
Revised NISP Manual

A tastefully wrapped version (0.2) of the classic from
August 1988

YALEU/DCS/RR #642
Drew McDermott

Describing YNisp (= Nisp 2.9.1) c© 1988–2004 Drew McDermott

This research was supported in part by NSF grant IRI-8610241, by DARPA/BRL grant DAAA15-
87-K-0001 and by Army-CSW grant DAAA10-86-C0604.

Contents

1 Preliminaries 1

1.1 NONOBVIOUS CHANGES: . 3

2 NILS — NISP Implementation Lisp Subset 5

2.1 BASIC FUNCTIONS AND DATA TYPES . 5

2.1.1 Trivial Functions . 5

2.1.2 Booleans and Predicates . 5

2.1.3 Numbers . 7

2.1.4 Characters . 10

2.1.5 Symbols and Property Lists . 10

2.1.6 List Structures . 11

2.1.7 Backquote . 16

2.1.8 Vectors and Arrays . 16

2.1.9 Strings . 17

2.1.10 Sequences . 18

2.1.11 Character coercions . 18

2.1.12 Hash Tables . 18

2.1.13 Mappers . 19

2.2 FUNCTIONS, MACROS, ETC. 20

2.2.1 Defining and Manipulating functions . 21

2.2.2 Defining Macros . 22

2.2.3 Manipulating Funoids . 22

2.3 CONTROL STRUCTURES . 23

2.3.1 Binding Variables . 23

2.3.2 Side Effects . 24

2.3.3 Conditionals . 24

2.3.4 Loops . 25

2.3.5 Mapping Loops . 26

2.3.6 Nonlocal Jumps . 26

2.3.7 Multiple Values . 27

2.3.8 Data-Driven Programming . 27

i

CONTENTS ii

2.4 INPUT/OUTPUT . 28

2.4.1 Reading and Printing Conventions . 29

2.4.2 Streams . 29

2.4.3 User Non-hostile Constructs . 32

2.4.4 Pretty Printing . 33

2.4.5 Files and Filenames . 33

2.5 CREATING AND COMPILING FILES . 36

2.6 ERROR HANDLING . 37

2.7 HOST LANGUAGES & SYSTEMS . 37

3 NILS Utilities 39

3.1 BETTER SETTERS . 39

3.2 MAGIC MAPPERS . 41

3.3 LAZY LISTS . 42

3.4 OBJECTS AND OPERATIONS . 43

4 NISP Type System 45

4.1 EXPRESSION TYPES . 46

4.2 BUILT-IN TYPES . 47

4.2.1 Simple Types . 47

4.2.2 More Complex Types . 48

4.3 DECLARATIONS . 49

4.3.1 Defining and Declaring Procedures . 49

4.3.2 Declaring Variables . 50

4.4 USER-DEFINED TYPES . 52

4.4.1 Defining New Types . 52

4.4.2 Structures . 54

4.4.3 Types Built on Property Lists . 55

4.4.4 Examples of DEFTYPE . 55

4.5 OBJECT-ORIENTED PROGRAMMING . 56

4.6 TYPE CHECKING . 58

Chapter 1

Preliminaries

Note on 2004 edition: This manual needs to be completely rewritten, and it will be at
some point. However, it’s not going to happen today, or tomorrow. The current version,
2.9, differs from the version described here in one basic way: The NILS package has been
replaced by the YTools package. They look very similar, but the latter is streamlined and
made more consistent and elegant in various ways. The documentation for YTools is up-to-
date; the manual is in the ytools directory. So, to read this manual, read the section on
NILS, read the YTools manual, and then whenever a reference to a NILS construct is made
in chapter 4, replace it with the corresponding YTools construct. loop becomes repeat,
logical pathnames change from foo/ to %foo/, and so forth.

Also, the goal of compatability with the T Lisp dialect has gone away, because T has
gone away. I’ve thought about producing a Scheme version, but it would be a lot of work
for a doubtful reward. The only target of Nisp now is Common Lisp. The goal has gone by
the wayside of straddling several Lisp dialects by providing a moderate-sized set of facilities
that can be implemented in all of them. YTools is a set of enhancements to Common Lisp,
and Nisp programmers are now encouraged to use any Common Lisp construct they like.
There are a few gaps left in the language where type declarations can’t be integrated into
Lisp syntax the way one might expect. If anyone stumbles into one, we will close it.

A big change not reflected in this manual at all is the availability of CLOS-style objects
and generic functions. The document nispobj.pdf describes how it works.

A huge caveat in reading this documentation is that the capitalization conventions of
Nisp have changed radically since it was written. I now use lowercase for ordinary symbols
like cdr and most-positive-fixnum. I capitalize the first letter of types — including built-
in types and classes defined by defstruct. Also, these are no longer just conventions. All
my code has been updated so it runs in modern mode, to use the phrase coined by Franz
to describe the case-sensitive mode that should have been adopted years ago by everyone.
(Modern-mode code, if written with a bit of care, works just fine in ANSI Lisp; the pain for
the devotee of modernism occurs when he tries to port someone else’s ANSI code.) So, in
reading what follows, adjust most upper-case letters down, and up-case the first letter of a
lower-case name. In a construct such as (LST float) (in the old style), the current rule is
to treat LST exactly the same as the type float. So the new version is (Lst Float).

It’s traditional to change the meaning of the acronym for Nisp whenever a sufficiently

new version is introduced. It now stands for Numinous lISP. — Drew McDermott

NISP (Neutral lISP) is designed as a set of macros that can run in either Common Lisp
or T, providing a concise and compatible interface to either. Common Lisp is the new Lisp
standard, which is succeeding beyond (my) expectations in actually becoming standard. Its
design is as elegant as possible for a dialect that consists of the assemblage of all previous Lisp
dialects. T is the opposite, an effort to start from scratch and do things right. Both dialects
are lexically scoped, but they differ in other respects. Common Lisp adopts the traditional
identification of NIL, the empty list, and falsehood, as well as the traditional maintenance of
two kinds of symbol value, for functions and arguments. T has just one kind of value, and
NIL is just a variable whose value is falsehood. Common Lisp has extended the function call

1

CHAPTER 1. PRELIMINARIES 2

syntax in ways pioneered by Lisp Machine Lisp, with various kinds of keyword and whatnot.
T retains traditional positional notation, plus the ability to pass arguments as a list. Common
Lisp addresses namespace conficts with “packages” that allow multiple symbols with the same
print name. T has just one namespace, but multiple variable-binding “environments.”

As far as taste goes, T seems to be right in most cases, and Common Lisp wrong. Unfortu-
nately, Common Lisp is the standard, in more ways than one. Thousands of person-hours are
devoted to implementing, maintaining, and documenting it, whereas T is the work of a handful
of eccentrics. Like Scheme, its parent, people who like T become fanatically devoted to it, but
they have to put up with a lot, including a compiler that works correctly and efficiently only for
stylistically fashionable code.

NISP is an effort to survive in both these worlds. (Getting the best of them would be too
much to ask.) It looks more like Common Lisp than T, but implements T’s object-oriented
features, plus some macros that improve both languages. In addition, it provides compile-time
type declarations that are more concise than Common Lisp’s. A function that is written thus in
Common Lisp

(DEFUN FOO (I X)
(DECLARE (fixnum I) (float X))
(FLOOR (* I X)))

(PROCLAIM ’(FTYPE (FUNCTION (fixnum float) integer) FOO))

can be written thus in NISP:

(DEFFUNC FOO - integer (I - fixnum X - float)
(FLOOR (* I X)))

NISP is written in three distinct layers:

1. Core NILS: The core NISP Implementation Language Subset, which is implemented
via macros and function definitions in the host dialect.

2. Full NILS: Written entirely in Core NILS
3. NISP Type System: Written entirely in Full NILS

This manual reflects this division. First NILS is described, then the utilities that make up Full
NILS, then the type system. The Core NILS system consists of a handful of files, amounting to
about five thousand lines of Lisp code, depending on the dialect. When NISP is started, only
this core system needs to be around. If a program depends on all of NILS or the type system,
it should say so, and these components will be loaded.

Historical Note

This is the third incarnation of NISP. The first version (“Number Lisp”) was an efficient num-
ber package for UCI Lisp, which eliminated consing of numbers; we hope the host Lisp compiler
can now do that for us, given enough declarations. The second version (“Nifty Lisp”) attempted
to cover a wide range of Lisp dialects: UCI Lisp, Franz Lisp, Zetalisp, and T. Since these had
varying external representations, it was necessary to provide a character-level translator, which
is no longer necessary.

Over the years, many people have contributed ideas and code to Nisp, including Eugene
Charniak, Ernie Davis, Denys Duchier-Proust, Jim Firby, Steve Hanks, Chris Riesbeck, and
Larry Wright. The present manual was designed and edited by Larry Wright.

Common Lisp has solved many portability problems for us. NISP is still needed, to bridge
the gap to T, and to provide compile-time types. However, wherever possible NISP has adopted
Common Lisp conventions for function names, indexing conventions, etc.

Notational Conventions

CHAPTER 1. PRELIMINARIES 3

Whenever a funoid or other feature is introduced, it appears on a special line indicating
arguments (if any) and labeling it as one of the following:

Function: A procedure that takes zero or more arguments and returns zero or more
results.

Magic: A reserved word or syntax extension.
Global Variable: A globally bound variable.
Type: NISP type.
Other: None of the above.

T and Common Lisp agree on most lexicographic issues. The default case is upper, and
lower-case characters are changed to upper at read time. The escape character is “\”. The
glaring difference between them is the behavior of “:” — which behaves like an alphabetic to
T, and is the impossible-to-disable package delimiter for Common Lisp. NISP attempts to avoid
the use of “:” wherever possible.

In this manual, typewriter font is used for actual Lisp code, and italics are used for syntactic
variables. An expression surrounded by hyphens indicates a series of expressions not enclosed
in parens, as in (COND -clauses-). The notation [a1 | a2 ...] means the disjunction of the
ai. An empty disjunct may be used: [| a1 | a2] means that a1 or a2 or neither may appear.
With a single disjunct, an empty disjunct is implied, so that [a] means that a appears optionally.

1.1 NONOBVIOUS CHANGES:

For users of the old NISP, here is a brief indication of some of the more important changes which
might not otherwise be obvious.

The biggest change is in the appearance of NISP code. The previous version used := as a
generalized setter. Alas, this identifier must be typed \:= in Common Lisp, which gets to be
very tedious. The macro is now typed !=. All other colons have been eliminated as well. E.g.,
what used to be written (: SL X) is now written (! SL X) or !>X.SL. The old forms are fully
supported.

Type-declaration syntax has been changed so that type designators are preceded by hyphens,
which makes it easier to extract them reliably. The old syntax is fully supported.

NISP now allows the use of &REST for an indefinite number of arguments, as in Common
Lisp. Keyword and &OPTIONAL arguments are not supported, because the former are ugly, and
the latter are not supported in T.

Functions such as MEMBER that previously used EQUAL as its equality test now use EQL, which
tests for “visual equality” of atoms. Most uses of MEMBER were on lists of numbers anyway, so
this shouldn’t affect much code. The change was for Common Lisp compatibility.

Separate closures (C\\) are gone. Both T and Common Lisp have built-in lexical scoping, so
NISP can now assume its existence.

CHAR= is no longer assumed identical to EQ.

UNION and INTERSECTION now take only two list arguments.

/ is now defined as in T and Common Lisp.

NISP’s own quasi-quote, written “!‘”, is obsolete; just use the host quasi-quote, “‘”.

The following functions are no longer part of NISP (although most are still defined to
maintain compatibility with old code): ASSQU, BOUNDP, CHR->STRING, CHR->SYM, CH=, CH<,
CH>, CH>=, CH=<, CLOSEI, CLOSEO, CONSP, CMPL, CMPLQ, DE, DF, DIARECT, DM, ENTER, ENTQ,
EQSTR, ERR-INTERCEPT, ERR-PASS, FIXP, FLOATP, LASTELEM, LIST-ELT-SET, LIST->INVISYM,
MACRO-YIELD, NTHELEM, NTHELEM-SET, NTHCHR, NUMBERP, PROP-SET, QUARK, REPLAC..., RPLACA,
RPLACD, SETPLIST, *SPLICE*, STRCONC, STRLEN, SUBSTRNG, *SUSP, SYMBOLFUN, SYMBOLP, SYM->FUN,

CHAPTER 1. PRELIMINARIES 4

TOPMAC, <C.

Chapter 2

NILS — NISP Implementation
Lisp Subset

NILS is written in the host Lisp dialect, and provides all of the constructs in which the rest of
NISP is written.

In what follows, if a function f is marked settable, that means that a term (f . . .) stands
for a storage-location-like entity whose value may be altered by writing (SETF (f . . .) . . .) or
(!= (f . . .) . . .). (See section 2.3.2.)

2.1 BASIC FUNCTIONS AND DATA TYPES

2.1.1 Trivial Functions

(CR x) [Function]

Returns x. Useful with functions which require a functional argument.

(QUOTE x) [Magic]

Returns x unevaluated. Usually input in the form ’x.

(GVAL e) [Function]

Evaluates e and returns the value, using the global values of any variables contained in e.

(PROG1 arg1 arg2 . . . argn) [Magic]
(PROG2 arg1 arg2 . . . argn) [Magic]
(PROGN arg1 arg2 . . . argn) [Magic]

Evaluates each argument in turn, returning the 1st, 2nd, or nth (last) argument.

2.1.2 Booleans and Predicates

There is no exclusively boolean data type in NISP.

T [Global Variable]
NIL [Global Variable]

In NISP, as in Lisp generally, there is a data object representing falsehood; every other
object is taken to represent truth in contexts where a boolean is wanted.

The false object is the value of the variable NIL. Its “official” representation is #F, and

5

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 6

this form is recognized when read. However, its printed representation differs between T
and Common Lisp. In T, it prints as (and is EQ to) (), the empty list. In Common Lisp, it
prints as (and is EQ to) NIL itself (which is also EQ to ()!). NISP code should not depend
on any of the three objects #F, () and NIL being equal or distinct.

For convenience, there is a canonical true value, whose read representation is #T, which
is always the value of the variable T. In T, the value prints as #T; in Common Lisp, it
prints as (and is EQ to) T itself. Again, no NISP code should depend on T being EQ to, or
distinct from, #T. To refer to an arbitrary non-#F value, we will use Truth.

Because of the openness of the Boolean data type, it is hard to define “predicate” in NISP.
“A function the falseness of whose value is often important” may be the best definition. Most
predicates appear in sections specific to the characteristics they test. Those for equality and
negation are more general, and are included here.

When it comes to predicate names, we eschew the querulous “?” of T (as in SYMBOL?) and the
puerile “P” of Common Lisp (as in SYMBOLP) in favor of straightforward hyphenated present-
tense constructions, as in IS-SYMBOL. There are a few predicates with names fitting none of
these patterns, such as ATOM, NULL and the predicates below, where tradition has outweighed
consistency.

“Equality” can mean a number of different things, and there are different predicates for
different versions.

(EQ x y) [Function]

#F if x and y are “distinguishable objects” in the machine, else #T.

(= x y) [Function]

#T if and only if x and y are numerically equal numbers. That is, expect (= 3 3.0) to be
#T.

(EQL x y) [Function]

#T if and only if one or more of the following is #T:

• (EQ x y);

• x and y are the same kind of numbers and =; or

• x and y are characters and CHAR=.

(EQUAL x y) [Function]

#T if and only if one or more of the following is #T:

• (EQL x y);

• x and y are strings with the same characters; or

• x and y are list structures whose CARs and CDRs are EQUAL.

There is nothing particularly “appropriate” about EQUAL, although there might have been
early in the history of Lisp. It might be better to define a version that recursed through
any structured entity, not just lists. But neither T nor Common Lisp defines such a
function; when someone wants something like that he usually can define something more
specific; and EQUAL as defined here is occasionally useful for debugging and for elementary
S-expression-hacking code.

(NOT b) [Function]

Returns #T if b is #F, else #F.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 7

2.1.3 Numbers

Numbers are either floating-points or rationals. The latter are further divided into ratios and
integers. An important subset of the integers are the fixed-point numbers, or “fixnums,” which
are implemented more efficiently than general integers, and cover most numbers that come up
in practice, including all array and string subscripts. (The exact range covered by fixnums is
implementation-dependent.) The ways these numbers print out is implementation-dependent,
but floating-points (henceforth “floats”) have decimal points, ratios have slashes (as in 3/4),
nonfixnum integers (“bignums”) are long, and fixnums are not so long.

NISP follows the common-sense rule that generic functions have short names. So + is the
name for generic addition with zero or more arguments.

(IS-NUMBER x) [Function]
(IS-FLOAT x) [Function]
(IS-RATIONAL x) [Function]
(IS-RATIO x) [Function]
(IS-INTEGER x) [Function]
(IS-FIXNUM x) [Function]

Predicates returning #T if x is a number, float, rational, ratio, integer, or fixnum respec-
tively.

(->INTEGER x) [Function]
(->FLOAT x) [Function]

Take an arbitrary number, and return an integer or float whose value is = to the argument.
If ->INTEGER is given a number not = to an integer, it will return an integer “close” to
its argument; exactly which one is implementation-dependent. See FLOOR and company,
below.

(IS-ODD x) [Function]
(IS-EVEN x) [Function]

Test whether an integer is odd or even, returning #T or #F.

(< x y) [Function]
(> x y) [Function]
(>= x y) [Function]
(<= x y) [Function]
(=< x y) [Function]

Less than, greater than, greater than or equal, and less than or equal. Both versions of
less-than-or-equal are supported, the common one and the visually appealing one.

(MAX arg1 arg2 . . .) [Function]
(MIN arg1 arg2 . . .) [Function]

The maximum or minimum of the arguments, of which there must be at least one.

(+ arg1 arg2 . . .) [Function]

The sum of the args. (+) is 0.

+ and the other arithmetic functions are generic, meaning that they take any kinds
of numbers as arguments, and return a result of the simplest type possible (float if any
argument is float, fixnum if all arguments are fixnum and the result is small enough, and
so forth). To get non-generic arithmetic, rely on declarations, or use FX+ and its kin,
described below.

(− arg1 arg2 . . .) [Function]

If given two or more arguments, − subtracts arg2 . . . from arg1. (− arg1) returns the

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 8

negation of arg1.

(* arg1 arg2 . . .) [Function]

The product of the args. (*) returns 1.

(/ x y) [Function]

The quotient of x and y. If x and y are integers, and y does not evenly divide x, then the
result is a ratio = x/y.

