every solvable problem of
size N0 or less, the program R solves the problem in time at most T using
space at most S. For larger solvable problems it might take more time, but
it always does return; for problems with answer No it might never halt at
all; but in any case it never halts with the wrong answer. Of course, there
is only a finite set of problems of size ≤ N0, so we’re used to definitions like
this turning out to be trivial, but we will be allowing the problem size to
grow, and that should make most of the sense of triviality dissipate, because
the space used will not be allowed to grow exponentially.

To proceed: I will take a program-improvement method for R, in Chalmers’s
sense, to be a technique or suite of techniques that (a) can be applied by a
manageable group of competent programmers (some of whom may, in the
future, themselves be intelligent programs); and (b) yields a new version
of R that works on bigger problems in C. The new version may involve
hardware improvements as well as algorithmic ones, so when I say “pro-
gram” below I have in mind a combination of hardware and software. A
method is parameterized by a level of effort, which we’ll measure as time

1Of course, a realistic program actually contains multiple subprograms that can be

characterized this way.

1



spent (at some standard level of person-hours/day). We’ll pretend, just to
simplify some sentences, that a method does not have stochastic results; if
the universe were rewound and the method tried again with the same level
of effort, it would always produce exactly the same successor program. In
other words, the method is an algorithm. This may seem preposterous, but
it seems like a reasonable formalization of a technique that can be applied
indefinitely, as Chalmers requires.

To wax formal once more: we’ll say that a method is 〈µ, ν〉-extendible on
program R and problem class C (modulo the parameters T , S, and N0) if it
produces a series of programs R1, R2, etc., such that Rk solves C-problems
of size kN0 in time T , using space O(kν); and development of Rk from Rk−1

takes time O(kµ).2

Just to be clear, we expect the time to apply a method to be years,
whereas the constant bound T must lie in the range of seconds, hours, or
perhaps a few days at the most for Rk to be practically useful. T never
changes from stage to stage of R’s evolution; what changes is the size of
problem that can be solved in that time.

To show that my formalization of the idea of extendible methods is not
completely vacuous, I will give a concrete example. Moore’s Law (Wikipedia
2012), whether justifiably or not, is often taken to be the claim that com-
puters double in speed every TM = 18 months, and that’s how I will take it.
If this really is a “law” that will hold true forever, then it supports the fol-
lowing method for improving programs: Our programming team subscribes
to Computerworld. Then, to improve Ri−1 to Ri, they wait some multiple
of TM until the issue arrives announcing that a fast enough computer is in
the stores. They buy it and run their existing program on it.
Observation: Let E be a program for testing whether a nondeterministic
computation will succeed by generating the exponentially many possible
traces of the computation. To be precise, suppose the number of traces is
O(2bn), where n is the problem size and b is a constant, and the size required
to store each trace is O(na), where a is a constant. E uses some iterative-
deepening scheme to explore the search space, so that for solvable problems
it is required only to store the polynomially-size (O(na)) execution trace of
the first trace it finds that ends with Yes. Choose T and S so that when
the program is run on the fastest computer within the team’s budget on any

2
R0 =def R. It might be possible to shorten the time by investing more resources.

But, as the maxim says, time is money. You can convert time to dollars and thence to

other resources by investing some cash or writing grant proposals and waiting for the

government to collect more taxes. So I’ll just sweep all resources into one bin labeled

“time.”

2



problem of size ≤ N0 = 1, it finishes within time T and space S. Then if
Moore’s Law is a law, the Computerworld method is 〈0, a〉-extendible applied
to E if the team waits for time interval bTM to port their program. (Here
µ = 0, ν = a.)
Proof: Ek must solve problems of size k in time T . Program Ek−1 could
explore O(2b(k−1)) traces in time T , but Ek gets to run on hardware O(2b)
times faster, so it can explore O(2bk) traces in time T . Development of
program k takes constant time, so µ = 0. The space grows proportionally
to the space required for the longest trace, so ν = a. QED

We can now state and prove the target theorem:
Theorem: If there is an extendible method for R (modulo all the parame-
ters), then C, the class of problem solved by R, is in P .

