
A Framework for Maintaining the Coherence
of a Running Lisp

Drew McDermott
Yale Computer Science Department

P.O. Box 208285
New Haven, CT 06520-8285
drew.mcdermott@yale.edu

Keywords: Inference, algorithms, consistency.

Abstract

During Lisp software development, it is normal to revise and reload programs and data structures
continually. The result is that the state of the Lisp process can become “incoherent,” with updates to
“supporting chunks” coming after updates to they chunks they support. The word chunk is used here
to mean any entity, content, or entity association, or anything else modelable as up to date or out of
date. To maintain coherence requires explicit management of an acyclic network of chunks, which can
depend on conjunctions and disjunctions of other chunks; further, the updating of a chunk can require
additional chunks. In spite of these complexities, the system presented in this paper is guaranteed to
keep the chunk network up to date if each chunk’s “deriver” is correct, the deriver being the code that
brings that chunk up to date.

Lisp novices are often surprised to find out that Lisp is a “shell” as well as a compiler. Unlike C++
or Java, one starts Lisp, loads functions and data into it, and plays around with them. The advantages
of this architecture are well known: it’s easy to modify the system incrementally — and experimentally;
it’s easy to combine two or more programs; the debugger is easily integrated with the rest of the run-time
system; and so forth.

Because the typical Lisp session lasts a long time, the programmer must worry about keeping it in a
“good” state. Tools for maintaining “goodness” incude features such as unwind-protect, which ensure that
even when a program bombs its sensitive side effects can be undone. Although the same functionality can
be found in other languages (e.g., Java’s finally clauses), only in Lisp is it a routine tool used by the
programmer to ensure that the current core image can continue to execute in what I will call a coherent
state. Another example is the distinction between defvar and defparameter, which would be meaningless
in most languages, but in Lisp is crucial to making sure that one can reload a file while undoing “just the
right set” of global-variable assignments since the file was last loaded.1

However, the built-in facilities of Lisp do not address the coherence problem in any systematic way.
For example, although it is easy to reload a file after making some bug fixes, it often happens that the
reloaded file initialized some table, and entries were made in it by files loaded later. The other files must
then be reloaded, unless that causes further glitches. Sometimes one can use defvar to avoid reinitializing
the table, but sometimes that’s simply inadequate; some of the later entries are to be retained and some
discarded, and there’s no obvious way to sort them out. Often one must resort to restarting Lisp and
reloading the program’s files in the original order.

There is nothing really wrong with restarting. It often requires you to take special measures to get back
to the point you were at before the restart. Every Lisp programmer has had to build “restart scripts,”
sequences of expressions whose evaluation will get the Lisp back to the middle of a debugging sequence.
Aside from this nuisance, it seems as if there ought to be a way to formalize the dependencies among the
parts of a Lisp “session” in such a way that revising one part causes the other parts to revise themselves to
restore coherence. Rather than maintaining a collection of ad-hoc restart scripts, one could instead assert

1Lisp is not entirely alone in having coherence issues. Prolog makes an analogous distinction in its distinguishing between
loading and reloading a file. And, of course, Prolog also has the analogue of a read-eval-print loop.

the relationships among parts explicitly and permanently. The explicit statement allows anyone reading
the code to understand how the parts relate. The fact that the assertions are permanent means that as
further system development occurs, the smooth functioning of pieces developed earlier can be taken for
granted.

One symptom of the absence of such a formal theory of session coherence is how hard it is to get
defsystem right.2 defsystem is, of course, the Lisp world’s analogue of make. There are several versions
of it. Some are complex, some simple. Some are “procedural” and some “declarative.” The former are
more like make in that they mainly organize sequences of actions in the space of compiling and loading
files. “Declarative” systems attempt to define a system as a collection of files on which different operations
can be defined. The popular ASDF [5] seems to have caught on quickly because it is cleanly written and
supplies a nice distributed package-management facility. None of these systems address the issues dealt
with here, including how to keep a system coherent as different versions of files are loaded.

The present paper may be related to work on persistent objects [1, 2], in that it connects entities in
process memory to entities in long-term storage. It is possible that such a facility might be useful as a
foundation for the system I describe, but, as we will see, the real problem is getting the logic right. The
details of how objects and their interdependencies are implemented are not that crucial.