(FLOOR x) [Function]
(CEILING x) [Function]
(TRUNCATE x) [Function]
(ROUND x) [Function]
(FLOOR2 x y) [Function]
(CEILING2 x y) [Function]
(TRUNCATE2 x y) [Function]
(ROUND2 x y) [Function]
(QUOTIENT i j) [Function]
(REMAINDER i j) [Function]
(MOD i j) [Function]

These functions are all related in that they have to do with integer division. TRUNCATE2
takes two numbers x and y, and returns two values, x/y converted to an integer q, and a
remainder r, with the property that qy + r = x. The integer q it picks is the integer closest
to x/y that lies no further from 0 than x/y does. FLOOR2 is similar, but picks the closest
integer q no larger than x/y; CEILING2, the closest no smaller; and ROUND2, the closest
integer, period. The remainder part is the simplest type possible.

The one-argument versions do the same thing, with y always taken as 1, and they
return only the integer value, not the remainder.

QUOTIENT and REMAINDER operate only on integer arguments, returning the integer and
remainder values that TRUNCATE2 would return, respectively.

MOD operates only on integer arguments, and j must be a positive integer. It returns
the second value that FLOOR2 would return, which is always between 0 and j.

(GCD i j) [Function]

The greatest common divisor of i and j, which must be integers.

(ABS x) [Function]

Absolute value of x.

(SIN x) [Function]
(COS x) [Function]
(TAN x) [Function]
(ASIN x) [Function]
(ACOS x) [Function]
(ATAN x) [Function]
(ATAN2 y x) [Function]

These are all defined as in Common Lisp. (ATAN2 y x) means the same as (ATAN y/x) if
x is positive; in general, (ATAN2 y x) is the angle to the point x, y.

(EXP x) [Function]
(EXPT x y) [Function]
(LOG x) [Function]
(SQRT x) [Function]

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 9

Respectively, ex, xy, ln x,
√

x. These are all floating point except for EXPT. (EXPT x y) is
rational when x is rational and y is an integer, otherwise floating point unless x is negative
and y is not an integer, in which case the result may be complex (undefined in Nisp).

(LOGAND i j) [Function]
(LOGIOR i j) [Function]
(LOGXOR i j) [Function]
(LOGNOT i) [Function]

Perform bitwise logical and, inclusive or, exclusive or, and not. Arguments must be inte-
gers. LOGOR is permissible as a synonym of LOGIOR.

(ASH i d) [Function]

Arithmetic shift of i by d positions to the left (−d to the right if d < 0).

(BIT-FIELD i pos size) [Function]

Returns as an integer the size bits of integer i starting with the pos’th bit from the right.
The rightmost bit is the zero’th. (Settable)

(SETF (BIT-FIELD i pos size) new) returns a new integer with the same bits changed
to be the low-order size bits of new.

(FXRANDOM ceiling) [Function]
(FLRANDOM ceiling) [Function]

Returns a pseudo-random fixed-point or floating-point number between 0 (inclusive) and
ceiling (exclusive).

(FX+ fixnum1 fixnum2) [Function]
(FX- fixnum1 fixnum2) [Function]
(FX* fixnum1 fixnum2) [Function]
(FX/ fixnum1 fixnum2) [Function]
(FX= fixnum1 fixnum2) [Function]
(FX< fixnum1 fixnum2) [Function]
(FX> fixnum1 fixnum2) [Function]
(FX=< fixnum1 fixnum2) [Function]
(FX>= fixnum1 fixnum2) [Function]
(FL+ fixnum1 fixnum2) [Function]
(FL- fixnum1 fixnum2) [Function]
(FL* fixnum1 fixnum2) [Function]
(FL/ fixnum1 fixnum2) [Function]
(FL= fixnum1 fixnum2) [Function]
(FL< fixnum1 fixnum2) [Function]
(FL> fixnum1 fixnum2) [Function]
(FL=< fixnum1 fixnum2) [Function]
(FL>= fixnum1 fixnum2) [Function]

Specialized operators for fixnum and floating-point numbers. They take just two argu-
ments each. These functions may be implemented as macros, in order to ensure that their
arguments and results are properly declared. They are all equivalent to their generic kin
(but more efficient), except for FX/, which is actually equivalent to QUOTIENT, not /.

If you use the NISP type-declaration package, it will automatically introduce these
functions when required, so you don’t need to use them.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 10

2.1.4 Characters

To input a character, use #\ <char>, as in #\A or #\a. Some special characters have special
representations:

#\SPACE [Other]
#\TAB [Other]
#\NEWLINE [Other]

These are the character objects for a blank space, tab and newline. During I/O, lines are
delimited by a single #\NEWLINE character.

(IS-CHAR x) [Function]

Tests whether x is a character.

(CHAR= char1 char2) [Function]
(CHAR> char1 char2) [Function]
(CHAR< char1 char2) [Function]
(CHAR>= char1 char2) [Function]
(CHAR=< char1 char2) [Function]

Compare characters in the obvious ways.

(CHAR- char1 char2) [Function]

Subtracts numeric values of characters, yielding an integer.

(CHAR+ char int) [Function]

Adds an integer to a character, returning a character.

(IS-ALPHABETIC char) [Function]
(IS-DIGIT char radix) [Function]
(IS-WHITESPACE char) [Function]
(IS-UPPER-CASE char) [Function]
(IS-LOWER-CASE char) [Function]

Type predicates for characters.

(CHAR-UPCASE char) [Function]
(CHAR-DOWNCASE char) [Function]

Coerce a character to upper or lower case.

(CHAR->ASCII char) [Function]
(ASCII->CHAR num) [Function]

Coerce characters to ASCII and back.

CHARFLOOR* [Global Variable]
CHARCEIL* [Global Variable]

Global variables are bound to one less than the smallest and one more than the greatest
ASCII value.

2.1.5 Symbols and Property Lists

Symbols are manipulable objects, as well as serving as identifiers in programs.

(IS-SYMBOL x) [Function]

Returns #T iff x is a symbol, else #F.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 11

(SYMBOL -specs-) [Magic]

Creates a symbol whose print name is built out of specs.

•An atomic or string spec is concatenated in.

•A spec of the form (< e1 e2 ...) means that each ei is to be evaluated; the values
should be strings or symbols, and their characters are concatenated in.

•A spec of the form (++ e) increments e and concatenates in its characters.

•Anything else is supposed to evaluate to a string, or be coercible to one; the result is
concatenated in.

SYMBOL is usually used to create new symbols of the form FOO1, FOO2, To do this, you
maintain a global counter FOONUM*, and just call

(SYMBOL FOO (++ FOONUM*))

(GENSYM) [Function]

Makes a new symbol, not EQ to any other.

Every symbol has a (possibly empty) property list, which can be manipulated by the functions
below. Property lists are not as important in Lisp programming as they used to be, now that
hash tables are available. Why write (GET sym ’ind) when one can write (TABLE-ENTRY ind-
tab sym), letting a variable, ind-tab, play the role played by the quoted symbol ind, in a more
controllable way? See section 2.1.12.

(GET sym indicator) [Function]
(PROP indicator sym) [Function]

If sym has a property value under the indicator, it is returned. Otherwise, #F is returned.
(Settable)

(REMPROP sym indicator) [Function]

Makes the property attachment go away. The result is undefined.

(PLIST sym) [Function]

Returns the property list in the form (ind val ind val . . .) Important: Do not alter this
list; use != or SETF. (Settable, but be careful!)

2.1.6 List Structures

CAR and CDR of () are (), but it is considered bad style to depend on this fact. CAR and CDR are
settable, unless their argument is ().

(IS-PAIR x) [Function]

#T iff x is not (), and has a CAR and CDR.

(ATOM x) [Function]

Same as (NOT (IS-PAIR x)).

(NULL x) [Function]

Same as (EQ x ’()).

(LENGTH list) [Function]
(LEN list) [Function]
(LIST-LENGTH list) [Function]

The length of the list list.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 12

(CAR x) [Function]
(CDR x) [Function]

Extracts the CAR or the CDR. (Settable)

(CADR x) [Function]
(CADADR x) [Function]

. . . up to the usual 4 As and Ds.

(CADD...DDR x) [Function]

. . . up to 7 D’s.

(NTHELT n list) [Function]
(LIST-ELT list n) [Function]

The nth element (zero-based) of the list list. n=0 means CAR, and so forth. (Settable)

(NTHTAIL n list) [Function]

The nth tail (CDR) of the list list. n=1 means CDR, and so forth.

(LASTELT list) [Function]

The last element of list. (Settable.)

(LASTTAIL list) [Function]

The last tail (CDR) of list.

(TAKE n list) [Function]

A new list consisting of the first n elements of list, if n is non-negative. If n is negative,
a new list consisting of the last −n elements of list. If the magnitude of n is greater than
the length of the list, the result is undefined.

(DROP n list) [Function]

A new list consisting of the list list with the first n elements dropped, if n is non-negative.
If n is negative, a new list consisting of the list list with the last −n elements dropped. If
n’s magnitude is greater than the length of list, the result is undefined.

(LIST-SUBSEQ list i j) [Function]

New list of elements starting with the ith and proceeding to just before the jth element of
list.

(CONS x y) [Function]

Returns a new list structure whose CAR is x and CDR is y.

(LIST arg1 arg2 . . .) [Function]

Makes a list of the given elements.

(LIST-COPY list) [Function]
(COPY-LIST list) [Function]

Copies the top level of list list.

(COPY-TREE list) [Function]

Copies the list structure list all the way down to its atoms.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 13

(LIST-CONCAT list1 list2 . . .) [Function]
(APPEND list1 list2 . . .) [Function]

Makes a list whose elements are all the elements of the given lists, in order. LIST-CONCAT
differs from APPEND (and resembles VECTOR-CONCAT and STRING-CONCAT) in that it copies
all of its arguments, even the last.

(NCONC list1 list2 . . .) [Function]

Makes the last CDRs of each argument but the last point to the next, thus stringing them
together.

(LCONC ptr list) [Function]

Creates or modifies a “tconc pointer,” a list structure whose CDR is the last tail of its CAR.
If ptr is such a pointer, LCONC adds the elements of the list to the end of the list (CAR ptr),
and changes (CDR ptr) to be the new last tail. If ptr is (), LCONC returns a tconc pointer
whose CAR is the list.

LCONC is usually used thus: A variable P is initialized to ’(), and then repeatedly
(SETF P (LCONC *-* new-elements)) is executed. At the end, (CAR P) is the list of all
the elements gathered so far. Except for the CAR step, this is the same as using NCONC
instead of LCONC. The LCONC version is more efficient, because LCONC uses the CDR of P to
find the end of CAR P.

(TCONC x y) [Function]

Same as (LCONC x (LIST y)). TCONC stands for “Tail concatenate.”

(REVERSE list) [Function]
(DREVERSE list) [Function]

Returns a new list with the elements of list in reverse order. DREVERSE does this destruc-
tively.

(CAR-EQ x y) [Function]

Tests whether x is a pair whose CAR is EQ to y.

(IS-TAIL list1 list2) [Function]

#T if list1 is a tail of list2, that is, if list2 is a non-() list, and list1 is EQ to list2, or is a
tail of the CDR of list2.

(LDIFF list1 list2) [Function]

If list2 is a tail of list1, returns a new list with all the tails of list1 up to and not including
list2.

(SORT list comparefn) [Function]

Sorts list destructively using comparefn, which takes two objects and returns Truth if the
first should come first.

(CONDENSE x) [Function]

Produces an S-expression showing a glimpse of x without blowing up if x is circular. If x is
a list starting with A, we will get something like (A --).

(CONSET list x) [Magic]

Same as (SETF list (CONS x list)), except that the list is evaluated only once.

(POP list) [Magic]

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 14

Same as

(PROG1 (CAR list)
(SETF list (CDR list)))

except possibly more efficient.

(SERIES [i 1] n [k 1]) [Function]

The list (i i+k i+2k . . . i+mk), where m is (FLOOR n−i/k). With just one argument,
the argument is taken to be n. With two, they are taken to be i and n. k must be > 0.

Searching and Editing S-expressions

These functions typically look through a list or tree for an object, then edit the list or tree,
destructively or otherwise. They come in groups whose elements differ in how they do the
search for the object. The default is to test for equality using EQL. Functions with names of the
form “<list-function>Q” use EQ instead, while “<list-function>=” indicates a function whose first
argument is a function to be used to test equality. Thus,

(MEMBER x list) ≡ (MEMBER= #’EQL x list)
(MEMBERQx list) ≡ (MEMBER= #’EQ x list)

and similarly for the other function families. In the REMOVE family, the suffix -IF indicates that
an arbitrary predicate is used to search. Functions with names of the form “D<list-function>”
operate destructively.

(MEMBER x list) [Function]
(MEMBERQ x list) [Function]
(MEMQ x list) [Function]
(MEMBER= eqtest x list) [Function]

If list contains an element y such that x and y are equal, then returns the tail of list
beginning with that element, else #F. (Tested using EQL, EQ, EQ and eqtest, respectively.)

(REMOVE1= eqtest x list) [Function]
(REMOVE-EVERY= eqtest x list) [Function]
(DREMOVE1= eqtest x list) [Function]
(DREMOVE-EVERY= eqtest x list) [Function]

Removes elements of list that are equal (according to eqtest) to x. If D is present, destroys
list, else returns a brand-new list. If suffix 1 is present, remove first occurrence of x, else
every occurrence.

(REMOVE1 x list) [Function]
(REMOVE-EVERY x list) [Function]
(DREMOVE1 x list) [Function]
(DREMOVE-EVERY x list) [Function]

Same as ([D]REMOVE[1|-EVERY]= #’EQL x list).

(REMOVE1Q x list) [Function]
(REMOVE-EVERYQ x list) [Function]
(DREMOVE1Q x list) [Function]
(DREMOVE-EVERYQ x list) [Function]

Same as ([D]REMOVE[1|-EVERY]= #’EQ x list).

(REMOVE1-IF test list) [Function]
(REMOVE-EVERY-IF test list) [Function]

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 15

(DREMOVE1-IF test list) [Function]
(DREMOVE-EVERY-IF test list) [Function]

Removes elements of list that satisfy test, a predicate of one argument. Otherwise same as
[D]REMOVE[1|-EVERY][|Q|=].

(ADJOIN x list) [Function]
(ADJOINQ x list) [Function]
(ADJOIN= eqtest x list) [Function]

If list contains an element equal to x, returns list; otherwise, returns (CONS x list).

(ASSOC x list) [Function]
(ASSOCQ x list) [Function]
(ASSQ x list) [Function]
(ASSOC= eqtest x list) [Function]

list must be a list of non-atoms. If any element of list has a CAR equal to x, that element
is returned. Otherwise, #F is returned. (Tested using EQL, EQ, EQ and eqtest, respectively.)

(UNION list1 list2) [Function]
(UNIONQ list1 list2) [Function]
(UNION= eqtest list1 list2) [Function]

Makes a list whose elements are all the elements of the given lists, in no particular order,
with duplicates removed. (The management is not responsible for duplicates in the original
lists.)

(INTERSECTION list1 list2) [Function]
(INTERSECTIONQ list1 list2) [Function]
(INTERSECTION= eqtest list1 list2) [Function]

Returns a list each of whose elements is equal to some element in each of list1

(IS-SUBLIST list1 list2) [Function]
(IS-SUBLISTQ list1 list2) [Function]
(IS-SUBLIST= eqtest list1 list2) [Function]

#T iff every element of list1 is equal to some element of list2.

(COMPLEMENT list1 list2) [Function]
(COMPLEMENTQ list1 list2) [Function]
(COMPLEMENT= eqtest list1 list2) [Function]

A new list consisting of all the elements of list1 not equal to any element of list2.

(NODUP list) [Function]
(NODUPQ list) [Function]
(NODUP= eqtest list) [Function]

Makes a new list with duplicates removed.

(DNODUP list) [Function]
(DNODUPQ list) [Function]
(DNODUP= eqtest list) [Function]

Destructively removes duplicates from the list.

(SUBST new-elem old-elem tree) [Function]
(SUBSTQ new-elem old-elem tree) [Function]
(SUBST= eqtest new-elem old-elem tree) [Function]

Returns a copy of tree with all occurrences of old-elem replaced by new-elem.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 16

2.1.7 Backquote

Backquote is what philosophers call “quasi-quote.”

‘exp [Magic]

‘exp evaluates to exp, with parts marked by “,” and “,@” substituted with their values.
For example:

‘(A B C) is the same as ’(A B C)
‘(A ,X C) is the same as (LIST ’A X ’C)
‘(A B . ,X) is the same as (CONS ’A (CONS ’B X))
‘(A ,@X C) is the same as (CONS ’A (APPEND X ’(C)))

In general, things marked with comma will be evaluated; and things marked with comma-
atsign will be evaluated, and the resulting list spliced into the result. The commas and comma-
atsigns may appear at any level, sparing you complex analysis of what gets evaluated when. This
is especially useful when creating s-expressions to be evaluated later, as macros do.

If there are no marked subparts, “‘” behaves like “’”. (In most implementations, it will
literally quote the following expression, but don’t depend on this.)

If a backquote appears within a backquote (a so-called “nested” backquote), then it is pos-
sible, with sufficient ingenuity, to work out the meaning of the resulting expression. However,
there is seldom any good reason to inflict this puzzle on the reader of your code. If you find
yourself wanting to nest backquotes, lie down until sanity returns, and use LIST instead.

Backquote notation should be used to construct S-expressions, not lists to be used as records
(i.e., to be altered). This is because ‘ may try to quote as much of the expression as possible,
so it is hard to tell exactly how much structure will be shared between two evaluations of the
same ‘ expression.

(INCLUDE-IF test exp) [Function]

Useful inside a backquote. ,@(INCLUDE-IF test exp) behaves like ,exp if test is true, else
as if it weren’t there.

2.1.8 Vectors and Arrays

Vectors are just 1-dimensional arrays.

(MAKE-VECTOR size) [Function]

Makes a vector of this size, with undefined elements.

(VECTOR -elements-) [Function]

Makes a vector with these elements.

(IS-VECTOR x) [Function]

Tests if x is a vector.

(VECTOR-ELT vec n) [Function]
(VREF vec n) [Function]

Returns the nth element of vec (zero-based). (Settable)

(VECTOR-LENGTH vec) [Function]

The number of elements in the argument.

(VECTOR-COPY vec) [Function]

A new vector with the same elements as the argument.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 17

(VECTOR-SUBSEQ vec i j) [Function]

Returns a new vector starting with ith element and proceeding to just before jth (zero-
based).

(VECTOR-CONCAT v1 v2 . . . vn) [Function]

A new vector consisting of the elements of v1, the elements of v2, etc., in that order.