Proof: This is pretty obvious, but let’s go through the argument. We’ll
demonstrate a polynomial-time algorithm for solving problems in class C.
Consider a problem of size n. Let Rk1

be the last version of R produced by
the method, which solves all problems of size k1N0. What we need is version
k2 = ⌈ n

N0
⌉. If k1 ≥ k2, then the current version of R can solve the program

in time T . Otherwise, the extendible method must be applied k2 − k1 times
first, costing time bounded by the following sum:

t ≤
k2∑

i=k1+1

cik
µ

≤ cmaxk2k
µ
2 (cmax = max

i
ci)

= cmaxkµ+1
2

= O(nµ+1)

Once version k2 of R is available, we can run it, taking time T . So the
total time is T + O(nµ+1) = O(nµ+1). QED3

Corollary: If there is an extendible method, then P = NP .
Proof: Extendible methods as defined operate on programs to solve NP-
complete problems. If one of these problems is in P, then they all are.
Corollary: Unless P = NP , Moore’s Law is not actually a law. I hope this
doesn’t come as a shock.

Discussion:

3I would point out that the time required to develop a new version of the program can

be amortized over the many times we will then use the wonderful new version; but we’re

in the middle of a reductio to a quasi-absurdum, so never mind.

3



The proofs above may read like a parody of such things, and to some
extent that’s the way they’re intended. The very idea of extendible method
cries out for parody. One might suppose that my requirement that a method
be repeatable forever is part of this parody, but in fact it’s of the essence
in Chalmers’s semi-formalized argument that AI++, an ultra-intelligent ar-
tificial entity, will come about. After all, if a method can be applied only
k times, then one can dispense with talk of methods and just focus on Rk,
the final product of all the extension. I suspect that part of the pleasure
one gets from contemplating methods is that we can describe some of them,
whereas we have no idea what Rk might look like.4

It would be nice if we could weaken the requirement that an AI system
solve all problems below a certain size. Here’s one way to do that: Let
CN be all the C-problems of size ≤ N , Let θ be some constant > 1/2, the
desired probability threshold for our program to work (0.9 would be nice).
We adopt the following notation: A program R solves C-problems of size
N for practical purposes iff such that given a randomly chosen stream of
solvable CN -problems, the probability R will solve the next one in time
≤ qNα, using space ≤ rNα is ≥ θ. We’ll abbreviate “solve for practical
purposes” to pp-solve.

Now we can envision an extendible method increasing N (not necessarily
linearly as we required above) while leaving α and θ the same. As the
program R evolves to version Rk, exactly which fraction of problems it
solves can change, so long as the fraction stays above the threshold. In fact,
if there are problems of size Nk that go unsolved, the fraction of problems
of sizes < Nk that are solved must increase to keep the overall number
> θ. This all should sound plausibly like the way AI programs do evolve in
practice.

Unfortunately, there is no nice theorem to conclude with. There is un-
likely to be one involving P and NP . One could probably invent classes Pθ

and NPθ of problems that can be pp-solved in polynomial time without or
with the help of nondeterminism. But, since no one’s ever heard of these
classes, the conjecture that Pθ 6= NPθ lacks intuitive oomph.

– Drew McDermott, 2012

References:

4The one apparent exception I’m aware of is the “Computerworld” method supported

by Moore’s Law. In this case we think we know exactly what Rk looks like, because it’s

just R0, but the missing piece, exactly what-size problems the ultimate version will solve,

is everything.

4



David Chalmers 2010 The Singularity: A philosophical analysis. J. of
Consciousness Studies 17(9–10), pp. 7–65

Henry A. Kautz and Bart Selman 1992 Planning as satisfiability. Proc.
European Conference on Artificial Intelligence (ECAI), pp. 359–363

Wikipedia 2012 Moore’s Law. http://http://en.wikipedia.org/wiki/Moore%27s law

5