1 Chunks

We introduce the term chunk to mean a piece of information in a particular state, form, or location.
Examples of chunks are

• A file

• A Lisp file as loaded into memory in an executable form

• In a table of S-expression handlers, the subset corresponding to executable Lisp expressions whose
cars are one of the built-in Lisp special operators

• An association between two directories S and C, such that object files compiled from source files in
S belong in C.

The components of the Chunk data structure will be unfolded as this paper progresses. However, one
thing that will in general not appear as part of a chunk is the entity that it keeps track of. For one thing,
there may be no such entity. The chunk for “File foo loaded into memory” does not correspond to any
information not found in foo. If a chunk depends on no other chunk it is said to be given; otherwise, it is
derived. The information associated with a given chunk is set from outside the system, and so is likely to
be describable by a noun phrase, such as “Contents of file F.” If no noun phrase is applicable, as is usually
the case with derived chunks, I will use a declarative phrase, such as “File F is loaded.” Either way, we say
the chunk manages the noun phrase or the statement: “Chunk C manages ‘File F is loaded’.” If derived
chunk C manages P , then C is up to date when and only when P is true. A given chunk, by contrast, is
up to date when and only when the system knows the date when the information it manages last changed.
In general, the goal of the coherence system is to make sure that all3 chunks are up to date

A chunk can obviously be almost any piece or state of information, but the intent is that it be “largish.”
If a spreadsheet cell is supposed to hold the total of a column of cells, that could be analyzed as a chunk

2See [4] for a discussion of some of the issues involved in the design of system-description macros.
3I’ll qualify this quantifier shortly.

(managin “The total of those numbers is stored in that cell”), but the mechanisms I propose may not be
cost-effective for something so small, especially if the chunks change frequently.4

I introduce the generic function derive that brings a chunk up to date: For a derived chunk, (derive c)

computes something, moves something around, translates something, or does some other transformation of
data. For a “given” chunk, derive just verifies the date when the content the chunk manages last changed.
All the chunk-management system knows is what is revealed by the return value of derive. If it returns
nil, it has determined that the chunk is already up to date. If it returns a number > 0, that means that
it or someone else changed something, and that the number is the exact time when the change occurred.
Time can be measured in whatever scheme is convenient (so long as it’s expressible by a number, and so
long as all the chunks connected to each other use the same scheme).

On some occasions it is useful to determine the date of a chunk without running its deriver (i.e., the
method supplied for derive applied to chunks of this class). The generic function (derive-date c) finds the
date at which c was last derived, if possible. When the date is not available, the deriver may return nil,
meaning that one should assume the previously stored date to be accurate, or the constant +no-info-date+
(an integer < 0, and hence not a legal date), meaning that there is no way to know the date without calling
derive. Which of these is appropriate depends on exactly what the chunk manages.

An obvious, and classic, example of a dependency among chunks is the relation between an object file
and its source file. When its source file changes, the object file is out of date. We identify two chunks here
(to start with): one managing the source file and one managing “The object file is the result of compiling
the source file.” If the source file changes, then the compiled file must be rederived; that is, derive must be
applied to it, and the method for derive must call the compiler to recompile it. We use the term basis for
the set of chunks that a given chunk depends on in this way: If chunk F is in the basis of chunk G, then if
F changes G must be recomputed — or placed anew, or transformed, or whatever operation corresponds
to G’s being “up to date.” G is said to be a derivee of F .

There is one escape clause, however. A chunk can exist but be dormant, in the sense that the chunk
system is not required to track it. Application programs tell the chunk system when to flip the chunk from
dormant to managed, the term I’ll use for a chunk that the chunk system must keep up to date. I’ll return
to this issue in section 2.

Dependencies are of three sorts:

1. Conjunctive: This is what is captured by the chunk’s basis. If the basis of C is {B1, . . . , Bn}, then
C must be changed whenever some of the Bi have changed, but only after all have been brought up
to date.

2. Disjunctive: A special class of Chunks are the or-chunks. In addition to a basis, such a chunk has
a non-empty set of disjuncts. The or-chunk is up to date if one of its disjuncts is (in addition to its
basis).