(VECTOR->LIST vector) [Function]
(LIST->VECTOR list) [Function]

Convert a vector to a list with the same elements, or vice versa.

(MAKE-ARRAY dimension-list) [Function]
(INITIALIZED-ARRAY dimension-list initial-element) [Function]

Make an array with as many dimensions as the length of the dimension-list, where the
ith dimension is given by the ith element of that list. MAKE-ARRAY leaves the elements
undefined; INITIALIZED-ARRAY initializes them to the given element.

(IS-ARRAY x) [Function]

Test whether x is an array. Note that vectors are arrays.

(AREF array i1 . . . in) [Function]

Element of array specified by subscripts i1 . . . in. (Settable)

(ARRAY-DIMENSIONS array) [Function]

A list of the dimensions.

(ARRAY-DIMENSION array dim) [Function]

The dimth element of that list.

2.1.9 Strings

Strings are vectors of characters, but the host dialect may not allow vector operations on them.
They print using delimited double quotes.

Use EQUAL to compare strings.

(IS-STRING x) [Function]

Returns #T if x is a string.

(STRING-COPY string) [Function]
(STRING-CONCAT string1 . . . stringn) [Function]

Return a new string, containing the same characters as — but not sharing any structure
with — the original string(s).

(STRING-SUBSEQ string i j) [Function]

Returns a new string starting with the ith character and proceeding to just before jth
(zero-based).

(STRING-ELT string i) [Function]

The character at pos i of string, zero-based.

(STRING-LENGTH string) [Function]

The length of (number of characters in) string.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 18

(STRING-UPCASE string) [Function]
(STRING-DOWNCASE string) [Function]

Coerces string to upper/lower case, and returns the new string.

2.1.10 Sequences

There are no generic sequences in NISP. For seq=LIST, STRING, or VECTOR, we have seq-COPY,
seq-LENGTH, seq-SUBSEQ, seq-ELT, and seq-CONCAT.

2.1.11 Character coercions

You can go back and forth between symbols, characters, lists of characters, and strings, by using
the functions below.

(SYMBOL->LIST symbol) [Function]

Returns a list of the characters in the print name of symbol.

(SYMBOL->STRING symbol) [Function]

Returns a string of those characters.

(STRING->LIST string) [Function]

Returns a list of the characters in string.

(STRING->SYMBOL string) [Function]

Returns a symbol whose print name is the string string.

(LIST->SYMBOL list) [Function]

Returns a symbol whose print name consists of the characters in the list list.

(LIST->STRING list) [Function]

Returns a string of those characters.

SYMBOL->LIST and SYMBOL->STRING are guaranteed to work on numbers, but LIST->SYMBOL
and STRING->SYMBOL never produce numbers.

(NUMBER->STRING n) [Function]

Produces a string from a number.

(STRING->NUMBER s) [Function]

Produces a number from a string that looks like a number.

(CHAR->STRING char) [Function]
(CHAR->SYMBOL char) [Function]

Returns a string with the single character char, or a symbol with such a string as its name.

2.1.12 Hash Tables

Hash tables provide an efficient mechanism for associating keys with values.

(MAKE-EQ-HASH-TABLE) [Function]

Makes a hash table whose entries are keyed on subscripts that are EQ-tested.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 19

(TABLE-ENTRY hashtable key) [Function]

Returns entry associated with key in hashtable. (Settable)

(IS-HASH-TABLE x) [Function]

Tests whether x is a hash table.

(WALK-TABLE fn tab) [Function]

Applies function fn, of two arguments, to every key,value pair in hash table tab.

(FRESH-TABLE tab) [Function]

Returns a new table obtained by clearing hash table tab (if supported) else by building a
brand-new hash table.

2.1.13 Mappers

Mappers are functions that transform a list by applying a function to each of its elements or
tails, then combining the results, often into a new list. The most common mapper is the one
(traditionally called MAPCAR) that conses the returned values into a list. In NILS, it is called
MAPELTLIST.

For every mapper that applies to elements of a list, there is a version that applies to the tails.
The former has ELT as the middle of its name; the latter, TAIL. So MAPTAILLIST is a function
that applies a function to every tail of a list, and makes a list of the results. Note that in this
context the list counts as a tail of itself, and the final () at the end does not.

Most of the mappers take any number of list arguments. The single functional argument
must be able to handle as many arguments as there are lists. For example, (MAPELTLIST LIST
’(A B C) ’(1 2)) => ((A 1) (B 2)). The lists don’t have to be the same length; the mapper
stops when one list runs out. In what follows, I use the term “cross section” of the argument
lists to refer to a collection of elements (the N’th of each list) to which the function is applied.
The cross sections of (A B C) and (1 2) are A,1 and B,2. In the tail versions, the cross sections
are groups of tails rather than elements.

Here are all the mappers, plus some non-mappers that seem to belong here. These funoids
behave as functions, but may for efficiency be implemented as macros, a fact irrelevant in almost
all situations.

(MAPELTLIST fun -lists-) [Function]
(MAPTAILLIST fun -lists-) [Function]

Applies fun to each cross section of the argument lists, and make a list of the results.
(Traditional names: MAPCAR, MAPLIST.)

(MAPELTAPPEND fun -lists-) [Function]
(MAPTAILAPPEND fun -lists-) [Function]

Applies fun to each cross section of the argument lists, and APPEND the results.

(MAPELTCONC fun -lists-) [Function]
(MAPTAILCONC fun -lists-) [Function]

Apply fun to each cross section of the argument lists, and NCONC the results. (Traditional
names: MAPCAN, MAPCON.)

(MAPELTAND pred -lists-) [Function]
(MAPTAILAND pred -lists-) [Function]

Applies pred to successive cross sections of the argument lists, and returns #F if the predicate
ever returns #F. If the end of one list is reached, returns Truth. (Traditional name: EVERY)

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 20

(MAPELTOR pred -lists-) [Function]
(MAPTAILOR pred -lists-) [Function]

Applies pred to successive cross sections of the argument lists, and returns the remaining
tails of all the list arguments as soon as the predicate returns Truth. (That is, if there
is just one list, its tail is returned, else the tails of all the lists are returned as multiple
values. If the end of a list is reached without satisfying the predicate, return #F, or, more
precisely, as many #F’s as there are list arguments.

(MAPELTSOME pred -lists-) [Function]
(MAPTAILSOME pred -lists-) [Function]

Like MAP. . .OR, but returns the value of the pred rather than the tails of the lists. (Tradi-
tional name: SOME)

(MAPELTCOLLECT pred -lists-) [Function]
(MAPTAILCOLLECT pred -lists-) [Function]

Makes a list of the elements of the last argument list for which pred returns Truth on the
corresponding cross section. (Traditional name: SUBSET)

(MAPELTDO fun -lists-) [Function]
(MAPTAILDO fun -lists-) [Function]

Applies the function to successive cross sections of the argument lists, discarding the results.
The result of MAP. . .DO is undefined. (Traditional names: MAPC, MAP)

(MAPELTREDUCE fun ident -lists-) [Function]
(MAPTAILREDUCE fun ident -lists-) [Function]

If any list argument is (), returns ident. Otherwise, it replaces ident with the value of fun
applied to ident and the first cross section of the lists, replaces the lists with their CDRs,
and repeats. That is,

(MAPELTREDUCE fun ident
’(e11 e12 ... e1K)
’(e21 e22 ... e2K)
...
’(eN1 eN2 ... eNK))

=>
(fun ... (fun (fun ident e11 e21 ... eN1)

e12 e22 ... eN2)
...

e1K e2K ... eNK)

2.2 FUNCTIONS, MACROS, ETC.

The word “function” is often used fairly loosely in the Lisp literature to mean something that
can come after a left paren. In this manual, we will be careful to reserve that term for an entity
that is passed argument values and returns a result (actually, zero or more results). We will use
the term magic word for any other kind of callable entity, such as COND or QUOTE. Magic words do
not necessarily take “arguments” as such; they can be used to extend the syntax of the language
in arbitrary ways. Some magic words, like IF, can be considered to take arguments, but may not
evaluate all of them. Magic words are either defined as source-level transformations, in which
case they are called macros; or in some other mysterious way, known only to the implementors,
in which case they are called special forms. Users can define their own macros.

The word “funoid” will be used to mean “function or magic word.”

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 21

2.2.1 Defining and Manipulating functions

There are three entities associated with a function:

1. Its name (optional): E.g. BAZ
2. Its definition: E.g. (LAMBDA (X) (LIST X X))

3. Its procedure: E.g. #{Procedure BAZ}

The procedure is the “function value” of its name, which in T is just the ordinary value, and
in Common Lisp is something else. NISP code should never depend on an identifier’s having
distinct symbol and function values.

Named functions are created using DEFUN:

(DEFUN name (-args- [&REST var]) -body-) [Magic]

The primitive definer of functions. If the function takes an indefinite number of arguments,
this is indicated by ending the -args- with &REST var, and var will be bound to a list of all
the remaining arguments.

Functions may be defined without being named. An anonymous function is written

(LAMBDA (-vars- [&REST var]) -body-) [Other]

Any free variables in the body get their bindings from the current lexical environment.

Warning: LAMBDA is neither a function nor a magic word. A LAMBDA-expression denotes
a function in two contexts: when it appears in functional position, and when it appears in
an expression of the form ([FUNCTION | FUNKTION] (LAMBDA ...)). The optional &REST
clause works as in DEFUN, but cannot be used with (LAMBDA ... in functional position
(due to incompatibility with T). FUNDEF->LAMBDA (see p. 23) provides a way around this
problem.

Functions appearing anywhere except functional position must be quoted:

(\\ (-vars-) -body-) [Magic]

Is the same as

(FUNCTION (LAMBDA (-vars-) -body-)).

It evaluates to an anonymous procedure with the given formal arguments. You cannot use
the \\ notation in functional position.

(FUNCTION [name | lambda-exp]) [Magic]

This form may be abbreviated #’[name | lambda-exp] What follows is either a symbol-
name with a function-value, or a lambda expression:

(FUNCTION name)
#’name
(FUNCTION (LAMBDA (-vars-) -body-))
#’(LAMBDA (-vars-) -body-)

In T, (FUNCTION x) is the same as x.

(FUNKTION [name | lambda-exp]) [Magic]

This form may be abbreviated !’[name | lambda-exp]. With an atomic argument, FUNKTION
evaluates to an object that is always the current procedure bound globally to name, even
if the name has been redefined.

(FUNKTION name)
!’name
(FUNKTION (LAMBDA (-vars-) -body-))
!’(LAMBDA (-vars-) -body-)

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 22

FUNCTION and FUNKTION are magic. They do not evaluate their argument. They may be
thought of as a sort of QUOTE for globally defined named functions. In compiled code, (FUNKTION
symbol) means the same as (FUNCTION symbol).

(APPLY fun -args- list) [Function]

Not a mapper. Calls the given function with the args followed by the elements of list as
arguments.

(FUNCALL fn -args-) [Function]

Is the only way to call an evaluated procedure, that is, a function returned as the value of
the expression fn.

(IGNORE -vars-) [Magic]

Is used in both named and anonymous functions to tell the compiler not to worry about
an unused argument. The IGNORE form should be put at the front of the body.

2.2.2 Defining Macros

Macros are defined using DEFMACRO:

(DEFMACRO name (-vars- [&REST var]) -body-) [Magic]

Associates a macro definition with name. Uses &REST notation analogously to DEFUN.
Alternatively, you can just write “.” instead of &REST. A macro makes itself felt thus:
whenever (name -stuff-) is seen in an evaluable position, it is transformed by binding the
args to the corresponding pieces of stuff, evaluating the expressions in body, and letting the
value of the last be the transformed code.

2.2.3 Manipulating Funoids

Here are some functions for manipulating funoids and their names.

(IS-FUN-NAME sym) [Function]

Tests whether sym is the name of a globally defined named function or magic word. It
returns #F iff it is not.

(SYMBOL->FUN sym) [Function]

Returns the procedure corresponding to sym. Returns () if sym has no function definition
(or if the sym is magic). SYMBOL->FUN does not get the value of sym, but its global function
value, which may be different.

(GET-FUNDEF sym) [Function]

Gets the funoid definition of sym, or its procedure if the definition is unavailable. (Settable,
or use PUT-FUNDEF.) GET-FUNDEF returns () if and only if the sym has no definition. If
the text of the definition is available, GET-FUNDEF returns one of the following:

• (LAMBDA args -body-): If the symbol names a function.

• (MACRO args -body-): If the symbol names a macro.

• (NLAMBDA (arg) -body-): If the symbol is an interpreted magic word (a “fexpr”). In
some implementations, there aren’t any of these.

These forms have the property that replacing LAMBDA, MACRO, or NLAMBDA respectively
with “DEFUN name,” “DEFMACRO name,” or “DF name” will produce a correct definition,
which, if evaluated, would make the definition of name be the same as that of sym.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 23

If the value returned by GET-FUNDEF is none of these three or (), then its meaning is
implementation-dependent. If such a thing is printed, it probably cannot be read back in,
even to the same LISP dialect.

(PUT-FUNDEF sym fundef) [Function]

Where fundef is as returned by GET-FUNDEF, defines sym to be fundef. This is guaranteed
to work when fundef is any value of GET-FUNDEF, including ().

(FUNDEF->FUN fundef) [Function]

Returns a function with the given definition. Works only if fundef is of the form (LAMBDA
...).

(FUNDEF->LAMBDA fundef) [Function]

Not all expressions of the form (LAMBDA ...) can occur in functional position, because
&REST is illegal in T. This function converts a legal NISP (LAMBDA ...) definition into
something that can occur in functional position.

(FUN-NAME funoid) [Function]

Returns the symbol-name of the funoid if it can find one, else ().

(IS-MACRO x) [Function]

Tests if x is a symbol defined as a macro.

(IS-MAGIC x) [Function]

Tests if x is magic, i.e., is a callable something that does not expect its arguments to be
evaluated and passed to it exactly once. (Macros count as magic.) x may be either a
symbol or a value returned by GET-FUNDEF

(ONE-MACRO-EXPAND exp) [Function]
(MACRO-EXPAND-EXP exp) [Function]

If exp is a form beginning with a symbol having a macro definition, ONE-MACRO-EXPAND
expands the macro call once and returns the result; otherwise, exp is returned unchanged.
ONE-MACRO-EXPAND expands the call repeatedly until the form no longer begins with a
macro.

2.3 CONTROL STRUCTURES

2.3.1 Binding Variables

We assume lexical scoping. It may be overridden using BIND.

(LET ((var val) (var val) ...) -body-) [Magic]

Binds variables lexically, then evaluates each expression in the body, returning the last
value. To leave a variable uninitialized, just say var instead of (var val). Well . . . , you
can’t really leave it uninitialized, but not giving it an explicit initial value indicates that
its initial value is unimportant.

(BIND ((var val) (var val) ...) -body-) [Magic]

Like LET, but binds dynamically. BIND cannot be used to bind an unbound variable. It
must be previously DEFVAR’ed first.

A variable bound dynamically is traditionally said to be “special,” and Common Lisp
upholds this tradition. Such a variable can be accessed in a piece of code where it is

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 24

unbound, provided it is declared special. In the file where the variable is DEFVAR’ed,
such a declaration happens automatically. In any other file, you must write (PROCLAIM
’(SPECIAL -special-vars-)) before the first binding or use of the variable.

(DEFVAR symbol exp) [Magic]

Used only globally. Proclaims variable special; initializes its value, but if executed again
may leave value undisturbed (in Common Lisp; in T this behavior is impossible to obtain,
so don’t count on it).

(FLABELS (-local-function-defs-) -body-) [Magic]

Each local-function-def is of the form

(name (-args-) -body-)

Each name is locally defined as a function in the obvious way, and the body is executed
with those definitions in effect. (Note that the local functions are called without using
FUNCALL.)

(PROG (-vars-) -tags-and-statements-) [Magic]

Binds the vars, then execute the statements. If an expression of the form (GO tag) is
executed anywhere in the lexical scope of the PROG, control will jump to the statement
following that tag.

2.3.2 Side Effects

(SETQ var value) [Magic]

Sets an already-bound variable.

(GSET symbol value) [Function]

Sets the global value of the symbol to the value. That is, if the value of X is Y*, (GSET X
5) sets Y* to be 5.

(SETF exp value) [Magic]

Sets a settable expression. If exp is a macro call, not itself settable, then it is expanded
and SETF tries again to make sense of it.

Important: SETQ and SETF are to be executed purely for effect, and return no reliable value.

(DEFSETF accessor setter) [Magic]

Tells NISP to transform expressions of the form (SETF (accessor ...) ...) into (setter
......). The setter should take one more argument than the accessor. E.g., if RPLACA
were the name of a function to alter the CAR of a dot-pair, we could write (DEFSETF CAR
RPLACA) to tell NISP to treat (SETF (CAR x) y) as (RPLACA x y). Note that DEFSETF
is followed by two unevaluated funoid names; the process is like macro definition, not like
“telling an accessor what its setter is,” or something fancy like that.

2.3.3 Conditionals

(COND (test1 -body1-) (test2 -body2-) ... (testn -bodyn-)) [Magic]

Evaluates each test testi until one is Truth. The corresponding body is then evaluated,
and the last value is returned. The value is undefined if no test comes out Truth. Empty
bodies are not allowed.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 25

(IF test true-exp [false-exp]) [Magic]

Alternative form of conditional for faddists who have tired of COND.

(AND e1 e2 ...en) [Magic]

(AND) is equivalent to #T.
(AND e) is equivalent to e.
(AND e1 e2 . . . en) is equivalent to

(COND (e1

(AND e2 . . . en))
(T ’#F))

(OR e1 e2 ...en) [Magic]

(OR) is equivalent to ’#F.

(OR e1 . . . en) is equivalent to

(LET ((v1 e1))
(COND (v1 v1)

(T (OR e2 . . . en))))

(SELQ exp -((-vals-) -body-)- [(T -default-body-)]) [Magic]

Evaluates exp, then evaluates the body whose vals contain an element EQ to the value of exp.
If just one val, you can omit the parens. If no such body is found, then the default-body is
evaluated instead. If there is no default and no clause whose vals contain an element EQ to
the value of exp, the value of the SELQ is undefined.

2.3.4 Loops

(DO (-var-bindings-) (test -result-body-) -body-) [Magic]

Where the var-bindings are each of the form (var init next). Binds the variables to their
initial values, does the test, executes body, bumps the variables, does the test, and so forth,
until the test comes up Truth, when it evaluates the result-body and returns the value of
the last expression in it. “Bumping the variables” means evaluating each next expression
and setting the corresponding variable to it, all in parallel.

