
How to Create a New Column-
Store DBMS Product In a Week

Daniel Abadi
February 4, 2008

Row vs. Column-Stores

Street
AddressPhone #E-mail

First
Name

Last
Name

Last
Name

First
Name E-mail Phone #

Street
Address

Row Store Column Store

− Might read in
unnecessary
data

+ Only need to read
in relevant data

+ Easy to add a new
record

− Tuple writes might require
multiple seeks

+ Data compression

Column-Stores

• Really good for read-mostly data
warehouses
� Lot’s of column scans and aggregations

� Writes tend to be in batch
� [CK85], [SAB+05], [ZBN+05], [HLA+06],

[SBC+07] all verify this
� ParAccel zoomed to top TPC-H rankings

� Factor of 5 faster on performance
� Factor of 2 superior on price/performance

Column-Stores are the Answer

• Mike Stonebraker in a recent blog post:
� “My prediction is that column stores will take

over the warehouse market over time,
completely displacing row stores. Since many
warehouse users are in considerable pain
(can't load in the available load window, can't
support ad-hoc queries, can't get better
performance without a "fork-lift" upgrade), I
expect this transition to column stores will
occur fairly quickly, as customers search for
better ways to improve performance.”

Data Warehouse Software

• $4 billion industry (out of total $12-15
billion DBMS software industry)

• Growing 10% annually

Momentum

• Right solution for growing market � $$$$
• ParAccel, Vertica, InfoBright, Calpont new

entrants
• SybaseIQ, Sand/DNA older products

Want a piece of the action?

• Three options
� Build on top of row-store (e.g., Postgres,

Ingres)
� Build a specialized storage manager

� Build a full-fledged system

0.0

20.0

40.0

60.0

80.0

100.0
T
im

e
 (
se

co
n
d
s)

Query Time (s) 79.9 40.7 4.4

Column-Store
Approach 1

Column-Store
Approach 2

Column-Store
Approach 3

Why is the Distinction Important

Stop Calling These
Column-Stores!!!

Average Query Time on SSBM

Column-Store Approach 1

Street
AddressPhone #E-mail

First
Name

Last
Name

Last
Name

First
Name E-mail

1

2

3

1

2

3

1

2

3

Option A:
Vertical Partitioning

…

Option B:
Index Every Column

Last Name Index First Name Index

SSBM Averages

0.0

50.0

100.0

150.0

200.0

250.0

T
im

e
 (
se

c
o
n
d
s)

Average 25.7 79.9 221.2

Normal Row-Store
Vertically Partitioned

Row-Store

Row-Store With All

Indexes

What’s Going On?

• Vertically Partitioned Case
� Tuple Sizes
� Horizontal Partitioning

• All Indexes Case
� Tuple Reconstruction

Star Schema Benchmark

• Fact table contains 17 columns and
60,000,000 rows

• 4 dimension tables, biggest one has
80,000 rows

• Queries touch 3-4 foreign keys in fact
table, 1-2 numeric columns

Tuple Size

1

2

3

Column
Data

TID

1

2

3

TID Column
Data

1

2

3

TID Column
Data

Tuple
Header

•Complete fact table takes up ~4 GB (compressed)

•Vertically partitioned tables take up 0.7-1.1 GB
(compressed)

Horizontal Partitioning

• Fact table horizontally partitioned on year
� Year is an element of the ‘Date’ dimension

table
� Most queries in SSBM have a predicate on

year
� Since vertically partitioned tables do not

contain the ‘Date’ foreign key, row-store could
not similarly partition them

What’s Going On?

• Vertically Partitioned Case
� Tuple Sizes
� Horizontal Partitioning

• All Indexes Case
� Tuple Construction

Tuple Construction

• Pretty much all queries require a column
to be extracted (in the SELECT clause)
that has not yet been accessed, e.g.:
� SELECT store_name, SUM(revenue)

FROM Facts, Stores
WHERE fact.store_id = stores.store_id

AND stores.area = “NEW ENGLAND”
GROUP BY store_name

Tuple Construction

• Result of lower part of query plan is a set
of TIDs that passed all predicates

• Need to extract SELECT attributes at
these TIDs
� BUT: index maps value to TID
� You really want to map TID to value (i.e., a

vertical partition)

�� Tuple construction is SLOW

What does this all mean?

• All indexes approach is pretty obviously a
poor way to simulate a column-store

• Problems with vertical partitioning are
NOT fundamental
� Store tuple header in a separate partition
� Allow virtual TIDs

� Allow HP using a foreign key on a different VP
� So can row-stores simulate column-stores?

Come Join the Yale DB Group!