3. Transient: Sometimes a chunk C is not dependent on chunk R, but cannot be updated unless R is
up to date. The set of such R’s are said to be the update basis of C.

The chunk network of figure 1 provides an example. Chunk C2 represents the compiled version of
file file2.lisp, itself represented by chunk F2. In addition, F2 uses macros defined in file file1.lisp,
represented by chunk F1. That means C2 depends on the chunk M1 =(:macros file1.lisp), which
represents the macros in F1. Hence, file2.lisp needs to be recompiled if either file2.lisp or M1
changes. In chunk jargon, C2, if it is managed, seems to have as its basis {F2,M1}. (M1, in turn, has
{F1} as its basis.)

4Tilton’s [6] CELLS system provides spreadsheet-like functionality in Lisp. The issues that arise in that application are, as
we will see, not the same as the ones I am talking about.

file2.fasl is
the

compiled
version of
file2.lisp

C2

File
file2.lisp

F2

File
file1.lisp

Macros
defined in
file1.lisp

F1

M1

Macros of
file1.lisp

are loaded

LM1

file1.lisp
has been
loaded

file1.lisp
has been

slurped for
macros

SM1L1

Fig 1: Dependencies among file chunks

c

d

h

Fig 2: Unstable
dependency cycle

But that’s not quite adequate. If file2.lisp actually needs to be recompiled, it is not enough that
M1 be up to date; it is also required that the macros in file1.lisp be loaded into the running Lisp. We
introduce a new chunk LM1 =(:loaded (:macros file1.lisp)). LM1 can be brought up to date by going
through the file and evaluating all the macro definitions it contains. I’ll call this slurping the file. It’s
unusual to make use of a slurper in the Lisp world, but bear with me. LM1 must be up to date in order
to bring C2 up to date, that is, in order to compile file2. So the set {LM1} is the update basis of C2;
this is a transient dependency (indicated by an arrow with a double white head).

We go on to observe that, if file1.lisp or its compiled version has been loaded, it is unnecessary
to slurp it. So LM1 must be an or-chunk, with two chunks as disjuncts: L1 =(:loaded file1.lisp)

and SM1 =(:slurped (:macros file1.lisp)). The second is marked as the default disjunct of LM1
(indicated by the double-headed black arrow pointing to the triangle indicating disjunction). To ensure
that a managed or-chunk always has a current selection (a managed base), we require that every or-chunk
have a default disjunct, the one that gets managed if none of the others are.

The default method for derive applied to an Or-chunk is instructive:

(defmethod derive ((orch Or-chunk))
(let ((date nil))

(dolist (d (Or-chunk-disjuncts orch)
(or date

(error
"No disjunct of or-chunk ~s is managed and up to date"
orch)))

(cond ((and (Chunk-managed d)
(chunk-up-to-date d))

(cond ((or (not date)
(and (< (Chunk-date d) date)

(>= (Chunk-date d) 0)))
(setq date (Chunk-date d)))))))))

Subclasses of Or-chunk may need to do more, but a “bare OR” simply represents that one of its disjuncts
is up to date. The method just searches through the disjuncts checking the dates of the managed, up-to-
date disjuncts, and returns the date of the one brought up to date earliest. It turns out that we don’t need
another slot in the Chunk class to keep track of its current selection; we just store a singleton list with its
current selection as the chunk’s update basis. The semantics are exactly as required: that the selection be
up to date at the point where the or-chunk is derived.

It would nice if we could insist that every derive method be purely local, in the sense that it does
absolutely nothing except bring the chunk up to date, and in particular does not change the chunk network
or the state of any chunk besides itself. Unfortunately, in realistic systems some chunks’ purpose is to mess
around with other chunks. For example, if a file F specifies in its header what other files are required to
be loaded before it is loaded, then the chunk managing “F ’s header is loaded” will alter the basis of the
chunk managing “file F is loaded.”

In the rest of the paper, I will use the following terminology. An immediate supporter of a chunk C is
an element of its basis, or its default disjunct if C is an or-chunk. The supporters of C are those chunks
related by the transitive closure of the “immediate supporter” relation.