(LOOP [FOR (-variable-specs-)] -statements-) [Magic]

variable-spec forms are:

symbol
(sym init-val [bump])
(sym IN list)
(sym = init [BY incr] [TO final])

statement forms are:

WHILE test
UNTIL test
RESULT [IS] value
action

Meaningless keywords such as REPEAT can be sprinkled anywhere in a LOOP, and they
will be ignored.

Semantics: The variables are initialized, and statements are executed. If a test indicates
termination, then the next RESULT expression is evaluated and returned as the value of the

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 26

loop. The default value is #F. At the end of the statements, if no test has succeeded, the
variables are bumped and the statements are re-evaluated.

Bumping a variable takes place one of 3 ways:

1. If it was bound as (var init new), then var is set to the value of new at the end of
the loop.

2. If it was bound as (var IN list), then var is set to the next element of the list.

3. If it was bound as (var = init [TO final] [BY incr])), then the obvious Algolish
thing happens.

•If both incr and final are omitted, var is only initialized.

•If only incr omitted, defaults to 1.

•If only final is omitted, var is incremented but not tested.

WARNING: Positive increment assumed unless incr is negative constant!!

2.3.5 Mapping Loops

(FOR -var-clauses- [(WHEN test)] ([SAVE|SPLICE|FILTER] exp)) [Magic]

Where each var-clause is of the form (var IN list), is equivalent to a MAPELTLIST, MAPELTCOLLECT,
or MAPELTCONC in the following way:

• Let vars be the variables from the var-clauses, and lists be the lists.

• If WHEN is present, then pretend lists consists of just the elements that pass the test.

•Now the meaning of FOR depends on whether the last keyword is SAVE, SPLICE, or
FILTER:

• SAVE: Collect values of exp for each binding of the vars to elements of lists. Make a
new list of them.

• SPLICE: Ditto, but destructively splice them.

• FILTER: As with SAVE, but #F values are discarded.

The FOR macro is due to Chris Riesbeck.

(FORALL -var-clauses- test) [Magic]

Where the var-clauses have the same syntax as for FOR. Equivalent to

(MAPELTAND (\\ (-vars-) test) -lists-)

where the vars and lists are as defined in the definition of FOR.

(EXISTS -var-clauses- test) [Magic]

Where the var-clauses have the same syntax as for FOR. Equivalent to

(MAPELTOR (\\ (-vars-) test) -lists-)

where the vars and lists are as defined in the definition of FOR.

2.3.6 Nonlocal Jumps

(INTERCEPT label -body-) [Magic]

Evaluate body. Return last thing. A PASS to the label aborts execution. The label is not
a variable; it can be used only by appearing in a PASS within the dynamic scope of the
INTERCEPT.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 27

(PASS label value) [Magic]

value is evaluated. Surrounding INTERCEPT with that label is exited with that value. The
label is not evaluated in INTERCEPT and PASS.

(UNWIND-PROTECT exp -cleanup-exps-) [Magic]

Evaluates exp, then evaluates all cleanup-exps even if there is a nonlocal exit (i.e., a PASS,
or error abort) out of exp.

2.3.7 Multiple Values

Functions can return more than one value by making sure that the last thing they evaluate is an
expression of the form (VALUES v1 ...vn). When this occurs, whoever called the function must
be expecting as many values as were returned. Unlike Common Lisp, NISP does not conveniently
discard extra values. You can use ONE-VALUE to do this.

(VALUES a1 . . . an) [Function]

Basic multiple-value construct.

(ONE-VALUE x) [Function]

The first value returned by x. It is an error to use this form if x returns zero values.

(LIST->VALUES list) [Function]

Converts list to multiple values.

(MULTIPLE-VALUE-LIST form) [Magic]

Makes a list of the values returned by form

(MULTIPLE-VALUE-LET (-vars-) form -body-) [Magic]

Binds the vars to the values returned from form. There must be exactly as many values
as variables.

(MULTIPLE-VALUE-CALL receiver form) [Magic]

Evaluates form and call function receiver with the values returned. MULTIPLE-VALUE-LIST
could be defined as (MULTIPLE-VALUE-CALL #’LIST . . .)

(MULTIPLE-VALUE-SETQ (-vars-) form) [Magic]

Evaluates form and sets the variables to the values returned. There must be the same
number of vars as values. The value of the whole expression is undefined.

2.3.8 Data-Driven Programming

Data-driven programming is a simple kind of object-oriented programming, in which the objects
are S-expressions operated on by procedures whose behavior depends on symbols found in the
CARs of those S-expressions. This kind of programming is ubiquitous in Lisp systems programs,
such as pretty-printers, but is also common in non-systems programs, such as syntax checkers
for predicate calculus. Rather than write such procedures as large CONDs that check for every
expected symbol, we associate a separate small procedure with every symbol, and have our
master procedure look for it. The following macro makes that chore easy.

(DATAFUN indicator symbol what-to-do) [Magic]

Associates what-to-do with the symbol under the indicator, typically by storing it on the
property list of symbol. what-to-do is one of three things:

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 28

1. An expression of the form !’function: in which case, that function will be associated
with the symbol.

2. A symbol: in which case the action associated with symbol is to be the same as the
action already associated under indicator with this symbol.

3. A function definition with the name elided: in which case a function named “symbol-
indicator” will be defined and associated with this symbol.

The default method of association is to put what-to-do on the property list of symbol
under indicator. A function can then execute (PROP ’indicator S) to find the action
associated with S. A typical master procedure might look like

(DEFUN MASSAGE (X)
(COND ((OR (ATOM X) (NOT (IS-SYMBOL (CAR X))))

;; What to do in unusual or base case
...)

(T
(LET ((FN (PROP ’MASSAGE (CAR X))))

(COND (FN
;; Found function — call it.
(FUNCALL FN X ...))

(T
;; Default behavior
...))))))

And a typical call to DATAFUN would look like:

(DATAFUN MASSAGE OR
(DEFUN (X ...)

-code-for-massaging-things-beginning-with-OR-))

which would define a function named OR-MASSAGE to massage expressions of the form (OR
...).

To override the convention that functions are stored in the property lists of the symbols
they are associated with, you must tell NISP how to attach functions to symbols. Put on
the property list of indicator, under the property ATTACH-DATAFUN, a function of three
arguments, say IND, SYM, and FNAME, that associates the function named FNAME with SYM
under IND. The simplest way to make this “meta-association” is by writing

(DATAFUN ATTACH-DATAFUN indicator
(DEFUN (IND SYM FNAME)

;; IND is presumably just indicator again
Attach (SYMBOL->FUN FNAME) to SYM in appropriate way

))

Now that property lists are out of fashion, you may want to use a hash table to associate
symbols with procedures. Use

(DATAFUN-TABLE table-name indicator) [Magic]

If you write (DATAFUN-TABLE M-TAB* MASSAGE), then (DATAFUN MASSAGE sym ...) will
store the function (named sym-MASSAGE) as (TABLE-ENTRY M-TAB* ’sym), for your code
to retrieve.

2.4 INPUT/OUTPUT

I/O is based on entities called streams that yield or absorb characters and larger objects. The
ones that yield things are called input streams; the ones that absorb things are called output

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 29

streams.

2.4.1 Reading and Printing Conventions

Lists read and print in the standard way.

The escape character is backslash. Modern LISP dialects have supplanted the slash character
somewhat for symbols with more than one funny character in their names. An arbitrary string of
characters may be made into a symbol by enclosing it in vertical bars (| . . . |). To put a slash or
vertical bar into such a symbol’s name, slashify it. So |A \\c \|| is the way to write a symbol
whose print name has six characters: A, space, backslash, lower-case C, space, vertical bar. Some
dialects will print this symbol this way, others as A\ \\\c\ \| or #[Symbol "A \c |"].

Comment character: ; — Everything from here to the end of the line will be treated as one
whitespace.

The macro character # is reserved to the host dialect. Vectors are read and printed as
#(-elements-). We also have

#\ character
#’ FUNCTION abbreviation
#+ Common Lisp read-time conditionalization (ignored by T)
#- Common Lisp read-time conditionalization (ignored by T)

The macro characters ! and ? are reserved to NISP.
!’ FUNKTION abbreviation
! Slot access
!> Slot access
!D Dialect (host Lisp dialect) specific
!S System (host operating system) specific
!@ Piece of a match pattern to be evaluated (see below)
? Match variables

The macro characters #, ? and ! are inactive when they appear inside identifiers.

(READMAC char fun) [Function]

Attaches fun to char so that when char is seen as the initial character of a read expression,
fun is called and its value counts as the object read. fun takes one argument, a stream. So
quote might have been defined by

(READMAC #\’ (\\ (S) ‘(QUOTE ,(SRMREAD S))))

2.4.2 Streams

Standard streams: standard input, standard output, and error output. These are given when
the process is started, but may be rebound by NISP code. Of course, they are usually all bound
to the terminal-io stream.

(STDIN) [Function]
(STDOUT) [Function]
(ERROUT) [Function]

Return these three streams. (Settable)

(STDIN-SET s) [Function]
(STDOUT-SET s) [Function]
(ERROUT-SET s) [Function]

Reset them. (Or just use SETF.)

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 30

(REBIND-STDIN s -body-) [Magic]
(REBIND-STDOUT s -body-) [Magic]
(REBIND-ERROUT s -body-) [Magic]

Rebind a standard stream during a body.

TTYIN* [Global Variable]
TTYOUT* [Global Variable]

Global variables bound to terminal input and output (hopefully). These should never
change.

(OPENO filename) [Function]
(OPENI filename) [Function]

Creates an input or output stream. The filename may be a pathname or something co-
ercible to a pathname.

(CLOSE stream) [Function]

Closes a stream. Streams do not close by themselves, so you probably want to use the
following two magic words instead of the explicit openers and closers.

(WITH-INPUT-FROM-FILE sym filename -body-) [Magic]

Binds sym to an input stream from the given file, executes body (returning its last element)
and closes the stream.

(WITH-OUTPUT-TO-FILE sym filename -body-) [Magic]

Is similar, but does output. Both of these constructs are “unwind-protected,” in that the
streams get closed even if there is an abnormal exit from the body.

(WITH-INPUT-FROM-STRING (var string) -body-) [Magic]

Binds var to stream that yields characters of string one by one, then executes body.

(WITH-OUTPUT-TO-STRING var -body-) [Magic]

Binds var to a stream that collects characters into a string, then executes body. An optional
pair of parens can surround the var. The resulting string will be returned.

Most of the remaining functions described in this section have two versions, one beginning
with SRM (which takes an explicit stream argument) or STD (which uses the standard input or
output).

(IS-EOF x) [Function]

Except as indicated, all of the functions that try to read something will, when the end of
a stream (= “end of file”) is seen, return an object for which IS-EOF returns #T. There is
only one such object.

From the terminal, these read functions may print an irritating prompt string.

(SRMREAD s) [Function]
(STDREAD) [Function]

Reads an S-expression.

(SRMREADC s) [Function]
(STDREADC) [Function]

Reads a character.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 31

(SRMPEEKC s) [Function]
(STDPEEKC) [Function]

Peeks at a character.

(SRMLINEREAD s) [Function]
(STDLINEREAD s) [Function]

Returns a list of the S-expressions appearing on the next line. May or may not prompt.
Returns () if an empty line is seen (including end of file).

NEWLINE* [Global Variable]

Bound to the character used to end lines.

(SRMREAD-LINE s) [Function]
(STDREAD-LINE) [Function]

Reads a line of input and return it as a string. Last line in file does not need to end in a
newline.

(READ-OBJECTS-FROM-STRING string) [Function]

A list of objects readable from the string.

(CLEAR-INPUT s) [Function]

Clears input buffer.

(LISTEN s) [Function]

#T if there is a character ready to read on s.

(SRMPRINT x s) [Function]
(STDPRINT x) [Function]

Prints an S-expression. No carriage returns.

(SRMDISPLAY x s) [Function]
(STDDISPLAY x) [Function]

Prints without slashifying.

(SRMBPRINT x s) [Function]
(STDBPRINT x) [Function]

Pretty-prints x, starting in current column. Returns final column.

(SRMPRINLEV x d s) [Function]
(STDPRINLEV x d) [Function]

Prints to a depth d.

(SRMPRINTC c s) [Function]
(STDPRINTC c) [Function]

Prints a character.

(SRMNEWLINE s) [Function]
(STDNEWLINE) [Function]

Prints a NEWLINE*.

(SRMSPACES n s) [Function]
(STDSPACES n) [Function]

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 32

Prints n spaces.

(SRMTAB n s) [Function]
(STDTAB n) [Function]

Goes to column n (the leftmost column is numbered 1). If past it, does a NEWLINE first.

(SRMLINES n s) [Function]
(STDLINES n) [Function]

Prints n blank lines. If n is 0, does a NEWLINE only if not at beginning of line already.

(SRMCURRCOL s) [Function]
(STDCURRCOL) [Function]

If the implementation supports it (and Common Lisp proper does not), returns the column
number (1-based) where the next character will be printed. If the implementation does
not support it, returns 1, i.e., guesses that there is a lot of room to the right.

(SRMLINELENGTH s) [Function]
(STDLINELENGTH) [Function]

The length of the line on an output stream.

(FORCE-OUTPUT s) [Function]

Forces buffered output to be actually sent.

(PRINTWIDTH x) [Function]
(DISPLAYWIDTH x) [Function]

The number of characters it would take to print x, slashified and unslashified, respectively.

2.4.3 User Non-hostile Constructs

(IN -specs-) [Magic]

General input macro. Each spec is one of the following:

(FROM stream): Tells what stream following specs are from. If omitted, use standard
input.

OBJ (or READ, T, or OBJECT): Read a readable object, typically an S-expression.
CHAR: Read a character.
PEEK: Peek at a character.
LINESTRING: Read a line as a character string.
LINELIST: Read a line as a list of S-expressions.

The objects read are collected and returned as multiple values. Example: (IN CHAR
OBJ) returns a character and the following object.

(OUT -specs-) [Magic]

General output macro. Each spec is one of the following:

•A positive number: Skip that many spaces.

•A negative number: Skip that many lines (after negating it).

•Zero: Be at beginning of line.

•A T: output a new line.

•A string: Print it without quotes or slashes (DISPLAY it).

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 33

•A list of one of the forms:

(TO stream): Shift output to that stream. Initially standard output.
(T num): Tab to that column.
(D -exps-): Evaluate and DISPLAY the exps.
(S -exps-): Evaluate the exps, and interpret numbers as spacing commands.

Everything else is DISPLAYed.
(PP e): Pretty-print e.
(E -exps-): Evaluate the exps and discard values.
(Q -clauses-): Each clause is of the form (test -out-stuff-). Each test is evaluated,

and OUT processing resumes on the -out-stuff- of the first true one.

•Anything else: Evaluate it and SRMPRINT it to whatever stream is being used.

(MSG ...) [Magic]
(STDMSG ...) [Magic]
(SRMMSG s ...) [Magic]
(TTYMSG ...) [Magic]

The first two are just synonyms for OUT. SRMMSG is the same, except that the first argument
is interpreted as meaning (TO s). TTYMSG sends to interactive terminal. (TTYMSG differs
from (OUT (TO TTYOUT*) . . .) in that it uses FORCE-OUTPUT to make the characters come
out in real time.)

2.4.4 Pretty Printing

(SRMBPRINT x stream) [Function]
(STDBPRINT x) [Function]

The two pretty-printers (see previous section). They already know to print things like
(QUOTE x) as ’x. To tell them how to print something whose CAR is the symbol sym, do

(DATAFUN BP sym
(DEFUN (X TR COL)

...))

(See DATAFUN, p. 27.) This function will be passed X when X is of the form (sym ...). COL
will be the current print column. The standard output will be the stream pretty-printing
is going to. TR is a “size tree,” a data structure giving the print sizes of all pieces of X.
Although it can be more efficient to make use of this, it is simpler just to ignore it. The
function should return either the new current column when X is printed, or () if you want
the default print routine to take over and print X.

2.4.5 Files and Filenames

We adopt the Common Lisp pathname datatype. A pathname is a special data object with six
fields — host (file system), device, directory, name, type, and version. Pathname objects should
not be confused with their printed representations, which may not display all component values,
nor with namestrings such as “foo/bar.lisp”. The precise way such a namestring is represented
in a pathname object depends on the specific implementation.

(PATHNAME-HOST pathname) [Function]
(PATHNAME-DEVICE pathname) [Function]
(PATHNAME-DIRECTORY pathname) [Function]
(PATHNAME-NAME pathname) [Function]

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 34

(PATHNAME-TYPE pathname) [Function]
(PATHNAME-VERSION pathname) [Function]

Fields are null (= ()) if absent from the pathname data object. The fields are often strings,
but don’t count on it: lists of strings, symbols, numbers and other objects can also appear.
The only rule is that if a value came from a given field of a pathname, it’s legal to use it
as the value of that field in a new pathname.

In addition to the above, NILS implements its own “logical names.” A symbol may have
a LOGICAL-NAME property, which should be a pathname. Whenever the symbol appears where
a file name is supposed to be, and is terminated by a colon or slash, it stands for that path-
name. For instance, if FOO has a LOGICAL-NAME which is a pathname corresponding to directory
“∼/phou/”, then the string "FOO/baz.t" corresponds to “∼/phou/baz.t”. (Note that, because
FOO occurs inside a string, it must appear in upper case, unless it is the symbol |foo| that has
the LOGICAL-NAME property.)

(CONS-PATHNAME [host device directory name type version]) [Function]

Makes a pathname based on the specified fields. Any omitted arguments may default to
(), or may be given implementation-specific defaults.

(->PATHNAME something) [Function]

Converts string or symbol to pathname, obeying NISP logical-name convention. If some-
thing is already a pathname, it is returned. If something is a symbol representing just the
name of the file, its case may be switched, depending on the host file system. In particular,
on a Unix system, (->PATHNAME ’FOO) will return a pathname with NAME "foo". This
switch will not occur with more complicated symbols; (->PATHNAME ’FOO.NSP) returns a
pathname with NAME "FOO".

(IS-PATHNAME x) [Function]

Tests whether it’s a pathname.

(PATHNAME->STRING pathname) [Function]

Converts to a string.

(MERGE-PATHNAMES pathname defaults) [Function]

Constructs a new pathname, with the same fields as pathname, with null values filled in
from defaults, which is also a pathname.

(PROBEF filename-or-pathname) [Function]

Tests whether the file is there.

(EVALFILE filename-or-pathname) [Function]

Reads, evals, but does not print the things in the given file.

(LOADOREVAL filename-or-pathname) [Function]

If filename names an object file, loads it. Otherwise, EVALFILEs it.

(FILESPECS->PATHNAMES filespecs) [Function]

filespecs is a list of strings and symbols, each corresponding to a pathname. Some of
these describe complete filenames, and others describe directories, hosts, or the like.
FILESPECS->PATHNAMES scans through the filespecs in order, collecting the incomplete file-
names, and merging their pathnames with those of the later complete filenames, returning
the latter as pathnames. E.g., if FOO has a LOGICAL-NAME property as described above,
(FILESPECS->PATHNAMES ’(FOO/ BAZ "blech.nsp"))will return a list of two pathnames,
one for “∼/phou/baz” and the other for “∼/phou/blech.nsp”.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 35

(DSKLAP [-A] [-F] -filespecs-) [Magic]

Loads in the indicated files. The filespecs are as for FILESPECS->PATHNAMES, which is used
to parse them into pathnames. If a pathname specifies both the name and type of a file,
that file is the indicated one. Otherwise, if the type is unspecified, DSKLAP will do some
thinking. It wants to load the object version of the file if possible, so it uses the strings
in the list OBJECT-SUFFIXES* to try to complete the pathname. For instance, on the TI
Explorer, the only element of this list is "XLD". But it also uses the strings in the list
SOURCE-SUFFIXES* to find a source file as well. The first element of this list is normally
"NSP", and there are usually other elements, such as "T", "L", or the like. If () is an
element of the list, that means “no extension.”

If DSKLAP finds an object file and no source file, the object file is loaded. But if
there is a source file and no object file, or a source file is found to be newer than the
object file (not all implementations can detect this), then, depending on the value of the
global variable DSKLAP-COMPILE*, it will consider compiling the source file and loading the
resulting object file. The value of DSKLAP-COMPILE* is either COMPILE, SOURCE, OBJECT, or
ASK. If it is COMPILE, an old object file is always overwritten with a freshly compiled one;
if it is SOURCE, the source file is always loaded; if it is OBJECT, the object file is loaded if it
exists. If the value is ASK, the user is told about the uncompiled source file and prompted
with "Compile it now? ". He can type y, n, +, or -. The first two responses have the
obvious meaning, while + means “Set DSKLAP-COMPILE* to COMPILE,” and - means “Set
it to SOURCE.” If the user types n, then he is further prompted for whether to load object
or source, and whether to remember this response if the file is encountered again. The -A
flag will reset DSKLAP-COMPILE* to ASK.

There is one other complication. If DSKLAP has already loaded a file with a given NAME
field, then it will not load that file or any other file with the same name, even from another
directory. To override this convention, just use the -F flag as the first argument to DSKLAP.
This flag forces all the files to be loaded, even if they have been loaded before.

As a special case, (DSKLAP) with no arguments just retries the previous DSKLAP.
(DSKLAP -F) retries the previous one with the -F flag on.

(DEPENDS-ON system-symbol) [Magic]
(DEPENDS-ON [flag] -DSKLAP-style-filespecs-) [Magic]

The DEPENDS-ON macro is used, normally near the top of a file, to declare other files or
systems that this one depends on. It comes in two forms. In the first, a single symbol
follows DEPENDS-ON, and this symbol has a DEPENDS-ON property that consists of a form to
be evaluated whenever this file is loaded. The form typically loads in a supporting system,
and does some other chores. The most common example is the form (DEPENDS-ON NISP),
which must appear at the front of every file that uses NISP types (Chapter 4), and causes
various type-related things to happen when the file is loaded.

The other form is used to indicate what files need to be loaded (using DSKLAP) when
this file is. The flag is either AT-RUN-TIME or AT-COMPILE-TIME. AT-COMPILE-TIME means
that the following specified files contain code that must run when this file is compiled. A
file needed AT-COMPILE-TIME will be DSKLAP’ed in when this file is compiled, or loaded
before compilation. It will not be loaded when the compiled file is loaded.

AT-RUN-TIME means that the code in the specified files will not be executed until some
code in this file is executed. The files will be loaded when this file is loaded, even if this
one has been compiled. At compile time, the specified files are not loaded, but they are
slurped. “Slurping” means going through each file, and loading essential information about
the contents of the file. This information includes macros, and it may include other things,
notably the NISP declarations found in the file. (See Chapter 4.)

If the flag is omitted, the filespecs will be loaded for both running and compilation. This
is rare, and if you think it’s necessary, what you probably really want is NEEDED-BY-MACROS.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 36

(NEEDED-BY-MACROS -forms-) [Magic]

Appears at top level of file, and has no effect on the evaluation of the forms. (It’s as if
they appeared in the file unbracketed.) However, if some other file DEPENDS-ON this one
AT-RUN-TIME, then the forms will be evaluated when that other file is compiled.

Here is the typical place where this is useful:

File 1:
(DEFMACRO MAC (...)

... (AUXFUN ...) ...)

(NEEDED-BY-MACROS
(DEFUN AUXFUN (...) ...)
)

File 2:
(DEPENDS-ON AT-RUN-TIME FILE1)

(DEFUN FOO (...)
... (MAC ...) ...)

File 2 depends on the macro MAC, defined in File 1. Since MAC calls AUXFUN, it must be
surrounded by NEEDED-BY-MACROS to make sure that it is defined when File 2 is compiled
(and MAC is run).

2.5 CREATING AND COMPILING FILES

A NILS or NISP program consists of one or more files. Each file should start like this:

;;; -*- Mode:Common-Lisp; Package:NISP; Base:10 -*-
(HERALD filename (READ-TABLE NISP-READ-TABLE*)

(SYNTAX-TABLE NISP-SYN*))
(IN-PACKAGE ’NISP)

[(DEPENDS-ON [NISP | NILS | ...])]

(DEPENDS-ON AT-RUN-TIME -various-other-files-)

[(OVERDRIVE)]

– all the code –

The first few lines are an attempt to tell every possible T or Common Lisp system what
read table, syntax table, package, etc. are to be used. The first DEPENDS-ON is necessary if the
file uses any part of NISP beyond the NILS kernel. In particular, if you use the type system,
described in Chapter 4, you must provide a (DEPENDS-ON NISP). If you use only NILS and its
utilities, you must write (DEPENDS-ON NILS).

If this file requires other files to be loaded at run time or compile time, express those depen-
dencies with another DEPENDS-ON.

If, when compiled, the file is to be optimized for speed, with safety unimportant, put
(OVERDRIVE) early in the file. This should be done only when the file is well debugged.

(NISCOM [-F] -filespecs-in-DSKLAP-format) [Magic]

Compile all the given files. This funoid is the authorized method for compiling any NISP
or NILS file.

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 37

NISCOM will not compile a source file that appears to be as old as the object file that
would be generated. To override this convention, use the -F flag to force compilation.

2.6 ERROR HANDLING

(EARROR function value -msgs-) [Magic]

Simulates an error. It prints the msgs (in OUT format), then enters a read-eval-print loop.

EARROR is often parasitical on the host error system. Such systems often have a notion of
aborting versus resuming from an error. Aborting is usually done by hitting control-something,
or by evaluating something like (RESET). Resuming is done by typing OK or (RET). Sometimes
the user has the option of resuming with a value or resuming without a value. In the former case,
this value will be returned as the value of EARROR and execution will continue. In the second
case, the second argument to EARROR will be evaluated, and that value used instead.

In most implementations, EARROR tries hard to allow the following: To proceed with a value,
type RETURN val (with no parens); to proceed with the default, type OK. In some dialects, it is
necessary to tell the system to proceed first, after which it will prompt you for whether or not
you want to supply a value. In some of those systems, you then type OK or RETURN . . .; in other
systems, something else entirely happens.

These multifarious conventions can lead to confusion, because the -msgs- in an EARROR call
will often say things like

"Type ‘RETURN num’ to proceed with corrected data"

and it is important to remember that you must issue the “resume” command first.

2.7 HOST LANGUAGES & SYSTEMS

While NISP is designed to allow portable code, ignoring differences between the host Lisp dialects
and machine characteristics, it is sometimes necessary to take such differences into account. Two
global variables are used to reflect the current configuration:

HOST-DIALECT* [Global Variable]

A constant bound to the current host Lisp dialect (currently either T or COMMON).

HOST-SYS* [Global Variable]

A constant bound to the current host operating system (e.g. UNIX, AEGIS, VMS, HP,
SYMBOLICS, TI).

Two read macros are defined allowing expressions to be read or ignored conditionally, de-
pending on the values of these two variables:

!D([-] -dialects-) expression
!S([-] -systems-) expression

When the reader encounters !D or !S, the following list of host dialects or operating systems
is compared with the current value of HOST-DIALECT* or HOST-SYS*, respectively. If there is
no match, the following expression is ignored (by the reader; that is, nothing will be read).
Otherwise, the expression is read as usual. “Matching” is defined as you might expect. If the
list doesn’t start with a hyphen, then it must include HOST-DIALECT* or HOST-SYS*; if the list
does start with a hyphen, then it must not include the host dialect or system. For example:

CHAPTER 2. NILS — NISP IMPLEMENTATION LISP SUBSET 38

!S(UNIX)(CONVERT-FILENAME-TO-LOWERCASE ...)
!S(- UNIX)(TRY-OTHER-FILENAME-OPTIONS ...)

will result in only one of the two expressions being read, depending on whether or not the current
operating system is UNIX.

To facilitate customization for specific Common Lisp implementations, the #+ and #- Com-
mon Lisp read macros can be used directly, and are both equivalent in T to !D(- T).

Chapter 3

NILS Utilities

3.1 BETTER SETTERS

(!= exp val) [Magic]

Makes exp equal to val, and returns val. Equivalent to SETF, except that on the right-hand
side of an assignment, the symbol *-* stands for the left-hand side. So, to add 1 to the
variable TOTAL, write (!= TOTAL (+ 1 *-*)).

Note that absolutely nothing clever happens with *-*; it simply gets replaced by a copy
of the left-hand side. If the left-hand side is expensive or has side effects, you lose.

A special case is (!= < v1 v2 . . . > e) which assigns the variables to the multiple
values returned by e. If there is more than one e, then a VALUES is wrapped around them.
Hence two variables can be swapped by saying (!= < v1 v2 > v2 v1).

Another special case of != is (!= (< v1 v2 . . . >) list) which assigns the variables
to successive elements of a list.

(!=/ exp val) [Magic]

Like !=, except that it returns a list showing the “condensed” version of the previous
value and new value of the expression. For example, if G* has value (A B C), (!=/ G*
’(D E F)) will return ((WAS (A --)) (NOW (D --))). If there was no previous value, it
returns the expression itself. !=/ is mainly useful at the top level for setting variables with
unprintable values. (Courtesy of E. Davis.)

(SWITCH exp1 exp2) [Magic]

Sets exp1 to exp2 and exp2 to exp1 simultaneously. The value is undefined. (Courtesy of
E. Davis.)

(MATCHQ pattern form) [Magic]

Turns into LISP code to test if form matches pattern and, if so, set the variables of pattern.
For instance, (MATCHQ (A !@B . ?X) VV) becomes

(AND (IS-PAIR VV)
(EQ (CAR VV) ’A)
(IS-PAIR (CDR VV))
(EQ (CADR VV) B)
(PROG1 T (!= X (CDDR VV))))

or something equivalent and uglier. (The macro produces code that compiles efficiently, but
may interpret inefficiently.) Anything marked with an !@ is unquoted, so in the example
A means the symbol A, but !@B means the value of variable B. Anything marked with ? is

39

CHAPTER 3. NILS UTILITIES 40

a variable to be set to the part of the form that it winds up in correspondence with. So if
B is (P Q), then VV = (A (P Q) ZIP ZAP) will match and set X = (ZIP ZAP), while VV =
(A P Q ZIP) will fail to match.

If the ? is followed by (), then it will match anything without setting a value.

Any subexpression of the pattern of the form ?(& -pats-) will match if all of the pats
match. Similarly for ?(\| -pats-), which matches if any of the pats match. If a variable
is repeated, as in (A ?X ?X), then it gets the last value it is matched against; it does not
have to match the same thing every time it occurs. So (A ?X ?X) matches (A B C) with
X set to C. If the match fails, the values of the pattern variables are undefined.

(MATCH-VARS-BIND -body-) [Magic]

Equivalent to (LET match-vars -body-), where match-vars is a list of all the symbols v such
that ?v occurs somewhere in body. The search for match variables in the body is not at all
sophisticated, so this construct is not that useful if quoted variables occur in the body.

(MATCH-COND x -clauses-) [Magic]

Behaves like

(LET ((MATCH-DATUM x))
(MATCH-VARS-BIND (COND -clauses-)))

with two extra features:

1. Any clause of the form

?(pat ...)

is transformed into the form

((MATCHQ pat MATCH-DATUM) ...)

so they are in the same form as the second type.

2. Any occurrence of

(MATCHQ pat)

(i.e., MATCHQ without its second argument) is treated as

(MATCHQ pat MATCH-DATUM).

So

(MATCH-COND (BLAT V)
?((FOO ?X) (TTYMSG "FOO " X T))
((MATCHQ (BAR ?Y) (CAR V))
(TTYMSG "(BAR " Y ")" T))
(T (TTYMSG "NO MATCH")))

is the same as

(LET ((MATCH-DATUM (BLAT V)))
(LET (X Y)

(COND ((MATCHQ (FOO ?X) MATCH-DATUM)
(TTYMSG "FOO " X T))
((MATCHQ (BAR ?Y) (CAR V))
(TTYMSG "(BAR " Y ")" T))
(T (TTYMSG "NO MATCH")))))

CHAPTER 3. NILS UTILITIES 41

3.2 MAGIC MAPPERS

For those who think APL is too verbose, we provide a concise set of abbreviations for the mapping
functions:

(<# [\.] -function-spec- -listargs-) [Magic]
(<$ [\.] -function-spec- -listargs-) [Magic]
(<! [\.] -function-spec- -listargs-) [Magic]
(<& [\.] -function-spec- -listargs-) [Magic]
(<V [\.] -function-spec- -listargs-) [Magic]
(<? [\.] -function-spec- -listargs-) [Magic]
(< \ [\.] -function-spec- -listargs-) [Magic]
(</ [\.] -function-spec- -listargs-) [Magic]
(<< [\.] -function-spec- -listargs-) [Magic]

These are macros beginning with < that abbreviate MAPELTLIST and company. In general,
they have the following syntax:

(<char [\.] -function-spec- -listargs-)

The function-spec is not evaluated; the listargs are evaluated. The most common function-
spec is the name of a function or an expression of the form

(\\ (-vars-) -body-)

However, there are other possibilities, described below.

For example, the concise version of MAPELTLIST is called <#, as in:

(<# REVERSE ’((A B) () (D) (P Q R)))

which means the same as

(MAPELTLIST #’REVERSE ’((A B) () (D) (P Q R)))

and has value ((B A) () (D) (R Q P)).

The optional \. after the name of the mapper specifies TAIL mapping instead of ELT. So

(<# \. REVERSE ’((A B) () (D) (P Q R)))

is the same as

(MAPTAILLIST #’REVERSE ’((A B) () (D) (P Q R)))

and evaluates to

=> (((P Q R) (D) () (A B))
((P Q R) (D) ())
((P Q R) (D))
((P Q R)))

Here is a table of all the concise mappers (and a couple of relatives):

CHAPTER 3. NILS UTILITIES 42

<# MAP. . .LIST
<$ MAP. . .APPEND
<! MAP. . .CONC
<& MAP. . .AND
<V MAP. . .OR
<? MAP. . .COLLECT
<\� MAP. . .DO
</ MAP. . .REDUCE
<< APPLY

Note that the DO equivalent has a space in its name, after the "\".
A construct with similar syntax is

(RMV-IF [D] [A] pred list) [Magic]

Produce a new list with the elements of the old list satisfying the predicate removed. If the
D is present, do it destructively. If the A is present, remove all the elements, else just the
first. Note that it is important in the destructive case to store the value returned. That
is, say (!= X (RMV-IF D ... X)). Otherwise, if the first value in the list is one of those
removed, the result will be wrong.

NEG [Other]
IS [Other]
! [Other]

All of the macros described in this section (except <<) allow some useful extensions in
specifying the function-spec. For example, NEG in front of the function turns it into (\\
(X) (NOT (function X))). So, if you write (<? NEG ATOM L), you will get all the non-
atoms in L. When using the NISP type system, you can also write (<& IS type-desig L),
or (<# ! (type-desig slot) L). You can catenate these things, getting, e.g., (<? NEG IS
symbol L).

These work because NEG, IS, and ! have

MAPMAC [Other]

properties. The value of this property is a function that takes the list beginning with the
symbol so flagged, and returns a list of the form ((FUNCTION fun) -listargs-). (mapper sym
...) is then equivalent to (mapper fun -listargs-). For instance, NEG’s mapmac function returns

((FUNCTION (LAMBDA (X) (NOT (ATOM X)))) L)

in the case given above.

3.3 LAZY LISTS

A generated list is a list-like object whose elements are computed on demand, “lazily,” as the
expression goes. Such a list may be stepped through using SAR and SDR instead of CAR and CDR.
In NISP, a generated list is implemented as an ordinary list some of whose elements are flagged
as generators, corresponding to functions that can be called to make more elements. If you step
through such a list with CAR and CDR, you will actually get the generators. If you use SAR and
SDR, the generators will be called as they are encountered, and you will see the elements they
generate.

(SAR generated-list) [Function]
(SDR generated-list) [Function]

SAR returns the next element in a generated list, or () if there are no more. SDR returns
a new list whose first element is the next element after the first; or () if there are fewer
than two elements in the list.

CHAPTER 3. NILS UTILITIES 43

The “S” in the names of these functions stands for “stream.”

(*GEN closure) [Function]

Creates a generator. The closure, of no arguments, will generate more things when called.

You usually call *GEN indirectly, through the LAZYLIST macro:

(LAZYLIST -body-) [Magic]

Evaluates to a g-list whose CAR is a generator that will generate body.

Lazy lists can be stepped through using the GEN construct in LOOP , which corresponds to IN
for ordinary lists:

(LOOP FOR ((var [GEN | GENERATED-BY] gl)) ...)

(EXTRUDE n gl) [Function]

Forces the generators in gl to cough up at least n objects. Note that EXTRUDE alters and
returns the original stream, including remaining generators if any. If n objects cannot be
generated, just returns the list with all generators expanded.

(NORMALIZE gl) [Function]

Called by SAR and SDR to force gl to either start with a non-generator or be (). You can’t
really tell whether an un-NORMALIZEd g-list is empty.