The height of a chunk is then defined in the obvious way. If the chunk is not an or-chunk and has an
empty basis, then it is called a leaf chunk, and has a height of 0. Otherwise, its height is 1 + the height of
its highest immediate supporter.

2 Keeping Track of Managed Chunks

Each chunk contains two binary flags, manage-request, which keeps track of whether the user has requested
that the chunk be managed; and managed, which is true if manage-request is true, or if it is necessary to
manage this chunk in order to manage one of its derivees. I will use the letter R to abbreviate the
manage-request markers on chunks. A marking R is a function that assigns R(c) = t to a chunk c if and
only if the user has requested that c be managed. A marking M is a similar function: M(c) = t iff c is
managed.

If M(c) = t, a local cause of M(c) with respect to a given M and R is one of three things:

1. c itself, in the case where R(c) = t;

2. a chunk d such that c is an element of the basis of d and M(d) = t;

3. or an or-chunk h such that c is the default disjunct of h, M(h) = t, and for every other disjunct c′

of h, M(c′) = nil.

A supporting path for M(cn) with respect to M and R is a sequence of chunks c0, c1, . . . , cn such that
M(ci) = t for all i ∈ [0, n], R(c0) = t, and for all i ∈ [0, n − 1], ci is a local cause of M(ci+1). (n may
= 0.) A supporting path c0, . . . , cn is always in the “down” direction: ci has height greater than ci+1, and
a change in the management status of ci can cause a change in the management status of ci+1, but never
vice versa.

An M is a closure of R if

{c|M(c) = t} = {c| there is a supporting path for M(c) with respect to M and R}

There is in general more than one possible closure. A key job of the chunk-management system is to find
one of them. It is carried out by two mutually recursive programs, chunk-manage and chunk-unmanage,
which are called to bring the management flags back to closure after the user calls chunk-request-mgt or
chunk-terminate-mgt to change the manage-request flag of some chunk.

(chunk-manage c) is called whenever a local cause for c to be managed is detected. (chunk-unmanage

c) is called whenever the last local cause for c to be managed is removed. chunk-manage’s essential task is
to make sure that the basis of a managed chunk is managed, which is a simple recursion. chunk-unmanage

checks to see if ceasing to manage chunk c removes the last local cause for some of the chunks in its basis,
and if so unmanages them as well. These simple recursions are made more complex by the existence of or-
chunks. Suppose a chunk c becomes managed, at which point it is the only managed non-default disjunct
of or-chunk h. Call the default disjunct d. If h itself is managed, then it was a local cause for d with
respect to the previous set of management markings. In the new set h provides no cause for d to become
managed, so if there is no other cause, chunk-unmanage must be called to mark it unmanaged. The opposite
flip can occur when c becomes unmanaged. Without or-chunks, (un)management propagation would be
monotonic, and it would obviously converge to a closed set of marks M . Or-chunks make it nonmonotonic,
in the sense that marking one chunk can cause another to become unmarked. This raises the possibility of
infinite loops.

In fact, it is not hard to construct a network of chunks that does allow infinite loops. Figure 2 shows
the simplest case. Here or-chunk h has two disjuncts c and d, with d being the default. d’s basis happens
to be {c}. Initially none of the chunks is managed. If chunk-manage is called with h as argument, it first
sets M(h) = t, then M(d) = t, then M(c) = t. At this point there is no longer any local cause for d, so it
becomes unmanaged. Now there’s no reason to manage c, so In this case there isn’t a legal marking.
In other networks there are multiple possible markings; in others, various combinations must be tried until
a stable labeling can be found.

In all of these examples, the chunk network contains a certain kind of pathological subgraph. A down
link is a pair of chunks 〈c1, c2〉 such that c2 is an immediate supporter of c1. A lateral chain is a sequence
c, h, d1, d2, . . . , dn, where h is an or-chunk, d1 is its default chunk, c is another disjunct of h, and for all i
such that 1 ≤ i < n, 〈di, di+1〉 is a downlink. Note that such a chain is defined independent of any marking
of the chunks (cf. supporting paths). The idea is that for some assignment of “managed” or “unmanaged”
status to the nodes involved, a change in the management status of c can cause a change in the status of
d1 and hence to dn.5 This is called a lateral chain because it allows management marks to flow from a
chunk at one height to a chunk at some unpredictable other height. A lateral cycle is defined as a series
c0, . . . , cn such that cn = c0 and for all i ∈ [0, n − 1], there is a lateral chain connecting ci and ci+1. It is
fairly straightforward to prove:

Theorem: manage and unmanage can get into an infinite recursion only if one of them is
applied to a chunk c0 that is part of a lateral cycle c0, . . . , cn.