Example:
;; Generate all the atoms in an S-expression X
(DEFUN ATOMS (X)

(COND ((ATOM X) (LIST X))
(T (NCONC (ATOMS (CAR X))

(LAZYLIST (ATOMS (CDR X)))))))
Now
(LOOP FOR ((A GEN (ATOMS ’((A . B) ((C) . D) (E (F . G) . H)))))

UNTIL (NULL A)
(OUT A T))

prints
A
B
C

(<#S closure gl) [Function]

Like MAPELTLIST (<#) for lists, returns a g-list of closure applied to each element of gl in
turn.

(<!S closure gl) [Function]

Like MAPELTCONC (<!) for lists. The closure, applied to an element of the g-list gl, must
return a g-list. So (<#S closure gl) would return a g-list of g-lists. (<!S closure gl) returns
a g-list containing (eventually) every element of every g-list of the g-list of g-lists (just as
(<! function list) returns a list containing every element of every list in the list of lists
(<# function list)).

3.4 OBJECTS AND OPERATIONS

NISP has T-style objects, abstract entities that respond to operations, which are syntactically
identical to functions. Defining an object is just specifying how it responds to various operations.

CHAPTER 3. NILS UTILITIES 44

This whole area is in a state of flux, and you can expect extensions to the facilities described
here as things like CLOS (Common Lisp Object System) mature.

(DEFOP name (ob -args-) -body-) [Magic]

Defines an operation. A form (name x . . .) will be evaluated by first attempting to have
x handle the operation; that is, if x is an object or member of a class that knows about
operation name, then the code associated with x is run. Otherwise, just as for an ordinary
function call, ob and the other args are bound, and the body is evaluated. The body is
allowed to be empty, in which case an error is signaled if the first argument cannot handle
the operation.

(MAKE-OBJECT clauses) [Magic]

Returns an object that handles operations as specified by the clauses. Each clause is of the
form (operation (-args-) -body-), and defines a procedure to be run when that operation
is applied to this object.

(DEFCLASS name clauses -slotnames-) [Magic]

Defines a globally-defined object class where slots is a list of slot names, and clauses are
as for MAKE-OBJECT. (A class is not a type in the NISP sense (Chapter 4). To define types
corresponding to classes, see section 4.4.2.)

After evaluating a DEFCLASS, you can make instances of the class by calling the constructor,
(MAKE-name -slotcontents-). It takes as many arguments as there are slots, in the same order.
There are then two kinds of thing you can do with a class instance: access and set its slots, and
perform operations on it. The slot accessors are called name-slot. To change the contents of a
slot, write (SETF (name-slot . . .) . . .).

Operations are handled as spelled out by the clauses, which are in the same format as for
MAKE-OBJECT.

Note: Each clause begins with an operation name, which in general must have been defined
using DEFOP, but there are some exceptions. In T, you may use any system-defined operation
(although of course code using such an operation won’t be portable). In both T and Common
Lisp, you can use PRINT as if it were an operation, even though PRINT is not actually part of
NISP at all. Nevertheless, it can appear in the clauses of MAKE-OBJECT or DEFCLASS, and will get
control when a value of the MAKE-OBJECT expression or an instance of the DEFCLASS is printed.
It takes two arguments, the object to be printed and the stream to print it on. E.g., one can
write things like:

(DEFCLASS PEAR ((PRINT (X STREAM)
(OUT (TO STREAM)

"#<PEAR " (PEAR-I X) ", "
(PEAR-J X) ">")))

I J)

and then if P1 is set to (MAKE-PEAR 5 6), it will print out as #<PEAR 5, 6>.

DEFCLASS defines a test function for instances, called IS-name. To test whether an object x
is an instance of a class, call (IS-name x).

For more on objects and operations, see section 4.4.2.

Chapter 4

NISP Type System

Modern programming languages are built around mechanisms for abstraction, concealment of
implementation details of abstract data types. Lisp dialects include tools like structures and
flavors for this purpose. NISP integrates these tools into a coherent package for

1. Defining abstract data types.
2. Declaring variables of those types.
3. Checking for type violations.

For example, suppose we wanted to define a new abstract data type, “Cartesian points in
two-space.” Here is how we might do that:

(DEFTYPE cpoint (STRUCTURE X Y - float))

This definition is entirely analogous to a DEFSTRUCT; indeed, in Common Lisp it will expand
into a DEFSTRUCT. However, using it allows us to define more concisely functions that manipulate
cpoints. For example:

(DEFFUNC MAGNITUDE - float (P - cpoint)
(SQRT (+ (* (! X P) (! X P))

(* (! Y P) (! Y P)))))

This code defines a function MAGNITUDE that returns a float value given a cpoint argument.
It uses the formula for distance from the origin to find the magnitude of P. The notation (! X P)
means to get the contents of the X slot of P. Because P has been declared to be of type cpoint,
the X slot can be determined at compile time to be a certain position in the vector used to
implement P. Furthermore, the system automatically infers that (! X P) is of type float, and
hence can open-compile the multiplications. The code above is analogous to the Common Lisp

(DEFSTRUCT cpoint (X 0.0 :TYPE FLOAT) (Y 0.0 :TYPE FLOAT))

(DEFUN MAGNITUDE (P)
(DECLARE (TYPE cpoint P))
(SQRT (+ (* (CPOINT-X P) (CPOINT-X P))

(* (CPOINT-Y P) (CPOINT-Y P)))))

(PROCLAIM ’(FTYPE (FUNCTION (CPOINT) FLOAT) MAGNITUDE)))

but much clearer and more concise.

To use the type system, all you have to do is (a) use macros like DEFFUNC and DEFTYPE to
define functions and types; (b) put (DEPENDS-ON NISP) at the front of your file (to make sure

45

CHAPTER 4. NISP TYPE SYSTEM 46

the file is slurped before it is compiled). Note that, just as in Common Lisp, type declarations
are used only at compile time.1 At run time, the code looks the same as ordinary Lisp code,
except possibly for the presence of more efficient object code.

4.1 EXPRESSION TYPES

In normal Lisp, the type of an object is simply a predicate that it satisfies. An object can be
of several types simultaneously, although for convenience one of them may be considered to be
“the” type of the object. A variable’s type is just the type of its value, and this can change.

With compile-time typing, we get a whole new sense of the word “type.” The type of an
expression can be considered to be the narrowest class of objects such that all the values it will
ever have fall into that class. We will use the phrase expression type for this sense; in the usual
phrase “type of a variable,” the expression type is meant.

In code like

(DEFFUNC MAGNITUDE - float (P - cpoint)
(SQRT (+ (* (! X P) (! X P))

(* (! Y P) (! Y P)))))

the identifiers float and cpoint are type designators. The designator denotes the type, which
is an abstract object associating slots with access functions. For instance, the type denoted by
cpoint associates with ! X and ! Y functions to extract the first and second slots of a certain
structure. Most of the time users will not have to worry about the distinction between types and
their designators. In the current implementation of NISP, the association between a designator
and its type is global; there are no local type definitions. In any case, the associations exist
purely at compile time, and have nothing to do with variable bindings; cpoint does not have an
abstract type as its value.

“! ” is a macro that inspects its arguments and expands into the appropriate accessing
function. The general form of ! is (! (type slot) x), in which both the type and slot of x are
specified, but usually NISP can infer the type from declarations, and the type and parens can be
omitted.

Most slots are settable. That is, you can write (!= (! X P) new), and from then until the
next such setting, (! X P) will have the new value.

An alternative syntax, for those who like C, is !>object.slot, as in “!>P.X”. (If dots bother
you, you can also write “!>P>X”.) This notation can be iterated, so that

(! sn (! ... (! s2 (! s1 e))))

may be written

!>e.s1.s2.....sn.

or, if you prefer, as

!>e>s1>s2>· · ·>sn.

Many types are associated with functions for testing for membership in the type. If a type t
has such a function, then you can write

(IS t x) [Magic]

1Some implementations will insert run-time checks to verify type declarations when the value of SAFETY is
high.

CHAPTER 4. NISP TYPE SYSTEM 47

to test whether x is of that type. This construct is analogous to Common Lisp’s (TYPEP x ’t),
except that t is not evaluated. Thus we write (IS fixnum N), and this will be turned into an
expression to test if N is a fixnum. Note that the test occurs at run time, and has nothing to do
with whether N is declared to be of type fixnum. 2 It is possible to test for t-hood in this way
only if type t has an “IS-tester” associated with it; such a type is said to be IS-testable.

For some types, especially user-defined types (section 4.4.2), new objects of that type are
constructed using

(MAKE type ...) [Magic]

The arguments depend on the type, and are typically initial values of some or all of the slots of
the new object. Most built-in types are not “MAKE-able” in this way because they don’t have
slots. To construct, e.g., a string, you just use the normal string-constructing functions.

4.2 BUILT-IN TYPES

Here are the types built in to NISP. Where possible, they have the same names as the correspond-
ing Common Lisp types. Atomic type designators are written the opposite case from the default,
but this is only a convention. It makes code more readable, and is strongly recommended.

4.2.1 Simple Types

In this section we list the atomic-named types.

obj [Type]

Anything is an obj.

void [Type]

Nothing is a void. The main purpose of void is to serve as a placeholder for the value of
a function that is executed for effect.

null [Type]

Only #F, the boolean false value, is of this type. In all implementations to date, however,
(), the empty list, is EQ to #F.

boolean [Type]

#T or #F. But anything can be considered a boolean, so it isn’t IS-testable.

symbol [Type]

An atomic symbol. (IS-testable)

string [Type]

A string. (IS-testable)

char [Type]

A character. (IS-testable)

number [Type]
float [Type]
rational [Type]
ratio [Type]

2Warning: Some compilers will optimize a COND clause away if its test can be deduced to evaluate to false
based on type information.

CHAPTER 4. NISP TYPE SYSTEM 48

integer [Type]
fixnum [Type]

A number is either a float (floating-point) or rational. Rationals are further divided
into ratios and integers. A fixnum is a “small” integer (implementation dependent);
nonfixnum integers are known as “bignums.” (all are IS-testable)

sexp [Type]

An “S-expression”: a non-circular list structure whose leaves are symbols, numbers, char-
acters, strings, or null.

form [Type]

An executable expression. Two slots FUN and ARGS.

lambda-exp [Type]

An sexp of the form (LAMBDA bvars . body). Two slots BVARS and BODY. (IS-testable)

macro [Type]

A symbol defined to be a macro (IS-testable)

stream [Type]

An I/O stream. (IS-testable)

pathname [Type]

A file name. Slots HOST, DEVICE, DIRECTORY, NAME, TYPE, and VERSION. None of the slots
are settable. (IS-testable)

4.2.2 More Complex Types

Types can have nonatomic designators, in which case they are of the form (type-constructor
-stuff-). The simple ones are described here. Complex structured types are described in Section
4.4.2.

(LRCD a . d) [Type]

A cons cell whose CAR is of type a and whose CDR is of type d. If d is another LRCD, the LRCD
can be dropped. So (LRCD symbol integer . float) means the same as (LRCD symbol
LRCD integer . float), an object whose CAR is a symbol, CADR is a integer, and CDDR
is a float. (The name of this type constructor stands for “List ReCorD,” an unfortunate
historical accident.)

(LST t) [Type]

A list of elements of type t. IS-testable if t is.

(GLST t) [Type]

A generated list of elements of type t. See Section 3.3.

(ARY type rank) [Type]

An array of rank dimensions containing elements of the given type. If the rank is unknown
at compile time, it may be written as * or omitted.

(VCT type) [Type]

A synonym for (ARY type 1).

CHAPTER 4. NISP TYPE SYSTEM 49

(RCD -types-) [Type]

A record containing as many slots as there are types, named <1>, <2>, For instance,
type (RCD integer float) has two slots <1> of type integer and <2> of type float. So
you can write

(SPECDECL (R1 (MAKE (RCD integer float) 4 5.0))
- (RCD integer float))

followed by (!= (! <1> R1) 6), and so forth.3 RCDs are typically implemented as vectors.
See also structures, described in Section 4.4.2.

(HTB valtype) [Type]

A hash table containing elements of type valtype. (Currently, keys can be of any type, but
in future the key type may be made explicit.)

(MLV -types-) [Type]

The “type” returned by a function that returns multiple values of the corresponding types.

(FUN r (a1 . . . an) b) [Type]

A function that takes arguments of types a1 . . . an and returns a value of type r. If the ai

list terminates in a type designator instead of (), then starting with the argument in that
position the function takes an indefinite number of arguments of that type. b is non-() iff
the function has side effects. (See Section 4.3.1.)

/ is of type (FUN number (number number) ()).

+ is of type (FUN number number ()), because it takes any number of args.

A magic word does not have a type, because it does not denote a function at all.

(CONST c1 . . . cn) [Type]

One of these constant S-expressions. (IS-testable)

(EITHER t1 . . . tn) [Type]

The union of these types. (IS-testable if all the ti are.)

(∼ t) [Type]

Like type (EITHER t null), except that it inherits all the slots, is-testers, and the like
from t. Useful for declaring variables that will normally be of type t, but in “degenerate”
or exceptional cases are allowed to have value #F.

4.3 DECLARATIONS

4.3.1 Defining and Declaring Procedures

To define a procedure, declare its type, and declare the types of the variables inside it, use:

(DEFFUNC name - rtype (-type-var-list-) -body-) [Magic]
(DEFPROC name - rtype (-type-var-list-) -body-) [Magic]
(DEFOPFUNC ...) [Magic]
(DEFOPPROC ...) [Magic]
(FUNC ...) [Magic]
(PROC ...) [Magic]

3The syntax !>R1.<1> is not allowed.

CHAPTER 4. NISP TYPE SYSTEM 50

(OPFUNC ...) [Magic]
(OPPROC ...) [Magic]

Define functions (or operators), declaring name to be of type (FUN rtype (-argtypes-) sw),
where the argtypes are extracted from the type-var-list (see below), and the sw is () for
DEFFUNC and Truth for DEFPROC. (DEFFUNCs have no side effects, and DEFPROCs do. FUNC
and PROC are alternative names.) Within the body of a function defined with one of these
constructs, variables are declared as specified in the type-var-list.

I will use the term type-var list for the declaration-and-binding specifications found in these
constructs and elsewhere. The syntax is as follows:

var var . . . - type
var var . . . - type
. . .

which declares each group of vars to be of the following type (flagged by a hyphen). Older
versions of NISP had variables and types interleaved without hyphens, and this syntax is still
supported. In fact, the types can come before the variables, in the form

type var var . . . type var var . . .

Of course, you have to be consistent within a single type-var-list. In similar fashion, the hyphens
before the rtypes in function definitions are a new feature, and may be omitted. (Although
strange things can happen with undefined rtypes.)

Type-var-lists have a standard syntax throughout NISP, but it varies in obvious ways. For
instance, when a variable is being bound, we must be able to supply an initial value, as described
below.

In a function definition, we allow the occurrence of the keyword &REST. The variable after
the &REST must be declared to be of type (LST eltype). If it is declared to be of any other type
t, that is taken to be an implicit declaration of (LST t). So the following are equivalent:

(DEFFUNC FOO - baz (&REST X - (LST baz)) ...)
(DEFFUNC FOO - baz (&REST X - baz) ...)
(DEFFUNC FOO baz ((LST baz) &REST X) ...)
(DEFFUNC FOO baz (&REST baz X) ...)

In all cases, FOO is of type (FUN baz baz ()). (See definition of FUN, p. 49.)

What does the “side-effect” flag, the choice between DEFFUNC and DEFPROC, mean? Currently,
it’s only documentation.

I will use the phrase declaration context to refer to a context in which NISP declarations are
in effect, such as in the body of a DEFFUNC. (Other declaration contexts occur in SPECDECLs and
in DEFTYPE clauses, Section 4.4.2.) If you have no other way to create such a context, use:

(DECL (-type-var-list-) -body-) [Magic]

Evaluates body with the variables declared as indicated. Note that an uninitialized variable
is not bound at all; the DECL form serves simply to declare it. (DECL (X (Y 5.0) - float)
...) allocates and declares Y, but only declares X (which had better be bound to a float
by someone else beforehand).

4.3.2 Declaring Variables

This section describes mechanisms for binding and declaring typed variables.

(SPECDECL -type-var-list-) [Magic]

CHAPTER 4. NISP TYPE SYSTEM 51

Declares and allocates variables globally, as in (SPECDECL (PI 3.14159) - float). The
variabless are automatically DEFVAR’d, or, if there is no initial value, PROCLAIMed SPECIAL.
(Exception: If a variable is declared to be of type (FUN ...), it will not be declared special
automatically. In this case NISP assumes you are declaring the type of a function identifier,
not a global variable, and in Common Lisp these are two different things.)

Within a declaration context, the variable-binding constructs LET, BIND, PROG, FOR, LOOP,
LAMBDA, FLABELS, and MAKE-OBJECT allow type-var-lists where their bound variables go. That
is, you can say things like

;; Bind I to 5 and declare it integer
(LET ((I 5) - integer) ...)

;; Step I from 5 to 10, and declare it integer.
(LOOP FOR ((I = 5 TO 10) - integer) ...)

;; Step I through elements in L, and declare it integer.
(FOR (I IN L) - integer ...)

;; Let FOO be of type (FUN float (integer)).
(FLABELS ((FOO - float (I - integer) ...)) ...)

Note that all the constructs obey the same consistent syntax. Unfortunately, consistency
isn’t everything. You may prefer the following syntax for LOOP and FOR:

(LOOP FOR (integer (I = 5 TO 10)) ...)

(FOR (integer I IN L) ...)

The first of these was already allowed above; the second is a FOR idiosyncrasy.

Suppose that no types at all appear in a type-var-list. In older versions of NISP, this syntax
was equivalent to declaring all the variables of type obj, which was entirely equivalent to not
declaring them at all. (I.e., NISP would never complain that they were the wrong type; see
below.) In current versions of NISP, the situation is slightly different. If in a type-var list none
of the variables are declared explicitly, then variables with initial values are declared to have the
same type as the initial value; other variables are of type obj. So in

(LET (Y (X 5)) ...)

Y is of type obj and X is of type integer. This rule applies in most circumstances where NISP
looks like it ought to be able to deduce the type of an expression.

Inside a declaration context, if a COND or IF clause begins ((IS type var) ...) or ((IF-IS
type var ...) ...), then within that clause, the variable is declared to be of that type. (Idea
courtesy of E. Charniak.)

Within a declaration context, the functions MEMBER=, ADJOIN=, ASSOC=, UNION=, INTER-
SECTION=, IS-SUBLIST=, COMPLEMENT=, [D]REMOVE[1|-EVERY]=, NODUP= and DNODUP= have an
extended syntax. If the eqtest argument is replaced by a type designator, then the system
looks for the slot ! (type =) for that type, and uses what it finds. If the eqtest argument is
omitted altogether, then it defaults to the appropriate type: For MEMBER, ADJOIN, ASSOC, and
[D]REMOVE. . .), this is the type of the first argument; for UNION, INTERSECTION, IS-SUBLIST,
COMPLEMENT, NODUP, and DNODUP, it’s the element type of the first list argument.

(EQU [type] x y) [Magic]

Synonymous with (! (type =) x y), but more readable. type should be the expression
type of x and y, and may be omitted inside a declaration context. If the function ! (type
=) is EQ, means the same as EQ; if ! (type =) is EQUAL, means EQUAL.

CHAPTER 4. NISP TYPE SYSTEM 52

Often a single type instance is to have several of its slots inspected. To avoid having to
rewrite the type and instance repeatedly, we can write

(WITH [type] object ...) [Magic]

Within the “. . . ,” in any occurrence of !>object..., the object can be omitted. Otherwise,
the “. . . ” behaves like a PROGN body; it is a list of expressions that is evaluated, with the
value of the last being returned. For example, if FOO is declared to be of type form,

(LIST !>FOO.FUN 1 !>FOO.ARGS)

may be written

(WITH FOO (LIST !>.FUN 1 !>.ARGS))

or as

(WITH FOO (LIST !>>FUN 1 !>>ARGS))

The extra dot or bracket may be dropped in unambiguous cases (i.e., uniterated slot
references), so this could be written

(WITH FOO (LIST !>FUN 1 !>ARGS))

But in general !>.s1.....sn cannot be written !>s1.....sn, because this notation means
(! sn (...(! s2 s1))).

These examples have omitted the type argument to WITH; the type of the object is
inferred from declarations. Supplying the type [re]declares the object within the scope of
the WITH. The object expression does not have to be an identifier. It will be evaluated just
once, so feel free to use it even if its evaluation has side effects.

(IF-IS type x ...) [Magic]

The very common idiom

(COND ((IS type x)
(WITH type x ...))

(T ’#F))

may be abbreviated using IF-IS, as in

(IF-IS lambda-exp FOO (TTYMSG !>BVARS !>BODY))

4.4 USER-DEFINED TYPES

In this section we describe how to define new type designators, plus some complex types that
are used in such definitions.

4.4.1 Defining New Types

(DEFTYPE name type-desig -patches-) [Magic]

This makes name designate a new type that behaves just like the base type designated by
type-desig, as modified by the patches. A “patch” defines a new slot as a procedure for
accessing its virtual contents (and possibly a procedure for setting those contents).

Example:

(DEFTYPE client (LST number)
(SUM - number (C - client)

(<< + C))
(MAIN - number (C - client) (CAR C)))

CHAPTER 4. NISP TYPE SYSTEM 53

defines a new type client that consists of a list of numbers. Elements of such a list may be
accessed with CAR, LIST-ELT, etc., but there are also two new slots, SUM and MAIN, defined
as the sum of all the numbers, and the first number, respectively.

In general, each patch is of the form

([| SET | ACCESS | TYPE | BOTH | ALL] slotname
[- type]
[*INTEGRABLE]
[-function-definition-])

The first thing in the patch says whether the setter, accesser, or the type of the slot is
being specified. BOTH means the setter and accesser are both being specified. ALL means
the setter, accesser, and type are all being specified. (The first thing is optional; if omitted,
ACCESS is assumed.) A patch may be used to override the accessor, setter, or type of an
existing slot as well as to create a new one.

The slotname is any symbol, but the atoms IS and CONSER (or IS-TEST and CONSTRUCTOR)
are assumed to be for testing membership in the type and constructing new members; and
the atom “=” is assumed to be the equality test for the type.

The type is the type of the objects occupying the slot.

A function definition is of the form (-type-var-list-) -body-, just as for ordinary func-
tions. The first argument should be declared to be of this very type, except for the
constructor and is-tester. The constructor will take an arbitrary number of arguments;
the equality tester will take two arguments. In general, accessors take one argument and
setters take two, but this is not essential. If a slot accessor takes extra arguments, you
write (! slot obj -additional-arguments-). The setter (when there is one) presumably takes
as many arguments plus one.

*INTEGRABLE [Other]

Normally a DEFTYPE patch gives rise to a new function definition. Any reference to the
corresponding slot expands into a call to that function. If the flag *INTEGRABLE is put
before the argument list, then instead the corresponding lambda expression will occur
in-line everywhere the slot is accessed. In the example, if the last patch had been

(MAIN - number *INTEGRABLE (X) (CAR X))

then any expression of the form (! MAIN C) would be transformed into (CAR C).

∧∧ [Other]

Within a DEFTYPE patch, the symbol ∧∧ stands for the base type. So (MAKE ∧∧ ...)
means “Make an object of that type, using the original argument order.” Typically this
construct is used in the definition of the CONSER for the derived type, so that the arguments
to it can differ from those of the base type (usually by eliminating some). You can also
use (IS ∧∧ ...), (! (∧∧ slot) ...), and so forth.

A type must be defined before it is used. You can say (DEFTYPE type FORWARD) as a place-
holder for the actual definition. If two defined types t1 and t2 refer to each other, and the
definition of t1 comes first, then you must say (DEFTYPE t2 FORWARD) before that definition. In
a file with many type definitions, you might as well put FORWARD definitions for all of them at
the beginning of the file, and then not worry about circularities.

(AUGTYPE type-desig -patches-) [Magic]

Adds slots to a type. The patches are in the same format as for DEFTYPE, and have the
same effect. This enables you to break up large DEFTYPEs into pieces.

CHAPTER 4. NISP TYPE SYSTEM 54

4.4.2 Structures

The following complex type designators rarely occur outside of a DEFTYPE:

(STRUCTURE [()] -type-var-list- [(HANDLER -clauses-)]) [Type]

A structured object whose slots are stored explicitly and given names. The type-var-
list describes the slots and their types. If the () flag is present, then the structure is
implemented as a vector with as many slots as there are variables in the type-var-list. Such
a structure type is said to be anonymous, and membership in it is not “IS-testable.” If the
flag is absent, then the internal representation of the type is implementation-dependent,
and membership in it is IS-testable. If the HANDLER is present, then it is followed by clauses
of the kind accepted by DEFCLASS (see Section 3.4). Objects of this type will be able to
handle the operations as specified. We will neglect this feature until section 4.5.

Here is an example:

(DEFTYPE employee
(STRUCTURE LASTNAME - string

PAY BENEFITS - integer
DEPENDENTS - (LST person)))

This code defines an employee as a structure with four slots: a string LASTNAME, two
integers PAY and BENEFITS, and a list of persons DEPENDENTS. (Presumably person has
been defined by the user already.) The slots are all settable as well as accessible. The
constructor for this type takes four arguments, and returns a structured object with the
four slots initialized to those four arguments. The type is IS-testable, because of the
absence of the () flag.

For anonymous structures, it is officially guaranteed that (STRUCTURE () -x-) expands
into exactly the same thing as (RCD -y-) if y is x with all the slot names replaced by their
types. E.g,

(STRUCTURE () FOO BAZ - integer Z - float)

is the same as

(RCD integer integer float).

This guarantee is nullified if the structure contains a HANDLER.

(LSTRUCTURE [| () | &FLAG symbol] -type-var-list-) [Type]

Is like STRUCTURE, except that a HANDLER is not allowed; and it is guaranteed to be im-
plemented with list structures in every implementation. That is, you can depend on a
particular correspondence of the slots with CAR-CDR compositions. For instance, if we had
used LSTRUCTURE instead of STRUCTURE in the previous example, that would have guaran-
teed that instances of the type were represented as lists of the form

(employee name pay benefits dependents)

LSTRUCTURE slightly extends the flag conventions of STRUCTURE. If () appears as the
first argument, then instances of the type are anonymous list structures. Otherwise, the
CAR of each instance is an identifying flag. If &FLAG symbol is present, the symbol is the
flag. Otherwise, the type name is used (e.g., employee above).

The guaranteed correspondence between slots and CAR-CDR compositions is what you
would expect. In particular, if the type-var-list has no extra layers of parentheses, then the
slots become the CAR, CADR, CADDR etc. If the type-var-list ends in “ &REST slot-name,”
then the last slot is a CDDD...DDR composition rather than a CADD...DDR composition.

If there are extra parentheses, then they are significant unless just one slot occurs within
them. For instance, in this case:

(LSTRUCTURE () A - symbol

CHAPTER 4. NISP TYPE SYSTEM 55

(B C - integer)
(D - float)
(E &REST F - symbol)
G - symbol)

We get the following correspondences:

A CAR
B CAADR
C CADADR
D CADDR
E CAADDDR
F CDADDDR
G CADDDDR

Note that the parens around B and C, and around E and F, are significant, but that those
around D are not; D is the CADDR, not the CAADDR.

LSTRUCTURE is to LRCD as STRUCTURE is to RCD. That is, it is guaranteed that (LSTRUCTURE
() -x-) expands into exactly the same thing as (LRCD -y-) if y is x with all the slot names
replaced by their types.

It is legal to use STRUCTURE and LSTRUCTURE outside a DEFTYPE. If you do, they will be
anonymous even if the () flag is omitted, except in the case of an LSTRUCTURE with an explicit
&FLAG..

4.4.3 Types Built on Property Lists

(NAMED type-desig [flag DATA]) [Type]

Designates the type of objects implemented as symbols, with the actual data stored on the
property list, under the indicator flag. The resulting type has all the slots that type-desig
has, but no constructor or is-tester. To add these things, use DEFTYPE patches, as described
below.

For example, (NAMED (LST integer) NUMS) is a type whose elements are symbols with
lists of numbers under the indicator NUMS.

(SYMPLIST -types-and-vars-) [Type]

Designates a data type consisting of symbols whose slots are implemented as good old-
fashioned property-list entries. The conser and is-tester are unspecified.

4.4.4 Examples of DEFTYPE

Some examples of DEFTYPE, STRUCTURE, etc.:

(DEFTYPE employee (STRUCTURE
LASTNAME - string
PAY BENEFITS - integer
DEPENDENTS - (LST person))

(GROSS - integer (E - employee)
(WITH E (+ !>PAY !>BENEFITS)))

(SET LASTNAME (E - employee NEW - string)
(IGNORE NEW)
(EARROR LASTNAME-SETTER NIL

"Can’t set LASTNAME slot of employees")))

CHAPTER 4. NISP TYPE SYSTEM 56

This defines a new type employee that behaves like the given STRUCTURE, except that it has
one more slot GROSS, defined to be an integer, which, when accessed, returns the sum of PAY and
BENEFITS; and it modifies the definition of LASTNAME so that the slot is read-only.

Another example:

(SPECDECL (PTNO* 0) - integer)

(DEFTYPE cartesiansym (SYMPLIST X Y - float)
(CONSER (X Y - float)

(LET ((PT (SYMBOL PT (++ PTNO*))))
(DECL (PT - cartesiansym)

(!= (! X PT) X)
(!= (! Y PT) Y)
PT))))

defines cartesiansyms to be symbols with X and Y coordinates stored as property-list entries.
The user supplies a conser, so that (MAKE cartesiansym 1.2 0.7) will create the appropriate
symbol, with a name of the form PTn.

And another:

(DEFTYPE part (LSTRUCTURE
LEN WID - float
NAME - string
SUPPLIERS - (LST supplier))

(CONSER (LEN WID - float NAME - string PRIM - supplier)
(MAKE ∧∧ LEN WID NAME (LIST PRIM)))

(LENGTH float *INTEGRABLE (P - part) !>P.LEN)
(WIDTH float *INTEGRABLE (P - part) !>P.WID)
(ALL PRIMARY-SUPPLIER - supplier (X - part)

(CAR !>X.SUPPLERS))
(SET SUPPLIERS (part X exp L)

(!= (CDR (! (∧∧ SUPPLIERS) X))
(REMOVE1 (CAR (! (∧∧ SUPPLIERS) X)) L))))

This definition describes a data type consisting of list structures whose CARs are the identifying
symbol part, and whose CDRs consist of a list containing the length, width, name, and suppliers
in order. The first supplier is special, and is called the “primary supplier.” The structures are to
be consed (“MAKEd”) by giving the length, width, name, and primary supplier. In the definition
of the CONSER, (MAKE ∧∧ ...) is short for (MAKE (LSTRUCTURE ...) ...). In this case, we
could have said (LIST ’part ...) instead of (MAKE ∧∧ ...), but in other cases the use of
MAKE ∧∧ is the only way to refer to the procedure for constructing instances of the base type.

The next two patches define LENGTH and WIDTH to be synonyms for LEN and WID. Any reference
to (! LENGTH X) will be translated into (! LEN X), in-line, and similarly for WIDTH.

The last two patches define PRIMARY-SUPPLIER to be the first in the list of suppliers. Then
the SUPPLIERS setter must be redefined not to disturb the PRIMARY-SUPPLIER or duplicate it. Be-
cause ALL precedes the symbol PRIMARY-SUPPLIER,DEFTYPE assumes that (!= (! PRIMARY-SUPPLIER
p) s) means (!= (CAR (CDDDDR p)) s).

4.5 OBJECT-ORIENTED PROGRAMMING

NISP provides rudimentary facilities for object-oriented programming, in which computing oc-
curs by passing messages to objects. These facilities are in a state of flux, and will expand to
provide inheritance, separate methods, etc., in the future. For now, there are three basic facilities

CHAPTER 4. NISP TYPE SYSTEM 57

for doing message passing. First, you must define the messages, which are called operations. Do
this with DEFOPFUNC and DEFOPPROC, which are used exactly like DEFFUNC and DEFPROC, except
that an operation definition may have an empty body.

Now you define the objects, in one of two ways. One is with (MAKE-OBJECT clauses), which
returns an object that responds to the operations as specified by the clauses. This is the same
funoid defined in section 3.4, except that in a declaration context the clauses are allowed to
specify the types of their arguments and results.

The other way to define objects is via the HANDLER feature of STRUCTURE types. Without
a handler, a STRUCTURE instance may be thought of as a kind of vector; with the handler, it
becomes something more: an object that can respond to operations as well as having slots. To
create such objects, define a type obtype using a STRUCTURE with a HANDLER, then just execute
(MAKE obtype ...).

Here is an example, a simple “lazy vector” package. A lazy vector is an object that responds
to the operation ELEMENT by yielding an element, which may or may not be computed on demand.

(DEFTYPE lazyvec FORWARD)

(DEFOPFUNC ELEMENT - obj (V - lazyvec I - integer)
;; Default: Just assume V is a real vector
(DECL (V - (VCT obj))

(VREF V I)))

;; Change an element:
(DEFOPPROC SET-ELEMENT - void (V - lazyvec I - integer NEW - obj)

(DECL (V - (VCT obj))
(!= (VREF V I) NEW)))

;; Allow (!= (ELEMENT ...) ...)
(DEFSETF ELEMENT SET-ELEMENT)

Now for the definition of the basic type:

(DEFTYPE lazyvec
(STRUCTURE ELEMENTS

- (VCT (EITHER (CONST *UNCOMPUTED) obj))
METHOD
- (FUN obj (integer)) ; method for computing

; elements on demand
(HANDLER

(ELEMENT - obj (V - lazyvec I - integer)
(COND ((EQ (VREF (! ELEMENTS V) I)

’*UNCOMPUTED)
(LET ((NEW (FUNCALL (! METHOD V) I)))

(!= (VREF (! ELEMENTS V) I) NEW)
NEW))

(T (VREF (! ELEMENTS V) I))))
(SET-ELEMENT - void (V - lazyvec I - integer

NEW - obj)
(!= (VREF (! ELEMENTS V) I) NEW))

(PRINT - void (V - lazyvec S - stream)
(OUT (TO S) "#<LAZYVEC " (! ELEMENTS V) ">"))))

(CONSER (METHOD - (FUN obj (integer)))
(MAKE ∧∧ (INITIALIZED-ARRAY ’(10) ’*UNCOMPUTED)

;; All lazyvecs have ten elements!

CHAPTER 4. NISP TYPE SYSTEM 58

;; Fixing this is left as an exercise.
METHOD)))

Now we can make a lazyvec by writing things like

(!= V1 (MAKE lazyvec (\\ (I - integer) (* 2 I))))

after which (ELEMENT V1 4) returns 8, unless we have done something like (!= (ELEMENT V1
4) ’FOO) first.

But we have more flexibility than this. Suppose we wanted a function to add two lazy vectors,
creating a new lazy vector that always computes values on demand, never allocating storage for
them:

(DEFFUNC LAZYVEC+ - lazyvec (V1 V2 - lazyvec)
(MAKE-OBJECT

((ELEMENT - number (ME - lazyvec I - integer)
(IGNORE ME)
(+ (ELEMENT V1 I) (ELEMENT V2 I)))

(SET-ELEMENT - void (ME - lazyvec I - integer NEW - obj)
(IGNORE ME NEW)
(EARROR SET-ELEMENT NIL

"Attempt to set element " I
" of the sum of two lazy vectors"))

(PRINT - void (ME - lazyvec S - stream)
(IGNORE ME)
(OUT (TO S) "#<LAZYVEC +>")))))

Note that the first argument to a clause function of MAKE-OBJECT will be bound to the object
itself, which we usually don’t need to access.

Now (!= V2 (LAZYVEC+ V1 V1)) returns an object that prints as #<LAZYVEC +>, such that
(ELEMENT V2 3) is 12, and so forth.

Please note the distinction between operations and slot names. A DEFTYPE can associate
slot names with an arbitrary piece of code to be executed when the slot is accessed, but this
association exists only at compile time. The association between ELEMENT and the appropriate
code in the example above is determined at run time. If the lazyvec was returned as the value
of LAZYVEC+, then the sum is computed (after two recursive calls to ELEMENT); if it was created
using MAKE lazyvec, then it is looked up or computed and stored; if neither case applies, then
VREF is used. This added flexibility costs something, but is worth it when we want to create an
abstract class of objects that are to appear uniform under a group of operations, but must be
implemented in a diversity of ways.

Our example is a little misleading. LAZYVEC+ claims to return a lazyvec, but of course the
object it returns will not have an ! ELEMENTS slot, and (IS lazyvec V2) will be #F (because
V2 is not a structure of the right type). What we really want is to be able to create types that
inherit properties from the type lazyvec, so that LAZYVEC+ could return an object that inherited
the property of being a lazyvec. But for now, if you want to be able to test whether something
is a lazyvec, you should define an operation IS-LAZYVEC with default value #F, and provide
clauses to make genuine lazyvecs return Truth.

4.6 TYPE CHECKING

NISP provides mechanisms for checking whether expressions are of allowed types in the contexts
they appear in. The variable TYPE-CHECK* controls whether these mechanisms are on or off.