Unfortunately, lack of space prevents me from including the proof here.
This theorem is good news, because it means a simple algorithm can handle all the nonpathological

cases, and detect the pathological ones. It is easy to see why lateral cycles are pathological. The purpose
of or-chunks is to allow for a default information source to be supplanted by a larger source once there is
a reason to load it. In a lateral cycle, each chunk ci plays the role of “default subset” in the lateral chain
to its left, and as “contingent superset” in the lateral chain to its right. It would be unusual to see this
pattern carried out for two or three iterations, but downright absurd to see it form a cycle, because the
intuitive subset/superset picture would result in a chunk being a superset of itself.

Hence rather than try to develop sophisticated algorithms for coping with lateral cycles, we adopt the
much simpler tactic of detecting them and signaling an error. This is easy to do. We simply augment
chunk-manage with code to set the management state of its argument to :in-transition; and augment

5Actually, there are chunk graphs in which a given lateral chain can never become a conduit in this way, because the
required marking is not in fact consistent with the graph’s topology. As will shortly become clear, we err on the side of caution
by regulating all lateral chains, not just those that are effective.

chunk-unmanage with code to check whether the state = :in-transition, indicating an attempt to reset
before the completion of a set.

3 Updating Chunks

A chunk actually does something useful when it is updated, meaning rederived if necessary so as to be
consistent with its supporters. Exactly how it is determined that some chunks require updating is outside
the scope of the chunk system. For instance, consider the (leaf) chunk corresponding to the contents of
a source file. Its deriver does not do anything to the contents of the file, but merely changes the chunk’s
date, if necessary, to equal the write date of the file. There may perhaps be a way to have the file system
send a signal to Lisp when the write date changes, but for now I assume that after editing a file the user
tells the chunk system to check the new write date and infer the consequences of its having changed.

The program that takes over at this point is called chunks-update (plural because in the general case we
have a set of chunks that have changed). The job of (chunks-update chunks) is to rederive all the chunks,
but it takes this opportunity to update all the supporters and derivants of the directly affected chunks.
(Chunk c1 is a derivant of c2 if c2 is a supporter of c1.) This is a surprisingly complex operation, because
of two factors:

1. At the time a chunk is derived, its update basis (p. 3) must be up to date.

2. Updating one chunk may cause the basis of other chunks to change.

Setting these two factors aside for the nonce, the basic algorithm is fairly standard:

(defun chunks-update (chunks)
(let (derive-mark)

(labels ((chunks-leaves-up-to-date (chunkl)
(let ((need-updating ’()))

(dolist (ch chunkl need-updating)
(let ((sl (check-leaves-up-to-date ch)))

(setq need-updating
(nconc sl need-updating))))))

(check-leaves-up-to-date (ch)
(chunk-derive-date-and-record ch)
(cond ((and (chunk-is-leaf ch)

(= (Chunk-date ch) +no-info-date+))
(chunk-derive-and-record ch)))

(let ((to-be-derived
(check-from-derivees ch)))

(cond ((chunk-is-leaf ch)
to-be-derived)
(t
(nconc

to-be-derived
(chunks-leaves-up-to-date

(Chunk-basis ch)))))))

(check-from-derivees (ch)
(let ((updatees

(remove-if
(lambda (c)

(of (chunk-up-to-date c)
(not (Chunk-managed c))))

(set-latest-support-date ch))))
(cons ch

(chunks-leaves-up-to-date updatees ’()))))

(derivees-update (ch)
(cond ((and (Chunk-managed ch)

(not (Chunk-derive-in-progress ch))
(not (chunk-date-up-to-date ch))
;; Run the deriver when and only when
;; its basis is up to date --
(every #’chunk-up-to-date