CHAPTER 4. NISP TYPE SYSTEM 59

If it is #F, then no type checking is done. If it is WARN, then an error message is generated
whenever an expression is encountered in a context where something of its type is not allowed.
If TYPE-CHECK* is BARF, then a read-eval-print loop will be entered at that point, giving you an
opportunity to correct the problem. The default is BARF.

The basic rule is that if an expression of type e is expected, and an expression of type t occurs,
then t must be a subtype of e. Normally function declarations explain what type each of their
arguments is expected to be. If FOO is defined using (DEFFUNC FOO integer (X - integer L
- (LST float)) ...), then the second argument to FOO is expected to be a subtype of (LST
float).

When a type discrepancy is detected, NISP will print an error message, and, if TYPE-CHECK*
is BARF, will print a message of the form

While defining function name
While compiling expression of wrong type --

Expression exp cannot be coerced from type
to expected type.
...
To proceed type OK or RETURN ’<correct coercion>

If you resume from this break point (see section 2.6) with OK, the type discrepancy will be
ignored. If you resume and type RETURN e, then e will be evaluated and substituted for the
expression.

To see more of the context surrounding the error, use DCLSTACK. (DCLSTACK [n 3]) shows
the stack of expressions that are being processed, in a hopefully clear way. The hope is that you
will see something like this:

(FOO (BAZ A)
(BLECH (RACD (*>* (ZOO X))))

The part marked with *>* is the part where the error occurred. If the expression that caused the
error is not a subexpression of the next guy on the stack (usually because of macro expansion),
then a somewhat different format is used. Suppose (ZOO X) is the result of expanding (BUFFALO
X). Then the display would show

(FOO (BAZ A)
(BLECH (RACD (*>* (BUFFALO X)))))

?>*
(*>* (ZOO X))

instead.

In the rest of this section, we will look at ways of understanding — and overriding — the type
checker. The easiest way to override it for a given variable is to declare the variable to be of type
obj; then it can never cause an error message. If all the formal parameters of a function are left
undeclared, then they will all be implicitly declared of type obj. Uninitialized and undeclared
local variable are also of type obj. (Initializing them implicitly declares them to be of the type
of their initial value.)

Often a type is used repeatedly in contexts where the programmer knows it is all right, but
the type system does not. The usual example is where there are two types, super and sub, such
that technically sub is a subtype of super, but often you want to use a variable of type super
where one of type sub is expected. If there are not too many occurrences, then you can change
each occurrence of var to be (BE sub var). This form is not executable, but simply signals the
type system to treat exp as if it were of the designated type.

(BE typ exp) [Other]

CHAPTER 4. NISP TYPE SYSTEM 60

The value of this expression is the value of exp, but the system is informed that exp’s value
will be of type typ at this point. This is analogous to Common Lisp’s THE construct. If
the symbol * appears instead of a type, that means, “Treat exp as the desired type in this
context,” which can save some typing if the desired type is a lengthy expression.

You can use (BE [type | *] exp) on the left-hand side of an assignment (!=). .

In some cases, however, the use of a variable of type super where one of type sub is so frequent
that it gets to be a real nuisance remembering to put a BE around it. The solution is to tell the
system not to notice such violations any more, by executing

(DECLARE-TYPE-ACCEPTABLE ’super ’sub)

(DECLARE-TYPE-ACCEPTABLE got want) [Function]

Tells the type system that an expression of type got should never cause an error in situations
requiring something of type want. This only works for types with atomic names.

DECLARE-TYPE-ACCEPTABLE should be used only when every expression of type got that is
used in a context where want is expected will actually be of type want at run time. Be kind to
your host compiler.

Some types are so vacuous that nothing should ever cause an error by appearing where they
are expected.

(DECLARE-TYPE-ACCEPTABLE ’#F vacuous-type) [Function]

Tells the system about such a type.

It is important to understand how the type-checker thinks in cases where it seems annoy-
ingly stupid. One such case is where a constant symbol is used in a context requiring a typed
expression. For example, suppose that PS is declared of type procstate, Then (!= PS ’IDLE)
will give an error message, because (!= e v) requires that v’s type be a subtype of e’s. PS is of
type procstate, while ’IDLE is of type symbol.

One way to avoid the error is to change the assignment statement to

(!= PS (BE procstate ’IDLE))
or

(!= PS (BE * ’IDLE))

But NISP, anticipating this situation, will suppress the error message all by itself if it can verify
that the datum IDLE is a procstate. If a procstate is nothing but a symbol from a prechosen
list, then the type should have been defined thus:

(DEFTYPE procstate (CONST IDLE RUNNING ...))

The IS-tester for the CONST type will verify that IDLE is a legal value.

If procstates are not this simple, then the user can make sure his own IS-tester is in effect
at compile time thus:

(AUGTYPE procstate
(IS (X)

(OR (EQ X ’IDLE) ...)))

This tactic will work only if the IS-tester is executable at compile time, and if the file containing
the AUGTYPE form is loaded at that time. Usually the file containing the occurrence of ’IDLE
depends on the file containing the AUGTYPE only at run time; wrap a NEEDED-BY-MACROS around

CHAPTER 4. NISP TYPE SYSTEM 61

the AUGTYPE or DEFTYPE for procstate in this case to make sure that the form is evaluated when
its file is “slurped.”

Another class of bugs derives from ambiguities in the types of list-building expressions. In
some contexts an expression like (LIST ’A 5) could be thought of as building an object of type
(LRCD symbol fixnum). In other contexts it could be thought of as building an object of type
(LST sexp). Nisp solves the ambiguity by taking it as the latter type. Hence if an object of the
former type is expected, the use of the (LST ...) expression will cause a type-check error. The
solution is to use a synonym of LIST, LRECORD, which Nisp transforms into an ordinary LIST,
but which always builds an object of type LRCD.

The type boolean behaves somewhat strangely. There is no IS-tester for this type, because
no object would fail the test. But it is considered wrong to use an object of type stream, say,
where a boolean is expected. That’s because a stream can never be #F, and so you should have
used ’#T, an explicit boolean constant. In general, the rule is that an expression is acceptable as
a boolean only if #F (i.e., ()) could be one of its values, in other words, if it is of type boolean,
null, (LST t), (GLST t), or (∼ t), or a subtype of one of these things.

Index

! 30
!> 48
!= 41, 62
!=/ 41
!@ 41
!D 39
!S 39
! 44, 48
− 8
< 7
<! 43
<!S 45
</ 43
<= 7
<? 43
<V 43
<# 43
<#S 45
<$ 43
<& 43
<< 43
< \� 43
> 7
>= 7
\ 29
\\ 22
∼ 51
∧∧ 56
’ 5
() 6
* 8
> 62
- 41
*GEN 45
*INTEGRABLE 55
+ 7
, 16
,@ 16
->FLOAT 7
->INTEGER 7
->PATHNAME 35
/ 8
; 30
= 6, 26
=< 7
? 30, 41

30
#\NEWLINE 10
#\SPACE 10
#\TAB 10
#F 6
#T 6
&FLAG 57
&REST 21–23, 52, 57
‘ 16
| 29

ABS 8
ACOS 8
ADJOIN 15
ADJOIN= 15, 54
ADJOINQ 15
AND 25
APPEND 13
APPLY 22
AREF 17
Array 16, 51
ARRAY-DIMENSION 17
ARRAY-DIMENSIONS 17
ARY 51
ASCII->CHAR 10
ASH 9
ASIN 8
ASSOC 15
ASSOC= 15, 54
ASSOCQ 15
ASSQ 15
ATAN 8
ATAN2 8
ATOM 11
AUGTYPE 56, 63

Backquote 16
BE 62, 63
BIND 24
BIT-FIELD 9
boolean 5, 49, 63
BY 26

CADADR 12
CADD...DDR 12
CADR 12
CAR 12

62

INDEX 63

CAR-EQ 13
CDR 12
CEILING 8
CEILING2 8
char 49
CHAR< 10
CHAR> 10
CHAR>= 10
CHAR+ 10
CHAR- 10
CHAR->ASCII 10
CHAR->STRING 19
CHAR->SYMBOL 19
CHAR-DOWNCASE 10
CHAR-UPCASE 10
CHAR= 10
CHAR=< 10
character 10
CHARCEIL* 10
CHARFLOOR* 10
CLEAR-INPUT 32
CLOSE 31
Compilation 37
COMPLEMENT 15
COMPLEMENT= 15, 54
COMPLEMENTQ 15
COND 25
CONDENSE 14
CONS 12
CONS-PATHNAME 35
CONSET 14
CONST 51, 63
COPY-LIST 13
COPY-TREE 13
COS 8
CR 5

Data-Driven Programming 28
DATAFUN 28
DATAFUN-TABLE 29
DCLSTACK 62
DECL 53
DECLARE-TYPE-ACCEPTABLE 62, 63
DEFCLASS 46
DEFFUNC 52
DEFMACRO 22
DEFOP 46
DEFOPFUNC 52, 59
DEFOPPROC 52, 59
DEFPROC 52
DEFSETF 25
DEFTYPE 55
DEFUN 21
DEFVAR 24
DEPENDS-ON 36

DISPLAYWIDTH 33
DNODUP 16
DNODUP= 16, 54
DNODUPQ 16
DO 26
DREMOVE-EVERY 14
DREMOVE-EVERY-IF 15
DREMOVE-EVERY= 14, 54
DREMOVE-EVERYQ 15
DREMOVE1 14
DREMOVE1-IF 15
DREMOVE1= 14, 54
DREMOVE1Q 15
DREVERSE 13
DROP 12
DSKLAP 36
DSKLAP-COMPILE* 36

EARROR 38
EITHER 51
EQ 6
EQL 6
EQU 54
EQUAL 6
Error 38
ERROUT 30
ERROUT-SET 30
EVALFILE 35
EXISTS 27
EXP 9
EXPT 9
EXTRUDE 45

Filename 34
FILESPECS->PATHNAMES 35
fixnum 50
FL< 9
FL> 9
FL>= 9
FL* 9
FL+ 9
FL- 9
FL/ 9
FL= 9
FL=< 9
FLABELS 24
float 50
FLOOR 8
FLOOR2 8
FLRANDOM 9
FOR 27
FORALL 27
FORCE-OUTPUT 33
form 50
FORWARD 56
FRESH-TABLE 19

INDEX 64

FUN 51
FUN-NAME 23
FUNC 52
FUNCALL 22
FUNCTION 22
FUNDEF->FUN 23
FUNDEF->LAMBDA 23
FUNKTION 22
FX< 9
FX> 9
FX>= 9
FX* 9
FX+ 9
FX- 9
FX/ 9
FX= 9
FX=< 9
FXRANDOM 9

GCD 8
GEN 45
GENERATED-BY 45
GENSYM 11
GET 11
GET-FUNDEF 23
GLST 50
GSET 25
GVAL 5

HANDLER 56, 57, 59
Hash Table 19
HOST-DIALECT* 38
HOST-SYS* 38
HTB 51

IF 25
IF-IS 54
IGNORE 22
IN 26, 33, 45
INCLUDE-IF 16
INITIALIZED-ARRAY 17
integer 50
INTERCEPT 27
INTERSECTION 15
INTERSECTION= 15, 54
INTERSECTIONQ 15
IS 44, 49
IS-ALPHABETIC 10
IS-ARRAY 17
IS-CHAR 10
IS-DIGIT 10
IS-EOF 31
IS-EVEN 7
IS-FIXNUM 7
IS-FLOAT 7
IS-FUN-NAME 23

IS-HASH-TABLE 19
IS-INTEGER 7
IS-LOWER-CASE 10
IS-MACRO 24
IS-MAGIC 24
IS-NUMBER 7
IS-ODD 7
IS-PAIR 11
IS-PATHNAME 35
IS-RATIO 7
IS-RATIONAL 7
IS-STRING 18
IS-SUBLIST 15
IS-SUBLIST= 15, 54
IS-SUBLISTQ 15
IS-SYMBOL 11
IS-TAIL 13
IS-testable types 49, 56
IS-UPPER-CASE 10
IS-VECTOR 17
IS-WHITESPACE 10

LAMBDA 21
lambda-exp 50
LASTELT 12
LASTTAIL 12
Lazy List 44
LAZYLIST 45
LCONC 13
LDIFF 13
LEN 12
LENGTH 12
LET 24
LIST 12, 63
list 11
LIST->STRING 18
LIST->SYMBOL 18
LIST->VALUES 28
LIST->VECTOR 17
LIST-CONCAT 13
LIST-COPY 13
LIST-ELT 12
LIST-LENGTH 12
LIST-SUBSEQ 12
LISTEN 32
LOADOREVAL 35
LOG 9
LOGAND 9
LOGIOR 9
LOGNOT 9
LOGXOR 9
LOOP 26, 45
LRCD 50, 63
LRECORD 63
LST 50, 63

INDEX 65

LSTRUCTURE 57

macro 50
MACRO-EXPAND-EXP 24
MAKE 49
MAKE-ARRAY 17
MAKE-EQ-HASH-TABLE 19
MAKE-OBJECT 46, 59
MAKE-VECTOR 16
MAPELTAND 20
MAPELTAPPEND 20
MAPELTCOLLECT 20
MAPELTCONC 20
MAPELTDO 20
MAPELTLIST 20
MAPELTOR 20
MAPELTREDUCE 20
MAPELTSOME 20
MAPMAC 44
MAPTAILAND 20
MAPTAILAPPEND 20
MAPTAILCOLLECT 20
MAPTAILCONC 20
MAPTAILDO 20
MAPTAILLIST 20
MAPTAILOR 20
MAPTAILREDUCE 20
MAPTAILSOME 20
MATCH-COND 42
MATCH-VARS-BIND 42
MATCHQ 41
MAX 7
MEMBER 14
MEMBER= 14, 54
MEMBERQ 14
MEMQ 14
MERGE-PATHNAMES 35
MIN 7
MLV 51
MOD 8
MSG 34
MULTIPLE-VALUE-CALL 28
MULTIPLE-VALUE-LET 28
MULTIPLE-VALUE-LIST 28
MULTIPLE-VALUE-SETQ 28

NAMED 57
NCONC 13
NEEDED-BY-MACROS 37, 63
NEG 44
NEWLINE* 32
NIL 5
NISCOM 38
NODUP 15
NODUP= 15, 54
NODUPQ 15

NORMALIZE 45
NOT 6
NTHELT 12
NTHTAIL 12
NULL 12
null 49
number 7, 50
NUMBER->STRING 19

obj 49
Object 46
Object-Oriented Programming 59
ONE-MACRO-EXPAND 24
ONE-VALUE 28
OPENI 31
OPENO 31
Operation 46
OPFUNC 52
OPPROC 52
OR 25
OUT 33

PASS 27
pathname 50
PATHNAME->STRING 35
PATHNAME-DEVICE 34
PATHNAME-DIRECTORY 34
PATHNAME-HOST 34
PATHNAME-NAME 34
PATHNAME-TYPE 35
PATHNAME-VERSION 35
PLIST 11
POP 14
Predicate 5
PRINT 46
PRINTWIDTH 33
PROBEF 35
PROC 52
PROCLAIM 24
PROG 24
PROG1 5
PROG2 5
PROGN 5
PROP 11
Property List 11, 28, 29, 57
PUT-FUNDEF 23

QUOTE 5
QUOTIENT 8

ratio 50
rational 50
RCD 51
READ-OBJECTS-FROM-STRING 32
READMAC 30
REBIND-ERROUT 30

INDEX 66

REBIND-STDIN 30
REBIND-STDOUT 30
REMAINDER 8
REMOVE-EVERY 14
REMOVE-EVERY-IF 15
REMOVE-EVERY= 14, 54
REMOVE-EVERYQ 15
REMOVE1 14
REMOVE1-IF 15
REMOVE1= 14, 54
REMOVE1Q 15
REMPROP 11
REVERSE 13
RMV-IF 44
ROUND 8
ROUND2 8

SAR 44
SDR 44
SELQ 26
Sequence 18
SERIES 14
SETF 25
SETQ 25
Settable Functions 5
Settable functions 48, 56
sexp 50
SIN 8
Slurping 36, 48, 63
SORT 13
SPECDECL 53
SQRT 9
SRMBPRINT 32, 34
SRMCURRCOL 33
SRMDISPLAY 32
SRMLINELENGTH 33
SRMLINEREAD 32
SRMLINES 33
SRMMSG 34
SRMNEWLINE 32
SRMPEEKC 31
SRMPRINLEV 32
SRMPRINT 32
SRMPRINTC 32
SRMREAD 31
SRMREAD-LINE 32
SRMREADC 31
SRMSPACES 32
SRMTAB 32
STDBPRINT 32, 34
STDCURRCOL 33
STDDISPLAY 32
STDIN 30
STDIN-SET 30
STDLINELENGTH 33

STDLINEREAD 32
STDLINES 33
STDMSG 34
STDNEWLINE 32
STDOUT 30
STDOUT-SET 30
STDPEEKC 31
STDPRINLEV 32
STDPRINT 32
STDPRINTC 32
STDREAD 31
STDREAD-LINE 32
STDREADC 31
STDSPACES 32
STDTAB 33
stream 30, 50
string 17, 49
STRING->LIST 18
STRING->NUMBER 19
STRING->SYMBOL 18
STRING-CONCAT 18
STRING-COPY 18
STRING-DOWNCASE 18
STRING-ELT 18
STRING-LENGTH 18
STRING-SUBSEQ 18
STRING-UPCASE 18
STRUCTURE 56, 59
SUBST 16
SUBST= 16
SUBSTQ 16
SWITCH 41
SYMBOL 11
symbol 11, 49
SYMBOL->FUN 23
SYMBOL->LIST 18
SYMBOL->STRING 18
SYMPLIST 58

T 5
TABLE-ENTRY 19
TAKE 12
TAN 8
TCONC 13
TO 26
TRUNCATE 8
TRUNCATE2 8
Truth 6
TTYIN* 31
TTYMSG 34
TTYOUT* 31
TYPE-CHECK* 61
type-var-lists 52

UNION 15
UNION= 15, 54

INDEX 67

UNIONQ 15
UNWIND-PROTECT 27

VALUES 28
VCT 51
VECTOR 17
Vector 16, 30, 51, 56, 59
VECTOR->LIST 17
VECTOR-CONCAT 17
VECTOR-COPY 17
VECTOR-ELT 17
VECTOR-LENGTH 17
VECTOR-SUBSEQ 17
void 49
VREF 17

WALK-TABLE 19
WITH 54
WITH-INPUT-FROM-FILE 31
WITH-INPUT-FROM-STRING 31
WITH-OUTPUT-TO-FILE 31
WITH-OUTPUT-TO-STRING 31