(Chunk-basis ch))
(not (chunk-is-marked ch derive-mark)))

(chunk-mark ch derive-mark)
(chunk-derive-and-record ch)
(derivees-derivees-update

(Chunk-derivees ch)))))

(derivees-derivees-update (l)
(dolist (d l)

(dolist (c (set-latest-support-date d))
(derivees-update c)))))

;; BODY OF LABELS BEGINS HERE

(setq derive-mark chunk-event-num*)
(setq chunk-event-num* (+ chunk-event-num* 1))
(let ((chunks-needing-update

(chunks-leaves-up-to-date chunks ’())))
(dolist (ch chunks-needing-update)

(derivees-update ch ’()))))))

The final version of the algorithm is much more complex than this, but we can already discern some
subtleties. The function chunks-update calls a few important subroutines:

• (set-latest-support-date c): Compute the date of the most recently updated base of chunk c. If
it is later than c’s latest-support-date, reset that slot of c, and repeat the computation for each
derivee of c. Returns a list of all the derivants of c the date of whose most recently changed supporter
has changed.

• (chunk-derive-and-record c): Apply derive to c, and change c’s date to the date returned by derive

if it is later than c’s old date. While this is going on, set the derive-in-progress slot of c to t.

• (chunk-derive-date-and-record c): Apply derive-date to c, and set c’s date accordingly. Returns t

if the new date is newer than c’s old date.

• (chunk-mark c m) and (chunk-is-marked c m): See below.

The chunks-update algorithm proceeds in two phases6: During the outer call to chunks-leaves-up-to-date,
it sweeps through the chunk network finding all the “questionable” chunks reachable from the given list.
A chunk is questionable if it is managed, it is out of date, and either it is in the list chunks, or it sup-
ports a questionable chunk, or it is derived from a questionable chunk. The out-of-dateness test is not

6For brevity, I’ve omitted the — entirely straightforward — code that checks for support cycles during the sweeps through
the chunk network.

performed using the dates pasted on chunks when the sweep starts, but on the dates that emerge when
leaves supporting questionable chunks are (re-)derived.

This sweep returns a list of non-leaf questionable chunks. In the second phase, the outer call to
derivees-update, these chunks are re-derived. Note that derivees-update simply discards a chunk whose
basis is not up to date. That’s because the questionable basis chunks must themselves be on the list of
chunks to try deriving; when derivees-update gets to them, and re-derives them, it will then call itself
recursively to derive their derivees. Eventually all questionable derivees will be updated, except for the
rare cases in which derive determines that a questionable basis is up to date after all.

The algorithm uses a marking scheme to ensure that no chunk is derived more than once. The global
fixnum chunk-event-num* is stored as derive-mark, and then incremented so that the same number is never
used again. Whenever derive is applied to a chunk, the chunk’s update-marks is field is used to record
that it is now marked with derive-mark. The function chunk-is-marked checks to see whether the chunk
has already been marked with derive-mark. If the report is positive, then the chunk is not derived again.
Through all the complexities that are added to chunks-update, this property is preserved, because no
matter how the chunk network changes, the deriver of a chunk is supposed to take all relevant data into
account when it runs.

Lack of space prevents me from a thorough description of the actual chunks-update program. The
following is a very skimpy sketch of the layers of complexity that must be added to the basic code above.

The update basis of a chunk must be up to date before the chunk is derived. This requires a change
to derivees-update. However, before control gets to that point, the update basis must be managed, or its
components will not be updated. We must add code to check-leaves-up-to-date to call chunk-manage on
the update basis of a chunk that might be updated. All such temporarily managed chunks are placed on a
list, and when chunks-update is finished, it calls chunk-unmanage on them. This code is unwind-protected
so that the temporary management is undone even if chunks-update terminates in some abnormal way.

In addition to the derivation mark, the chunk-update system must use different marks to mark chunks
that have been seen during chunks-leaves-up-to-date and those seen during derivees-update. The same
global counter, chunk-event-num*, is used for this purpose, and we call the two marks down-mark and
up-mark respectively. We do not provide three slots on each chunk to keep track of these marks, because
of the possibility of unexpected calls to chunks-update, a topic to which I now turn.

As I have mentioned more than once, there is no way to keep chunk derivers from calling chunks-update.
When it happens, we must let the call proceed, because it may change the outcome of the current call. For
instance, one system of chunks may keep track of which files depend on which other files, while another
keeps track of the compilation and load states of files. During an update of the latter system, an update of
the former may occur, thus changing which files should be be compiled or loaded. We can say informally
that the first system is “meta” to the second, but I’ve made no input to introduce explicit “layers” and
“metalayers” to the chunk system. Instead, when a call to chunks-update detects that another call has
happened, it simply restarts.

Restarting means allocating new values for down-mark and up-mark, then marking from chunks all over
again. The way marks are managed is that each chunk has a list of marks. To tell if a chunk is marked
with m, the system checks to see if m is in the list. Rather than use member, as it traverses the list it
deletes marks that are no longer in use. To tell if a mark is still in use requires chunks-update and other
“mark-allocating” functions to discard marks they have allocated; this occurs when chunks-update exits,
normally or abnormally.

Although the details of this scheme are entirely orthogonal to chunk management, it does give us
an easy way of testing whether chunks-update has been called by someone while chunks-update was in
progress: simply check to see if some other process has allocated a chunk mark. When this event is
detected, chunks-update drops what it is doing, and restarts.

4 Applications and Conclusions

The biggest application of the chunk system is the YTools File Manager (YTFM) [3], but is impossible to
talk about all its intricacies in the space available. Besides, a simple example will show better how much
value is added by using chunks.

Let’s suppose that a file tab.lisp initializes a table with some sort of S-expression handlers, each
associated with a symbol that can occur as the car of an S-expression. In tab.lisp we can have this code:

(declare-chunk handler-table-init
:contents

((defparameter handler-table* (make-hash-table ...))))

In a later file handlers.lisp we can write

(declare-chunk special-form-handlers (:depends-on handler-table-init)
:contents

((setf (gethash ’cond handler-table*)
(lambda (x y z) ...))

(setf (gethash ’let handler-table*)
(lambda (x y z) ...))))

To make the declare-chunk macro work, all we need to do is define a class File-segment-chunk, which has
two kinds of base chunk: the File-chunk of the file the chunk declaration appears in, and the chunks it
is declared to depend on. The File-chunk abstraction is supplied by the YTFM, as is the closely related
Loaded-file-chunk, which manages “File F is loaded into memory.” We need the latter for the update
basis of a File-segment-chunk; to update a chunk declared in file F , it is necessary (and sufficient!) for
F to be loaded. The contents of a File-segment-chunk become a function with zero arguments, to be
called by derive when applied to an element of the class. In the example, if tab.lisp is reloaded, then if
handlers.lisp hasn’t changed since it was last loaded, then derive calls the function, thus re-evaluating
the two setfs. If handlers.lisp has changed, then the deriver does nothing (because the file will have
been reloaded before the deriver is called). This is the simplest scheme, but it is easy to explore other
alternatives, such as “slurping” the file to find and evaluate just the chunk definition.

The point is that this mechanism allows fine-grained control over the rebuilding of Lisp sessions. Once
the dependency has been declared, the developer can stop worrying about it, confident that the chunk
manager will always reconfigure data structures properly as files are debugged and reloaded. With this
confidence, the times when the user must give up and reload everything can be reduced to a minimum.

References

[1] Jim Farley. Java Distributed Computing. O’Reilly, 1998.

[2] Heiko Kirschke. Persistent Lisp Objects! At http://plob.sourceforge.net/plob.html, 2005.

[3] Drew McDermott. YTools: A Package of Portable Enhancements to Common Lisp
. Available at http://cs-www.cs.yale.edu/homes/dvm/papers/ytdoc.pdf, 2005.

[4] Kent Pitman. The Description of Large Systems. Technical Report 801, MIT AI, 1984. Now available
at http://www.nhplace.com/kent/Papers/Large-Systems.html.

[5] Rosenberg. ASDF:, 2004. Another System Definition Facility. http://www.cliki.net/asdf.

[6] Kenny Tilton. Cells: A Dataflow Extension to CLOS. http://common-lisp.net/project/cells/,
2005.

